| //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements a simple loop unroller. It works best when loops have |
| // been canonicalized by the -indvars pass, allowing it to determine the trip |
| // counts of loops easily. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/LoopUnrollPass.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
| #include "llvm/Analysis/LoopAnalysisManager.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/LoopUnrollAnalyzer.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/LoopPassManager.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/LoopSimplify.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/SizeOpts.h" |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <limits> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-unroll" |
| |
| cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( |
| "forget-scev-loop-unroll", cl::init(false), cl::Hidden, |
| cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" |
| " the current top-most loop. This is somtimes preferred to reduce" |
| " compile time.")); |
| |
| static cl::opt<unsigned> |
| UnrollThreshold("unroll-threshold", cl::Hidden, |
| cl::desc("The cost threshold for loop unrolling")); |
| |
| static cl::opt<unsigned> UnrollPartialThreshold( |
| "unroll-partial-threshold", cl::Hidden, |
| cl::desc("The cost threshold for partial loop unrolling")); |
| |
| static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( |
| "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, |
| cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " |
| "to the threshold when aggressively unrolling a loop due to the " |
| "dynamic cost savings. If completely unrolling a loop will reduce " |
| "the total runtime from X to Y, we boost the loop unroll " |
| "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " |
| "X/Y). This limit avoids excessive code bloat.")); |
| |
| static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( |
| "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, |
| cl::desc("Don't allow loop unrolling to simulate more than this number of" |
| "iterations when checking full unroll profitability")); |
| |
| static cl::opt<unsigned> UnrollCount( |
| "unroll-count", cl::Hidden, |
| cl::desc("Use this unroll count for all loops including those with " |
| "unroll_count pragma values, for testing purposes")); |
| |
| static cl::opt<unsigned> UnrollMaxCount( |
| "unroll-max-count", cl::Hidden, |
| cl::desc("Set the max unroll count for partial and runtime unrolling, for" |
| "testing purposes")); |
| |
| static cl::opt<unsigned> UnrollFullMaxCount( |
| "unroll-full-max-count", cl::Hidden, |
| cl::desc( |
| "Set the max unroll count for full unrolling, for testing purposes")); |
| |
| static cl::opt<unsigned> UnrollPeelCount( |
| "unroll-peel-count", cl::Hidden, |
| cl::desc("Set the unroll peeling count, for testing purposes")); |
| |
| static cl::opt<bool> |
| UnrollAllowPartial("unroll-allow-partial", cl::Hidden, |
| cl::desc("Allows loops to be partially unrolled until " |
| "-unroll-threshold loop size is reached.")); |
| |
| static cl::opt<bool> UnrollAllowRemainder( |
| "unroll-allow-remainder", cl::Hidden, |
| cl::desc("Allow generation of a loop remainder (extra iterations) " |
| "when unrolling a loop.")); |
| |
| static cl::opt<bool> |
| UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, |
| cl::desc("Unroll loops with run-time trip counts")); |
| |
| static cl::opt<unsigned> UnrollMaxUpperBound( |
| "unroll-max-upperbound", cl::init(8), cl::Hidden, |
| cl::desc( |
| "The max of trip count upper bound that is considered in unrolling")); |
| |
| static cl::opt<unsigned> PragmaUnrollThreshold( |
| "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, |
| cl::desc("Unrolled size limit for loops with an unroll(full) or " |
| "unroll_count pragma.")); |
| |
| static cl::opt<unsigned> FlatLoopTripCountThreshold( |
| "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, |
| cl::desc("If the runtime tripcount for the loop is lower than the " |
| "threshold, the loop is considered as flat and will be less " |
| "aggressively unrolled.")); |
| |
| static cl::opt<bool> |
| UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, |
| cl::desc("Allows loops to be peeled when the dynamic " |
| "trip count is known to be low.")); |
| |
| static cl::opt<bool> UnrollUnrollRemainder( |
| "unroll-remainder", cl::Hidden, |
| cl::desc("Allow the loop remainder to be unrolled.")); |
| |
| // This option isn't ever intended to be enabled, it serves to allow |
| // experiments to check the assumptions about when this kind of revisit is |
| // necessary. |
| static cl::opt<bool> UnrollRevisitChildLoops( |
| "unroll-revisit-child-loops", cl::Hidden, |
| cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " |
| "This shouldn't typically be needed as child loops (or their " |
| "clones) were already visited.")); |
| |
| /// A magic value for use with the Threshold parameter to indicate |
| /// that the loop unroll should be performed regardless of how much |
| /// code expansion would result. |
| static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); |
| |
| /// Gather the various unrolling parameters based on the defaults, compiler |
| /// flags, TTI overrides and user specified parameters. |
| TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( |
| Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, |
| BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, |
| Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, |
| Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, |
| Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling, |
| Optional<bool> UserAllowProfileBasedPeeling, |
| Optional<unsigned> UserFullUnrollMaxCount) { |
| TargetTransformInfo::UnrollingPreferences UP; |
| |
| // Set up the defaults |
| UP.Threshold = OptLevel > 2 ? 300 : 150; |
| UP.MaxPercentThresholdBoost = 400; |
| UP.OptSizeThreshold = 0; |
| UP.PartialThreshold = 150; |
| UP.PartialOptSizeThreshold = 0; |
| UP.Count = 0; |
| UP.PeelCount = 0; |
| UP.DefaultUnrollRuntimeCount = 8; |
| UP.MaxCount = std::numeric_limits<unsigned>::max(); |
| UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); |
| UP.BEInsns = 2; |
| UP.Partial = false; |
| UP.Runtime = false; |
| UP.AllowRemainder = true; |
| UP.UnrollRemainder = false; |
| UP.AllowExpensiveTripCount = false; |
| UP.Force = false; |
| UP.UpperBound = false; |
| UP.AllowPeeling = true; |
| UP.UnrollAndJam = false; |
| UP.PeelProfiledIterations = true; |
| UP.UnrollAndJamInnerLoopThreshold = 60; |
| |
| // Override with any target specific settings |
| TTI.getUnrollingPreferences(L, SE, UP); |
| |
| // Apply size attributes |
| bool OptForSize = L->getHeader()->getParent()->hasOptSize() || |
| llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, |
| PGSOQueryType::IRPass); |
| if (OptForSize) { |
| UP.Threshold = UP.OptSizeThreshold; |
| UP.PartialThreshold = UP.PartialOptSizeThreshold; |
| UP.MaxPercentThresholdBoost = 100; |
| } |
| |
| // Apply any user values specified by cl::opt |
| if (UnrollThreshold.getNumOccurrences() > 0) |
| UP.Threshold = UnrollThreshold; |
| if (UnrollPartialThreshold.getNumOccurrences() > 0) |
| UP.PartialThreshold = UnrollPartialThreshold; |
| if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) |
| UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; |
| if (UnrollMaxCount.getNumOccurrences() > 0) |
| UP.MaxCount = UnrollMaxCount; |
| if (UnrollFullMaxCount.getNumOccurrences() > 0) |
| UP.FullUnrollMaxCount = UnrollFullMaxCount; |
| if (UnrollPeelCount.getNumOccurrences() > 0) |
| UP.PeelCount = UnrollPeelCount; |
| if (UnrollAllowPartial.getNumOccurrences() > 0) |
| UP.Partial = UnrollAllowPartial; |
| if (UnrollAllowRemainder.getNumOccurrences() > 0) |
| UP.AllowRemainder = UnrollAllowRemainder; |
| if (UnrollRuntime.getNumOccurrences() > 0) |
| UP.Runtime = UnrollRuntime; |
| if (UnrollMaxUpperBound == 0) |
| UP.UpperBound = false; |
| if (UnrollAllowPeeling.getNumOccurrences() > 0) |
| UP.AllowPeeling = UnrollAllowPeeling; |
| if (UnrollUnrollRemainder.getNumOccurrences() > 0) |
| UP.UnrollRemainder = UnrollUnrollRemainder; |
| |
| // Apply user values provided by argument |
| if (UserThreshold.hasValue()) { |
| UP.Threshold = *UserThreshold; |
| UP.PartialThreshold = *UserThreshold; |
| } |
| if (UserCount.hasValue()) |
| UP.Count = *UserCount; |
| if (UserAllowPartial.hasValue()) |
| UP.Partial = *UserAllowPartial; |
| if (UserRuntime.hasValue()) |
| UP.Runtime = *UserRuntime; |
| if (UserUpperBound.hasValue()) |
| UP.UpperBound = *UserUpperBound; |
| if (UserAllowPeeling.hasValue()) |
| UP.AllowPeeling = *UserAllowPeeling; |
| if (UserAllowProfileBasedPeeling.hasValue()) |
| UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; |
| if (UserFullUnrollMaxCount.hasValue()) |
| UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; |
| |
| return UP; |
| } |
| |
| namespace { |
| |
| /// A struct to densely store the state of an instruction after unrolling at |
| /// each iteration. |
| /// |
| /// This is designed to work like a tuple of <Instruction *, int> for the |
| /// purposes of hashing and lookup, but to be able to associate two boolean |
| /// states with each key. |
| struct UnrolledInstState { |
| Instruction *I; |
| int Iteration : 30; |
| unsigned IsFree : 1; |
| unsigned IsCounted : 1; |
| }; |
| |
| /// Hashing and equality testing for a set of the instruction states. |
| struct UnrolledInstStateKeyInfo { |
| using PtrInfo = DenseMapInfo<Instruction *>; |
| using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; |
| |
| static inline UnrolledInstState getEmptyKey() { |
| return {PtrInfo::getEmptyKey(), 0, 0, 0}; |
| } |
| |
| static inline UnrolledInstState getTombstoneKey() { |
| return {PtrInfo::getTombstoneKey(), 0, 0, 0}; |
| } |
| |
| static inline unsigned getHashValue(const UnrolledInstState &S) { |
| return PairInfo::getHashValue({S.I, S.Iteration}); |
| } |
| |
| static inline bool isEqual(const UnrolledInstState &LHS, |
| const UnrolledInstState &RHS) { |
| return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); |
| } |
| }; |
| |
| struct EstimatedUnrollCost { |
| /// The estimated cost after unrolling. |
| unsigned UnrolledCost; |
| |
| /// The estimated dynamic cost of executing the instructions in the |
| /// rolled form. |
| unsigned RolledDynamicCost; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Figure out if the loop is worth full unrolling. |
| /// |
| /// Complete loop unrolling can make some loads constant, and we need to know |
| /// if that would expose any further optimization opportunities. This routine |
| /// estimates this optimization. It computes cost of unrolled loop |
| /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By |
| /// dynamic cost we mean that we won't count costs of blocks that are known not |
| /// to be executed (i.e. if we have a branch in the loop and we know that at the |
| /// given iteration its condition would be resolved to true, we won't add up the |
| /// cost of the 'false'-block). |
| /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If |
| /// the analysis failed (no benefits expected from the unrolling, or the loop is |
| /// too big to analyze), the returned value is None. |
| static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( |
| const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, |
| const SmallPtrSetImpl<const Value *> &EphValues, |
| const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { |
| // We want to be able to scale offsets by the trip count and add more offsets |
| // to them without checking for overflows, and we already don't want to |
| // analyze *massive* trip counts, so we force the max to be reasonably small. |
| assert(UnrollMaxIterationsCountToAnalyze < |
| (unsigned)(std::numeric_limits<int>::max() / 2) && |
| "The unroll iterations max is too large!"); |
| |
| // Only analyze inner loops. We can't properly estimate cost of nested loops |
| // and we won't visit inner loops again anyway. |
| if (!L->empty()) |
| return None; |
| |
| // Don't simulate loops with a big or unknown tripcount |
| if (!UnrollMaxIterationsCountToAnalyze || !TripCount || |
| TripCount > UnrollMaxIterationsCountToAnalyze) |
| return None; |
| |
| SmallSetVector<BasicBlock *, 16> BBWorklist; |
| SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; |
| DenseMap<Value *, Constant *> SimplifiedValues; |
| SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; |
| |
| // The estimated cost of the unrolled form of the loop. We try to estimate |
| // this by simplifying as much as we can while computing the estimate. |
| unsigned UnrolledCost = 0; |
| |
| // We also track the estimated dynamic (that is, actually executed) cost in |
| // the rolled form. This helps identify cases when the savings from unrolling |
| // aren't just exposing dead control flows, but actual reduced dynamic |
| // instructions due to the simplifications which we expect to occur after |
| // unrolling. |
| unsigned RolledDynamicCost = 0; |
| |
| // We track the simplification of each instruction in each iteration. We use |
| // this to recursively merge costs into the unrolled cost on-demand so that |
| // we don't count the cost of any dead code. This is essentially a map from |
| // <instruction, int> to <bool, bool>, but stored as a densely packed struct. |
| DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; |
| |
| // A small worklist used to accumulate cost of instructions from each |
| // observable and reached root in the loop. |
| SmallVector<Instruction *, 16> CostWorklist; |
| |
| // PHI-used worklist used between iterations while accumulating cost. |
| SmallVector<Instruction *, 4> PHIUsedList; |
| |
| // Helper function to accumulate cost for instructions in the loop. |
| auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { |
| assert(Iteration >= 0 && "Cannot have a negative iteration!"); |
| assert(CostWorklist.empty() && "Must start with an empty cost list"); |
| assert(PHIUsedList.empty() && "Must start with an empty phi used list"); |
| CostWorklist.push_back(&RootI); |
| for (;; --Iteration) { |
| do { |
| Instruction *I = CostWorklist.pop_back_val(); |
| |
| // InstCostMap only uses I and Iteration as a key, the other two values |
| // don't matter here. |
| auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); |
| if (CostIter == InstCostMap.end()) |
| // If an input to a PHI node comes from a dead path through the loop |
| // we may have no cost data for it here. What that actually means is |
| // that it is free. |
| continue; |
| auto &Cost = *CostIter; |
| if (Cost.IsCounted) |
| // Already counted this instruction. |
| continue; |
| |
| // Mark that we are counting the cost of this instruction now. |
| Cost.IsCounted = true; |
| |
| // If this is a PHI node in the loop header, just add it to the PHI set. |
| if (auto *PhiI = dyn_cast<PHINode>(I)) |
| if (PhiI->getParent() == L->getHeader()) { |
| assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " |
| "inherently simplify during unrolling."); |
| if (Iteration == 0) |
| continue; |
| |
| // Push the incoming value from the backedge into the PHI used list |
| // if it is an in-loop instruction. We'll use this to populate the |
| // cost worklist for the next iteration (as we count backwards). |
| if (auto *OpI = dyn_cast<Instruction>( |
| PhiI->getIncomingValueForBlock(L->getLoopLatch()))) |
| if (L->contains(OpI)) |
| PHIUsedList.push_back(OpI); |
| continue; |
| } |
| |
| // First accumulate the cost of this instruction. |
| if (!Cost.IsFree) { |
| UnrolledCost += TTI.getUserCost(I); |
| LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " |
| << Iteration << "): "); |
| LLVM_DEBUG(I->dump()); |
| } |
| |
| // We must count the cost of every operand which is not free, |
| // recursively. If we reach a loop PHI node, simply add it to the set |
| // to be considered on the next iteration (backwards!). |
| for (Value *Op : I->operands()) { |
| // Check whether this operand is free due to being a constant or |
| // outside the loop. |
| auto *OpI = dyn_cast<Instruction>(Op); |
| if (!OpI || !L->contains(OpI)) |
| continue; |
| |
| // Otherwise accumulate its cost. |
| CostWorklist.push_back(OpI); |
| } |
| } while (!CostWorklist.empty()); |
| |
| if (PHIUsedList.empty()) |
| // We've exhausted the search. |
| break; |
| |
| assert(Iteration > 0 && |
| "Cannot track PHI-used values past the first iteration!"); |
| CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); |
| PHIUsedList.clear(); |
| } |
| }; |
| |
| // Ensure that we don't violate the loop structure invariants relied on by |
| // this analysis. |
| assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); |
| assert(L->isLCSSAForm(DT) && |
| "Must have loops in LCSSA form to track live-out values."); |
| |
| LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); |
| |
| // Simulate execution of each iteration of the loop counting instructions, |
| // which would be simplified. |
| // Since the same load will take different values on different iterations, |
| // we literally have to go through all loop's iterations. |
| for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { |
| LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); |
| |
| // Prepare for the iteration by collecting any simplified entry or backedge |
| // inputs. |
| for (Instruction &I : *L->getHeader()) { |
| auto *PHI = dyn_cast<PHINode>(&I); |
| if (!PHI) |
| break; |
| |
| // The loop header PHI nodes must have exactly two input: one from the |
| // loop preheader and one from the loop latch. |
| assert( |
| PHI->getNumIncomingValues() == 2 && |
| "Must have an incoming value only for the preheader and the latch."); |
| |
| Value *V = PHI->getIncomingValueForBlock( |
| Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); |
| Constant *C = dyn_cast<Constant>(V); |
| if (Iteration != 0 && !C) |
| C = SimplifiedValues.lookup(V); |
| if (C) |
| SimplifiedInputValues.push_back({PHI, C}); |
| } |
| |
| // Now clear and re-populate the map for the next iteration. |
| SimplifiedValues.clear(); |
| while (!SimplifiedInputValues.empty()) |
| SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); |
| |
| UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); |
| |
| BBWorklist.clear(); |
| BBWorklist.insert(L->getHeader()); |
| // Note that we *must not* cache the size, this loop grows the worklist. |
| for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { |
| BasicBlock *BB = BBWorklist[Idx]; |
| |
| // Visit all instructions in the given basic block and try to simplify |
| // it. We don't change the actual IR, just count optimization |
| // opportunities. |
| for (Instruction &I : *BB) { |
| // These won't get into the final code - don't even try calculating the |
| // cost for them. |
| if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) |
| continue; |
| |
| // Track this instruction's expected baseline cost when executing the |
| // rolled loop form. |
| RolledDynamicCost += TTI.getUserCost(&I); |
| |
| // Visit the instruction to analyze its loop cost after unrolling, |
| // and if the visitor returns true, mark the instruction as free after |
| // unrolling and continue. |
| bool IsFree = Analyzer.visit(I); |
| bool Inserted = InstCostMap.insert({&I, (int)Iteration, |
| (unsigned)IsFree, |
| /*IsCounted*/ false}).second; |
| (void)Inserted; |
| assert(Inserted && "Cannot have a state for an unvisited instruction!"); |
| |
| if (IsFree) |
| continue; |
| |
| // Can't properly model a cost of a call. |
| // FIXME: With a proper cost model we should be able to do it. |
| if (auto *CI = dyn_cast<CallInst>(&I)) { |
| const Function *Callee = CI->getCalledFunction(); |
| if (!Callee || TTI.isLoweredToCall(Callee)) { |
| LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); |
| return None; |
| } |
| } |
| |
| // If the instruction might have a side-effect recursively account for |
| // the cost of it and all the instructions leading up to it. |
| if (I.mayHaveSideEffects()) |
| AddCostRecursively(I, Iteration); |
| |
| // If unrolled body turns out to be too big, bail out. |
| if (UnrolledCost > MaxUnrolledLoopSize) { |
| LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" |
| << " UnrolledCost: " << UnrolledCost |
| << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize |
| << "\n"); |
| return None; |
| } |
| } |
| |
| Instruction *TI = BB->getTerminator(); |
| |
| // Add in the live successors by first checking whether we have terminator |
| // that may be simplified based on the values simplified by this call. |
| BasicBlock *KnownSucc = nullptr; |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isConditional()) { |
| if (Constant *SimpleCond = |
| SimplifiedValues.lookup(BI->getCondition())) { |
| // Just take the first successor if condition is undef |
| if (isa<UndefValue>(SimpleCond)) |
| KnownSucc = BI->getSuccessor(0); |
| else if (ConstantInt *SimpleCondVal = |
| dyn_cast<ConstantInt>(SimpleCond)) |
| KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); |
| } |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| if (Constant *SimpleCond = |
| SimplifiedValues.lookup(SI->getCondition())) { |
| // Just take the first successor if condition is undef |
| if (isa<UndefValue>(SimpleCond)) |
| KnownSucc = SI->getSuccessor(0); |
| else if (ConstantInt *SimpleCondVal = |
| dyn_cast<ConstantInt>(SimpleCond)) |
| KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); |
| } |
| } |
| if (KnownSucc) { |
| if (L->contains(KnownSucc)) |
| BBWorklist.insert(KnownSucc); |
| else |
| ExitWorklist.insert({BB, KnownSucc}); |
| continue; |
| } |
| |
| // Add BB's successors to the worklist. |
| for (BasicBlock *Succ : successors(BB)) |
| if (L->contains(Succ)) |
| BBWorklist.insert(Succ); |
| else |
| ExitWorklist.insert({BB, Succ}); |
| AddCostRecursively(*TI, Iteration); |
| } |
| |
| // If we found no optimization opportunities on the first iteration, we |
| // won't find them on later ones too. |
| if (UnrolledCost == RolledDynamicCost) { |
| LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" |
| << " UnrolledCost: " << UnrolledCost << "\n"); |
| return None; |
| } |
| } |
| |
| while (!ExitWorklist.empty()) { |
| BasicBlock *ExitingBB, *ExitBB; |
| std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); |
| |
| for (Instruction &I : *ExitBB) { |
| auto *PN = dyn_cast<PHINode>(&I); |
| if (!PN) |
| break; |
| |
| Value *Op = PN->getIncomingValueForBlock(ExitingBB); |
| if (auto *OpI = dyn_cast<Instruction>(Op)) |
| if (L->contains(OpI)) |
| AddCostRecursively(*OpI, TripCount - 1); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Analysis finished:\n" |
| << "UnrolledCost: " << UnrolledCost << ", " |
| << "RolledDynamicCost: " << RolledDynamicCost << "\n"); |
| return {{UnrolledCost, RolledDynamicCost}}; |
| } |
| |
| /// ApproximateLoopSize - Approximate the size of the loop. |
| unsigned llvm::ApproximateLoopSize( |
| const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, |
| const TargetTransformInfo &TTI, |
| const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { |
| CodeMetrics Metrics; |
| for (BasicBlock *BB : L->blocks()) |
| Metrics.analyzeBasicBlock(BB, TTI, EphValues); |
| NumCalls = Metrics.NumInlineCandidates; |
| NotDuplicatable = Metrics.notDuplicatable; |
| Convergent = Metrics.convergent; |
| |
| unsigned LoopSize = Metrics.NumInsts; |
| |
| // Don't allow an estimate of size zero. This would allows unrolling of loops |
| // with huge iteration counts, which is a compile time problem even if it's |
| // not a problem for code quality. Also, the code using this size may assume |
| // that each loop has at least three instructions (likely a conditional |
| // branch, a comparison feeding that branch, and some kind of loop increment |
| // feeding that comparison instruction). |
| LoopSize = std::max(LoopSize, BEInsns + 1); |
| |
| return LoopSize; |
| } |
| |
| // Returns the loop hint metadata node with the given name (for example, |
| // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is |
| // returned. |
| static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { |
| if (MDNode *LoopID = L->getLoopID()) |
| return GetUnrollMetadata(LoopID, Name); |
| return nullptr; |
| } |
| |
| // Returns true if the loop has an unroll(full) pragma. |
| static bool HasUnrollFullPragma(const Loop *L) { |
| return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); |
| } |
| |
| // Returns true if the loop has an unroll(enable) pragma. This metadata is used |
| // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. |
| static bool HasUnrollEnablePragma(const Loop *L) { |
| return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); |
| } |
| |
| // Returns true if the loop has an runtime unroll(disable) pragma. |
| static bool HasRuntimeUnrollDisablePragma(const Loop *L) { |
| return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); |
| } |
| |
| // If loop has an unroll_count pragma return the (necessarily |
| // positive) value from the pragma. Otherwise return 0. |
| static unsigned UnrollCountPragmaValue(const Loop *L) { |
| MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); |
| if (MD) { |
| assert(MD->getNumOperands() == 2 && |
| "Unroll count hint metadata should have two operands."); |
| unsigned Count = |
| mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); |
| assert(Count >= 1 && "Unroll count must be positive."); |
| return Count; |
| } |
| return 0; |
| } |
| |
| // Computes the boosting factor for complete unrolling. |
| // If fully unrolling the loop would save a lot of RolledDynamicCost, it would |
| // be beneficial to fully unroll the loop even if unrolledcost is large. We |
| // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust |
| // the unroll threshold. |
| static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, |
| unsigned MaxPercentThresholdBoost) { |
| if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) |
| return 100; |
| else if (Cost.UnrolledCost != 0) |
| // The boosting factor is RolledDynamicCost / UnrolledCost |
| return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, |
| MaxPercentThresholdBoost); |
| else |
| return MaxPercentThresholdBoost; |
| } |
| |
| // Returns loop size estimation for unrolled loop. |
| static uint64_t getUnrolledLoopSize( |
| unsigned LoopSize, |
| TargetTransformInfo::UnrollingPreferences &UP) { |
| assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); |
| return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; |
| } |
| |
| // Returns true if unroll count was set explicitly. |
| // Calculates unroll count and writes it to UP.Count. |
| // Unless IgnoreUser is true, will also use metadata and command-line options |
| // that are specific to to the LoopUnroll pass (which, for instance, are |
| // irrelevant for the LoopUnrollAndJam pass). |
| // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes |
| // many LoopUnroll-specific options. The shared functionality should be |
| // refactored into it own function. |
| bool llvm::computeUnrollCount( |
| Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, |
| ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, |
| OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, |
| bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, |
| TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { |
| |
| // Check for explicit Count. |
| // 1st priority is unroll count set by "unroll-count" option. |
| bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; |
| if (UserUnrollCount) { |
| UP.Count = UnrollCount; |
| UP.AllowExpensiveTripCount = true; |
| UP.Force = true; |
| if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) |
| return true; |
| } |
| |
| // 2nd priority is unroll count set by pragma. |
| unsigned PragmaCount = UnrollCountPragmaValue(L); |
| if (PragmaCount > 0) { |
| UP.Count = PragmaCount; |
| UP.Runtime = true; |
| UP.AllowExpensiveTripCount = true; |
| UP.Force = true; |
| if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && |
| getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) |
| return true; |
| } |
| bool PragmaFullUnroll = HasUnrollFullPragma(L); |
| if (PragmaFullUnroll && TripCount != 0) { |
| UP.Count = TripCount; |
| if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) |
| return false; |
| } |
| |
| bool PragmaEnableUnroll = HasUnrollEnablePragma(L); |
| bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || |
| PragmaEnableUnroll || UserUnrollCount; |
| |
| if (ExplicitUnroll && TripCount != 0) { |
| // If the loop has an unrolling pragma, we want to be more aggressive with |
| // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold |
| // value which is larger than the default limits. |
| UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); |
| UP.PartialThreshold = |
| std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); |
| } |
| |
| // 3rd priority is full unroll count. |
| // Full unroll makes sense only when TripCount or its upper bound could be |
| // statically calculated. |
| // Also we need to check if we exceed FullUnrollMaxCount. |
| // If using the upper bound to unroll, TripMultiple should be set to 1 because |
| // we do not know when loop may exit. |
| |
| // We can unroll by the upper bound amount if it's generally allowed or if |
| // we know that the loop is executed either the upper bound or zero times. |
| // (MaxOrZero unrolling keeps only the first loop test, so the number of |
| // loop tests remains the same compared to the non-unrolled version, whereas |
| // the generic upper bound unrolling keeps all but the last loop test so the |
| // number of loop tests goes up which may end up being worse on targets with |
| // constrained branch predictor resources so is controlled by an option.) |
| // In addition we only unroll small upper bounds. |
| unsigned FullUnrollMaxTripCount = MaxTripCount; |
| if (!(UP.UpperBound || MaxOrZero) || |
| FullUnrollMaxTripCount > UnrollMaxUpperBound) |
| FullUnrollMaxTripCount = 0; |
| |
| // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only |
| // compute the former when the latter is zero. |
| unsigned ExactTripCount = TripCount; |
| assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && |
| "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); |
| |
| unsigned FullUnrollTripCount = |
| ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; |
| UP.Count = FullUnrollTripCount; |
| if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { |
| // When computing the unrolled size, note that BEInsns are not replicated |
| // like the rest of the loop body. |
| if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { |
| UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); |
| TripCount = FullUnrollTripCount; |
| TripMultiple = UP.UpperBound ? 1 : TripMultiple; |
| return ExplicitUnroll; |
| } else { |
| // The loop isn't that small, but we still can fully unroll it if that |
| // helps to remove a significant number of instructions. |
| // To check that, run additional analysis on the loop. |
| if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( |
| L, FullUnrollTripCount, DT, SE, EphValues, TTI, |
| UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { |
| unsigned Boost = |
| getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); |
| if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { |
| UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); |
| TripCount = FullUnrollTripCount; |
| TripMultiple = UP.UpperBound ? 1 : TripMultiple; |
| return ExplicitUnroll; |
| } |
| } |
| } |
| } |
| |
| // 4th priority is loop peeling. |
| computePeelCount(L, LoopSize, UP, TripCount, SE); |
| if (UP.PeelCount) { |
| UP.Runtime = false; |
| UP.Count = 1; |
| return ExplicitUnroll; |
| } |
| |
| // 5th priority is partial unrolling. |
| // Try partial unroll only when TripCount could be statically calculated. |
| if (TripCount) { |
| UP.Partial |= ExplicitUnroll; |
| if (!UP.Partial) { |
| LLVM_DEBUG(dbgs() << " will not try to unroll partially because " |
| << "-unroll-allow-partial not given\n"); |
| UP.Count = 0; |
| return false; |
| } |
| if (UP.Count == 0) |
| UP.Count = TripCount; |
| if (UP.PartialThreshold != NoThreshold) { |
| // Reduce unroll count to be modulo of TripCount for partial unrolling. |
| if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) |
| UP.Count = |
| (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / |
| (LoopSize - UP.BEInsns); |
| if (UP.Count > UP.MaxCount) |
| UP.Count = UP.MaxCount; |
| while (UP.Count != 0 && TripCount % UP.Count != 0) |
| UP.Count--; |
| if (UP.AllowRemainder && UP.Count <= 1) { |
| // If there is no Count that is modulo of TripCount, set Count to |
| // largest power-of-two factor that satisfies the threshold limit. |
| // As we'll create fixup loop, do the type of unrolling only if |
| // remainder loop is allowed. |
| UP.Count = UP.DefaultUnrollRuntimeCount; |
| while (UP.Count != 0 && |
| getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) |
| UP.Count >>= 1; |
| } |
| if (UP.Count < 2) { |
| if (PragmaEnableUnroll) |
| ORE->emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, |
| "UnrollAsDirectedTooLarge", |
| L->getStartLoc(), L->getHeader()) |
| << "Unable to unroll loop as directed by unroll(enable) " |
| "pragma " |
| "because unrolled size is too large."; |
| }); |
| UP.Count = 0; |
| } |
| } else { |
| UP.Count = TripCount; |
| } |
| if (UP.Count > UP.MaxCount) |
| UP.Count = UP.MaxCount; |
| if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && |
| UP.Count != TripCount) |
| ORE->emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, |
| "FullUnrollAsDirectedTooLarge", |
| L->getStartLoc(), L->getHeader()) |
| << "Unable to fully unroll loop as directed by unroll pragma " |
| "because " |
| "unrolled size is too large."; |
| }); |
| LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count |
| << "\n"); |
| return ExplicitUnroll; |
| } |
| assert(TripCount == 0 && |
| "All cases when TripCount is constant should be covered here."); |
| if (PragmaFullUnroll) |
| ORE->emit([&]() { |
| return OptimizationRemarkMissed( |
| DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", |
| L->getStartLoc(), L->getHeader()) |
| << "Unable to fully unroll loop as directed by unroll(full) " |
| "pragma " |
| "because loop has a runtime trip count."; |
| }); |
| |
| // 6th priority is runtime unrolling. |
| // Don't unroll a runtime trip count loop when it is disabled. |
| if (HasRuntimeUnrollDisablePragma(L)) { |
| UP.Count = 0; |
| return false; |
| } |
| |
| // Don't unroll a small upper bound loop unless user or TTI asked to do so. |
| if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { |
| UP.Count = 0; |
| return false; |
| } |
| |
| // Check if the runtime trip count is too small when profile is available. |
| if (L->getHeader()->getParent()->hasProfileData()) { |
| if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { |
| if (*ProfileTripCount < FlatLoopTripCountThreshold) |
| return false; |
| else |
| UP.AllowExpensiveTripCount = true; |
| } |
| } |
| |
| // Reduce count based on the type of unrolling and the threshold values. |
| UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; |
| if (!UP.Runtime) { |
| LLVM_DEBUG( |
| dbgs() << " will not try to unroll loop with runtime trip count " |
| << "-unroll-runtime not given\n"); |
| UP.Count = 0; |
| return false; |
| } |
| if (UP.Count == 0) |
| UP.Count = UP.DefaultUnrollRuntimeCount; |
| |
| // Reduce unroll count to be the largest power-of-two factor of |
| // the original count which satisfies the threshold limit. |
| while (UP.Count != 0 && |
| getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) |
| UP.Count >>= 1; |
| |
| #ifndef NDEBUG |
| unsigned OrigCount = UP.Count; |
| #endif |
| |
| if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { |
| while (UP.Count != 0 && TripMultiple % UP.Count != 0) |
| UP.Count >>= 1; |
| LLVM_DEBUG( |
| dbgs() << "Remainder loop is restricted (that could architecture " |
| "specific or because the loop contains a convergent " |
| "instruction), so unroll count must divide the trip " |
| "multiple, " |
| << TripMultiple << ". Reducing unroll count from " << OrigCount |
| << " to " << UP.Count << ".\n"); |
| |
| using namespace ore; |
| |
| if (PragmaCount > 0 && !UP.AllowRemainder) |
| ORE->emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, |
| "DifferentUnrollCountFromDirected", |
| L->getStartLoc(), L->getHeader()) |
| << "Unable to unroll loop the number of times directed by " |
| "unroll_count pragma because remainder loop is restricted " |
| "(that could architecture specific or because the loop " |
| "contains a convergent instruction) and so must have an " |
| "unroll " |
| "count that divides the loop trip multiple of " |
| << NV("TripMultiple", TripMultiple) << ". Unrolling instead " |
| << NV("UnrollCount", UP.Count) << " time(s)."; |
| }); |
| } |
| |
| if (UP.Count > UP.MaxCount) |
| UP.Count = UP.MaxCount; |
| |
| if (MaxTripCount && UP.Count > MaxTripCount) |
| UP.Count = MaxTripCount; |
| |
| LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count |
| << "\n"); |
| if (UP.Count < 2) |
| UP.Count = 0; |
| return ExplicitUnroll; |
| } |
| |
| static LoopUnrollResult tryToUnrollLoop( |
| Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, |
| const TargetTransformInfo &TTI, AssumptionCache &AC, |
| OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, |
| ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, |
| bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, |
| Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, |
| Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, |
| Optional<bool> ProvidedAllowPeeling, |
| Optional<bool> ProvidedAllowProfileBasedPeeling, |
| Optional<unsigned> ProvidedFullUnrollMaxCount) { |
| LLVM_DEBUG(dbgs() << "Loop Unroll: F[" |
| << L->getHeader()->getParent()->getName() << "] Loop %" |
| << L->getHeader()->getName() << "\n"); |
| TransformationMode TM = hasUnrollTransformation(L); |
| if (TM & TM_Disable) |
| return LoopUnrollResult::Unmodified; |
| if (!L->isLoopSimplifyForm()) { |
| LLVM_DEBUG( |
| dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); |
| return LoopUnrollResult::Unmodified; |
| } |
| |
| // When automtatic unrolling is disabled, do not unroll unless overridden for |
| // this loop. |
| if (OnlyWhenForced && !(TM & TM_Enable)) |
| return LoopUnrollResult::Unmodified; |
| |
| bool OptForSize = L->getHeader()->getParent()->hasOptSize(); |
| unsigned NumInlineCandidates; |
| bool NotDuplicatable; |
| bool Convergent; |
| TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( |
| L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, |
| ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, |
| ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, |
| ProvidedFullUnrollMaxCount); |
| |
| // Exit early if unrolling is disabled. For OptForSize, we pick the loop size |
| // as threshold later on. |
| if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && |
| !OptForSize) |
| return LoopUnrollResult::Unmodified; |
| |
| SmallPtrSet<const Value *, 32> EphValues; |
| CodeMetrics::collectEphemeralValues(L, &AC, EphValues); |
| |
| unsigned LoopSize = |
| ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, |
| TTI, EphValues, UP.BEInsns); |
| LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); |
| if (NotDuplicatable) { |
| LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" |
| << " instructions.\n"); |
| return LoopUnrollResult::Unmodified; |
| } |
| |
| // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold |
| // later), to (fully) unroll loops, if it does not increase code size. |
| if (OptForSize) |
| UP.Threshold = std::max(UP.Threshold, LoopSize + 1); |
| |
| if (NumInlineCandidates != 0) { |
| LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); |
| return LoopUnrollResult::Unmodified; |
| } |
| |
| // Find trip count and trip multiple if count is not available |
| unsigned TripCount = 0; |
| unsigned TripMultiple = 1; |
| // If there are multiple exiting blocks but one of them is the latch, use the |
| // latch for the trip count estimation. Otherwise insist on a single exiting |
| // block for the trip count estimation. |
| BasicBlock *ExitingBlock = L->getLoopLatch(); |
| if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) |
| ExitingBlock = L->getExitingBlock(); |
| if (ExitingBlock) { |
| TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); |
| TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); |
| } |
| |
| // If the loop contains a convergent operation, the prelude we'd add |
| // to do the first few instructions before we hit the unrolled loop |
| // is unsafe -- it adds a control-flow dependency to the convergent |
| // operation. Therefore restrict remainder loop (try unrollig without). |
| // |
| // TODO: This is quite conservative. In practice, convergent_op() |
| // is likely to be called unconditionally in the loop. In this |
| // case, the program would be ill-formed (on most architectures) |
| // unless n were the same on all threads in a thread group. |
| // Assuming n is the same on all threads, any kind of unrolling is |
| // safe. But currently llvm's notion of convergence isn't powerful |
| // enough to express this. |
| if (Convergent) |
| UP.AllowRemainder = false; |
| |
| // Try to find the trip count upper bound if we cannot find the exact trip |
| // count. |
| unsigned MaxTripCount = 0; |
| bool MaxOrZero = false; |
| if (!TripCount) { |
| MaxTripCount = SE.getSmallConstantMaxTripCount(L); |
| MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); |
| } |
| |
| // computeUnrollCount() decides whether it is beneficial to use upper bound to |
| // fully unroll the loop. |
| bool UseUpperBound = false; |
| bool IsCountSetExplicitly = computeUnrollCount( |
| L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, |
| TripMultiple, LoopSize, UP, UseUpperBound); |
| if (!UP.Count) |
| return LoopUnrollResult::Unmodified; |
| // Unroll factor (Count) must be less or equal to TripCount. |
| if (TripCount && UP.Count > TripCount) |
| UP.Count = TripCount; |
| |
| // Save loop properties before it is transformed. |
| MDNode *OrigLoopID = L->getLoopID(); |
| |
| // Unroll the loop. |
| Loop *RemainderLoop = nullptr; |
| LoopUnrollResult UnrollResult = UnrollLoop( |
| L, |
| {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, |
| UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, |
| ForgetAllSCEV}, |
| LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); |
| if (UnrollResult == LoopUnrollResult::Unmodified) |
| return LoopUnrollResult::Unmodified; |
| |
| if (RemainderLoop) { |
| Optional<MDNode *> RemainderLoopID = |
| makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, |
| LLVMLoopUnrollFollowupRemainder}); |
| if (RemainderLoopID.hasValue()) |
| RemainderLoop->setLoopID(RemainderLoopID.getValue()); |
| } |
| |
| if (UnrollResult != LoopUnrollResult::FullyUnrolled) { |
| Optional<MDNode *> NewLoopID = |
| makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, |
| LLVMLoopUnrollFollowupUnrolled}); |
| if (NewLoopID.hasValue()) { |
| L->setLoopID(NewLoopID.getValue()); |
| |
| // Do not setLoopAlreadyUnrolled if loop attributes have been specified |
| // explicitly. |
| return UnrollResult; |
| } |
| } |
| |
| // If loop has an unroll count pragma or unrolled by explicitly set count |
| // mark loop as unrolled to prevent unrolling beyond that requested. |
| // If the loop was peeled, we already "used up" the profile information |
| // we had, so we don't want to unroll or peel again. |
| if (UnrollResult != LoopUnrollResult::FullyUnrolled && |
| (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) |
| L->setLoopAlreadyUnrolled(); |
| |
| return UnrollResult; |
| } |
| |
| namespace { |
| |
| class LoopUnroll : public LoopPass { |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| |
| int OptLevel; |
| |
| /// If false, use a cost model to determine whether unrolling of a loop is |
| /// profitable. If true, only loops that explicitly request unrolling via |
| /// metadata are considered. All other loops are skipped. |
| bool OnlyWhenForced; |
| |
| /// If false, when SCEV is invalidated, only forget everything in the |
| /// top-most loop (call forgetTopMostLoop), of the loop being processed. |
| /// Otherwise, forgetAllLoops and rebuild when needed next. |
| bool ForgetAllSCEV; |
| |
| Optional<unsigned> ProvidedCount; |
| Optional<unsigned> ProvidedThreshold; |
| Optional<bool> ProvidedAllowPartial; |
| Optional<bool> ProvidedRuntime; |
| Optional<bool> ProvidedUpperBound; |
| Optional<bool> ProvidedAllowPeeling; |
| Optional<bool> ProvidedAllowProfileBasedPeeling; |
| Optional<unsigned> ProvidedFullUnrollMaxCount; |
| |
| LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, |
| bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, |
| Optional<unsigned> Count = None, |
| Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, |
| Optional<bool> UpperBound = None, |
| Optional<bool> AllowPeeling = None, |
| Optional<bool> AllowProfileBasedPeeling = None, |
| Optional<unsigned> ProvidedFullUnrollMaxCount = None) |
| : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), |
| ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), |
| ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), |
| ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), |
| ProvidedAllowPeeling(AllowPeeling), |
| ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), |
| ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { |
| initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
| if (skipLoop(L)) |
| return false; |
| |
| Function &F = *L->getHeader()->getParent(); |
| |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| const TargetTransformInfo &TTI = |
| getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| // For the old PM, we can't use OptimizationRemarkEmitter as an analysis |
| // pass. Function analyses need to be preserved across loop transformations |
| // but ORE cannot be preserved (see comment before the pass definition). |
| OptimizationRemarkEmitter ORE(&F); |
| bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); |
| |
| LoopUnrollResult Result = tryToUnrollLoop( |
| L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, |
| OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, |
| ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, |
| ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, |
| ProvidedFullUnrollMaxCount); |
| |
| if (Result == LoopUnrollResult::FullyUnrolled) |
| LPM.markLoopAsDeleted(*L); |
| |
| return Result != LoopUnrollResult::Unmodified; |
| } |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG... |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| // FIXME: Loop passes are required to preserve domtree, and for now we just |
| // recreate dom info if anything gets unrolled. |
| getLoopAnalysisUsage(AU); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char LoopUnroll::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) |
| |
| Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, |
| bool ForgetAllSCEV, int Threshold, int Count, |
| int AllowPartial, int Runtime, int UpperBound, |
| int AllowPeeling) { |
| // TODO: It would make more sense for this function to take the optionals |
| // directly, but that's dangerous since it would silently break out of tree |
| // callers. |
| return new LoopUnroll( |
| OptLevel, OnlyWhenForced, ForgetAllSCEV, |
| Threshold == -1 ? None : Optional<unsigned>(Threshold), |
| Count == -1 ? None : Optional<unsigned>(Count), |
| AllowPartial == -1 ? None : Optional<bool>(AllowPartial), |
| Runtime == -1 ? None : Optional<bool>(Runtime), |
| UpperBound == -1 ? None : Optional<bool>(UpperBound), |
| AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); |
| } |
| |
| Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, |
| bool ForgetAllSCEV) { |
| return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, |
| 0, 0, 0, 0); |
| } |
| |
| PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, |
| LoopStandardAnalysisResults &AR, |
| LPMUpdater &Updater) { |
| const auto &FAM = |
| AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); |
| Function *F = L.getHeader()->getParent(); |
| |
| auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); |
| // FIXME: This should probably be optional rather than required. |
| if (!ORE) |
| report_fatal_error( |
| "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " |
| "cached at a higher level"); |
| |
| // Keep track of the previous loop structure so we can identify new loops |
| // created by unrolling. |
| Loop *ParentL = L.getParentLoop(); |
| SmallPtrSet<Loop *, 4> OldLoops; |
| if (ParentL) |
| OldLoops.insert(ParentL->begin(), ParentL->end()); |
| else |
| OldLoops.insert(AR.LI.begin(), AR.LI.end()); |
| |
| std::string LoopName = L.getName(); |
| |
| bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, |
| /*BFI*/ nullptr, /*PSI*/ nullptr, |
| /*PreserveLCSSA*/ true, OptLevel, |
| OnlyWhenForced, ForgetSCEV, /*Count*/ None, |
| /*Threshold*/ None, /*AllowPartial*/ false, |
| /*Runtime*/ false, /*UpperBound*/ false, |
| /*AllowPeeling*/ false, |
| /*AllowProfileBasedPeeling*/ false, |
| /*FullUnrollMaxCount*/ None) != |
| LoopUnrollResult::Unmodified; |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| // The parent must not be damaged by unrolling! |
| #ifndef NDEBUG |
| if (ParentL) |
| ParentL->verifyLoop(); |
| #endif |
| |
| // Unrolling can do several things to introduce new loops into a loop nest: |
| // - Full unrolling clones child loops within the current loop but then |
| // removes the current loop making all of the children appear to be new |
| // sibling loops. |
| // |
| // When a new loop appears as a sibling loop after fully unrolling, |
| // its nesting structure has fundamentally changed and we want to revisit |
| // it to reflect that. |
| // |
| // When unrolling has removed the current loop, we need to tell the |
| // infrastructure that it is gone. |
| // |
| // Finally, we support a debugging/testing mode where we revisit child loops |
| // as well. These are not expected to require further optimizations as either |
| // they or the loop they were cloned from have been directly visited already. |
| // But the debugging mode allows us to check this assumption. |
| bool IsCurrentLoopValid = false; |
| SmallVector<Loop *, 4> SibLoops; |
| if (ParentL) |
| SibLoops.append(ParentL->begin(), ParentL->end()); |
| else |
| SibLoops.append(AR.LI.begin(), AR.LI.end()); |
| erase_if(SibLoops, [&](Loop *SibLoop) { |
| if (SibLoop == &L) { |
| IsCurrentLoopValid = true; |
| return true; |
| } |
| |
| // Otherwise erase the loop from the list if it was in the old loops. |
| return OldLoops.count(SibLoop) != 0; |
| }); |
| Updater.addSiblingLoops(SibLoops); |
| |
| if (!IsCurrentLoopValid) { |
| Updater.markLoopAsDeleted(L, LoopName); |
| } else { |
| // We can only walk child loops if the current loop remained valid. |
| if (UnrollRevisitChildLoops) { |
| // Walk *all* of the child loops. |
| SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); |
| Updater.addChildLoops(ChildLoops); |
| } |
| } |
| |
| return getLoopPassPreservedAnalyses(); |
| } |
| |
| template <typename RangeT> |
| static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { |
| SmallVector<Loop *, 8> Worklist; |
| // We use an internal worklist to build up the preorder traversal without |
| // recursion. |
| SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; |
| |
| for (Loop *RootL : Loops) { |
| assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); |
| assert(PreOrderWorklist.empty() && |
| "Must start with an empty preorder walk worklist."); |
| PreOrderWorklist.push_back(RootL); |
| do { |
| Loop *L = PreOrderWorklist.pop_back_val(); |
| PreOrderWorklist.append(L->begin(), L->end()); |
| PreOrderLoops.push_back(L); |
| } while (!PreOrderWorklist.empty()); |
| |
| Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); |
| PreOrderLoops.clear(); |
| } |
| return Worklist; |
| } |
| |
| PreservedAnalyses LoopUnrollPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); |
| auto &LI = AM.getResult<LoopAnalysis>(F); |
| auto &TTI = AM.getResult<TargetIRAnalysis>(F); |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| auto &AC = AM.getResult<AssumptionAnalysis>(F); |
| auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| |
| LoopAnalysisManager *LAM = nullptr; |
| if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) |
| LAM = &LAMProxy->getManager(); |
| |
| const ModuleAnalysisManager &MAM = |
| AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); |
| ProfileSummaryInfo *PSI = |
| MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); |
| auto *BFI = (PSI && PSI->hasProfileSummary()) ? |
| &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; |
| |
| bool Changed = false; |
| |
| // The unroller requires loops to be in simplified form, and also needs LCSSA. |
| // Since simplification may add new inner loops, it has to run before the |
| // legality and profitability checks. This means running the loop unroller |
| // will simplify all loops, regardless of whether anything end up being |
| // unrolled. |
| for (auto &L : LI) { |
| Changed |= |
| simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); |
| Changed |= formLCSSARecursively(*L, DT, &LI, &SE); |
| } |
| |
| SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); |
| |
| while (!Worklist.empty()) { |
| // Because the LoopInfo stores the loops in RPO, we walk the worklist |
| // from back to front so that we work forward across the CFG, which |
| // for unrolling is only needed to get optimization remarks emitted in |
| // a forward order. |
| Loop &L = *Worklist.pop_back_val(); |
| #ifndef NDEBUG |
| Loop *ParentL = L.getParentLoop(); |
| #endif |
| |
| // Check if the profile summary indicates that the profiled application |
| // has a huge working set size, in which case we disable peeling to avoid |
| // bloating it further. |
| Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; |
| if (PSI && PSI->hasHugeWorkingSetSize()) |
| LocalAllowPeeling = false; |
| std::string LoopName = L.getName(); |
| // The API here is quite complex to call and we allow to select some |
| // flavors of unrolling during construction time (by setting UnrollOpts). |
| LoopUnrollResult Result = tryToUnrollLoop( |
| &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, |
| /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, |
| UnrollOpts.ForgetSCEV, /*Count*/ None, |
| /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, |
| UnrollOpts.AllowUpperBound, LocalAllowPeeling, |
| UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); |
| Changed |= Result != LoopUnrollResult::Unmodified; |
| |
| // The parent must not be damaged by unrolling! |
| #ifndef NDEBUG |
| if (Result != LoopUnrollResult::Unmodified && ParentL) |
| ParentL->verifyLoop(); |
| #endif |
| |
| // Clear any cached analysis results for L if we removed it completely. |
| if (LAM && Result == LoopUnrollResult::FullyUnrolled) |
| LAM->clear(L, LoopName); |
| } |
| |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| return getLoopPassPreservedAnalyses(); |
| } |