| //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This transform is designed to eliminate unreachable internal globals from the |
| // program. It uses an aggressive algorithm, searching out globals that are |
| // known to be alive. After it finds all of the globals which are needed, it |
| // deletes whatever is left over. This allows it to delete recursive chunks of |
| // the program which are unreachable. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/GlobalDCE.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/TypeMetadataUtils.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/Utils/CtorUtils.h" |
| #include "llvm/Transforms/Utils/GlobalStatus.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "globaldce" |
| |
| static cl::opt<bool> |
| ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore, |
| cl::desc("Enable virtual function elimination")); |
| |
| STATISTIC(NumAliases , "Number of global aliases removed"); |
| STATISTIC(NumFunctions, "Number of functions removed"); |
| STATISTIC(NumIFuncs, "Number of indirect functions removed"); |
| STATISTIC(NumVariables, "Number of global variables removed"); |
| STATISTIC(NumVFuncs, "Number of virtual functions removed"); |
| |
| namespace { |
| class GlobalDCELegacyPass : public ModulePass { |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| GlobalDCELegacyPass() : ModulePass(ID) { |
| initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| // run - Do the GlobalDCE pass on the specified module, optionally updating |
| // the specified callgraph to reflect the changes. |
| // |
| bool runOnModule(Module &M) override { |
| if (skipModule(M)) |
| return false; |
| |
| // We need a minimally functional dummy module analysis manager. It needs |
| // to at least know about the possibility of proxying a function analysis |
| // manager. |
| FunctionAnalysisManager DummyFAM; |
| ModuleAnalysisManager DummyMAM; |
| DummyMAM.registerPass( |
| [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); }); |
| |
| auto PA = Impl.run(M, DummyMAM); |
| return !PA.areAllPreserved(); |
| } |
| |
| private: |
| GlobalDCEPass Impl; |
| }; |
| } |
| |
| char GlobalDCELegacyPass::ID = 0; |
| INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce", |
| "Dead Global Elimination", false, false) |
| |
| // Public interface to the GlobalDCEPass. |
| ModulePass *llvm::createGlobalDCEPass() { |
| return new GlobalDCELegacyPass(); |
| } |
| |
| /// Returns true if F is effectively empty. |
| static bool isEmptyFunction(Function *F) { |
| BasicBlock &Entry = F->getEntryBlock(); |
| for (auto &I : Entry) { |
| if (isa<DbgInfoIntrinsic>(I)) |
| continue; |
| if (auto *RI = dyn_cast<ReturnInst>(&I)) |
| return !RI->getReturnValue(); |
| break; |
| } |
| return false; |
| } |
| |
| /// Compute the set of GlobalValue that depends from V. |
| /// The recursion stops as soon as a GlobalValue is met. |
| void GlobalDCEPass::ComputeDependencies(Value *V, |
| SmallPtrSetImpl<GlobalValue *> &Deps) { |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| Function *Parent = I->getParent()->getParent(); |
| Deps.insert(Parent); |
| } else if (auto *GV = dyn_cast<GlobalValue>(V)) { |
| Deps.insert(GV); |
| } else if (auto *CE = dyn_cast<Constant>(V)) { |
| // Avoid walking the whole tree of a big ConstantExprs multiple times. |
| auto Where = ConstantDependenciesCache.find(CE); |
| if (Where != ConstantDependenciesCache.end()) { |
| auto const &K = Where->second; |
| Deps.insert(K.begin(), K.end()); |
| } else { |
| SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE]; |
| for (User *CEUser : CE->users()) |
| ComputeDependencies(CEUser, LocalDeps); |
| Deps.insert(LocalDeps.begin(), LocalDeps.end()); |
| } |
| } |
| } |
| |
| void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) { |
| SmallPtrSet<GlobalValue *, 8> Deps; |
| for (User *User : GV.users()) |
| ComputeDependencies(User, Deps); |
| Deps.erase(&GV); // Remove self-reference. |
| for (GlobalValue *GVU : Deps) { |
| // If this is a dep from a vtable to a virtual function, and we have |
| // complete information about all virtual call sites which could call |
| // though this vtable, then skip it, because the call site information will |
| // be more precise. |
| if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) { |
| LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> " |
| << GV.getName() << "\n"); |
| continue; |
| } |
| GVDependencies[GVU].insert(&GV); |
| } |
| } |
| |
| /// Mark Global value as Live |
| void GlobalDCEPass::MarkLive(GlobalValue &GV, |
| SmallVectorImpl<GlobalValue *> *Updates) { |
| auto const Ret = AliveGlobals.insert(&GV); |
| if (!Ret.second) |
| return; |
| |
| if (Updates) |
| Updates->push_back(&GV); |
| if (Comdat *C = GV.getComdat()) { |
| for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { |
| MarkLive(*CM.second, Updates); // Recursion depth is only two because only |
| // globals in the same comdat are visited. |
| } |
| } |
| } |
| |
| void GlobalDCEPass::ScanVTables(Module &M) { |
| SmallVector<MDNode *, 2> Types; |
| LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n"); |
| |
| auto *LTOPostLinkMD = |
| cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink")); |
| bool LTOPostLink = |
| LTOPostLinkMD && |
| (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0); |
| |
| for (GlobalVariable &GV : M.globals()) { |
| Types.clear(); |
| GV.getMetadata(LLVMContext::MD_type, Types); |
| if (GV.isDeclaration() || Types.empty()) |
| continue; |
| |
| // Use the typeid metadata on the vtable to build a mapping from typeids to |
| // the list of (GV, offset) pairs which are the possible vtables for that |
| // typeid. |
| for (MDNode *Type : Types) { |
| Metadata *TypeID = Type->getOperand(1).get(); |
| |
| uint64_t Offset = |
| cast<ConstantInt>( |
| cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) |
| ->getZExtValue(); |
| |
| TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset)); |
| } |
| |
| // If the type corresponding to the vtable is private to this translation |
| // unit, we know that we can see all virtual functions which might use it, |
| // so VFE is safe. |
| if (auto GO = dyn_cast<GlobalObject>(&GV)) { |
| GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility(); |
| if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit || |
| (LTOPostLink && |
| TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) { |
| LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n"); |
| VFESafeVTables.insert(&GV); |
| } |
| } |
| } |
| } |
| |
| void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId, |
| uint64_t CallOffset) { |
| for (auto &VTableInfo : TypeIdMap[TypeId]) { |
| GlobalVariable *VTable = VTableInfo.first; |
| uint64_t VTableOffset = VTableInfo.second; |
| |
| Constant *Ptr = |
| getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset, |
| *Caller->getParent()); |
| if (!Ptr) { |
| LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n"); |
| VFESafeVTables.erase(VTable); |
| return; |
| } |
| |
| auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts()); |
| if (!Callee) { |
| LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n"); |
| VFESafeVTables.erase(VTable); |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> " |
| << Callee->getName() << "\n"); |
| GVDependencies[Caller].insert(Callee); |
| } |
| } |
| |
| void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) { |
| LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n"); |
| Function *TypeCheckedLoadFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); |
| |
| if (!TypeCheckedLoadFunc) |
| return; |
| |
| for (auto U : TypeCheckedLoadFunc->users()) { |
| auto CI = dyn_cast<CallInst>(U); |
| if (!CI) |
| continue; |
| |
| auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| Value *TypeIdValue = CI->getArgOperand(2); |
| auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); |
| |
| if (Offset) { |
| ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue()); |
| } else { |
| // type.checked.load with a non-constant offset, so assume every entry in |
| // every matching vtable is used. |
| for (auto &VTableInfo : TypeIdMap[TypeId]) { |
| VFESafeVTables.erase(VTableInfo.first); |
| } |
| } |
| } |
| } |
| |
| void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) { |
| if (!ClEnableVFE) |
| return; |
| |
| ScanVTables(M); |
| |
| if (VFESafeVTables.empty()) |
| return; |
| |
| ScanTypeCheckedLoadIntrinsics(M); |
| |
| LLVM_DEBUG( |
| dbgs() << "VFE safe vtables:\n"; |
| for (auto *VTable : VFESafeVTables) |
| dbgs() << " " << VTable->getName() << "\n"; |
| ); |
| } |
| |
| PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { |
| bool Changed = false; |
| |
| // The algorithm first computes the set L of global variables that are |
| // trivially live. Then it walks the initialization of these variables to |
| // compute the globals used to initialize them, which effectively builds a |
| // directed graph where nodes are global variables, and an edge from A to B |
| // means B is used to initialize A. Finally, it propagates the liveness |
| // information through the graph starting from the nodes in L. Nodes note |
| // marked as alive are discarded. |
| |
| // Remove empty functions from the global ctors list. |
| Changed |= optimizeGlobalCtorsList(M, isEmptyFunction); |
| |
| // Collect the set of members for each comdat. |
| for (Function &F : M) |
| if (Comdat *C = F.getComdat()) |
| ComdatMembers.insert(std::make_pair(C, &F)); |
| for (GlobalVariable &GV : M.globals()) |
| if (Comdat *C = GV.getComdat()) |
| ComdatMembers.insert(std::make_pair(C, &GV)); |
| for (GlobalAlias &GA : M.aliases()) |
| if (Comdat *C = GA.getComdat()) |
| ComdatMembers.insert(std::make_pair(C, &GA)); |
| |
| // Add dependencies between virtual call sites and the virtual functions they |
| // might call, if we have that information. |
| AddVirtualFunctionDependencies(M); |
| |
| // Loop over the module, adding globals which are obviously necessary. |
| for (GlobalObject &GO : M.global_objects()) { |
| Changed |= RemoveUnusedGlobalValue(GO); |
| // Functions with external linkage are needed if they have a body. |
| // Externally visible & appending globals are needed, if they have an |
| // initializer. |
| if (!GO.isDeclaration()) |
| if (!GO.isDiscardableIfUnused()) |
| MarkLive(GO); |
| |
| UpdateGVDependencies(GO); |
| } |
| |
| // Compute direct dependencies of aliases. |
| for (GlobalAlias &GA : M.aliases()) { |
| Changed |= RemoveUnusedGlobalValue(GA); |
| // Externally visible aliases are needed. |
| if (!GA.isDiscardableIfUnused()) |
| MarkLive(GA); |
| |
| UpdateGVDependencies(GA); |
| } |
| |
| // Compute direct dependencies of ifuncs. |
| for (GlobalIFunc &GIF : M.ifuncs()) { |
| Changed |= RemoveUnusedGlobalValue(GIF); |
| // Externally visible ifuncs are needed. |
| if (!GIF.isDiscardableIfUnused()) |
| MarkLive(GIF); |
| |
| UpdateGVDependencies(GIF); |
| } |
| |
| // Propagate liveness from collected Global Values through the computed |
| // dependencies. |
| SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(), |
| AliveGlobals.end()}; |
| while (!NewLiveGVs.empty()) { |
| GlobalValue *LGV = NewLiveGVs.pop_back_val(); |
| for (auto *GVD : GVDependencies[LGV]) |
| MarkLive(*GVD, &NewLiveGVs); |
| } |
| |
| // Now that all globals which are needed are in the AliveGlobals set, we loop |
| // through the program, deleting those which are not alive. |
| // |
| |
| // The first pass is to drop initializers of global variables which are dead. |
| std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals |
| for (GlobalVariable &GV : M.globals()) |
| if (!AliveGlobals.count(&GV)) { |
| DeadGlobalVars.push_back(&GV); // Keep track of dead globals |
| if (GV.hasInitializer()) { |
| Constant *Init = GV.getInitializer(); |
| GV.setInitializer(nullptr); |
| if (isSafeToDestroyConstant(Init)) |
| Init->destroyConstant(); |
| } |
| } |
| |
| // The second pass drops the bodies of functions which are dead... |
| std::vector<Function *> DeadFunctions; |
| for (Function &F : M) |
| if (!AliveGlobals.count(&F)) { |
| DeadFunctions.push_back(&F); // Keep track of dead globals |
| if (!F.isDeclaration()) |
| F.deleteBody(); |
| } |
| |
| // The third pass drops targets of aliases which are dead... |
| std::vector<GlobalAlias*> DeadAliases; |
| for (GlobalAlias &GA : M.aliases()) |
| if (!AliveGlobals.count(&GA)) { |
| DeadAliases.push_back(&GA); |
| GA.setAliasee(nullptr); |
| } |
| |
| // The fourth pass drops targets of ifuncs which are dead... |
| std::vector<GlobalIFunc*> DeadIFuncs; |
| for (GlobalIFunc &GIF : M.ifuncs()) |
| if (!AliveGlobals.count(&GIF)) { |
| DeadIFuncs.push_back(&GIF); |
| GIF.setResolver(nullptr); |
| } |
| |
| // Now that all interferences have been dropped, delete the actual objects |
| // themselves. |
| auto EraseUnusedGlobalValue = [&](GlobalValue *GV) { |
| RemoveUnusedGlobalValue(*GV); |
| GV->eraseFromParent(); |
| Changed = true; |
| }; |
| |
| NumFunctions += DeadFunctions.size(); |
| for (Function *F : DeadFunctions) { |
| if (!F->use_empty()) { |
| // Virtual functions might still be referenced by one or more vtables, |
| // but if we've proven them to be unused then it's safe to replace the |
| // virtual function pointers with null, allowing us to remove the |
| // function itself. |
| ++NumVFuncs; |
| F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType())); |
| } |
| EraseUnusedGlobalValue(F); |
| } |
| |
| NumVariables += DeadGlobalVars.size(); |
| for (GlobalVariable *GV : DeadGlobalVars) |
| EraseUnusedGlobalValue(GV); |
| |
| NumAliases += DeadAliases.size(); |
| for (GlobalAlias *GA : DeadAliases) |
| EraseUnusedGlobalValue(GA); |
| |
| NumIFuncs += DeadIFuncs.size(); |
| for (GlobalIFunc *GIF : DeadIFuncs) |
| EraseUnusedGlobalValue(GIF); |
| |
| // Make sure that all memory is released |
| AliveGlobals.clear(); |
| ConstantDependenciesCache.clear(); |
| GVDependencies.clear(); |
| ComdatMembers.clear(); |
| TypeIdMap.clear(); |
| VFESafeVTables.clear(); |
| |
| if (Changed) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| // RemoveUnusedGlobalValue - Loop over all of the uses of the specified |
| // GlobalValue, looking for the constant pointer ref that may be pointing to it. |
| // If found, check to see if the constant pointer ref is safe to destroy, and if |
| // so, nuke it. This will reduce the reference count on the global value, which |
| // might make it deader. |
| // |
| bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) { |
| if (GV.use_empty()) |
| return false; |
| GV.removeDeadConstantUsers(); |
| return GV.use_empty(); |
| } |