| //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Float2Int pass, which aims to demote floating |
| // point operations to work on integers, where that is losslessly possible. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/CommandLine.h" |
| #define DEBUG_TYPE "float2int" |
| |
| #include "llvm/Transforms/Scalar/Float2Int.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include <deque> |
| #include <functional> // For std::function |
| using namespace llvm; |
| |
| // The algorithm is simple. Start at instructions that convert from the |
| // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use |
| // graph, using an equivalence datastructure to unify graphs that interfere. |
| // |
| // Mappable instructions are those with an integer corrollary that, given |
| // integer domain inputs, produce an integer output; fadd, for example. |
| // |
| // If a non-mappable instruction is seen, this entire def-use graph is marked |
| // as non-transformable. If we see an instruction that converts from the |
| // integer domain to FP domain (uitofp,sitofp), we terminate our walk. |
| |
| /// The largest integer type worth dealing with. |
| static cl::opt<unsigned> |
| MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, |
| cl::desc("Max integer bitwidth to consider in float2int" |
| "(default=64)")); |
| |
| namespace { |
| struct Float2IntLegacyPass : public FunctionPass { |
| static char ID; // Pass identification, replacement for typeid |
| Float2IntLegacyPass() : FunctionPass(ID) { |
| initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) |
| return false; |
| |
| const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| return Impl.runImpl(F, DT); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| } |
| |
| private: |
| Float2IntPass Impl; |
| }; |
| } |
| |
| char Float2IntLegacyPass::ID = 0; |
| INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false) |
| |
| // Given a FCmp predicate, return a matching ICmp predicate if one |
| // exists, otherwise return BAD_ICMP_PREDICATE. |
| static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { |
| switch (P) { |
| case CmpInst::FCMP_OEQ: |
| case CmpInst::FCMP_UEQ: |
| return CmpInst::ICMP_EQ; |
| case CmpInst::FCMP_OGT: |
| case CmpInst::FCMP_UGT: |
| return CmpInst::ICMP_SGT; |
| case CmpInst::FCMP_OGE: |
| case CmpInst::FCMP_UGE: |
| return CmpInst::ICMP_SGE; |
| case CmpInst::FCMP_OLT: |
| case CmpInst::FCMP_ULT: |
| return CmpInst::ICMP_SLT; |
| case CmpInst::FCMP_OLE: |
| case CmpInst::FCMP_ULE: |
| return CmpInst::ICMP_SLE; |
| case CmpInst::FCMP_ONE: |
| case CmpInst::FCMP_UNE: |
| return CmpInst::ICMP_NE; |
| default: |
| return CmpInst::BAD_ICMP_PREDICATE; |
| } |
| } |
| |
| // Given a floating point binary operator, return the matching |
| // integer version. |
| static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| default: llvm_unreachable("Unhandled opcode!"); |
| case Instruction::FAdd: return Instruction::Add; |
| case Instruction::FSub: return Instruction::Sub; |
| case Instruction::FMul: return Instruction::Mul; |
| } |
| } |
| |
| // Find the roots - instructions that convert from the FP domain to |
| // integer domain. |
| void Float2IntPass::findRoots(Function &F, const DominatorTree &DT, |
| SmallPtrSet<Instruction*,8> &Roots) { |
| for (BasicBlock &BB : F) { |
| // Unreachable code can take on strange forms that we are not prepared to |
| // handle. For example, an instruction may have itself as an operand. |
| if (!DT.isReachableFromEntry(&BB)) |
| continue; |
| |
| for (Instruction &I : BB) { |
| if (isa<VectorType>(I.getType())) |
| continue; |
| switch (I.getOpcode()) { |
| default: break; |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| Roots.insert(&I); |
| break; |
| case Instruction::FCmp: |
| if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != |
| CmpInst::BAD_ICMP_PREDICATE) |
| Roots.insert(&I); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Helper - mark I as having been traversed, having range R. |
| void Float2IntPass::seen(Instruction *I, ConstantRange R) { |
| LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); |
| auto IT = SeenInsts.find(I); |
| if (IT != SeenInsts.end()) |
| IT->second = std::move(R); |
| else |
| SeenInsts.insert(std::make_pair(I, std::move(R))); |
| } |
| |
| // Helper - get a range representing a poison value. |
| ConstantRange Float2IntPass::badRange() { |
| return ConstantRange::getFull(MaxIntegerBW + 1); |
| } |
| ConstantRange Float2IntPass::unknownRange() { |
| return ConstantRange::getEmpty(MaxIntegerBW + 1); |
| } |
| ConstantRange Float2IntPass::validateRange(ConstantRange R) { |
| if (R.getBitWidth() > MaxIntegerBW + 1) |
| return badRange(); |
| return R; |
| } |
| |
| // The most obvious way to structure the search is a depth-first, eager |
| // search from each root. However, that require direct recursion and so |
| // can only handle small instruction sequences. Instead, we split the search |
| // up into two phases: |
| // - walkBackwards: A breadth-first walk of the use-def graph starting from |
| // the roots. Populate "SeenInsts" with interesting |
| // instructions and poison values if they're obvious and |
| // cheap to compute. Calculate the equivalance set structure |
| // while we're here too. |
| // - walkForwards: Iterate over SeenInsts in reverse order, so we visit |
| // defs before their uses. Calculate the real range info. |
| |
| // Breadth-first walk of the use-def graph; determine the set of nodes |
| // we care about and eagerly determine if some of them are poisonous. |
| void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { |
| std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.back(); |
| Worklist.pop_back(); |
| |
| if (SeenInsts.find(I) != SeenInsts.end()) |
| // Seen already. |
| continue; |
| |
| switch (I->getOpcode()) { |
| // FIXME: Handle select and phi nodes. |
| default: |
| // Path terminated uncleanly. |
| seen(I, badRange()); |
| break; |
| |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: { |
| // Path terminated cleanly - use the type of the integer input to seed |
| // the analysis. |
| unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); |
| auto Input = ConstantRange::getFull(BW); |
| auto CastOp = (Instruction::CastOps)I->getOpcode(); |
| seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1))); |
| continue; |
| } |
| |
| case Instruction::FNeg: |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FCmp: |
| seen(I, unknownRange()); |
| break; |
| } |
| |
| for (Value *O : I->operands()) { |
| if (Instruction *OI = dyn_cast<Instruction>(O)) { |
| // Unify def-use chains if they interfere. |
| ECs.unionSets(I, OI); |
| if (SeenInsts.find(I)->second != badRange()) |
| Worklist.push_back(OI); |
| } else if (!isa<ConstantFP>(O)) { |
| // Not an instruction or ConstantFP? we can't do anything. |
| seen(I, badRange()); |
| } |
| } |
| } |
| } |
| |
| // Walk forwards down the list of seen instructions, so we visit defs before |
| // uses. |
| void Float2IntPass::walkForwards() { |
| for (auto &It : reverse(SeenInsts)) { |
| if (It.second != unknownRange()) |
| continue; |
| |
| Instruction *I = It.first; |
| std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; |
| switch (I->getOpcode()) { |
| // FIXME: Handle select and phi nodes. |
| default: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| llvm_unreachable("Should have been handled in walkForwards!"); |
| |
| case Instruction::FNeg: |
| Op = [](ArrayRef<ConstantRange> Ops) { |
| assert(Ops.size() == 1 && "FNeg is a unary operator!"); |
| unsigned Size = Ops[0].getBitWidth(); |
| auto Zero = ConstantRange(APInt::getNullValue(Size)); |
| return Zero.sub(Ops[0]); |
| }; |
| break; |
| |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| Op = [I](ArrayRef<ConstantRange> Ops) { |
| assert(Ops.size() == 2 && "its a binary operator!"); |
| auto BinOp = (Instruction::BinaryOps) I->getOpcode(); |
| return Ops[0].binaryOp(BinOp, Ops[1]); |
| }; |
| break; |
| |
| // |
| // Root-only instructions - we'll only see these if they're the |
| // first node in a walk. |
| // |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| Op = [I](ArrayRef<ConstantRange> Ops) { |
| assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); |
| // Note: We're ignoring the casts output size here as that's what the |
| // caller expects. |
| auto CastOp = (Instruction::CastOps)I->getOpcode(); |
| return Ops[0].castOp(CastOp, MaxIntegerBW+1); |
| }; |
| break; |
| |
| case Instruction::FCmp: |
| Op = [](ArrayRef<ConstantRange> Ops) { |
| assert(Ops.size() == 2 && "FCmp is a binary operator!"); |
| return Ops[0].unionWith(Ops[1]); |
| }; |
| break; |
| } |
| |
| bool Abort = false; |
| SmallVector<ConstantRange,4> OpRanges; |
| for (Value *O : I->operands()) { |
| if (Instruction *OI = dyn_cast<Instruction>(O)) { |
| assert(SeenInsts.find(OI) != SeenInsts.end() && |
| "def not seen before use!"); |
| OpRanges.push_back(SeenInsts.find(OI)->second); |
| } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { |
| // Work out if the floating point number can be losslessly represented |
| // as an integer. |
| // APFloat::convertToInteger(&Exact) purports to do what we want, but |
| // the exactness can be too precise. For example, negative zero can |
| // never be exactly converted to an integer. |
| // |
| // Instead, we ask APFloat to round itself to an integral value - this |
| // preserves sign-of-zero - then compare the result with the original. |
| // |
| const APFloat &F = CF->getValueAPF(); |
| |
| // First, weed out obviously incorrect values. Non-finite numbers |
| // can't be represented and neither can negative zero, unless |
| // we're in fast math mode. |
| if (!F.isFinite() || |
| (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && |
| !I->hasNoSignedZeros())) { |
| seen(I, badRange()); |
| Abort = true; |
| break; |
| } |
| |
| APFloat NewF = F; |
| auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); |
| if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { |
| seen(I, badRange()); |
| Abort = true; |
| break; |
| } |
| // OK, it's representable. Now get it. |
| APSInt Int(MaxIntegerBW+1, false); |
| bool Exact; |
| CF->getValueAPF().convertToInteger(Int, |
| APFloat::rmNearestTiesToEven, |
| &Exact); |
| OpRanges.push_back(ConstantRange(Int)); |
| } else { |
| llvm_unreachable("Should have already marked this as badRange!"); |
| } |
| } |
| |
| // Reduce the operands' ranges to a single range and return. |
| if (!Abort) |
| seen(I, Op(OpRanges)); |
| } |
| } |
| |
| // If there is a valid transform to be done, do it. |
| bool Float2IntPass::validateAndTransform() { |
| bool MadeChange = false; |
| |
| // Iterate over every disjoint partition of the def-use graph. |
| for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { |
| ConstantRange R(MaxIntegerBW + 1, false); |
| bool Fail = false; |
| Type *ConvertedToTy = nullptr; |
| |
| // For every member of the partition, union all the ranges together. |
| for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); |
| MI != ME; ++MI) { |
| Instruction *I = *MI; |
| auto SeenI = SeenInsts.find(I); |
| if (SeenI == SeenInsts.end()) |
| continue; |
| |
| R = R.unionWith(SeenI->second); |
| // We need to ensure I has no users that have not been seen. |
| // If it does, transformation would be illegal. |
| // |
| // Don't count the roots, as they terminate the graphs. |
| if (Roots.count(I) == 0) { |
| // Set the type of the conversion while we're here. |
| if (!ConvertedToTy) |
| ConvertedToTy = I->getType(); |
| for (User *U : I->users()) { |
| Instruction *UI = dyn_cast<Instruction>(U); |
| if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { |
| LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); |
| Fail = true; |
| break; |
| } |
| } |
| } |
| if (Fail) |
| break; |
| } |
| |
| // If the set was empty, or we failed, or the range is poisonous, |
| // bail out. |
| if (ECs.member_begin(It) == ECs.member_end() || Fail || |
| R.isFullSet() || R.isSignWrappedSet()) |
| continue; |
| assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); |
| |
| // The number of bits required is the maximum of the upper and |
| // lower limits, plus one so it can be signed. |
| unsigned MinBW = std::max(R.getLower().getMinSignedBits(), |
| R.getUpper().getMinSignedBits()) + 1; |
| LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); |
| |
| // If we've run off the realms of the exactly representable integers, |
| // the floating point result will differ from an integer approximation. |
| |
| // Do we need more bits than are in the mantissa of the type we converted |
| // to? semanticsPrecision returns the number of mantissa bits plus one |
| // for the sign bit. |
| unsigned MaxRepresentableBits |
| = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; |
| if (MinBW > MaxRepresentableBits) { |
| LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); |
| continue; |
| } |
| if (MinBW > 64) { |
| LLVM_DEBUG( |
| dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); |
| continue; |
| } |
| |
| // OK, R is known to be representable. Now pick a type for it. |
| // FIXME: Pick the smallest legal type that will fit. |
| Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); |
| |
| for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); |
| MI != ME; ++MI) |
| convert(*MI, Ty); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { |
| if (ConvertedInsts.find(I) != ConvertedInsts.end()) |
| // Already converted this instruction. |
| return ConvertedInsts[I]; |
| |
| SmallVector<Value*,4> NewOperands; |
| for (Value *V : I->operands()) { |
| // Don't recurse if we're an instruction that terminates the path. |
| if (I->getOpcode() == Instruction::UIToFP || |
| I->getOpcode() == Instruction::SIToFP) { |
| NewOperands.push_back(V); |
| } else if (Instruction *VI = dyn_cast<Instruction>(V)) { |
| NewOperands.push_back(convert(VI, ToTy)); |
| } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { |
| APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false); |
| bool Exact; |
| CF->getValueAPF().convertToInteger(Val, |
| APFloat::rmNearestTiesToEven, |
| &Exact); |
| NewOperands.push_back(ConstantInt::get(ToTy, Val)); |
| } else { |
| llvm_unreachable("Unhandled operand type?"); |
| } |
| } |
| |
| // Now create a new instruction. |
| IRBuilder<> IRB(I); |
| Value *NewV = nullptr; |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unhandled instruction!"); |
| |
| case Instruction::FPToUI: |
| NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); |
| break; |
| |
| case Instruction::FPToSI: |
| NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); |
| break; |
| |
| case Instruction::FCmp: { |
| CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); |
| assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); |
| NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); |
| break; |
| } |
| |
| case Instruction::UIToFP: |
| NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); |
| break; |
| |
| case Instruction::SIToFP: |
| NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); |
| break; |
| |
| case Instruction::FNeg: |
| NewV = IRB.CreateNeg(NewOperands[0], I->getName()); |
| break; |
| |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), |
| NewOperands[0], NewOperands[1], |
| I->getName()); |
| break; |
| } |
| |
| // If we're a root instruction, RAUW. |
| if (Roots.count(I)) |
| I->replaceAllUsesWith(NewV); |
| |
| ConvertedInsts[I] = NewV; |
| return NewV; |
| } |
| |
| // Perform dead code elimination on the instructions we just modified. |
| void Float2IntPass::cleanup() { |
| for (auto &I : reverse(ConvertedInsts)) |
| I.first->eraseFromParent(); |
| } |
| |
| bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) { |
| LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); |
| // Clear out all state. |
| ECs = EquivalenceClasses<Instruction*>(); |
| SeenInsts.clear(); |
| ConvertedInsts.clear(); |
| Roots.clear(); |
| |
| Ctx = &F.getParent()->getContext(); |
| |
| findRoots(F, DT, Roots); |
| |
| walkBackwards(Roots); |
| walkForwards(); |
| |
| bool Modified = validateAndTransform(); |
| if (Modified) |
| cleanup(); |
| return Modified; |
| } |
| |
| namespace llvm { |
| FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); } |
| |
| PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) { |
| const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| if (!runImpl(F, DT)) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| PA.preserve<GlobalsAA>(); |
| return PA; |
| } |
| } // End namespace llvm |