| //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This transformation analyzes and transforms the induction variables (and |
| // computations derived from them) into simpler forms suitable for subsequent |
| // analysis and transformation. |
| // |
| // If the trip count of a loop is computable, this pass also makes the following |
| // changes: |
| // 1. The exit condition for the loop is canonicalized to compare the |
| // induction value against the exit value. This turns loops like: |
| // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' |
| // 2. Any use outside of the loop of an expression derived from the indvar |
| // is changed to compute the derived value outside of the loop, eliminating |
| // the dependence on the exit value of the induction variable. If the only |
| // purpose of the loop is to compute the exit value of some derived |
| // expression, this transformation will make the loop dead. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/IndVarSimplify.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/LoopPassManager.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "indvars" |
| |
| STATISTIC(NumWidened , "Number of indvars widened"); |
| STATISTIC(NumReplaced , "Number of exit values replaced"); |
| STATISTIC(NumLFTR , "Number of loop exit tests replaced"); |
| STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); |
| STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); |
| |
| // Trip count verification can be enabled by default under NDEBUG if we |
| // implement a strong expression equivalence checker in SCEV. Until then, we |
| // use the verify-indvars flag, which may assert in some cases. |
| static cl::opt<bool> VerifyIndvars( |
| "verify-indvars", cl::Hidden, |
| cl::desc("Verify the ScalarEvolution result after running indvars")); |
| |
| enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, NoHardUse, AlwaysRepl }; |
| |
| static cl::opt<ReplaceExitVal> ReplaceExitValue( |
| "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), |
| cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), |
| cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), |
| clEnumValN(OnlyCheapRepl, "cheap", |
| "only replace exit value when the cost is cheap"), |
| clEnumValN(NoHardUse, "noharduse", |
| "only replace exit values when loop def likely dead"), |
| clEnumValN(AlwaysRepl, "always", |
| "always replace exit value whenever possible"))); |
| |
| static cl::opt<bool> UsePostIncrementRanges( |
| "indvars-post-increment-ranges", cl::Hidden, |
| cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), |
| cl::desc("Disable Linear Function Test Replace optimization")); |
| |
| static cl::opt<bool> |
| LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), |
| cl::desc("Predicate conditions in read only loops")); |
| |
| namespace { |
| |
| struct RewritePhi; |
| |
| class IndVarSimplify { |
| LoopInfo *LI; |
| ScalarEvolution *SE; |
| DominatorTree *DT; |
| const DataLayout &DL; |
| TargetLibraryInfo *TLI; |
| const TargetTransformInfo *TTI; |
| |
| SmallVector<WeakTrackingVH, 16> DeadInsts; |
| |
| bool isValidRewrite(Value *FromVal, Value *ToVal); |
| |
| bool handleFloatingPointIV(Loop *L, PHINode *PH); |
| bool rewriteNonIntegerIVs(Loop *L); |
| |
| bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); |
| /// Try to eliminate loop exits based on analyzeable exit counts |
| bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); |
| /// Try to form loop invariant tests for loop exits by changing how many |
| /// iterations of the loop run when that is unobservable. |
| bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); |
| |
| bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); |
| bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); |
| bool rewriteFirstIterationLoopExitValues(Loop *L); |
| bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; |
| |
| bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, |
| const SCEV *ExitCount, |
| PHINode *IndVar, SCEVExpander &Rewriter); |
| |
| bool sinkUnusedInvariants(Loop *L); |
| |
| public: |
| IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, |
| const DataLayout &DL, TargetLibraryInfo *TLI, |
| TargetTransformInfo *TTI) |
| : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} |
| |
| bool run(Loop *L); |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Return true if the SCEV expansion generated by the rewriter can replace the |
| /// original value. SCEV guarantees that it produces the same value, but the way |
| /// it is produced may be illegal IR. Ideally, this function will only be |
| /// called for verification. |
| bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { |
| // If an SCEV expression subsumed multiple pointers, its expansion could |
| // reassociate the GEP changing the base pointer. This is illegal because the |
| // final address produced by a GEP chain must be inbounds relative to its |
| // underlying object. Otherwise basic alias analysis, among other things, |
| // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid |
| // producing an expression involving multiple pointers. Until then, we must |
| // bail out here. |
| // |
| // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject |
| // because it understands lcssa phis while SCEV does not. |
| Value *FromPtr = FromVal; |
| Value *ToPtr = ToVal; |
| if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { |
| FromPtr = GEP->getPointerOperand(); |
| } |
| if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { |
| ToPtr = GEP->getPointerOperand(); |
| } |
| if (FromPtr != FromVal || ToPtr != ToVal) { |
| // Quickly check the common case |
| if (FromPtr == ToPtr) |
| return true; |
| |
| // SCEV may have rewritten an expression that produces the GEP's pointer |
| // operand. That's ok as long as the pointer operand has the same base |
| // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the |
| // base of a recurrence. This handles the case in which SCEV expansion |
| // converts a pointer type recurrence into a nonrecurrent pointer base |
| // indexed by an integer recurrence. |
| |
| // If the GEP base pointer is a vector of pointers, abort. |
| if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) |
| return false; |
| |
| const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); |
| const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); |
| if (FromBase == ToBase) |
| return true; |
| |
| LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase |
| << " != " << *ToBase << "\n"); |
| |
| return false; |
| } |
| return true; |
| } |
| |
| /// Determine the insertion point for this user. By default, insert immediately |
| /// before the user. SCEVExpander or LICM will hoist loop invariants out of the |
| /// loop. For PHI nodes, there may be multiple uses, so compute the nearest |
| /// common dominator for the incoming blocks. A nullptr can be returned if no |
| /// viable location is found: it may happen if User is a PHI and Def only comes |
| /// to this PHI from unreachable blocks. |
| static Instruction *getInsertPointForUses(Instruction *User, Value *Def, |
| DominatorTree *DT, LoopInfo *LI) { |
| PHINode *PHI = dyn_cast<PHINode>(User); |
| if (!PHI) |
| return User; |
| |
| Instruction *InsertPt = nullptr; |
| for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { |
| if (PHI->getIncomingValue(i) != Def) |
| continue; |
| |
| BasicBlock *InsertBB = PHI->getIncomingBlock(i); |
| |
| if (!DT->isReachableFromEntry(InsertBB)) |
| continue; |
| |
| if (!InsertPt) { |
| InsertPt = InsertBB->getTerminator(); |
| continue; |
| } |
| InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); |
| InsertPt = InsertBB->getTerminator(); |
| } |
| |
| // If we have skipped all inputs, it means that Def only comes to Phi from |
| // unreachable blocks. |
| if (!InsertPt) |
| return nullptr; |
| |
| auto *DefI = dyn_cast<Instruction>(Def); |
| if (!DefI) |
| return InsertPt; |
| |
| assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); |
| |
| auto *L = LI->getLoopFor(DefI->getParent()); |
| assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); |
| |
| for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) |
| if (LI->getLoopFor(DTN->getBlock()) == L) |
| return DTN->getBlock()->getTerminator(); |
| |
| llvm_unreachable("DefI dominates InsertPt!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // rewriteNonIntegerIVs and helpers. Prefer integer IVs. |
| //===----------------------------------------------------------------------===// |
| |
| /// Convert APF to an integer, if possible. |
| static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { |
| bool isExact = false; |
| // See if we can convert this to an int64_t |
| uint64_t UIntVal; |
| if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, |
| APFloat::rmTowardZero, &isExact) != APFloat::opOK || |
| !isExact) |
| return false; |
| IntVal = UIntVal; |
| return true; |
| } |
| |
| /// If the loop has floating induction variable then insert corresponding |
| /// integer induction variable if possible. |
| /// For example, |
| /// for(double i = 0; i < 10000; ++i) |
| /// bar(i) |
| /// is converted into |
| /// for(int i = 0; i < 10000; ++i) |
| /// bar((double)i); |
| bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { |
| unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); |
| unsigned BackEdge = IncomingEdge^1; |
| |
| // Check incoming value. |
| auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); |
| |
| int64_t InitValue; |
| if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) |
| return false; |
| |
| // Check IV increment. Reject this PN if increment operation is not |
| // an add or increment value can not be represented by an integer. |
| auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); |
| if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; |
| |
| // If this is not an add of the PHI with a constantfp, or if the constant fp |
| // is not an integer, bail out. |
| ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); |
| int64_t IncValue; |
| if (IncValueVal == nullptr || Incr->getOperand(0) != PN || |
| !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) |
| return false; |
| |
| // Check Incr uses. One user is PN and the other user is an exit condition |
| // used by the conditional terminator. |
| Value::user_iterator IncrUse = Incr->user_begin(); |
| Instruction *U1 = cast<Instruction>(*IncrUse++); |
| if (IncrUse == Incr->user_end()) return false; |
| Instruction *U2 = cast<Instruction>(*IncrUse++); |
| if (IncrUse != Incr->user_end()) return false; |
| |
| // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't |
| // only used by a branch, we can't transform it. |
| FCmpInst *Compare = dyn_cast<FCmpInst>(U1); |
| if (!Compare) |
| Compare = dyn_cast<FCmpInst>(U2); |
| if (!Compare || !Compare->hasOneUse() || |
| !isa<BranchInst>(Compare->user_back())) |
| return false; |
| |
| BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); |
| |
| // We need to verify that the branch actually controls the iteration count |
| // of the loop. If not, the new IV can overflow and no one will notice. |
| // The branch block must be in the loop and one of the successors must be out |
| // of the loop. |
| assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); |
| if (!L->contains(TheBr->getParent()) || |
| (L->contains(TheBr->getSuccessor(0)) && |
| L->contains(TheBr->getSuccessor(1)))) |
| return false; |
| |
| // If it isn't a comparison with an integer-as-fp (the exit value), we can't |
| // transform it. |
| ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); |
| int64_t ExitValue; |
| if (ExitValueVal == nullptr || |
| !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) |
| return false; |
| |
| // Find new predicate for integer comparison. |
| CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; |
| switch (Compare->getPredicate()) { |
| default: return false; // Unknown comparison. |
| case CmpInst::FCMP_OEQ: |
| case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; |
| case CmpInst::FCMP_ONE: |
| case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; |
| case CmpInst::FCMP_OGT: |
| case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; |
| case CmpInst::FCMP_OGE: |
| case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; |
| case CmpInst::FCMP_OLT: |
| case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; |
| case CmpInst::FCMP_OLE: |
| case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; |
| } |
| |
| // We convert the floating point induction variable to a signed i32 value if |
| // we can. This is only safe if the comparison will not overflow in a way |
| // that won't be trapped by the integer equivalent operations. Check for this |
| // now. |
| // TODO: We could use i64 if it is native and the range requires it. |
| |
| // The start/stride/exit values must all fit in signed i32. |
| if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) |
| return false; |
| |
| // If not actually striding (add x, 0.0), avoid touching the code. |
| if (IncValue == 0) |
| return false; |
| |
| // Positive and negative strides have different safety conditions. |
| if (IncValue > 0) { |
| // If we have a positive stride, we require the init to be less than the |
| // exit value. |
| if (InitValue >= ExitValue) |
| return false; |
| |
| uint32_t Range = uint32_t(ExitValue-InitValue); |
| // Check for infinite loop, either: |
| // while (i <= Exit) or until (i > Exit) |
| if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { |
| if (++Range == 0) return false; // Range overflows. |
| } |
| |
| unsigned Leftover = Range % uint32_t(IncValue); |
| |
| // If this is an equality comparison, we require that the strided value |
| // exactly land on the exit value, otherwise the IV condition will wrap |
| // around and do things the fp IV wouldn't. |
| if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && |
| Leftover != 0) |
| return false; |
| |
| // If the stride would wrap around the i32 before exiting, we can't |
| // transform the IV. |
| if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) |
| return false; |
| } else { |
| // If we have a negative stride, we require the init to be greater than the |
| // exit value. |
| if (InitValue <= ExitValue) |
| return false; |
| |
| uint32_t Range = uint32_t(InitValue-ExitValue); |
| // Check for infinite loop, either: |
| // while (i >= Exit) or until (i < Exit) |
| if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { |
| if (++Range == 0) return false; // Range overflows. |
| } |
| |
| unsigned Leftover = Range % uint32_t(-IncValue); |
| |
| // If this is an equality comparison, we require that the strided value |
| // exactly land on the exit value, otherwise the IV condition will wrap |
| // around and do things the fp IV wouldn't. |
| if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && |
| Leftover != 0) |
| return false; |
| |
| // If the stride would wrap around the i32 before exiting, we can't |
| // transform the IV. |
| if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) |
| return false; |
| } |
| |
| IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); |
| |
| // Insert new integer induction variable. |
| PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); |
| NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), |
| PN->getIncomingBlock(IncomingEdge)); |
| |
| Value *NewAdd = |
| BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), |
| Incr->getName()+".int", Incr); |
| NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); |
| |
| ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, |
| ConstantInt::get(Int32Ty, ExitValue), |
| Compare->getName()); |
| |
| // In the following deletions, PN may become dead and may be deleted. |
| // Use a WeakTrackingVH to observe whether this happens. |
| WeakTrackingVH WeakPH = PN; |
| |
| // Delete the old floating point exit comparison. The branch starts using the |
| // new comparison. |
| NewCompare->takeName(Compare); |
| Compare->replaceAllUsesWith(NewCompare); |
| RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); |
| |
| // Delete the old floating point increment. |
| Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); |
| RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); |
| |
| // If the FP induction variable still has uses, this is because something else |
| // in the loop uses its value. In order to canonicalize the induction |
| // variable, we chose to eliminate the IV and rewrite it in terms of an |
| // int->fp cast. |
| // |
| // We give preference to sitofp over uitofp because it is faster on most |
| // platforms. |
| if (WeakPH) { |
| Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", |
| &*PN->getParent()->getFirstInsertionPt()); |
| PN->replaceAllUsesWith(Conv); |
| RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); |
| } |
| return true; |
| } |
| |
| bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { |
| // First step. Check to see if there are any floating-point recurrences. |
| // If there are, change them into integer recurrences, permitting analysis by |
| // the SCEV routines. |
| BasicBlock *Header = L->getHeader(); |
| |
| SmallVector<WeakTrackingVH, 8> PHIs; |
| for (PHINode &PN : Header->phis()) |
| PHIs.push_back(&PN); |
| |
| bool Changed = false; |
| for (unsigned i = 0, e = PHIs.size(); i != e; ++i) |
| if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) |
| Changed |= handleFloatingPointIV(L, PN); |
| |
| // If the loop previously had floating-point IV, ScalarEvolution |
| // may not have been able to compute a trip count. Now that we've done some |
| // re-writing, the trip count may be computable. |
| if (Changed) |
| SE->forgetLoop(L); |
| return Changed; |
| } |
| |
| namespace { |
| |
| // Collect information about PHI nodes which can be transformed in |
| // rewriteLoopExitValues. |
| struct RewritePhi { |
| PHINode *PN; |
| |
| // Ith incoming value. |
| unsigned Ith; |
| |
| // Exit value after expansion. |
| Value *Val; |
| |
| // High Cost when expansion. |
| bool HighCost; |
| |
| RewritePhi(PHINode *P, unsigned I, Value *V, bool H) |
| : PN(P), Ith(I), Val(V), HighCost(H) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // rewriteLoopExitValues - Optimize IV users outside the loop. |
| // As a side effect, reduces the amount of IV processing within the loop. |
| //===----------------------------------------------------------------------===// |
| |
| bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { |
| SmallPtrSet<const Instruction *, 8> Visited; |
| SmallVector<const Instruction *, 8> WorkList; |
| Visited.insert(I); |
| WorkList.push_back(I); |
| while (!WorkList.empty()) { |
| const Instruction *Curr = WorkList.pop_back_val(); |
| // This use is outside the loop, nothing to do. |
| if (!L->contains(Curr)) |
| continue; |
| // Do we assume it is a "hard" use which will not be eliminated easily? |
| if (Curr->mayHaveSideEffects()) |
| return true; |
| // Otherwise, add all its users to worklist. |
| for (auto U : Curr->users()) { |
| auto *UI = cast<Instruction>(U); |
| if (Visited.insert(UI).second) |
| WorkList.push_back(UI); |
| } |
| } |
| return false; |
| } |
| |
| /// Check to see if this loop has a computable loop-invariant execution count. |
| /// If so, this means that we can compute the final value of any expressions |
| /// that are recurrent in the loop, and substitute the exit values from the loop |
| /// into any instructions outside of the loop that use the final values of the |
| /// current expressions. |
| /// |
| /// This is mostly redundant with the regular IndVarSimplify activities that |
| /// happen later, except that it's more powerful in some cases, because it's |
| /// able to brute-force evaluate arbitrary instructions as long as they have |
| /// constant operands at the beginning of the loop. |
| bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { |
| // Check a pre-condition. |
| assert(L->isRecursivelyLCSSAForm(*DT, *LI) && |
| "Indvars did not preserve LCSSA!"); |
| |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| L->getUniqueExitBlocks(ExitBlocks); |
| |
| SmallVector<RewritePhi, 8> RewritePhiSet; |
| // Find all values that are computed inside the loop, but used outside of it. |
| // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan |
| // the exit blocks of the loop to find them. |
| for (BasicBlock *ExitBB : ExitBlocks) { |
| // If there are no PHI nodes in this exit block, then no values defined |
| // inside the loop are used on this path, skip it. |
| PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); |
| if (!PN) continue; |
| |
| unsigned NumPreds = PN->getNumIncomingValues(); |
| |
| // Iterate over all of the PHI nodes. |
| BasicBlock::iterator BBI = ExitBB->begin(); |
| while ((PN = dyn_cast<PHINode>(BBI++))) { |
| if (PN->use_empty()) |
| continue; // dead use, don't replace it |
| |
| if (!SE->isSCEVable(PN->getType())) |
| continue; |
| |
| // It's necessary to tell ScalarEvolution about this explicitly so that |
| // it can walk the def-use list and forget all SCEVs, as it may not be |
| // watching the PHI itself. Once the new exit value is in place, there |
| // may not be a def-use connection between the loop and every instruction |
| // which got a SCEVAddRecExpr for that loop. |
| SE->forgetValue(PN); |
| |
| // Iterate over all of the values in all the PHI nodes. |
| for (unsigned i = 0; i != NumPreds; ++i) { |
| // If the value being merged in is not integer or is not defined |
| // in the loop, skip it. |
| Value *InVal = PN->getIncomingValue(i); |
| if (!isa<Instruction>(InVal)) |
| continue; |
| |
| // If this pred is for a subloop, not L itself, skip it. |
| if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) |
| continue; // The Block is in a subloop, skip it. |
| |
| // Check that InVal is defined in the loop. |
| Instruction *Inst = cast<Instruction>(InVal); |
| if (!L->contains(Inst)) |
| continue; |
| |
| // Okay, this instruction has a user outside of the current loop |
| // and varies predictably *inside* the loop. Evaluate the value it |
| // contains when the loop exits, if possible. We prefer to start with |
| // expressions which are true for all exits (so as to maximize |
| // expression reuse by the SCEVExpander), but resort to per-exit |
| // evaluation if that fails. |
| const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); |
| if (isa<SCEVCouldNotCompute>(ExitValue) || |
| !SE->isLoopInvariant(ExitValue, L) || |
| !isSafeToExpand(ExitValue, *SE)) { |
| // TODO: This should probably be sunk into SCEV in some way; maybe a |
| // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for |
| // most SCEV expressions and other recurrence types (e.g. shift |
| // recurrences). Is there existing code we can reuse? |
| const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); |
| if (isa<SCEVCouldNotCompute>(ExitCount)) |
| continue; |
| if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) |
| if (AddRec->getLoop() == L) |
| ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); |
| if (isa<SCEVCouldNotCompute>(ExitValue) || |
| !SE->isLoopInvariant(ExitValue, L) || |
| !isSafeToExpand(ExitValue, *SE)) |
| continue; |
| } |
| |
| // Computing the value outside of the loop brings no benefit if it is |
| // definitely used inside the loop in a way which can not be optimized |
| // away. Avoid doing so unless we know we have a value which computes |
| // the ExitValue already. TODO: This should be merged into SCEV |
| // expander to leverage its knowledge of existing expressions. |
| if (ReplaceExitValue != AlwaysRepl && |
| !isa<SCEVConstant>(ExitValue) && !isa<SCEVUnknown>(ExitValue) && |
| hasHardUserWithinLoop(L, Inst)) |
| continue; |
| |
| bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); |
| Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); |
| |
| LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal |
| << '\n' |
| << " LoopVal = " << *Inst << "\n"); |
| |
| if (!isValidRewrite(Inst, ExitVal)) { |
| DeadInsts.push_back(ExitVal); |
| continue; |
| } |
| |
| #ifndef NDEBUG |
| // If we reuse an instruction from a loop which is neither L nor one of |
| // its containing loops, we end up breaking LCSSA form for this loop by |
| // creating a new use of its instruction. |
| if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) |
| if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) |
| if (EVL != L) |
| assert(EVL->contains(L) && "LCSSA breach detected!"); |
| #endif |
| |
| // Collect all the candidate PHINodes to be rewritten. |
| RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); |
| } |
| } |
| } |
| |
| bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); |
| |
| bool Changed = false; |
| // Transformation. |
| for (const RewritePhi &Phi : RewritePhiSet) { |
| PHINode *PN = Phi.PN; |
| Value *ExitVal = Phi.Val; |
| |
| // Only do the rewrite when the ExitValue can be expanded cheaply. |
| // If LoopCanBeDel is true, rewrite exit value aggressively. |
| if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { |
| DeadInsts.push_back(ExitVal); |
| continue; |
| } |
| |
| Changed = true; |
| ++NumReplaced; |
| Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); |
| PN->setIncomingValue(Phi.Ith, ExitVal); |
| |
| // If this instruction is dead now, delete it. Don't do it now to avoid |
| // invalidating iterators. |
| if (isInstructionTriviallyDead(Inst, TLI)) |
| DeadInsts.push_back(Inst); |
| |
| // Replace PN with ExitVal if that is legal and does not break LCSSA. |
| if (PN->getNumIncomingValues() == 1 && |
| LI->replacementPreservesLCSSAForm(PN, ExitVal)) { |
| PN->replaceAllUsesWith(ExitVal); |
| PN->eraseFromParent(); |
| } |
| } |
| |
| // The insertion point instruction may have been deleted; clear it out |
| // so that the rewriter doesn't trip over it later. |
| Rewriter.clearInsertPoint(); |
| return Changed; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know |
| // they will exit at the first iteration. |
| //===---------------------------------------------------------------------===// |
| |
| /// Check to see if this loop has loop invariant conditions which lead to loop |
| /// exits. If so, we know that if the exit path is taken, it is at the first |
| /// loop iteration. This lets us predict exit values of PHI nodes that live in |
| /// loop header. |
| bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { |
| // Verify the input to the pass is already in LCSSA form. |
| assert(L->isLCSSAForm(*DT)); |
| |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| L->getUniqueExitBlocks(ExitBlocks); |
| |
| bool MadeAnyChanges = false; |
| for (auto *ExitBB : ExitBlocks) { |
| // If there are no more PHI nodes in this exit block, then no more |
| // values defined inside the loop are used on this path. |
| for (PHINode &PN : ExitBB->phis()) { |
| for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); |
| IncomingValIdx != E; ++IncomingValIdx) { |
| auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); |
| |
| // Can we prove that the exit must run on the first iteration if it |
| // runs at all? (i.e. early exits are fine for our purposes, but |
| // traces which lead to this exit being taken on the 2nd iteration |
| // aren't.) Note that this is about whether the exit branch is |
| // executed, not about whether it is taken. |
| if (!L->getLoopLatch() || |
| !DT->dominates(IncomingBB, L->getLoopLatch())) |
| continue; |
| |
| // Get condition that leads to the exit path. |
| auto *TermInst = IncomingBB->getTerminator(); |
| |
| Value *Cond = nullptr; |
| if (auto *BI = dyn_cast<BranchInst>(TermInst)) { |
| // Must be a conditional branch, otherwise the block |
| // should not be in the loop. |
| Cond = BI->getCondition(); |
| } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) |
| Cond = SI->getCondition(); |
| else |
| continue; |
| |
| if (!L->isLoopInvariant(Cond)) |
| continue; |
| |
| auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); |
| |
| // Only deal with PHIs in the loop header. |
| if (!ExitVal || ExitVal->getParent() != L->getHeader()) |
| continue; |
| |
| // If ExitVal is a PHI on the loop header, then we know its |
| // value along this exit because the exit can only be taken |
| // on the first iteration. |
| auto *LoopPreheader = L->getLoopPreheader(); |
| assert(LoopPreheader && "Invalid loop"); |
| int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); |
| if (PreheaderIdx != -1) { |
| assert(ExitVal->getParent() == L->getHeader() && |
| "ExitVal must be in loop header"); |
| MadeAnyChanges = true; |
| PN.setIncomingValue(IncomingValIdx, |
| ExitVal->getIncomingValue(PreheaderIdx)); |
| } |
| } |
| } |
| } |
| return MadeAnyChanges; |
| } |
| |
| /// Check whether it is possible to delete the loop after rewriting exit |
| /// value. If it is possible, ignore ReplaceExitValue and do rewriting |
| /// aggressively. |
| bool IndVarSimplify::canLoopBeDeleted( |
| Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| // If there is no preheader, the loop will not be deleted. |
| if (!Preheader) |
| return false; |
| |
| // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. |
| // We obviate multiple ExitingBlocks case for simplicity. |
| // TODO: If we see testcase with multiple ExitingBlocks can be deleted |
| // after exit value rewriting, we can enhance the logic here. |
| SmallVector<BasicBlock *, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| L->getUniqueExitBlocks(ExitBlocks); |
| if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) |
| return false; |
| |
| BasicBlock *ExitBlock = ExitBlocks[0]; |
| BasicBlock::iterator BI = ExitBlock->begin(); |
| while (PHINode *P = dyn_cast<PHINode>(BI)) { |
| Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); |
| |
| // If the Incoming value of P is found in RewritePhiSet, we know it |
| // could be rewritten to use a loop invariant value in transformation |
| // phase later. Skip it in the loop invariant check below. |
| bool found = false; |
| for (const RewritePhi &Phi : RewritePhiSet) { |
| unsigned i = Phi.Ith; |
| if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { |
| found = true; |
| break; |
| } |
| } |
| |
| Instruction *I; |
| if (!found && (I = dyn_cast<Instruction>(Incoming))) |
| if (!L->hasLoopInvariantOperands(I)) |
| return false; |
| |
| ++BI; |
| } |
| |
| for (auto *BB : L->blocks()) |
| if (llvm::any_of(*BB, [](Instruction &I) { |
| return I.mayHaveSideEffects(); |
| })) |
| return false; |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IV Widening - Extend the width of an IV to cover its widest uses. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| // Collect information about induction variables that are used by sign/zero |
| // extend operations. This information is recorded by CollectExtend and provides |
| // the input to WidenIV. |
| struct WideIVInfo { |
| PHINode *NarrowIV = nullptr; |
| |
| // Widest integer type created [sz]ext |
| Type *WidestNativeType = nullptr; |
| |
| // Was a sext user seen before a zext? |
| bool IsSigned = false; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Update information about the induction variable that is extended by this |
| /// sign or zero extend operation. This is used to determine the final width of |
| /// the IV before actually widening it. |
| static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, |
| const TargetTransformInfo *TTI) { |
| bool IsSigned = Cast->getOpcode() == Instruction::SExt; |
| if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) |
| return; |
| |
| Type *Ty = Cast->getType(); |
| uint64_t Width = SE->getTypeSizeInBits(Ty); |
| if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) |
| return; |
| |
| // Check that `Cast` actually extends the induction variable (we rely on this |
| // later). This takes care of cases where `Cast` is extending a truncation of |
| // the narrow induction variable, and thus can end up being narrower than the |
| // "narrow" induction variable. |
| uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); |
| if (NarrowIVWidth >= Width) |
| return; |
| |
| // Cast is either an sext or zext up to this point. |
| // We should not widen an indvar if arithmetics on the wider indvar are more |
| // expensive than those on the narrower indvar. We check only the cost of ADD |
| // because at least an ADD is required to increment the induction variable. We |
| // could compute more comprehensively the cost of all instructions on the |
| // induction variable when necessary. |
| if (TTI && |
| TTI->getArithmeticInstrCost(Instruction::Add, Ty) > |
| TTI->getArithmeticInstrCost(Instruction::Add, |
| Cast->getOperand(0)->getType())) { |
| return; |
| } |
| |
| if (!WI.WidestNativeType) { |
| WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); |
| WI.IsSigned = IsSigned; |
| return; |
| } |
| |
| // We extend the IV to satisfy the sign of its first user, arbitrarily. |
| if (WI.IsSigned != IsSigned) |
| return; |
| |
| if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) |
| WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); |
| } |
| |
| namespace { |
| |
| /// Record a link in the Narrow IV def-use chain along with the WideIV that |
| /// computes the same value as the Narrow IV def. This avoids caching Use* |
| /// pointers. |
| struct NarrowIVDefUse { |
| Instruction *NarrowDef = nullptr; |
| Instruction *NarrowUse = nullptr; |
| Instruction *WideDef = nullptr; |
| |
| // True if the narrow def is never negative. Tracking this information lets |
| // us use a sign extension instead of a zero extension or vice versa, when |
| // profitable and legal. |
| bool NeverNegative = false; |
| |
| NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, |
| bool NeverNegative) |
| : NarrowDef(ND), NarrowUse(NU), WideDef(WD), |
| NeverNegative(NeverNegative) {} |
| }; |
| |
| /// The goal of this transform is to remove sign and zero extends without |
| /// creating any new induction variables. To do this, it creates a new phi of |
| /// the wider type and redirects all users, either removing extends or inserting |
| /// truncs whenever we stop propagating the type. |
| class WidenIV { |
| // Parameters |
| PHINode *OrigPhi; |
| Type *WideType; |
| |
| // Context |
| LoopInfo *LI; |
| Loop *L; |
| ScalarEvolution *SE; |
| DominatorTree *DT; |
| |
| // Does the module have any calls to the llvm.experimental.guard intrinsic |
| // at all? If not we can avoid scanning instructions looking for guards. |
| bool HasGuards; |
| |
| // Result |
| PHINode *WidePhi = nullptr; |
| Instruction *WideInc = nullptr; |
| const SCEV *WideIncExpr = nullptr; |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts; |
| |
| SmallPtrSet<Instruction *,16> Widened; |
| SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; |
| |
| enum ExtendKind { ZeroExtended, SignExtended, Unknown }; |
| |
| // A map tracking the kind of extension used to widen each narrow IV |
| // and narrow IV user. |
| // Key: pointer to a narrow IV or IV user. |
| // Value: the kind of extension used to widen this Instruction. |
| DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; |
| |
| using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; |
| |
| // A map with control-dependent ranges for post increment IV uses. The key is |
| // a pair of IV def and a use of this def denoting the context. The value is |
| // a ConstantRange representing possible values of the def at the given |
| // context. |
| DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; |
| |
| Optional<ConstantRange> getPostIncRangeInfo(Value *Def, |
| Instruction *UseI) { |
| DefUserPair Key(Def, UseI); |
| auto It = PostIncRangeInfos.find(Key); |
| return It == PostIncRangeInfos.end() |
| ? Optional<ConstantRange>(None) |
| : Optional<ConstantRange>(It->second); |
| } |
| |
| void calculatePostIncRanges(PHINode *OrigPhi); |
| void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); |
| |
| void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { |
| DefUserPair Key(Def, UseI); |
| auto It = PostIncRangeInfos.find(Key); |
| if (It == PostIncRangeInfos.end()) |
| PostIncRangeInfos.insert({Key, R}); |
| else |
| It->second = R.intersectWith(It->second); |
| } |
| |
| public: |
| WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, |
| DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, |
| bool HasGuards) |
| : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), |
| L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), |
| HasGuards(HasGuards), DeadInsts(DI) { |
| assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); |
| ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; |
| } |
| |
| PHINode *createWideIV(SCEVExpander &Rewriter); |
| |
| protected: |
| Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, |
| Instruction *Use); |
| |
| Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); |
| Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, |
| const SCEVAddRecExpr *WideAR); |
| Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); |
| |
| ExtendKind getExtendKind(Instruction *I); |
| |
| using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; |
| |
| WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); |
| |
| WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); |
| |
| const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, |
| unsigned OpCode) const; |
| |
| Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); |
| |
| bool widenLoopCompare(NarrowIVDefUse DU); |
| bool widenWithVariantLoadUse(NarrowIVDefUse DU); |
| void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); |
| |
| void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); |
| }; |
| |
| } // end anonymous namespace |
| |
| Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, |
| bool IsSigned, Instruction *Use) { |
| // Set the debug location and conservative insertion point. |
| IRBuilder<> Builder(Use); |
| // Hoist the insertion point into loop preheaders as far as possible. |
| for (const Loop *L = LI->getLoopFor(Use->getParent()); |
| L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); |
| L = L->getParentLoop()) |
| Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); |
| |
| return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : |
| Builder.CreateZExt(NarrowOper, WideType); |
| } |
| |
| /// Instantiate a wide operation to replace a narrow operation. This only needs |
| /// to handle operations that can evaluation to SCEVAddRec. It can safely return |
| /// 0 for any operation we decide not to clone. |
| Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, |
| const SCEVAddRecExpr *WideAR) { |
| unsigned Opcode = DU.NarrowUse->getOpcode(); |
| switch (Opcode) { |
| default: |
| return nullptr; |
| case Instruction::Add: |
| case Instruction::Mul: |
| case Instruction::UDiv: |
| case Instruction::Sub: |
| return cloneArithmeticIVUser(DU, WideAR); |
| |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| return cloneBitwiseIVUser(DU); |
| } |
| } |
| |
| Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { |
| Instruction *NarrowUse = DU.NarrowUse; |
| Instruction *NarrowDef = DU.NarrowDef; |
| Instruction *WideDef = DU.WideDef; |
| |
| LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); |
| |
| // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything |
| // about the narrow operand yet so must insert a [sz]ext. It is probably loop |
| // invariant and will be folded or hoisted. If it actually comes from a |
| // widened IV, it should be removed during a future call to widenIVUse. |
| bool IsSigned = getExtendKind(NarrowDef) == SignExtended; |
| Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) |
| ? WideDef |
| : createExtendInst(NarrowUse->getOperand(0), WideType, |
| IsSigned, NarrowUse); |
| Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) |
| ? WideDef |
| : createExtendInst(NarrowUse->getOperand(1), WideType, |
| IsSigned, NarrowUse); |
| |
| auto *NarrowBO = cast<BinaryOperator>(NarrowUse); |
| auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, |
| NarrowBO->getName()); |
| IRBuilder<> Builder(NarrowUse); |
| Builder.Insert(WideBO); |
| WideBO->copyIRFlags(NarrowBO); |
| return WideBO; |
| } |
| |
| Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, |
| const SCEVAddRecExpr *WideAR) { |
| Instruction *NarrowUse = DU.NarrowUse; |
| Instruction *NarrowDef = DU.NarrowDef; |
| Instruction *WideDef = DU.WideDef; |
| |
| LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); |
| |
| unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; |
| |
| // We're trying to find X such that |
| // |
| // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X |
| // |
| // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), |
| // and check using SCEV if any of them are correct. |
| |
| // Returns true if extending NonIVNarrowDef according to `SignExt` is a |
| // correct solution to X. |
| auto GuessNonIVOperand = [&](bool SignExt) { |
| const SCEV *WideLHS; |
| const SCEV *WideRHS; |
| |
| auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { |
| if (SignExt) |
| return SE->getSignExtendExpr(S, Ty); |
| return SE->getZeroExtendExpr(S, Ty); |
| }; |
| |
| if (IVOpIdx == 0) { |
| WideLHS = SE->getSCEV(WideDef); |
| const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); |
| WideRHS = GetExtend(NarrowRHS, WideType); |
| } else { |
| const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); |
| WideLHS = GetExtend(NarrowLHS, WideType); |
| WideRHS = SE->getSCEV(WideDef); |
| } |
| |
| // WideUse is "WideDef `op.wide` X" as described in the comment. |
| const SCEV *WideUse = nullptr; |
| |
| switch (NarrowUse->getOpcode()) { |
| default: |
| llvm_unreachable("No other possibility!"); |
| |
| case Instruction::Add: |
| WideUse = SE->getAddExpr(WideLHS, WideRHS); |
| break; |
| |
| case Instruction::Mul: |
| WideUse = SE->getMulExpr(WideLHS, WideRHS); |
| break; |
| |
| case Instruction::UDiv: |
| WideUse = SE->getUDivExpr(WideLHS, WideRHS); |
| break; |
| |
| case Instruction::Sub: |
| WideUse = SE->getMinusSCEV(WideLHS, WideRHS); |
| break; |
| } |
| |
| return WideUse == WideAR; |
| }; |
| |
| bool SignExtend = getExtendKind(NarrowDef) == SignExtended; |
| if (!GuessNonIVOperand(SignExtend)) { |
| SignExtend = !SignExtend; |
| if (!GuessNonIVOperand(SignExtend)) |
| return nullptr; |
| } |
| |
| Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) |
| ? WideDef |
| : createExtendInst(NarrowUse->getOperand(0), WideType, |
| SignExtend, NarrowUse); |
| Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) |
| ? WideDef |
| : createExtendInst(NarrowUse->getOperand(1), WideType, |
| SignExtend, NarrowUse); |
| |
| auto *NarrowBO = cast<BinaryOperator>(NarrowUse); |
| auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, |
| NarrowBO->getName()); |
| |
| IRBuilder<> Builder(NarrowUse); |
| Builder.Insert(WideBO); |
| WideBO->copyIRFlags(NarrowBO); |
| return WideBO; |
| } |
| |
| WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { |
| auto It = ExtendKindMap.find(I); |
| assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); |
| return It->second; |
| } |
| |
| const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, |
| unsigned OpCode) const { |
| if (OpCode == Instruction::Add) |
| return SE->getAddExpr(LHS, RHS); |
| if (OpCode == Instruction::Sub) |
| return SE->getMinusSCEV(LHS, RHS); |
| if (OpCode == Instruction::Mul) |
| return SE->getMulExpr(LHS, RHS); |
| |
| llvm_unreachable("Unsupported opcode."); |
| } |
| |
| /// No-wrap operations can transfer sign extension of their result to their |
| /// operands. Generate the SCEV value for the widened operation without |
| /// actually modifying the IR yet. If the expression after extending the |
| /// operands is an AddRec for this loop, return the AddRec and the kind of |
| /// extension used. |
| WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { |
| // Handle the common case of add<nsw/nuw> |
| const unsigned OpCode = DU.NarrowUse->getOpcode(); |
| // Only Add/Sub/Mul instructions supported yet. |
| if (OpCode != Instruction::Add && OpCode != Instruction::Sub && |
| OpCode != Instruction::Mul) |
| return {nullptr, Unknown}; |
| |
| // One operand (NarrowDef) has already been extended to WideDef. Now determine |
| // if extending the other will lead to a recurrence. |
| const unsigned ExtendOperIdx = |
| DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; |
| assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); |
| |
| const SCEV *ExtendOperExpr = nullptr; |
| const OverflowingBinaryOperator *OBO = |
| cast<OverflowingBinaryOperator>(DU.NarrowUse); |
| ExtendKind ExtKind = getExtendKind(DU.NarrowDef); |
| if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) |
| ExtendOperExpr = SE->getSignExtendExpr( |
| SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); |
| else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) |
| ExtendOperExpr = SE->getZeroExtendExpr( |
| SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); |
| else |
| return {nullptr, Unknown}; |
| |
| // When creating this SCEV expr, don't apply the current operations NSW or NUW |
| // flags. This instruction may be guarded by control flow that the no-wrap |
| // behavior depends on. Non-control-equivalent instructions can be mapped to |
| // the same SCEV expression, and it would be incorrect to transfer NSW/NUW |
| // semantics to those operations. |
| const SCEV *lhs = SE->getSCEV(DU.WideDef); |
| const SCEV *rhs = ExtendOperExpr; |
| |
| // Let's swap operands to the initial order for the case of non-commutative |
| // operations, like SUB. See PR21014. |
| if (ExtendOperIdx == 0) |
| std::swap(lhs, rhs); |
| const SCEVAddRecExpr *AddRec = |
| dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); |
| |
| if (!AddRec || AddRec->getLoop() != L) |
| return {nullptr, Unknown}; |
| |
| return {AddRec, ExtKind}; |
| } |
| |
| /// Is this instruction potentially interesting for further simplification after |
| /// widening it's type? In other words, can the extend be safely hoisted out of |
| /// the loop with SCEV reducing the value to a recurrence on the same loop. If |
| /// so, return the extended recurrence and the kind of extension used. Otherwise |
| /// return {nullptr, Unknown}. |
| WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { |
| if (!SE->isSCEVable(DU.NarrowUse->getType())) |
| return {nullptr, Unknown}; |
| |
| const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); |
| if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= |
| SE->getTypeSizeInBits(WideType)) { |
| // NarrowUse implicitly widens its operand. e.g. a gep with a narrow |
| // index. So don't follow this use. |
| return {nullptr, Unknown}; |
| } |
| |
| const SCEV *WideExpr; |
| ExtendKind ExtKind; |
| if (DU.NeverNegative) { |
| WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); |
| if (isa<SCEVAddRecExpr>(WideExpr)) |
| ExtKind = SignExtended; |
| else { |
| WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); |
| ExtKind = ZeroExtended; |
| } |
| } else if (getExtendKind(DU.NarrowDef) == SignExtended) { |
| WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); |
| ExtKind = SignExtended; |
| } else { |
| WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); |
| ExtKind = ZeroExtended; |
| } |
| const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); |
| if (!AddRec || AddRec->getLoop() != L) |
| return {nullptr, Unknown}; |
| return {AddRec, ExtKind}; |
| } |
| |
| /// This IV user cannot be widened. Replace this use of the original narrow IV |
| /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. |
| static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { |
| auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); |
| if (!InsertPt) |
| return; |
| LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " |
| << *DU.NarrowUse << "\n"); |
| IRBuilder<> Builder(InsertPt); |
| Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); |
| DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); |
| } |
| |
| /// If the narrow use is a compare instruction, then widen the compare |
| // (and possibly the other operand). The extend operation is hoisted into the |
| // loop preheader as far as possible. |
| bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { |
| ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); |
| if (!Cmp) |
| return false; |
| |
| // We can legally widen the comparison in the following two cases: |
| // |
| // - The signedness of the IV extension and comparison match |
| // |
| // - The narrow IV is always positive (and thus its sign extension is equal |
| // to its zero extension). For instance, let's say we're zero extending |
| // %narrow for the following use |
| // |
| // icmp slt i32 %narrow, %val ... (A) |
| // |
| // and %narrow is always positive. Then |
| // |
| // (A) == icmp slt i32 sext(%narrow), sext(%val) |
| // == icmp slt i32 zext(%narrow), sext(%val) |
| bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; |
| if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) |
| return false; |
| |
| Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); |
| unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); |
| unsigned IVWidth = SE->getTypeSizeInBits(WideType); |
| assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); |
| |
| // Widen the compare instruction. |
| auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); |
| if (!InsertPt) |
| return false; |
| IRBuilder<> Builder(InsertPt); |
| DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); |
| |
| // Widen the other operand of the compare, if necessary. |
| if (CastWidth < IVWidth) { |
| Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); |
| DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); |
| } |
| return true; |
| } |
| |
| /// If the narrow use is an instruction whose two operands are the defining |
| /// instruction of DU and a load instruction, then we have the following: |
| /// if the load is hoisted outside the loop, then we do not reach this function |
| /// as scalar evolution analysis works fine in widenIVUse with variables |
| /// hoisted outside the loop and efficient code is subsequently generated by |
| /// not emitting truncate instructions. But when the load is not hoisted |
| /// (whether due to limitation in alias analysis or due to a true legality), |
| /// then scalar evolution can not proceed with loop variant values and |
| /// inefficient code is generated. This function handles the non-hoisted load |
| /// special case by making the optimization generate the same type of code for |
| /// hoisted and non-hoisted load (widen use and eliminate sign extend |
| /// instruction). This special case is important especially when the induction |
| /// variables are affecting addressing mode in code generation. |
| bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { |
| Instruction *NarrowUse = DU.NarrowUse; |
| Instruction *NarrowDef = DU.NarrowDef; |
| Instruction *WideDef = DU.WideDef; |
| |
| // Handle the common case of add<nsw/nuw> |
| const unsigned OpCode = NarrowUse->getOpcode(); |
| // Only Add/Sub/Mul instructions are supported. |
| if (OpCode != Instruction::Add && OpCode != Instruction::Sub && |
| OpCode != Instruction::Mul) |
| return false; |
| |
| // The operand that is not defined by NarrowDef of DU. Let's call it the |
| // other operand. |
| unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; |
| assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && |
| "bad DU"); |
| |
| const SCEV *ExtendOperExpr = nullptr; |
| const OverflowingBinaryOperator *OBO = |
| cast<OverflowingBinaryOperator>(NarrowUse); |
| ExtendKind ExtKind = getExtendKind(NarrowDef); |
| if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) |
| ExtendOperExpr = SE->getSignExtendExpr( |
| SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); |
| else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) |
| ExtendOperExpr = SE->getZeroExtendExpr( |
| SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); |
| else |
| return false; |
| |
| // We are interested in the other operand being a load instruction. |
| // But, we should look into relaxing this restriction later on. |
| auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); |
| if (I && I->getOpcode() != Instruction::Load) |
| return false; |
| |
| // Verifying that Defining operand is an AddRec |
| const SCEV *Op1 = SE->getSCEV(WideDef); |
| const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); |
| if (!AddRecOp1 || AddRecOp1->getLoop() != L) |
| return false; |
| // Verifying that other operand is an Extend. |
| if (ExtKind == SignExtended) { |
| if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) |
| return false; |
| } else { |
| if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) |
| return false; |
| } |
| |
| if (ExtKind == SignExtended) { |
| for (Use &U : NarrowUse->uses()) { |
| SExtInst *User = dyn_cast<SExtInst>(U.getUser()); |
| if (!User || User->getType() != WideType) |
| return false; |
| } |
| } else { // ExtKind == ZeroExtended |
| for (Use &U : NarrowUse->uses()) { |
| ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); |
| if (!User || User->getType() != WideType) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Special Case for widening with variant Loads (see |
| /// WidenIV::widenWithVariantLoadUse). This is the code generation part. |
| void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { |
| Instruction *NarrowUse = DU.NarrowUse; |
| Instruction *NarrowDef = DU.NarrowDef; |
| Instruction *WideDef = DU.WideDef; |
| |
| ExtendKind ExtKind = getExtendKind(NarrowDef); |
| |
| LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); |
| |
| // Generating a widening use instruction. |
| Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) |
| ? WideDef |
| : createExtendInst(NarrowUse->getOperand(0), WideType, |
| ExtKind, NarrowUse); |
| Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) |
| ? WideDef |
| : createExtendInst(NarrowUse->getOperand(1), WideType, |
| ExtKind, NarrowUse); |
| |
| auto *NarrowBO = cast<BinaryOperator>(NarrowUse); |
| auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, |
| NarrowBO->getName()); |
| IRBuilder<> Builder(NarrowUse); |
| Builder.Insert(WideBO); |
| WideBO->copyIRFlags(NarrowBO); |
| |
| if (ExtKind == SignExtended) |
| ExtendKindMap[NarrowUse] = SignExtended; |
| else |
| ExtendKindMap[NarrowUse] = ZeroExtended; |
| |
| // Update the Use. |
| if (ExtKind == SignExtended) { |
| for (Use &U : NarrowUse->uses()) { |
| SExtInst *User = dyn_cast<SExtInst>(U.getUser()); |
| if (User && User->getType() == WideType) { |
| LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " |
| << *WideBO << "\n"); |
| ++NumElimExt; |
| User->replaceAllUsesWith(WideBO); |
| DeadInsts.emplace_back(User); |
| } |
| } |
| } else { // ExtKind == ZeroExtended |
| for (Use &U : NarrowUse->uses()) { |
| ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); |
| if (User && User->getType() == WideType) { |
| LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " |
| << *WideBO << "\n"); |
| ++NumElimExt; |
| User->replaceAllUsesWith(WideBO); |
| DeadInsts.emplace_back(User); |
| } |
| } |
| } |
| } |
| |
| /// Determine whether an individual user of the narrow IV can be widened. If so, |
| /// return the wide clone of the user. |
| Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { |
| assert(ExtendKindMap.count(DU.NarrowDef) && |
| "Should already know the kind of extension used to widen NarrowDef"); |
| |
| // Stop traversing the def-use chain at inner-loop phis or post-loop phis. |
| if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { |
| if (LI->getLoopFor(UsePhi->getParent()) != L) { |
| // For LCSSA phis, sink the truncate outside the loop. |
| // After SimplifyCFG most loop exit targets have a single predecessor. |
| // Otherwise fall back to a truncate within the loop. |
| if (UsePhi->getNumOperands() != 1) |
| truncateIVUse(DU, DT, LI); |
| else { |
| // Widening the PHI requires us to insert a trunc. The logical place |
| // for this trunc is in the same BB as the PHI. This is not possible if |
| // the BB is terminated by a catchswitch. |
| if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) |
| return nullptr; |
| |
| PHINode *WidePhi = |
| PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", |
| UsePhi); |
| WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); |
| IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); |
| Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); |
| UsePhi->replaceAllUsesWith(Trunc); |
| DeadInsts.emplace_back(UsePhi); |
| LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " |
| << *WidePhi << "\n"); |
| } |
| return nullptr; |
| } |
| } |
| |
| // This narrow use can be widened by a sext if it's non-negative or its narrow |
| // def was widended by a sext. Same for zext. |
| auto canWidenBySExt = [&]() { |
| return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; |
| }; |
| auto canWidenByZExt = [&]() { |
| return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; |
| }; |
| |
| // Our raison d'etre! Eliminate sign and zero extension. |
| if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || |
| (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { |
| Value *NewDef = DU.WideDef; |
| if (DU.NarrowUse->getType() != WideType) { |
| unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); |
| unsigned IVWidth = SE->getTypeSizeInBits(WideType); |
| if (CastWidth < IVWidth) { |
| // The cast isn't as wide as the IV, so insert a Trunc. |
| IRBuilder<> Builder(DU.NarrowUse); |
| NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); |
| } |
| else { |
| // A wider extend was hidden behind a narrower one. This may induce |
| // another round of IV widening in which the intermediate IV becomes |
| // dead. It should be very rare. |
| LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi |
| << " not wide enough to subsume " << *DU.NarrowUse |
| << "\n"); |
| DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); |
| NewDef = DU.NarrowUse; |
| } |
| } |
| if (NewDef != DU.NarrowUse) { |
| LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse |
| << " replaced by " << *DU.WideDef << "\n"); |
| ++NumElimExt; |
| DU.NarrowUse->replaceAllUsesWith(NewDef); |
| DeadInsts.emplace_back(DU.NarrowUse); |
| } |
| // Now that the extend is gone, we want to expose it's uses for potential |
| // further simplification. We don't need to directly inform SimplifyIVUsers |
| // of the new users, because their parent IV will be processed later as a |
| // new loop phi. If we preserved IVUsers analysis, we would also want to |
| // push the uses of WideDef here. |
| |
| // No further widening is needed. The deceased [sz]ext had done it for us. |
| return nullptr; |
| } |
| |
| // Does this user itself evaluate to a recurrence after widening? |
| WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); |
| if (!WideAddRec.first) |
| WideAddRec = getWideRecurrence(DU); |
| |
| assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); |
| if (!WideAddRec.first) { |
| // If use is a loop condition, try to promote the condition instead of |
| // truncating the IV first. |
| if (widenLoopCompare(DU)) |
| return nullptr; |
| |
| // We are here about to generate a truncate instruction that may hurt |
| // performance because the scalar evolution expression computed earlier |
| // in WideAddRec.first does not indicate a polynomial induction expression. |
| // In that case, look at the operands of the use instruction to determine |
| // if we can still widen the use instead of truncating its operand. |
| if (widenWithVariantLoadUse(DU)) { |
| widenWithVariantLoadUseCodegen(DU); |
| return nullptr; |
| } |
| |
| // This user does not evaluate to a recurrence after widening, so don't |
| // follow it. Instead insert a Trunc to kill off the original use, |
| // eventually isolating the original narrow IV so it can be removed. |
| truncateIVUse(DU, DT, LI); |
| return nullptr; |
| } |
| // Assume block terminators cannot evaluate to a recurrence. We can't to |
| // insert a Trunc after a terminator if there happens to be a critical edge. |
| assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && |
| "SCEV is not expected to evaluate a block terminator"); |
| |
| // Reuse the IV increment that SCEVExpander created as long as it dominates |
| // NarrowUse. |
| Instruction *WideUse = nullptr; |
| if (WideAddRec.first == WideIncExpr && |
| Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) |
| WideUse = WideInc; |
| else { |
| WideUse = cloneIVUser(DU, WideAddRec.first); |
| if (!WideUse) |
| return nullptr; |
| } |
| // Evaluation of WideAddRec ensured that the narrow expression could be |
| // extended outside the loop without overflow. This suggests that the wide use |
| // evaluates to the same expression as the extended narrow use, but doesn't |
| // absolutely guarantee it. Hence the following failsafe check. In rare cases |
| // where it fails, we simply throw away the newly created wide use. |
| if (WideAddRec.first != SE->getSCEV(WideUse)) { |
| LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " |
| << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first |
| << "\n"); |
| DeadInsts.emplace_back(WideUse); |
| return nullptr; |
| } |
| |
| // if we reached this point then we are going to replace |
| // DU.NarrowUse with WideUse. Reattach DbgValue then. |
| replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); |
| |
| ExtendKindMap[DU.NarrowUse] = WideAddRec.second; |
| // Returning WideUse pushes it on the worklist. |
| return WideUse; |
| } |
| |
| /// Add eligible users of NarrowDef to NarrowIVUsers. |
| void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { |
| const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); |
| bool NonNegativeDef = |
| SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, |
| SE->getConstant(NarrowSCEV->getType(), 0)); |
| for (User *U : NarrowDef->users()) { |
| Instruction *NarrowUser = cast<Instruction>(U); |
| |
| // Handle data flow merges and bizarre phi cycles. |
| if (!Widened.insert(NarrowUser).second) |
| continue; |
| |
| bool NonNegativeUse = false; |
| if (!NonNegativeDef) { |
| // We might have a control-dependent range information for this context. |
| if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) |
| NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); |
| } |
| |
| NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, |
| NonNegativeDef || NonNegativeUse); |
| } |
| } |
| |
| /// Process a single induction variable. First use the SCEVExpander to create a |
| /// wide induction variable that evaluates to the same recurrence as the |
| /// original narrow IV. Then use a worklist to forward traverse the narrow IV's |
| /// def-use chain. After widenIVUse has processed all interesting IV users, the |
| /// narrow IV will be isolated for removal by DeleteDeadPHIs. |
| /// |
| /// It would be simpler to delete uses as they are processed, but we must avoid |
| /// invalidating SCEV expressions. |
| PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { |
| // Is this phi an induction variable? |
| const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); |
| if (!AddRec) |
| return nullptr; |
| |
| // Widen the induction variable expression. |
| const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended |
| ? SE->getSignExtendExpr(AddRec, WideType) |
| : SE->getZeroExtendExpr(AddRec, WideType); |
| |
| assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && |
| "Expect the new IV expression to preserve its type"); |
| |
| // Can the IV be extended outside the loop without overflow? |
| AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); |
| if (!AddRec || AddRec->getLoop() != L) |
| return nullptr; |
| |
| // An AddRec must have loop-invariant operands. Since this AddRec is |
| // materialized by a loop header phi, the expression cannot have any post-loop |
| // operands, so they must dominate the loop header. |
| assert( |
| SE->properlyDominates(AddRec->getStart(), L->getHeader()) && |
| SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && |
| "Loop header phi recurrence inputs do not dominate the loop"); |
| |
| // Iterate over IV uses (including transitive ones) looking for IV increments |
| // of the form 'add nsw %iv, <const>'. For each increment and each use of |
| // the increment calculate control-dependent range information basing on |
| // dominating conditions inside of the loop (e.g. a range check inside of the |
| // loop). Calculated ranges are stored in PostIncRangeInfos map. |
| // |
| // Control-dependent range information is later used to prove that a narrow |
| // definition is not negative (see pushNarrowIVUsers). It's difficult to do |
| // this on demand because when pushNarrowIVUsers needs this information some |
| // of the dominating conditions might be already widened. |
| if (UsePostIncrementRanges) |
| calculatePostIncRanges(OrigPhi); |
| |
| // The rewriter provides a value for the desired IV expression. This may |
| // either find an existing phi or materialize a new one. Either way, we |
| // expect a well-formed cyclic phi-with-increments. i.e. any operand not part |
| // of the phi-SCC dominates the loop entry. |
| Instruction *InsertPt = &L->getHeader()->front(); |
| WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); |
| |
| // Remembering the WideIV increment generated by SCEVExpander allows |
| // widenIVUse to reuse it when widening the narrow IV's increment. We don't |
| // employ a general reuse mechanism because the call above is the only call to |
| // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. |
| if (BasicBlock *LatchBlock = L->getLoopLatch()) { |
| WideInc = |
| cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); |
| WideIncExpr = SE->getSCEV(WideInc); |
| // Propagate the debug location associated with the original loop increment |
| // to the new (widened) increment. |
| auto *OrigInc = |
| cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); |
| WideInc->setDebugLoc(OrigInc->getDebugLoc()); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); |
| ++NumWidened; |
| |
| // Traverse the def-use chain using a worklist starting at the original IV. |
| assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); |
| |
| Widened.insert(OrigPhi); |
| pushNarrowIVUsers(OrigPhi, WidePhi); |
| |
| while (!NarrowIVUsers.empty()) { |
| NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); |
| |
| // Process a def-use edge. This may replace the use, so don't hold a |
| // use_iterator across it. |
| Instruction *WideUse = widenIVUse(DU, Rewriter); |
| |
| // Follow all def-use edges from the previous narrow use. |
| if (WideUse) |
| pushNarrowIVUsers(DU.NarrowUse, WideUse); |
| |
| // widenIVUse may have removed the def-use edge. |
| if (DU.NarrowDef->use_empty()) |
| DeadInsts.emplace_back(DU.NarrowDef); |
| } |
| |
| // Attach any debug information to the new PHI. |
| replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); |
| |
| return WidePhi; |
| } |
| |
| /// Calculates control-dependent range for the given def at the given context |
| /// by looking at dominating conditions inside of the loop |
| void WidenIV::calculatePostIncRange(Instruction *NarrowDef, |
| Instruction *NarrowUser) { |
| using namespace llvm::PatternMatch; |
| |
| Value *NarrowDefLHS; |
| const APInt *NarrowDefRHS; |
| if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), |
| m_APInt(NarrowDefRHS))) || |
| !NarrowDefRHS->isNonNegative()) |
| return; |
| |
| auto UpdateRangeFromCondition = [&] (Value *Condition, |
| bool TrueDest) { |
| CmpInst::Predicate Pred; |
| Value *CmpRHS; |
| if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), |
| m_Value(CmpRHS)))) |
| return; |
| |
| CmpInst::Predicate P = |
| TrueDest ? Pred : CmpInst::getInversePredicate(Pred); |
| |
| auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); |
| auto CmpConstrainedLHSRange = |
| ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); |
| auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( |
| *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); |
| |
| updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); |
| }; |
| |
| auto UpdateRangeFromGuards = [&](Instruction *Ctx) { |
| if (!HasGuards) |
| return; |
| |
| for (Instruction &I : make_range(Ctx->getIterator().getReverse(), |
| Ctx->getParent()->rend())) { |
| Value *C = nullptr; |
| if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) |
| UpdateRangeFromCondition(C, /*TrueDest=*/true); |
| } |
| }; |
| |
| UpdateRangeFromGuards(NarrowUser); |
| |
| BasicBlock *NarrowUserBB = NarrowUser->getParent(); |
| // If NarrowUserBB is statically unreachable asking dominator queries may |
| // yield surprising results. (e.g. the block may not have a dom tree node) |
| if (!DT->isReachableFromEntry(NarrowUserBB)) |
| return; |
| |
| for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); |
| L->contains(DTB->getBlock()); |
| DTB = DTB->getIDom()) { |
| auto *BB = DTB->getBlock(); |
| auto *TI = BB->getTerminator(); |
| UpdateRangeFromGuards(TI); |
| |
| auto *BI = dyn_cast<BranchInst>(TI); |
| if (!BI || !BI->isConditional()) |
| continue; |
| |
| auto *TrueSuccessor = BI->getSuccessor(0); |
| auto *FalseSuccessor = BI->getSuccessor(1); |
| |
| auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { |
| return BBE.isSingleEdge() && |
| DT->dominates(BBE, NarrowUser->getParent()); |
| }; |
| |
| if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) |
| UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); |
| |
| if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) |
| UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); |
| } |
| } |
| |
| /// Calculates PostIncRangeInfos map for the given IV |
| void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { |
| SmallPtrSet<Instruction *, 16> Visited; |
| SmallVector<Instruction *, 6> Worklist; |
| Worklist.push_back(OrigPhi); |
| Visited.insert(OrigPhi); |
| |
| while (!Worklist.empty()) { |
| Instruction *NarrowDef = Worklist.pop_back_val(); |
| |
| for (Use &U : NarrowDef->uses()) { |
| auto *NarrowUser = cast<Instruction>(U.getUser()); |
| |
| // Don't go looking outside the current loop. |
| auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; |
| if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) |
| continue; |
| |
| if (!Visited.insert(NarrowUser).second) |
| continue; |
| |
| Worklist.push_back(NarrowUser); |
| |
| calculatePostIncRange(NarrowDef, NarrowUser); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Live IV Reduction - Minimize IVs live across the loop. |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Simplification of IV users based on SCEV evaluation. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class IndVarSimplifyVisitor : public IVVisitor { |
| ScalarEvolution *SE; |
| const TargetTransformInfo *TTI; |
| PHINode *IVPhi; |
| |
| public: |
| WideIVInfo WI; |
| |
| IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, |
| const TargetTransformInfo *TTI, |
| const DominatorTree *DTree) |
| : SE(SCEV), TTI(TTI), IVPhi(IV) { |
| DT = DTree; |
| WI.NarrowIV = IVPhi; |
| } |
| |
| // Implement the interface used by simplifyUsersOfIV. |
| void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Iteratively perform simplification on a worklist of IV users. Each |
| /// successive simplification may push more users which may themselves be |
| /// candidates for simplification. |
| /// |
| /// Sign/Zero extend elimination is interleaved with IV simplification. |
| bool IndVarSimplify::simplifyAndExtend(Loop *L, |
| SCEVExpander &Rewriter, |
| LoopInfo *LI) { |
| SmallVector<WideIVInfo, 8> WideIVs; |
| |
| auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( |
| Intrinsic::getName(Intrinsic::experimental_guard)); |
| bool HasGuards = GuardDecl && !GuardDecl->use_empty(); |
| |
| SmallVector<PHINode*, 8> LoopPhis; |
| for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { |
| LoopPhis.push_back(cast<PHINode>(I)); |
| } |
| // Each round of simplification iterates through the SimplifyIVUsers worklist |
| // for all current phis, then determines whether any IVs can be |
| // widened. Widening adds new phis to LoopPhis, inducing another round of |
| // simplification on the wide IVs. |
| bool Changed = false; |
| while (!LoopPhis.empty()) { |
| // Evaluate as many IV expressions as possible before widening any IVs. This |
| // forces SCEV to set no-wrap flags before evaluating sign/zero |
| // extension. The first time SCEV attempts to normalize sign/zero extension, |
| // the result becomes final. So for the most predictable results, we delay |
| // evaluation of sign/zero extend evaluation until needed, and avoid running |
| // other SCEV based analysis prior to simplifyAndExtend. |
| do { |
| PHINode *CurrIV = LoopPhis.pop_back_val(); |
| |
| // Information about sign/zero extensions of CurrIV. |
| IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); |
| |
| Changed |= |
| simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); |
| |
| if (Visitor.WI.WidestNativeType) { |
| WideIVs.push_back(Visitor.WI); |
| } |
| } while(!LoopPhis.empty()); |
| |
| for (; !WideIVs.empty(); WideIVs.pop_back()) { |
| WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); |
| if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { |
| Changed = true; |
| LoopPhis.push_back(WidePhi); |
| } |
| } |
| } |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. |
| //===----------------------------------------------------------------------===// |
| |
| /// Given an Value which is hoped to be part of an add recurance in the given |
| /// loop, return the associated Phi node if so. Otherwise, return null. Note |
| /// that this is less general than SCEVs AddRec checking. |
| static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { |
| Instruction *IncI = dyn_cast<Instruction>(IncV); |
| if (!IncI) |
| return nullptr; |
| |
| switch (IncI->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| break; |
| case Instruction::GetElementPtr: |
| // An IV counter must preserve its type. |
| if (IncI->getNumOperands() == 2) |
| break; |
| LLVM_FALLTHROUGH; |
| default: |
| return nullptr; |
| } |
| |
| PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); |
| if (Phi && Phi->getParent() == L->getHeader()) { |
| if (L->isLoopInvariant(IncI->getOperand(1))) |
| return Phi; |
| return nullptr; |
| } |
| if (IncI->getOpcode() == Instruction::GetElementPtr) |
| return nullptr; |
| |
| // Allow add/sub to be commuted. |
| Phi = dyn_cast<PHINode>(IncI->getOperand(1)); |
| if (Phi && Phi->getParent() == L->getHeader()) { |
| if (L->isLoopInvariant(IncI->getOperand(0))) |
| return Phi; |
| } |
| return nullptr; |
| } |
| |
| /// Whether the current loop exit test is based on this value. Currently this |
| /// is limited to a direct use in the loop condition. |
| static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { |
| BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); |
| ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); |
| // TODO: Allow non-icmp loop test. |
| if (!ICmp) |
| return false; |
| |
| // TODO: Allow indirect use. |
| return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; |
| } |
| |
| /// linearFunctionTestReplace policy. Return true unless we can show that the |
| /// current exit test is already sufficiently canonical. |
| static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { |
| assert(L->getLoopLatch() && "Must be in simplified form"); |
| |
| // Avoid converting a constant or loop invariant test back to a runtime |
| // test. This is critical for when SCEV's cached ExitCount is less precise |
| // than the current IR (such as after we've proven a particular exit is |
| // actually dead and thus the BE count never reaches our ExitCount.) |
| BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); |
| if (L->isLoopInvariant(BI->getCondition())) |
| return false; |
| |
| // Do LFTR to simplify the exit condition to an ICMP. |
| ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); |
| if (!Cond) |
| return true; |
| |
| // Do LFTR to simplify the exit ICMP to EQ/NE |
| ICmpInst::Predicate Pred = Cond->getPredicate(); |
| if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) |
| return true; |
| |
| // Look for a loop invariant RHS |
| Value *LHS = Cond->getOperand(0); |
| Value *RHS = Cond->getOperand(1); |
| if (!L->isLoopInvariant(RHS)) { |
| if (!L->isLoopInvariant(LHS)) |
| return true; |
| std::swap(LHS, RHS); |
| } |
| // Look for a simple IV counter LHS |
| PHINode *Phi = dyn_cast<PHINode>(LHS); |
| if (!Phi) |
| Phi = getLoopPhiForCounter(LHS, L); |
| |
| if (!Phi) |
| return true; |
| |
| // Do LFTR if PHI node is defined in the loop, but is *not* a counter. |
| int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); |
| if (Idx < 0) |
| return true; |
| |
| // Do LFTR if the exit condition's IV is *not* a simple counter. |
| Value *IncV = Phi->getIncomingValue(Idx); |
| return Phi != getLoopPhiForCounter(IncV, L); |
| } |
| |
| /// Return true if undefined behavior would provable be executed on the path to |
| /// OnPathTo if Root produced a posion result. Note that this doesn't say |
| /// anything about whether OnPathTo is actually executed or whether Root is |
| /// actually poison. This can be used to assess whether a new use of Root can |
| /// be added at a location which is control equivalent with OnPathTo (such as |
| /// immediately before it) without introducing UB which didn't previously |
| /// exist. Note that a false result conveys no information. |
| static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, |
| Instruction *OnPathTo, |
| DominatorTree *DT) { |
| // Basic approach is to assume Root is poison, propagate poison forward |
| // through all users we can easily track, and then check whether any of those |
| // users are provable UB and must execute before out exiting block might |
| // exit. |
| |
| // The set of all recursive users we've visited (which are assumed to all be |
| // poison because of said visit) |
| SmallSet<const Value *, 16> KnownPoison; |
| SmallVector<const Instruction*, 16> Worklist; |
| Worklist.push_back(Root); |
| while (!Worklist.empty()) { |
| const Instruction *I = Worklist.pop_back_val(); |
| |
| // If we know this must trigger UB on a path leading our target. |
| if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) |
| return true; |
| |
| // If we can't analyze propagation through this instruction, just skip it |
| // and transitive users. Safe as false is a conservative result. |
| if (!propagatesFullPoison(I) && I != Root) |
| continue; |
| |
| if (KnownPoison.insert(I).second) |
| for (const User *User : I->users()) |
| Worklist.push_back(cast<Instruction>(User)); |
| } |
| |
| // Might be non-UB, or might have a path we couldn't prove must execute on |
| // way to exiting bb. |
| return false; |
| } |
| |
| /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils |
| /// down to checking that all operands are constant and listing instructions |
| /// that may hide undef. |
| static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, |
| unsigned Depth) { |
| if (isa<Constant>(V)) |
| return !isa<UndefValue>(V); |
| |
| if (Depth >= 6) |
| return false; |
| |
| // Conservatively handle non-constant non-instructions. For example, Arguments |
| // may be undef. |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return false; |
| |
| // Load and return values may be undef. |
| if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) |
| return false; |
| |
| // Optimistically handle other instructions. |
| for (Value *Op : I->operands()) { |
| if (!Visited.insert(Op).second) |
| continue; |
| if (!hasConcreteDefImpl(Op, Visited, Depth+1)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Return true if the given value is concrete. We must prove that undef can |
| /// never reach it. |
| /// |
| /// TODO: If we decide that this is a good approach to checking for undef, we |
| /// may factor it into a common location. |
| static bool hasConcreteDef(Value *V) { |
| SmallPtrSet<Value*, 8> Visited; |
| Visited.insert(V); |
| return hasConcreteDefImpl(V, Visited, 0); |
| } |
| |
| /// Return true if this IV has any uses other than the (soon to be rewritten) |
| /// loop exit test. |
| static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { |
| int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); |
| Value *IncV = Phi->getIncomingValue(LatchIdx); |
| |
| for (User *U : Phi->users()) |
| if (U != Cond && U != IncV) return false; |
| |
| for (User *U : IncV->users()) |
| if (U != Cond && U != Phi) return false; |
| return true; |
| } |
| |
| /// Return true if the given phi is a "counter" in L. A counter is an |
| /// add recurance (of integer or pointer type) with an arbitrary start, and a |
| /// step of 1. Note that L must have exactly one latch. |
| static bool isLoopCounter(PHINode* Phi, Loop *L, |
| ScalarEvolution *SE) { |
| assert(Phi->getParent() == L->getHeader()); |
| assert(L->getLoopLatch()); |
| |
| if (!SE->isSCEVable(Phi->getType())) |
| return false; |
| |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); |
| if (!AR || AR->getLoop() != L || !AR->isAffine()) |
| return false; |
| |
| const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); |
| if (!Step || !Step->isOne()) |
| return false; |
| |
| int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); |
| Value *IncV = Phi->getIncomingValue(LatchIdx); |
| return (getLoopPhiForCounter(IncV, L) == Phi); |
| } |
| |
| /// Search the loop header for a loop counter (anadd rec w/step of one) |
| /// suitable for use by LFTR. If multiple counters are available, select the |
| /// "best" one based profitable heuristics. |
| /// |
| /// BECount may be an i8* pointer type. The pointer difference is already |
| /// valid count without scaling the address stride, so it remains a pointer |
| /// expression as far as SCEV is concerned. |
| static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, |
| const SCEV *BECount, |
| ScalarEvolution *SE, DominatorTree *DT) { |
| uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); |
| |
| Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); |
| |
| // Loop over all of the PHI nodes, looking for a simple counter. |
| PHINode *BestPhi = nullptr; |
| const SCEV *BestInit = nullptr; |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| assert(LatchBlock && "Must be in simplified form"); |
| const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); |
| |
| for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { |
| PHINode *Phi = cast<PHINode>(I); |
| if (!isLoopCounter(Phi, L, SE)) |
| continue; |
| |
| // Avoid comparing an integer IV against a pointer Limit. |
| if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) |
| continue; |
| |
| const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); |
| |
| // AR may be a pointer type, while BECount is an integer type. |
| // AR may be wider than BECount. With eq/ne tests overflow is immaterial. |
| // AR may not be a narrower type, or we may never exit. |
| uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); |
| if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) |
| continue; |
| |
| // Avoid reusing a potentially undef value to compute other values that may |
| // have originally had a concrete definition. |
| if (!hasConcreteDef(Phi)) { |
| // We explicitly allow unknown phis as long as they are already used by |
| // the loop exit test. This is legal since performing LFTR could not |
| // increase the number of undef users. |
| Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); |
| if (!isLoopExitTestBasedOn(Phi, ExitingBB) && |
| !isLoopExitTestBasedOn(IncPhi, ExitingBB)) |
| continue; |
| } |
| |
| // Avoid introducing undefined behavior due to poison which didn't exist in |
| // the original program. (Annoyingly, the rules for poison and undef |
| // propagation are distinct, so this does NOT cover the undef case above.) |
| // We have to ensure that we don't introduce UB by introducing a use on an |
| // iteration where said IV produces poison. Our strategy here differs for |
| // pointers and integer IVs. For integers, we strip and reinfer as needed, |
| // see code in linearFunctionTestReplace. For pointers, we restrict |
| // transforms as there is no good way to reinfer inbounds once lost. |
| if (!Phi->getType()->isIntegerTy() && |
| !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) |
| continue; |
| |
| const SCEV *Init = AR->getStart(); |
| |
| if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { |
| // Don't force a live loop counter if another IV can be used. |
| if (AlmostDeadIV(Phi, LatchBlock, Cond)) |
| continue; |
| |
| // Prefer to count-from-zero. This is a more "canonical" counter form. It |
| // also prefers integer to pointer IVs. |
| if (BestInit->isZero() != Init->isZero()) { |
| if (BestInit->isZero()) |
| continue; |
| } |
| // If two IVs both count from zero or both count from nonzero then the |
| // narrower is likely a dead phi that has been widened. Use the wider phi |
| // to allow the other to be eliminated. |
| else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) |
| continue; |
| } |
| BestPhi = Phi; |
| BestInit = Init; |
| } |
| return BestPhi; |
| } |
| |
| /// Insert an IR expression which computes the value held by the IV IndVar |
| /// (which must be an loop counter w/unit stride) after the backedge of loop L |
| /// is taken ExitCount times. |
| static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, |
| const SCEV *ExitCount, bool UsePostInc, Loop *L, |
| SCEVExpander &Rewriter, ScalarEvolution *SE) { |
| assert(isLoopCounter(IndVar, L, SE)); |
| const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); |
| const SCEV *IVInit = AR->getStart(); |
| |
| // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter |
| // finds a valid pointer IV. Sign extend ExitCount in order to materialize a |
| // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing |
| // the existing GEPs whenever possible. |
| if (IndVar->getType()->isPointerTy() && |
| !ExitCount->getType()->isPointerTy()) { |
| // IVOffset will be the new GEP offset that is interpreted by GEP as a |
| // signed value. ExitCount on the other hand represents the loop trip count, |
| // which is an unsigned value. FindLoopCounter only allows induction |
| // variables that have a positive unit stride of one. This means we don't |
| // have to handle the case of negative offsets (yet) and just need to zero |
| // extend ExitCount. |
| Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); |
| const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); |
| if (UsePostInc) |
| IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); |
| |
| // Expand the code for the iteration count. |
| assert(SE->isLoopInvariant(IVOffset, L) && |
| "Computed iteration count is not loop invariant!"); |
| |
| // We could handle pointer IVs other than i8*, but we need to compensate for |
| // gep index scaling. |
| assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), |
| cast<PointerType>(IndVar->getType()) |
| ->getElementType())->isOne() && |
| "unit stride pointer IV must be i8*"); |
| |
| const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); |
| BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); |
| return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); |
| } else { |
| // In any other case, convert both IVInit and ExitCount to integers before |
| // comparing. This may result in SCEV expansion of pointers, but in practice |
| // SCEV will fold the pointer arithmetic away as such: |
| // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). |
| // |
| // Valid Cases: (1) both integers is most common; (2) both may be pointers |
| // for simple memset-style loops. |
| // |
| // IVInit integer and ExitCount pointer would only occur if a canonical IV |
| // were generated on top of case #2, which is not expected. |
| |
| assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); |
| // For unit stride, IVCount = Start + ExitCount with 2's complement |
| // overflow. |
| |
| // For integer IVs, truncate the IV before computing IVInit + BECount, |
| // unless we know apriori that the limit must be a constant when evaluated |
| // in the bitwidth of the IV. We prefer (potentially) keeping a truncate |
| // of the IV in the loop over a (potentially) expensive expansion of the |
| // widened exit count add(zext(add)) expression. |
| if (SE->getTypeSizeInBits(IVInit->getType()) |
| > SE->getTypeSizeInBits(ExitCount->getType())) { |
| if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) |
| ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); |
| else |
| IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); |
| } |
| |
| const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); |
| |
| if (UsePostInc) |
| IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); |
| |
| // Expand the code for the iteration count. |
| assert(SE->isLoopInvariant(IVLimit, L) && |
| "Computed iteration count is not loop invariant!"); |
| // Ensure that we generate the same type as IndVar, or a smaller integer |
| // type. In the presence of null pointer values, we have an integer type |
| // SCEV expression (IVInit) for a pointer type IV value (IndVar). |
| Type *LimitTy = ExitCount->getType()->isPointerTy() ? |
| IndVar->getType() : ExitCount->getType(); |
| BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); |
| return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); |
| } |
| } |
| |
| /// This method rewrites the exit condition of the loop to be a canonical != |
| /// comparison against the incremented loop induction variable. This pass is |
| /// able to rewrite the exit tests of any loop where the SCEV analysis can |
| /// determine a loop-invariant trip count of the loop, which is actually a much |
| /// broader range than just linear tests. |
| bool IndVarSimplify:: |
| linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, |
| const SCEV *ExitCount, |
| PHINode *IndVar, SCEVExpander &Rewriter) { |
| assert(L->getLoopLatch() && "Loop no longer in simplified form?"); |
| assert(isLoopCounter(IndVar, L, SE)); |
| Instruction * const IncVar = |
| cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); |
| |
| // Initialize CmpIndVar to the preincremented IV. |
| Value *CmpIndVar = IndVar; |
| bool UsePostInc = false; |
| |
| // If the exiting block is the same as the backedge block, we prefer to |
| // compare against the post-incremented value, otherwise we must compare |
| // against the preincremented value. |
| if (ExitingBB == L->getLoopLatch()) { |
| // For pointer IVs, we chose to not strip inbounds which requires us not |
| // to add a potentially UB introducing use. We need to either a) show |
| // the loop test we're modifying is already in post-inc form, or b) show |
| // that adding a use must not introduce UB. |
| bool SafeToPostInc = |
| IndVar->getType()->isIntegerTy() || |
| isLoopExitTestBasedOn(IncVar, ExitingBB) || |
| mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); |
| if (SafeToPostInc) { |
| UsePostInc = true; |
| CmpIndVar = IncVar; |
| } |
| } |
| |
| // It may be necessary to drop nowrap flags on the incrementing instruction |
| // if either LFTR moves from a pre-inc check to a post-inc check (in which |
| // case the increment might have previously been poison on the last iteration |
| // only) or if LFTR switches to a different IV that was previously dynamically |
| // dead (and as such may be arbitrarily poison). We remove any nowrap flags |
| // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc |
| // check), because the pre-inc addrec flags may be adopted from the original |
| // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. |
| // TODO: This handling is inaccurate for one case: If we switch to a |
| // dynamically dead IV that wraps on the first loop iteration only, which is |
| // not covered by the post-inc addrec. (If the new IV was not dynamically |
| // dead, it could not be poison on the first iteration in the first place.) |
| if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { |
| const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); |
| if (BO->hasNoUnsignedWrap()) |
| BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); |
| if (BO->hasNoSignedWrap()) |
| BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); |
| } |
| |
| Value *ExitCnt = genLoopLimit( |
| IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); |
| assert(ExitCnt->getType()->isPointerTy() == |
| IndVar->getType()->isPointerTy() && |
| "genLoopLimit missed a cast"); |
| |
| // Insert a new icmp_ne or icmp_eq instruction before the branch. |
| BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); |
| ICmpInst::Predicate P; |
| if (L->contains(BI->getSuccessor(0))) |
| P = ICmpInst::ICMP_NE; |
| else |
| P = ICmpInst::ICMP_EQ; |
| |
| IRBuilder<> Builder(BI); |
| |
| // The new loop exit condition should reuse the debug location of the |
| // original loop exit condition. |
| if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) |
| Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); |
| |
| // For integer IVs, if we evaluated the limit in the narrower bitwidth to |
| // avoid the expensive expansion of the limit expression in the wider type, |
| // emit a truncate to narrow the IV to the ExitCount type. This is safe |
| // since we know (from the exit count bitwidth), that we can't self-wrap in |
| // the narrower type. |
| unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); |
| unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); |
| if (CmpIndVarSize > ExitCntSize) { |
| assert(!CmpIndVar->getType()->isPointerTy() && |
| !ExitCnt->getType()->isPointerTy()); |
| |
| // Before resorting to actually inserting the truncate, use the same |
| // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend |
| // the other side of the comparison instead. We still evaluate the limit |
| // in the narrower bitwidth, we just prefer a zext/sext outside the loop to |
| // a truncate within in. |
| bool Extended = false; |
| const SCEV *IV = SE->getSCEV(CmpIndVar); |
| const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), |
| ExitCnt->getType()); |
| const SCEV *ZExtTrunc = |
| SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); |
| |
| if (ZExtTrunc == IV) { |
| Extended = true; |
| ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), |
| "wide.trip.count"); |
| } else { |
| const SCEV *SExtTrunc = |
| SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); |
| if (SExtTrunc == IV) { |
| Extended = true; |
| ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), |
| "wide.trip.count"); |
| } |
| } |
| |
| if (Extended) { |
| bool Discard; |
| L->makeLoopInvariant(ExitCnt, Discard); |
| } else |
| CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), |
| "lftr.wideiv"); |
| } |
| LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" |
| << " LHS:" << *CmpIndVar << '\n' |
| << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") |
| << "\n" |
| << " RHS:\t" << *ExitCnt << "\n" |
| << "ExitCount:\t" << *ExitCount << "\n" |
| << " was: " << *BI->getCondition() << "\n"); |
| |
| Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); |
| Value *OrigCond = BI->getCondition(); |
| // It's tempting to use replaceAllUsesWith here to fully replace the old |
| // comparison, but that's not immediately safe, since users of the old |
| // comparison may not be dominated by the new comparison. Instead, just |
| // update the branch to use the new comparison; in the common case this |
| // will make old comparison dead. |
| BI->setCondition(Cond); |
| DeadInsts.push_back(OrigCond); |
| |
| ++NumLFTR; |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. |
| //===----------------------------------------------------------------------===// |
| |
| /// If there's a single exit block, sink any loop-invariant values that |
| /// were defined in the preheader but not used inside the loop into the |
| /// exit block to reduce register pressure in the loop. |
| bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { |
| BasicBlock *ExitBlock = L->getExitBlock(); |
| if (!ExitBlock) return false; |
| |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) return false; |
| |
| bool MadeAnyChanges = false; |
| BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); |
| BasicBlock::iterator I(Preheader->getTerminator()); |
| while (I != Preheader->begin()) { |
| --I; |
| // New instructions were inserted at the end of the preheader. |
| if (isa<PHINode>(I)) |
| break; |
| |
| // Don't move instructions which might have side effects, since the side |
| // effects need to complete before instructions inside the loop. Also don't |
| // move instructions which might read memory, since the loop may modify |
| // memory. Note that it's okay if the instruction might have undefined |
| // behavior: LoopSimplify guarantees that the preheader dominates the exit |
| // block. |
| if (I->mayHaveSideEffects() || I->mayReadFromMemory()) |
| continue; |
| |
| // Skip debug info intrinsics. |
| if (isa<DbgInfoIntrinsic>(I)) |
| continue; |
| |
| // Skip eh pad instructions. |
| if (I->isEHPad()) |
| continue; |
| |
| // Don't sink alloca: we never want to sink static alloca's out of the |
| // entry block, and correctly sinking dynamic alloca's requires |
| // checks for stacksave/stackrestore intrinsics. |
| // FIXME: Refactor this check somehow? |
| if (isa<AllocaInst>(I)) |
| continue; |
| |
| // Determine if there is a use in or before the loop (direct or |
| // otherwise). |
| bool UsedInLoop = false; |
| for (Use &U : I->uses()) { |
| Instruction *User = cast<Instruction>(U.getUser()); |
| BasicBlock *UseBB = User->getParent(); |
| if (PHINode *P = dyn_cast<PHINode>(User)) { |
| unsigned i = |
| PHINode::getIncomingValueNumForOperand(U.getOperandNo()); |
| UseBB = P->getIncomingBlock(i); |
| } |
| if (UseBB == Preheader || L->contains(UseBB)) { |
| UsedInLoop = true; |
| break; |
| } |
| } |
| |
| // If there is, the def must remain in the preheader. |
| if (UsedInLoop) |
| continue; |
| |
| // Otherwise, sink it to the exit block. |
| Instruction *ToMove = &*I; |
| bool Done = false; |
| |
| if (I != Preheader->begin()) { |
| // Skip debug info intrinsics. |
| do { |
| --I; |
| } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); |
| |
| if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) |
| Done = true; |
| } else { |
| Done = true; |
| } |
| |
| MadeAnyChanges = true; |
| ToMove->moveBefore(*ExitBlock, InsertPt); |
| if (Done) break; |
| InsertPt = ToMove->getIterator(); |
| } |
| |
| return MadeAnyChanges; |
| } |
| |
| /// Return a symbolic upper bound for the backedge taken count of the loop. |
| /// This is more general than getConstantMaxBackedgeTakenCount as it returns |
| /// an arbitrary expression as opposed to only constants. |
| /// TODO: Move into the ScalarEvolution class. |
| static const SCEV* getMaxBackedgeTakenCount(ScalarEvolution &SE, |
| DominatorTree &DT, Loop *L) { |
| SmallVector<BasicBlock*, 16> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| |
| // Form an expression for the maximum exit count possible for this loop. We |
| // merge the max and exact information to approximate a version of |
| // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. |
| SmallVector<const SCEV*, 4> ExitCounts; |
| for (BasicBlock *ExitingBB : ExitingBlocks) { |
| const SCEV *ExitCount = SE.getExitCount(L, ExitingBB); |
| if (isa<SCEVCouldNotCompute>(ExitCount)) |
| ExitCount = SE.getExitCount(L, ExitingBB, |
| ScalarEvolution::ConstantMaximum); |
| if (!isa<SCEVCouldNotCompute>(ExitCount)) { |
| assert(DT.dominates(ExitingBB, L->getLoopLatch()) && |
| "We should only have known counts for exiting blocks that " |
| "dominate latch!"); |
| ExitCounts.push_back(ExitCount); |
| } |
| } |
| if (ExitCounts.empty()) |
| return SE.getCouldNotCompute(); |
| return SE.getUMinFromMismatchedTypes(ExitCounts); |
| } |
| |
| bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { |
| SmallVector<BasicBlock*, 16> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| |
| // Remove all exits which aren't both rewriteable and analyzeable. |
| auto NewEnd = llvm::remove_if(ExitingBlocks, |
| [&](BasicBlock *ExitingBB) { |
| // If our exitting block exits multiple loops, we can only rewrite the |
| // innermost one. Otherwise, we're changing how many times the innermost |
| // loop runs before it exits. |
| if (LI->getLoopFor(ExitingBB) != L) |
| return true; |
| |
| // Can't rewrite non-branch yet. |
| BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); |
| if (!BI) |
| return true; |
| |
| // If already constant, nothing to do. |
| if (isa<Constant>(BI->getCondition())) |
| return true; |
| |
| const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); |
| if (isa<SCEVCouldNotCompute>(ExitCount)) |
| return true; |
| return false; |
| }); |
| ExitingBlocks.erase(NewEnd, ExitingBlocks.end()); |
| |
| if (ExitingBlocks.empty()) |
| return false; |
| |
| // Get a symbolic upper bound on the loop backedge taken count. |
| const SCEV *MaxExitCount = getMaxBackedgeTakenCount(*SE, *DT, L); |
| if (isa<SCEVCouldNotCompute>(MaxExitCount)) |
| return false; |
| |
| // Visit our exit blocks in order of dominance. We know from the fact that |
| // all exits (left) are analyzeable that the must be a total dominance order |
| // between them as each must dominate the latch. The visit order only |
| // matters for the provably equal case. |
| llvm::sort(ExitingBlocks, |
| [&](BasicBlock *A, BasicBlock *B) { |
| // std::sort sorts in ascending order, so we want the inverse of |
| // the normal dominance relation. |
| if (DT->properlyDominates(A, B)) return true; |
| if (DT->properlyDominates(B, A)) return false; |
| llvm_unreachable("expected total dominance order!"); |
| }); |
| #ifdef ASSERT |
| for (unsigned i = 1; i < ExitingBlocks.size(); i++) { |
| assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); |
| } |
| #endif |
| |
| auto FoldExit = [&](BasicBlock *ExitingBB, bool IsTaken) { |
| BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); |
| bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); |
| auto *OldCond = BI->getCondition(); |
| auto *NewCond = ConstantInt::get(OldCond->getType(), |
| IsTaken ? ExitIfTrue : !ExitIfTrue); |
| BI->setCondition(NewCond); |
| if (OldCond->use_empty()) |
| DeadInsts.push_back(OldCond); |
| }; |
| |
| bool Changed = false; |
| SmallSet<const SCEV*, 8> DominatingExitCounts; |
| for (BasicBlock *ExitingBB : ExitingBlocks) { |
| const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); |
| assert(!isa<SCEVCouldNotCompute>(ExitCount) && "checked above"); |
| |
| // If we know we'd exit on the first iteration, rewrite the exit to |
| // reflect this. This does not imply the loop must exit through this |
| // exit; there may be an earlier one taken on the first iteration. |
| // TODO: Given we know the backedge can't be taken, we should go ahead |
| // and break it. Or at least, kill all the header phis and simplify. |
| if (ExitCount->isZero()) { |
| FoldExit(ExitingBB, true); |
| Changed = true; |
| continue; |
| } |
| |
| // If we end up with a pointer exit count, bail. Note that we can end up |
| // with a pointer exit count for one exiting block, and not for another in |
| // the same loop. |
| if (!ExitCount->getType()->isIntegerTy() || |
| !MaxExitCount->getType()->isIntegerTy()) |
| continue; |
| |
| Type *WiderType = |
| SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); |
| ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); |
| MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); |
| assert(MaxExitCount->getType() == ExitCount->getType()); |
| |
| // Can we prove that some other exit must be taken strictly before this |
| // one? |
| if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, |
| MaxExitCount, ExitCount)) { |
| FoldExit(ExitingBB, false); |
| Changed = true; |
| continue; |
| } |
| |
| // As we run, keep track of which exit counts we've encountered. If we |
| // find a duplicate, we've found an exit which would have exited on the |
| // exiting iteration, but (from the visit order) strictly follows another |
| // which does the same and is thus dead. |
| if (!DominatingExitCounts.insert(ExitCount).second) { |
| FoldExit(ExitingBB, false); |
| Changed = true; |
| continue; |
| } |
| |
| // TODO: There might be another oppurtunity to leverage SCEV's reasoning |
| // here. If we kept track of the min of dominanting exits so far, we could |
| // discharge exits with EC >= MDEC. This is less powerful than the existing |
| // transform (since later exits aren't considered), but potentially more |
| // powerful for any case where SCEV can prove a >=u b, but neither a == b |
| // or a >u b. Such a case is not currently known. |
| } |
| return Changed; |
| } |
| |
| bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { |
| SmallVector<BasicBlock*, 16> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| |
| bool Changed = false; |
| |
| // Finally, see if we can rewrite our exit conditions into a loop invariant |
| // form. If we have a read-only loop, and we can tell that we must exit down |
| // a path which does not need any of the values computed within the loop, we |
| // can rewrite the loop to exit on the first iteration. Note that this |
| // doesn't either a) tell us the loop exits on the first iteration (unless |
| // *all* exits are predicateable) or b) tell us *which* exit might be taken. |
| // This transformation looks a lot like a restricted form of dead loop |
| // elimination, but restricted to read-only loops and without neccesssarily |
| // needing to kill the loop entirely. |
| if (!LoopPredication) |
| return Changed; |
| |
| if (!SE->hasLoopInvariantBackedgeTakenCount(L)) |
| return Changed; |
| |
| // Note: ExactBTC is the exact backedge taken count *iff* the loop exits |
| // through *explicit* control flow. We have to eliminate the possibility of |
| // implicit exits (see below) before we know it's truly exact. |
| const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(ExactBTC) || |
| !SE->isLoopInvariant(ExactBTC, L) || |
| !isSafeToExpand(ExactBTC, *SE)) |
| return Changed; |
| |
| // If we end up with a pointer exit count, bail. It may be unsized. |
| if (!ExactBTC->getType()->isIntegerTy()) |
| return Changed; |
| |
| auto BadExit = [&](BasicBlock *ExitingBB) { |
| // If our exiting block exits multiple loops, we can only rewrite the |
| // innermost one. Otherwise, we're changing how many times the innermost |
| // loop runs before it exits. |
| if (LI->getLoopFor(ExitingBB) != L) |
| return true; |
| |
| // Can't rewrite non-branch yet. |
| BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); |
| if (!BI) |
| return true; |
| |
| // If already constant, nothing to do. |
| if (isa<Constant>(BI->getCondition())) |
| return true; |
| |
| // If the exit block has phis, we need to be able to compute the values |
| // within the loop which contains them. This assumes trivially lcssa phis |
| // have already been removed; TODO: generalize |
| BasicBlock *ExitBlock = |
| BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); |
| if (!ExitBlock->phis().empty()) |
| return true; |
| |
| const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); |
| assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count"); |
| if (!SE->isLoopInvariant(ExitCount, L) || |
| !isSafeToExpand(ExitCount, *SE)) |
| return true; |
| |
| // If we end up with a pointer exit count, bail. It may be unsized. |
| if (!ExitCount->getType()->isIntegerTy()) |
| return true; |
| |
| return false; |
| }; |
| |
| // If we have any exits which can't be predicated themselves, than we can't |
| // predicate any exit which isn't guaranteed to execute before it. Consider |
| // two exits (a) and (b) which would both exit on the same iteration. If we |
| // can predicate (b), but not (a), and (a) preceeds (b) along some path, then |
| // we could convert a loop from exiting through (a) to one exiting through |
| // (b). Note that this problem exists only for exits with the same exit |
| // count, and we could be more aggressive when exit counts are known inequal. |
| llvm::sort(ExitingBlocks, |
| [&](BasicBlock *A, BasicBlock *B) { |
| // std::sort sorts in ascending order, so we want the inverse of |
| // the normal dominance relation, plus a tie breaker for blocks |
| // unordered by dominance. |
| if (DT->properlyDominates(A, B)) return true; |
| if (DT->properlyDominates(B, A)) return false; |
| return A->getName() < B->getName(); |
| }); |
| // Check to see if our exit blocks are a total order (i.e. a linear chain of |
| // exits before the backedge). If they aren't, reasoning about reachability |
| // is complicated and we choose not to for now. |
| for (unsigned i = 1; i < ExitingBlocks.size(); i++) |
| if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) |
| return Changed; |
| |
| // Given our sorted total order, we know that exit[j] must be evaluated |
| // after all exit[i] such j > i. |
| for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) |
| if (BadExit(ExitingBlocks[i])) { |
| ExitingBlocks.resize(i); |
| break; |
| } |
| |
| if (ExitingBlocks.empty()) |
| return Changed; |
| |
| // We rely on not being able to reach an exiting block on a later iteration |
| // then it's statically compute exit count. The implementaton of |
| // getExitCount currently has this invariant, but assert it here so that |
| // breakage is obvious if this ever changes.. |
| assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { |
| return DT->dominates(ExitingBB, L->getLoopLatch()); |
| })); |
| |
| // At this point, ExitingBlocks consists of only those blocks which are |
| // predicatable. Given that, we know we have at least one exit we can |
| // predicate if the loop is doesn't have side effects and doesn't have any |
| // implicit exits (because then our exact BTC isn't actually exact). |
| // @Reviewers - As structured, this is O(I^2) for loop nests. Any |
| // suggestions on how to improve this? I can obviously bail out for outer |
| // loops, but that seems less than ideal. MemorySSA can find memory writes, |
| // is that enough for *all* side effects? |
| for (BasicBlock *BB : L->blocks()) |
| for (auto &I : *BB) |
| // TODO:isGuaranteedToTransfer |
| if (I.mayHaveSideEffects() || I.mayThrow()) |
| return Changed; |
| |
| // Finally, do the actual predication for all predicatable blocks. A couple |
| // of notes here: |
| // 1) We don't bother to constant fold dominated exits with identical exit |
| // counts; that's simply a form of CSE/equality propagation and we leave |
| // it for dedicated passes. |
| // 2) We insert the comparison at the branch. Hoisting introduces additional |
| // legality constraints and we leave that to dedicated logic. We want to |
| // predicate even if we can't insert a loop invariant expression as |
| // peeling or unrolling will likely reduce the cost of the otherwise loop |
| // varying check. |
| Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); |
| IRBuilder<> B(L->getLoopPreheader()->getTerminator()); |
| Value *ExactBTCV = nullptr; // Lazily generated if needed. |
| for (BasicBlock *ExitingBB : ExitingBlocks) { |
| const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); |
| |
| auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); |
| Value *NewCond; |
| if (ExitCount == ExactBTC) { |
| NewCond = L->contains(BI->getSuccessor(0)) ? |
| B.getFalse() : B.getTrue(); |
| } else { |
| Value *ECV = Rewriter.expandCodeFor(ExitCount); |
| if (!ExactBTCV) |
| ExactBTCV = Rewriter.expandCodeFor(ExactBTC); |
| Value *RHS = ExactBTCV; |
| if (ECV->getType() != RHS->getType()) { |
| Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); |
| ECV = B.CreateZExt(ECV, WiderTy); |
| RHS = B.CreateZExt(RHS, WiderTy); |
| } |
| auto Pred = L->contains(BI->getSuccessor(0)) ? |
| ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; |
| NewCond = B.CreateICmp(Pred, ECV, RHS); |
| } |
| Value *OldCond = BI->getCondition(); |
| BI->setCondition(NewCond); |
| if (OldCond->use_empty()) |
| DeadInsts.push_back(OldCond); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IndVarSimplify driver. Manage several subpasses of IV simplification. |
| //===----------------------------------------------------------------------===// |
| |
| bool IndVarSimplify::run(Loop *L) { |
| // We need (and expect!) the incoming loop to be in LCSSA. |
| assert(L->isRecursivelyLCSSAForm(*DT, *LI) && |
| "LCSSA required to run indvars!"); |
| bool Changed = false; |
| |
| // If LoopSimplify form is not available, stay out of trouble. Some notes: |
| // - LSR currently only supports LoopSimplify-form loops. Indvars' |
| // canonicalization can be a pessimization without LSR to "clean up" |
| // afterwards. |
| // - We depend on having a preheader; in particular, |
| // Loop::getCanonicalInductionVariable only supports loops with preheaders, |
| // and we're in trouble if we can't find the induction variable even when |
| // we've manually inserted one. |
| // - LFTR relies on having a single backedge. |
| if (!L->isLoopSimplifyForm()) |
| return false; |
| |
| #ifndef NDEBUG |
| // Used below for a consistency check only |
| const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); |
| #endif |
| |
| // If there are any floating-point recurrences, attempt to |
| // transform them to use integer recurrences. |
| Changed |= rewriteNonIntegerIVs(L); |
| |
| // Create a rewriter object which we'll use to transform the code with. |
| SCEVExpander Rewriter(*SE, DL, "indvars"); |
| #ifndef NDEBUG |
| Rewriter.setDebugType(DEBUG_TYPE); |
| #endif |
| |
| // Eliminate redundant IV users. |
| // |
| // Simplification works best when run before other consumers of SCEV. We |
| // attempt to avoid evaluating SCEVs for sign/zero extend operations until |
| // other expressions involving loop IVs have been evaluated. This helps SCEV |
| // set no-wrap flags before normalizing sign/zero extension. |
| Rewriter.disableCanonicalMode(); |
| Changed |= simplifyAndExtend(L, Rewriter, LI); |
| |
| // Check to see if we can compute the final value of any expressions |
| // that are recurrent in the loop, and substitute the exit values from the |
| // loop into any instructions outside of the loop that use the final values |
| // of the current expressions. |
| if (ReplaceExitValue != NeverRepl) |
| Changed |= rewriteLoopExitValues(L, Rewriter); |
| |
| // Eliminate redundant IV cycles. |
| NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); |
| |
| // Try to eliminate loop exits based on analyzeable exit counts |
| if (optimizeLoopExits(L, Rewriter)) { |
| Changed = true; |
| // Given we've changed exit counts, notify SCEV |
| SE->forgetLoop(L); |
| } |
| |
| // Try to form loop invariant tests for loop exits by changing how many |
| // iterations of the loop run when that is unobservable. |
| if (predicateLoopExits(L, Rewriter)) { |
| Changed = true; |
| // Given we've changed exit counts, notify SCEV |
| SE->forgetLoop(L); |
| } |
| |
| // If we have a trip count expression, rewrite the loop's exit condition |
| // using it. |
| if (!DisableLFTR) { |
| SmallVector<BasicBlock*, 16> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| for (BasicBlock *ExitingBB : ExitingBlocks) { |
| // Can't rewrite non-branch yet. |
| if (!isa<BranchInst>(ExitingBB->getTerminator())) |
| continue; |
| |
| // If our exitting block exits multiple loops, we can only rewrite the |
| // innermost one. Otherwise, we're changing how many times the innermost |
| // loop runs before it exits. |
| if (LI->getLoopFor(ExitingBB) != L) |
| continue; |
| |
| if (!needsLFTR(L, ExitingBB)) |
| continue; |
| |
| const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); |
| if (isa<SCEVCouldNotCompute>(ExitCount)) |
| continue; |
| |
| // This was handled above, but as we form SCEVs, we can sometimes refine |
| // existing ones; this allows exit counts to be folded to zero which |
| // weren't when optimizeLoopExits saw them. Arguably, we should iterate |
| // until stable to handle cases like this better. |
| if (ExitCount->isZero()) |
| continue; |
| |
| PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); |
| if (!IndVar) |
| continue; |
| |
| // Avoid high cost expansions. Note: This heuristic is questionable in |
| // that our definition of "high cost" is not exactly principled. |
| if (Rewriter.isHighCostExpansion(ExitCount, L)) |
| continue; |
| |
| // Check preconditions for proper SCEVExpander operation. SCEV does not |
| // express SCEVExpander's dependencies, such as LoopSimplify. Instead |
| // any pass that uses the SCEVExpander must do it. This does not work |
| // well for loop passes because SCEVExpander makes assumptions about |
| // all loops, while LoopPassManager only forces the current loop to be |
| // simplified. |
| // |
| // FIXME: SCEV expansion has no way to bail out, so the caller must |
| // explicitly check any assumptions made by SCEV. Brittle. |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); |
| if (!AR || AR->getLoop()->getLoopPreheader()) |
| Changed |= linearFunctionTestReplace(L, ExitingBB, |
| ExitCount, IndVar, |
| Rewriter); |
| } |
| } |
| // Clear the rewriter cache, because values that are in the rewriter's cache |
| // can be deleted in the loop below, causing the AssertingVH in the cache to |
| // trigger. |
| Rewriter.clear(); |
| |
| // Now that we're done iterating through lists, clean up any instructions |
| // which are now dead. |
| while (!DeadInsts.empty()) |
| if (Instruction *Inst = |
| dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) |
| Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); |
| |
| // The Rewriter may not be used from this point on. |
| |
| // Loop-invariant instructions in the preheader that aren't used in the |
| // loop may be sunk below the loop to reduce register pressure. |
| Changed |= sinkUnusedInvariants(L); |
| |
| // rewriteFirstIterationLoopExitValues does not rely on the computation of |
| // trip count and therefore can further simplify exit values in addition to |
| // rewriteLoopExitValues. |
| Changed |= rewriteFirstIterationLoopExitValues(L); |
| |
| // Clean up dead instructions. |
| Changed |= DeleteDeadPHIs(L->getHeader(), TLI); |
| |
| // Check a post-condition. |
| assert(L->isRecursivelyLCSSAForm(*DT, *LI) && |
| "Indvars did not preserve LCSSA!"); |
| |
| // Verify that LFTR, and any other change have not interfered with SCEV's |
| // ability to compute trip count. We may have *changed* the exit count, but |
| // only by reducing it. |
| #ifndef NDEBUG |
| if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { |
| SE->forgetLoop(L); |
| const SCEV *NewBECount = SE->getBackedgeTakenCount(L); |
| if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < |
| SE->getTypeSizeInBits(NewBECount->getType())) |
| NewBECount = SE->getTruncateOrNoop(NewBECount, |
| BackedgeTakenCount->getType()); |
| else |
| BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, |
| NewBECount->getType()); |
| assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, |
| NewBECount) && "indvars must preserve SCEV"); |
| } |
| #endif |
| |
| return Changed; |
| } |
| |
| PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, |
| LoopStandardAnalysisResults &AR, |
| LPMUpdater &) { |
| Function *F = L.getHeader()->getParent(); |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| |
| IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); |
| if (!IVS.run(&L)) |
| return PreservedAnalyses::all(); |
| |
| auto PA = getLoopPassPreservedAnalyses(); |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| |
| namespace { |
| |
| struct IndVarSimplifyLegacyPass : public LoopPass { |
| static char ID; // Pass identification, replacement for typeid |
| |
| IndVarSimplifyLegacyPass() : LoopPass(ID) { |
| initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
| if (skipLoop(L)) |
| return false; |
| |
| auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); |
| auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; |
| auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); |
| auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; |
| const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); |
| |
| IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); |
| return IVS.run(L); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| getLoopAnalysisUsage(AU); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char IndVarSimplifyLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", |
| "Induction Variable Simplification", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", |
| "Induction Variable Simplification", false, false) |
| |
| Pass *llvm::createIndVarSimplifyPass() { |
| return new IndVarSimplifyLegacyPass(); |
| } |