| //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass promotes "by reference" arguments to be "by value" arguments. In |
| // practice, this means looking for internal functions that have pointer |
| // arguments. If it can prove, through the use of alias analysis, that an |
| // argument is *only* loaded, then it can pass the value into the function |
| // instead of the address of the value. This can cause recursive simplification |
| // of code and lead to the elimination of allocas (especially in C++ template |
| // code like the STL). |
| // |
| // This pass also handles aggregate arguments that are passed into a function, |
| // scalarizing them if the elements of the aggregate are only loaded. Note that |
| // by default it refuses to scalarize aggregates which would require passing in |
| // more than three operands to the function, because passing thousands of |
| // operands for a large array or structure is unprofitable! This limit can be |
| // configured or disabled, however. |
| // |
| // Note that this transformation could also be done for arguments that are only |
| // stored to (returning the value instead), but does not currently. This case |
| // would be best handled when and if LLVM begins supporting multiple return |
| // values from functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/ArgumentPromotion.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/CGSCCPassManager.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/CallGraphSCCPass.h" |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/IPO.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <iterator> |
| #include <map> |
| #include <set> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "argpromotion" |
| |
| STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); |
| STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); |
| STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); |
| STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); |
| |
| /// A vector used to hold the indices of a single GEP instruction |
| using IndicesVector = std::vector<uint64_t>; |
| |
| /// DoPromotion - This method actually performs the promotion of the specified |
| /// arguments, and returns the new function. At this point, we know that it's |
| /// safe to do so. |
| static Function * |
| doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, |
| SmallPtrSetImpl<Argument *> &ByValArgsToTransform, |
| Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> |
| ReplaceCallSite) { |
| // Start by computing a new prototype for the function, which is the same as |
| // the old function, but has modified arguments. |
| FunctionType *FTy = F->getFunctionType(); |
| std::vector<Type *> Params; |
| |
| using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; |
| |
| // ScalarizedElements - If we are promoting a pointer that has elements |
| // accessed out of it, keep track of which elements are accessed so that we |
| // can add one argument for each. |
| // |
| // Arguments that are directly loaded will have a zero element value here, to |
| // handle cases where there are both a direct load and GEP accesses. |
| std::map<Argument *, ScalarizeTable> ScalarizedElements; |
| |
| // OriginalLoads - Keep track of a representative load instruction from the |
| // original function so that we can tell the alias analysis implementation |
| // what the new GEP/Load instructions we are inserting look like. |
| // We need to keep the original loads for each argument and the elements |
| // of the argument that are accessed. |
| std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; |
| |
| // Attribute - Keep track of the parameter attributes for the arguments |
| // that we are *not* promoting. For the ones that we do promote, the parameter |
| // attributes are lost |
| SmallVector<AttributeSet, 8> ArgAttrVec; |
| AttributeList PAL = F->getAttributes(); |
| |
| // First, determine the new argument list |
| unsigned ArgNo = 0; |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; |
| ++I, ++ArgNo) { |
| if (ByValArgsToTransform.count(&*I)) { |
| // Simple byval argument? Just add all the struct element types. |
| Type *AgTy = cast<PointerType>(I->getType())->getElementType(); |
| StructType *STy = cast<StructType>(AgTy); |
| Params.insert(Params.end(), STy->element_begin(), STy->element_end()); |
| ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), |
| AttributeSet()); |
| ++NumByValArgsPromoted; |
| } else if (!ArgsToPromote.count(&*I)) { |
| // Unchanged argument |
| Params.push_back(I->getType()); |
| ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); |
| } else if (I->use_empty()) { |
| // Dead argument (which are always marked as promotable) |
| ++NumArgumentsDead; |
| |
| // There may be remaining metadata uses of the argument for things like |
| // llvm.dbg.value. Replace them with undef. |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| } else { |
| // Okay, this is being promoted. This means that the only uses are loads |
| // or GEPs which are only used by loads |
| |
| // In this table, we will track which indices are loaded from the argument |
| // (where direct loads are tracked as no indices). |
| ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; |
| for (User *U : I->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| Type *SrcTy; |
| if (LoadInst *L = dyn_cast<LoadInst>(UI)) |
| SrcTy = L->getType(); |
| else |
| SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); |
| IndicesVector Indices; |
| Indices.reserve(UI->getNumOperands() - 1); |
| // Since loads will only have a single operand, and GEPs only a single |
| // non-index operand, this will record direct loads without any indices, |
| // and gep+loads with the GEP indices. |
| for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); |
| II != IE; ++II) |
| Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); |
| // GEPs with a single 0 index can be merged with direct loads |
| if (Indices.size() == 1 && Indices.front() == 0) |
| Indices.clear(); |
| ArgIndices.insert(std::make_pair(SrcTy, Indices)); |
| LoadInst *OrigLoad; |
| if (LoadInst *L = dyn_cast<LoadInst>(UI)) |
| OrigLoad = L; |
| else |
| // Take any load, we will use it only to update Alias Analysis |
| OrigLoad = cast<LoadInst>(UI->user_back()); |
| OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; |
| } |
| |
| // Add a parameter to the function for each element passed in. |
| for (const auto &ArgIndex : ArgIndices) { |
| // not allowed to dereference ->begin() if size() is 0 |
| Params.push_back(GetElementPtrInst::getIndexedType( |
| cast<PointerType>(I->getType()->getScalarType())->getElementType(), |
| ArgIndex.second)); |
| ArgAttrVec.push_back(AttributeSet()); |
| assert(Params.back()); |
| } |
| |
| if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) |
| ++NumArgumentsPromoted; |
| else |
| ++NumAggregatesPromoted; |
| } |
| } |
| |
| Type *RetTy = FTy->getReturnType(); |
| |
| // Construct the new function type using the new arguments. |
| FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); |
| |
| // Create the new function body and insert it into the module. |
| Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), |
| F->getName()); |
| NF->copyAttributesFrom(F); |
| |
| // Patch the pointer to LLVM function in debug info descriptor. |
| NF->setSubprogram(F->getSubprogram()); |
| F->setSubprogram(nullptr); |
| |
| LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" |
| << "From: " << *F); |
| |
| // Recompute the parameter attributes list based on the new arguments for |
| // the function. |
| NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), |
| PAL.getRetAttributes(), ArgAttrVec)); |
| ArgAttrVec.clear(); |
| |
| F->getParent()->getFunctionList().insert(F->getIterator(), NF); |
| NF->takeName(F); |
| |
| // Loop over all of the callers of the function, transforming the call sites |
| // to pass in the loaded pointers. |
| // |
| SmallVector<Value *, 16> Args; |
| while (!F->use_empty()) { |
| CallSite CS(F->user_back()); |
| assert(CS.getCalledFunction() == F); |
| Instruction *Call = CS.getInstruction(); |
| const AttributeList &CallPAL = CS.getAttributes(); |
| IRBuilder<NoFolder> IRB(Call); |
| |
| // Loop over the operands, inserting GEP and loads in the caller as |
| // appropriate. |
| CallSite::arg_iterator AI = CS.arg_begin(); |
| ArgNo = 0; |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; |
| ++I, ++AI, ++ArgNo) |
| if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { |
| Args.push_back(*AI); // Unmodified argument |
| ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); |
| } else if (ByValArgsToTransform.count(&*I)) { |
| // Emit a GEP and load for each element of the struct. |
| Type *AgTy = cast<PointerType>(I->getType())->getElementType(); |
| StructType *STy = cast<StructType>(AgTy); |
| Value *Idxs[2] = { |
| ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); |
| auto *Idx = |
| IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); |
| // TODO: Tell AA about the new values? |
| Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx, |
| Idx->getName() + ".val")); |
| ArgAttrVec.push_back(AttributeSet()); |
| } |
| } else if (!I->use_empty()) { |
| // Non-dead argument: insert GEPs and loads as appropriate. |
| ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; |
| // Store the Value* version of the indices in here, but declare it now |
| // for reuse. |
| std::vector<Value *> Ops; |
| for (const auto &ArgIndex : ArgIndices) { |
| Value *V = *AI; |
| LoadInst *OrigLoad = |
| OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; |
| if (!ArgIndex.second.empty()) { |
| Ops.reserve(ArgIndex.second.size()); |
| Type *ElTy = V->getType(); |
| for (auto II : ArgIndex.second) { |
| // Use i32 to index structs, and i64 for others (pointers/arrays). |
| // This satisfies GEP constraints. |
| Type *IdxTy = |
| (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) |
| : Type::getInt64Ty(F->getContext())); |
| Ops.push_back(ConstantInt::get(IdxTy, II)); |
| // Keep track of the type we're currently indexing. |
| if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) |
| ElTy = ElPTy->getElementType(); |
| else |
| ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II); |
| } |
| // And create a GEP to extract those indices. |
| V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); |
| Ops.clear(); |
| } |
| // Since we're replacing a load make sure we take the alignment |
| // of the previous load. |
| LoadInst *newLoad = |
| IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); |
| newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment())); |
| // Transfer the AA info too. |
| AAMDNodes AAInfo; |
| OrigLoad->getAAMetadata(AAInfo); |
| newLoad->setAAMetadata(AAInfo); |
| |
| Args.push_back(newLoad); |
| ArgAttrVec.push_back(AttributeSet()); |
| } |
| } |
| |
| // Push any varargs arguments on the list. |
| for (; AI != CS.arg_end(); ++AI, ++ArgNo) { |
| Args.push_back(*AI); |
| ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); |
| } |
| |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| CS.getOperandBundlesAsDefs(OpBundles); |
| |
| CallSite NewCS; |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { |
| NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), |
| Args, OpBundles, "", Call); |
| } else { |
| auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call); |
| NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); |
| NewCS = NewCall; |
| } |
| NewCS.setCallingConv(CS.getCallingConv()); |
| NewCS.setAttributes( |
| AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), |
| CallPAL.getRetAttributes(), ArgAttrVec)); |
| NewCS->setDebugLoc(Call->getDebugLoc()); |
| uint64_t W; |
| if (Call->extractProfTotalWeight(W)) |
| NewCS->setProfWeight(W); |
| Args.clear(); |
| ArgAttrVec.clear(); |
| |
| // Update the callgraph to know that the callsite has been transformed. |
| if (ReplaceCallSite) |
| (*ReplaceCallSite)(CS, NewCS); |
| |
| if (!Call->use_empty()) { |
| Call->replaceAllUsesWith(NewCS.getInstruction()); |
| NewCS->takeName(Call); |
| } |
| |
| // Finally, remove the old call from the program, reducing the use-count of |
| // F. |
| Call->eraseFromParent(); |
| } |
| |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| |
| // Since we have now created the new function, splice the body of the old |
| // function right into the new function, leaving the old rotting hulk of the |
| // function empty. |
| NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); |
| |
| // Loop over the argument list, transferring uses of the old arguments over to |
| // the new arguments, also transferring over the names as well. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), |
| I2 = NF->arg_begin(); |
| I != E; ++I) { |
| if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { |
| // If this is an unmodified argument, move the name and users over to the |
| // new version. |
| I->replaceAllUsesWith(&*I2); |
| I2->takeName(&*I); |
| ++I2; |
| continue; |
| } |
| |
| if (ByValArgsToTransform.count(&*I)) { |
| // In the callee, we create an alloca, and store each of the new incoming |
| // arguments into the alloca. |
| Instruction *InsertPt = &NF->begin()->front(); |
| |
| // Just add all the struct element types. |
| Type *AgTy = cast<PointerType>(I->getType())->getElementType(); |
| Value *TheAlloca = |
| new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, |
| MaybeAlign(I->getParamAlignment()), "", InsertPt); |
| StructType *STy = cast<StructType>(AgTy); |
| Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), |
| nullptr}; |
| |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); |
| Value *Idx = GetElementPtrInst::Create( |
| AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), |
| InsertPt); |
| I2->setName(I->getName() + "." + Twine(i)); |
| new StoreInst(&*I2++, Idx, InsertPt); |
| } |
| |
| // Anything that used the arg should now use the alloca. |
| I->replaceAllUsesWith(TheAlloca); |
| TheAlloca->takeName(&*I); |
| |
| // If the alloca is used in a call, we must clear the tail flag since |
| // the callee now uses an alloca from the caller. |
| for (User *U : TheAlloca->users()) { |
| CallInst *Call = dyn_cast<CallInst>(U); |
| if (!Call) |
| continue; |
| Call->setTailCall(false); |
| } |
| continue; |
| } |
| |
| if (I->use_empty()) |
| continue; |
| |
| // Otherwise, if we promoted this argument, then all users are load |
| // instructions (or GEPs with only load users), and all loads should be |
| // using the new argument that we added. |
| ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; |
| |
| while (!I->use_empty()) { |
| if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { |
| assert(ArgIndices.begin()->second.empty() && |
| "Load element should sort to front!"); |
| I2->setName(I->getName() + ".val"); |
| LI->replaceAllUsesWith(&*I2); |
| LI->eraseFromParent(); |
| LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() |
| << "' in function '" << F->getName() << "'\n"); |
| } else { |
| GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); |
| IndicesVector Operands; |
| Operands.reserve(GEP->getNumIndices()); |
| for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); |
| II != IE; ++II) |
| Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); |
| |
| // GEPs with a single 0 index can be merged with direct loads |
| if (Operands.size() == 1 && Operands.front() == 0) |
| Operands.clear(); |
| |
| Function::arg_iterator TheArg = I2; |
| for (ScalarizeTable::iterator It = ArgIndices.begin(); |
| It->second != Operands; ++It, ++TheArg) { |
| assert(It != ArgIndices.end() && "GEP not handled??"); |
| } |
| |
| std::string NewName = I->getName(); |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| NewName += "." + utostr(Operands[i]); |
| } |
| NewName += ".val"; |
| TheArg->setName(NewName); |
| |
| LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() |
| << "' of function '" << NF->getName() << "'\n"); |
| |
| // All of the uses must be load instructions. Replace them all with |
| // the argument specified by ArgNo. |
| while (!GEP->use_empty()) { |
| LoadInst *L = cast<LoadInst>(GEP->user_back()); |
| L->replaceAllUsesWith(&*TheArg); |
| L->eraseFromParent(); |
| } |
| GEP->eraseFromParent(); |
| } |
| } |
| |
| // Increment I2 past all of the arguments added for this promoted pointer. |
| std::advance(I2, ArgIndices.size()); |
| } |
| |
| return NF; |
| } |
| |
| /// Return true if we can prove that all callees pass in a valid pointer for the |
| /// specified function argument. |
| static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { |
| Function *Callee = Arg->getParent(); |
| const DataLayout &DL = Callee->getParent()->getDataLayout(); |
| |
| unsigned ArgNo = Arg->getArgNo(); |
| |
| // Look at all call sites of the function. At this point we know we only have |
| // direct callees. |
| for (User *U : Callee->users()) { |
| CallSite CS(U); |
| assert(CS && "Should only have direct calls!"); |
| |
| if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Returns true if Prefix is a prefix of longer. That means, Longer has a size |
| /// that is greater than or equal to the size of prefix, and each of the |
| /// elements in Prefix is the same as the corresponding elements in Longer. |
| /// |
| /// This means it also returns true when Prefix and Longer are equal! |
| static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { |
| if (Prefix.size() > Longer.size()) |
| return false; |
| return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); |
| } |
| |
| /// Checks if Indices, or a prefix of Indices, is in Set. |
| static bool prefixIn(const IndicesVector &Indices, |
| std::set<IndicesVector> &Set) { |
| std::set<IndicesVector>::iterator Low; |
| Low = Set.upper_bound(Indices); |
| if (Low != Set.begin()) |
| Low--; |
| // Low is now the last element smaller than or equal to Indices. This means |
| // it points to a prefix of Indices (possibly Indices itself), if such |
| // prefix exists. |
| // |
| // This load is safe if any prefix of its operands is safe to load. |
| return Low != Set.end() && isPrefix(*Low, Indices); |
| } |
| |
| /// Mark the given indices (ToMark) as safe in the given set of indices |
| /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there |
| /// is already a prefix of Indices in Safe, Indices are implicitely marked safe |
| /// already. Furthermore, any indices that Indices is itself a prefix of, are |
| /// removed from Safe (since they are implicitely safe because of Indices now). |
| static void markIndicesSafe(const IndicesVector &ToMark, |
| std::set<IndicesVector> &Safe) { |
| std::set<IndicesVector>::iterator Low; |
| Low = Safe.upper_bound(ToMark); |
| // Guard against the case where Safe is empty |
| if (Low != Safe.begin()) |
| Low--; |
| // Low is now the last element smaller than or equal to Indices. This |
| // means it points to a prefix of Indices (possibly Indices itself), if |
| // such prefix exists. |
| if (Low != Safe.end()) { |
| if (isPrefix(*Low, ToMark)) |
| // If there is already a prefix of these indices (or exactly these |
| // indices) marked a safe, don't bother adding these indices |
| return; |
| |
| // Increment Low, so we can use it as a "insert before" hint |
| ++Low; |
| } |
| // Insert |
| Low = Safe.insert(Low, ToMark); |
| ++Low; |
| // If there we're a prefix of longer index list(s), remove those |
| std::set<IndicesVector>::iterator End = Safe.end(); |
| while (Low != End && isPrefix(ToMark, *Low)) { |
| std::set<IndicesVector>::iterator Remove = Low; |
| ++Low; |
| Safe.erase(Remove); |
| } |
| } |
| |
| /// isSafeToPromoteArgument - As you might guess from the name of this method, |
| /// it checks to see if it is both safe and useful to promote the argument. |
| /// This method limits promotion of aggregates to only promote up to three |
| /// elements of the aggregate in order to avoid exploding the number of |
| /// arguments passed in. |
| static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, |
| unsigned MaxElements) { |
| using GEPIndicesSet = std::set<IndicesVector>; |
| |
| // Quick exit for unused arguments |
| if (Arg->use_empty()) |
| return true; |
| |
| // We can only promote this argument if all of the uses are loads, or are GEP |
| // instructions (with constant indices) that are subsequently loaded. |
| // |
| // Promoting the argument causes it to be loaded in the caller |
| // unconditionally. This is only safe if we can prove that either the load |
| // would have happened in the callee anyway (ie, there is a load in the entry |
| // block) or the pointer passed in at every call site is guaranteed to be |
| // valid. |
| // In the former case, invalid loads can happen, but would have happened |
| // anyway, in the latter case, invalid loads won't happen. This prevents us |
| // from introducing an invalid load that wouldn't have happened in the |
| // original code. |
| // |
| // This set will contain all sets of indices that are loaded in the entry |
| // block, and thus are safe to unconditionally load in the caller. |
| GEPIndicesSet SafeToUnconditionallyLoad; |
| |
| // This set contains all the sets of indices that we are planning to promote. |
| // This makes it possible to limit the number of arguments added. |
| GEPIndicesSet ToPromote; |
| |
| // If the pointer is always valid, any load with first index 0 is valid. |
| |
| if (ByValTy) |
| SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); |
| |
| // Whenever a new underlying type for the operand is found, make sure it's |
| // consistent with the GEPs and loads we've already seen and, if necessary, |
| // use it to see if all incoming pointers are valid (which implies the 0-index |
| // is safe). |
| Type *BaseTy = ByValTy; |
| auto UpdateBaseTy = [&](Type *NewBaseTy) { |
| if (BaseTy) |
| return BaseTy == NewBaseTy; |
| |
| BaseTy = NewBaseTy; |
| if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { |
| assert(SafeToUnconditionallyLoad.empty()); |
| SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); |
| } |
| |
| return true; |
| }; |
| |
| // First, iterate the entry block and mark loads of (geps of) arguments as |
| // safe. |
| BasicBlock &EntryBlock = Arg->getParent()->front(); |
| // Declare this here so we can reuse it |
| IndicesVector Indices; |
| for (Instruction &I : EntryBlock) |
| if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { |
| Value *V = LI->getPointerOperand(); |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { |
| V = GEP->getPointerOperand(); |
| if (V == Arg) { |
| // This load actually loads (part of) Arg? Check the indices then. |
| Indices.reserve(GEP->getNumIndices()); |
| for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); |
| II != IE; ++II) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) |
| Indices.push_back(CI->getSExtValue()); |
| else |
| // We found a non-constant GEP index for this argument? Bail out |
| // right away, can't promote this argument at all. |
| return false; |
| |
| if (!UpdateBaseTy(GEP->getSourceElementType())) |
| return false; |
| |
| // Indices checked out, mark them as safe |
| markIndicesSafe(Indices, SafeToUnconditionallyLoad); |
| Indices.clear(); |
| } |
| } else if (V == Arg) { |
| // Direct loads are equivalent to a GEP with a single 0 index. |
| markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); |
| |
| if (BaseTy && LI->getType() != BaseTy) |
| return false; |
| |
| BaseTy = LI->getType(); |
| } |
| } |
| |
| // Now, iterate all uses of the argument to see if there are any uses that are |
| // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. |
| SmallVector<LoadInst *, 16> Loads; |
| IndicesVector Operands; |
| for (Use &U : Arg->uses()) { |
| User *UR = U.getUser(); |
| Operands.clear(); |
| if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { |
| // Don't hack volatile/atomic loads |
| if (!LI->isSimple()) |
| return false; |
| Loads.push_back(LI); |
| // Direct loads are equivalent to a GEP with a zero index and then a load. |
| Operands.push_back(0); |
| |
| if (!UpdateBaseTy(LI->getType())) |
| return false; |
| } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { |
| if (GEP->use_empty()) { |
| // Dead GEP's cause trouble later. Just remove them if we run into |
| // them. |
| GEP->eraseFromParent(); |
| // TODO: This runs the above loop over and over again for dead GEPs |
| // Couldn't we just do increment the UI iterator earlier and erase the |
| // use? |
| return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements); |
| } |
| |
| if (!UpdateBaseTy(GEP->getSourceElementType())) |
| return false; |
| |
| // Ensure that all of the indices are constants. |
| for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; |
| ++i) |
| if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) |
| Operands.push_back(C->getSExtValue()); |
| else |
| return false; // Not a constant operand GEP! |
| |
| // Ensure that the only users of the GEP are load instructions. |
| for (User *GEPU : GEP->users()) |
| if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { |
| // Don't hack volatile/atomic loads |
| if (!LI->isSimple()) |
| return false; |
| Loads.push_back(LI); |
| } else { |
| // Other uses than load? |
| return false; |
| } |
| } else { |
| return false; // Not a load or a GEP. |
| } |
| |
| // Now, see if it is safe to promote this load / loads of this GEP. Loading |
| // is safe if Operands, or a prefix of Operands, is marked as safe. |
| if (!prefixIn(Operands, SafeToUnconditionallyLoad)) |
| return false; |
| |
| // See if we are already promoting a load with these indices. If not, check |
| // to make sure that we aren't promoting too many elements. If so, nothing |
| // to do. |
| if (ToPromote.find(Operands) == ToPromote.end()) { |
| if (MaxElements > 0 && ToPromote.size() == MaxElements) { |
| LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" |
| << Arg->getName() |
| << "' because it would require adding more " |
| << "than " << MaxElements |
| << " arguments to the function.\n"); |
| // We limit aggregate promotion to only promoting up to a fixed number |
| // of elements of the aggregate. |
| return false; |
| } |
| ToPromote.insert(std::move(Operands)); |
| } |
| } |
| |
| if (Loads.empty()) |
| return true; // No users, this is a dead argument. |
| |
| // Okay, now we know that the argument is only used by load instructions and |
| // it is safe to unconditionally perform all of them. Use alias analysis to |
| // check to see if the pointer is guaranteed to not be modified from entry of |
| // the function to each of the load instructions. |
| |
| // Because there could be several/many load instructions, remember which |
| // blocks we know to be transparent to the load. |
| df_iterator_default_set<BasicBlock *, 16> TranspBlocks; |
| |
| for (LoadInst *Load : Loads) { |
| // Check to see if the load is invalidated from the start of the block to |
| // the load itself. |
| BasicBlock *BB = Load->getParent(); |
| |
| MemoryLocation Loc = MemoryLocation::get(Load); |
| if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) |
| return false; // Pointer is invalidated! |
| |
| // Now check every path from the entry block to the load for transparency. |
| // To do this, we perform a depth first search on the inverse CFG from the |
| // loading block. |
| for (BasicBlock *P : predecessors(BB)) { |
| for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) |
| if (AAR.canBasicBlockModify(*TranspBB, Loc)) |
| return false; |
| } |
| } |
| |
| // If the path from the entry of the function to each load is free of |
| // instructions that potentially invalidate the load, we can make the |
| // transformation! |
| return true; |
| } |
| |
| /// Checks if a type could have padding bytes. |
| static bool isDenselyPacked(Type *type, const DataLayout &DL) { |
| // There is no size information, so be conservative. |
| if (!type->isSized()) |
| return false; |
| |
| // If the alloc size is not equal to the storage size, then there are padding |
| // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. |
| if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) |
| return false; |
| |
| if (!isa<CompositeType>(type)) |
| return true; |
| |
| // For homogenous sequential types, check for padding within members. |
| if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) |
| return isDenselyPacked(seqTy->getElementType(), DL); |
| |
| // Check for padding within and between elements of a struct. |
| StructType *StructTy = cast<StructType>(type); |
| const StructLayout *Layout = DL.getStructLayout(StructTy); |
| uint64_t StartPos = 0; |
| for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { |
| Type *ElTy = StructTy->getElementType(i); |
| if (!isDenselyPacked(ElTy, DL)) |
| return false; |
| if (StartPos != Layout->getElementOffsetInBits(i)) |
| return false; |
| StartPos += DL.getTypeAllocSizeInBits(ElTy); |
| } |
| |
| return true; |
| } |
| |
| /// Checks if the padding bytes of an argument could be accessed. |
| static bool canPaddingBeAccessed(Argument *arg) { |
| assert(arg->hasByValAttr()); |
| |
| // Track all the pointers to the argument to make sure they are not captured. |
| SmallPtrSet<Value *, 16> PtrValues; |
| PtrValues.insert(arg); |
| |
| // Track all of the stores. |
| SmallVector<StoreInst *, 16> Stores; |
| |
| // Scan through the uses recursively to make sure the pointer is always used |
| // sanely. |
| SmallVector<Value *, 16> WorkList; |
| WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); |
| while (!WorkList.empty()) { |
| Value *V = WorkList.back(); |
| WorkList.pop_back(); |
| if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { |
| if (PtrValues.insert(V).second) |
| WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); |
| } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { |
| Stores.push_back(Store); |
| } else if (!isa<LoadInst>(V)) { |
| return true; |
| } |
| } |
| |
| // Check to make sure the pointers aren't captured |
| for (StoreInst *Store : Stores) |
| if (PtrValues.count(Store->getValueOperand())) |
| return true; |
| |
| return false; |
| } |
| |
| static bool areFunctionArgsABICompatible( |
| const Function &F, const TargetTransformInfo &TTI, |
| SmallPtrSetImpl<Argument *> &ArgsToPromote, |
| SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { |
| for (const Use &U : F.uses()) { |
| CallSite CS(U.getUser()); |
| const Function *Caller = CS.getCaller(); |
| const Function *Callee = CS.getCalledFunction(); |
| if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || |
| !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// PromoteArguments - This method checks the specified function to see if there |
| /// are any promotable arguments and if it is safe to promote the function (for |
| /// example, all callers are direct). If safe to promote some arguments, it |
| /// calls the DoPromotion method. |
| static Function * |
| promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, |
| unsigned MaxElements, |
| Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> |
| ReplaceCallSite, |
| const TargetTransformInfo &TTI) { |
| // Don't perform argument promotion for naked functions; otherwise we can end |
| // up removing parameters that are seemingly 'not used' as they are referred |
| // to in the assembly. |
| if(F->hasFnAttribute(Attribute::Naked)) |
| return nullptr; |
| |
| // Make sure that it is local to this module. |
| if (!F->hasLocalLinkage()) |
| return nullptr; |
| |
| // Don't promote arguments for variadic functions. Adding, removing, or |
| // changing non-pack parameters can change the classification of pack |
| // parameters. Frontends encode that classification at the call site in the |
| // IR, while in the callee the classification is determined dynamically based |
| // on the number of registers consumed so far. |
| if (F->isVarArg()) |
| return nullptr; |
| |
| // Don't transform functions that receive inallocas, as the transformation may |
| // not be safe depending on calling convention. |
| if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) |
| return nullptr; |
| |
| // First check: see if there are any pointer arguments! If not, quick exit. |
| SmallVector<Argument *, 16> PointerArgs; |
| for (Argument &I : F->args()) |
| if (I.getType()->isPointerTy()) |
| PointerArgs.push_back(&I); |
| if (PointerArgs.empty()) |
| return nullptr; |
| |
| // Second check: make sure that all callers are direct callers. We can't |
| // transform functions that have indirect callers. Also see if the function |
| // is self-recursive and check that target features are compatible. |
| bool isSelfRecursive = false; |
| for (Use &U : F->uses()) { |
| CallSite CS(U.getUser()); |
| // Must be a direct call. |
| if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) |
| return nullptr; |
| |
| // Can't change signature of musttail callee |
| if (CS.isMustTailCall()) |
| return nullptr; |
| |
| if (CS.getInstruction()->getParent()->getParent() == F) |
| isSelfRecursive = true; |
| } |
| |
| // Can't change signature of musttail caller |
| // FIXME: Support promoting whole chain of musttail functions |
| for (BasicBlock &BB : *F) |
| if (BB.getTerminatingMustTailCall()) |
| return nullptr; |
| |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| |
| AAResults &AAR = AARGetter(*F); |
| |
| // Check to see which arguments are promotable. If an argument is promotable, |
| // add it to ArgsToPromote. |
| SmallPtrSet<Argument *, 8> ArgsToPromote; |
| SmallPtrSet<Argument *, 8> ByValArgsToTransform; |
| for (Argument *PtrArg : PointerArgs) { |
| Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); |
| |
| // Replace sret attribute with noalias. This reduces register pressure by |
| // avoiding a register copy. |
| if (PtrArg->hasStructRetAttr()) { |
| unsigned ArgNo = PtrArg->getArgNo(); |
| F->removeParamAttr(ArgNo, Attribute::StructRet); |
| F->addParamAttr(ArgNo, Attribute::NoAlias); |
| for (Use &U : F->uses()) { |
| CallSite CS(U.getUser()); |
| CS.removeParamAttr(ArgNo, Attribute::StructRet); |
| CS.addParamAttr(ArgNo, Attribute::NoAlias); |
| } |
| } |
| |
| // If this is a byval argument, and if the aggregate type is small, just |
| // pass the elements, which is always safe, if the passed value is densely |
| // packed or if we can prove the padding bytes are never accessed. |
| bool isSafeToPromote = |
| PtrArg->hasByValAttr() && |
| (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); |
| if (isSafeToPromote) { |
| if (StructType *STy = dyn_cast<StructType>(AgTy)) { |
| if (MaxElements > 0 && STy->getNumElements() > MaxElements) { |
| LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" |
| << PtrArg->getName() |
| << "' because it would require adding more" |
| << " than " << MaxElements |
| << " arguments to the function.\n"); |
| continue; |
| } |
| |
| // If all the elements are single-value types, we can promote it. |
| bool AllSimple = true; |
| for (const auto *EltTy : STy->elements()) { |
| if (!EltTy->isSingleValueType()) { |
| AllSimple = false; |
| break; |
| } |
| } |
| |
| // Safe to transform, don't even bother trying to "promote" it. |
| // Passing the elements as a scalar will allow sroa to hack on |
| // the new alloca we introduce. |
| if (AllSimple) { |
| ByValArgsToTransform.insert(PtrArg); |
| continue; |
| } |
| } |
| } |
| |
| // If the argument is a recursive type and we're in a recursive |
| // function, we could end up infinitely peeling the function argument. |
| if (isSelfRecursive) { |
| if (StructType *STy = dyn_cast<StructType>(AgTy)) { |
| bool RecursiveType = false; |
| for (const auto *EltTy : STy->elements()) { |
| if (EltTy == PtrArg->getType()) { |
| RecursiveType = true; |
| break; |
| } |
| } |
| if (RecursiveType) |
| continue; |
| } |
| } |
| |
| // Otherwise, see if we can promote the pointer to its value. |
| Type *ByValTy = |
| PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; |
| if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) |
| ArgsToPromote.insert(PtrArg); |
| } |
| |
| // No promotable pointer arguments. |
| if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) |
| return nullptr; |
| |
| if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote, |
| ByValArgsToTransform)) |
| return nullptr; |
| |
| return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); |
| } |
| |
| PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, |
| CGSCCAnalysisManager &AM, |
| LazyCallGraph &CG, |
| CGSCCUpdateResult &UR) { |
| bool Changed = false, LocalChange; |
| |
| // Iterate until we stop promoting from this SCC. |
| do { |
| LocalChange = false; |
| |
| for (LazyCallGraph::Node &N : C) { |
| Function &OldF = N.getFunction(); |
| |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); |
| // FIXME: This lambda must only be used with this function. We should |
| // skip the lambda and just get the AA results directly. |
| auto AARGetter = [&](Function &F) -> AAResults & { |
| assert(&F == &OldF && "Called with an unexpected function!"); |
| return FAM.getResult<AAManager>(F); |
| }; |
| |
| const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); |
| Function *NewF = |
| promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); |
| if (!NewF) |
| continue; |
| LocalChange = true; |
| |
| // Directly substitute the functions in the call graph. Note that this |
| // requires the old function to be completely dead and completely |
| // replaced by the new function. It does no call graph updates, it merely |
| // swaps out the particular function mapped to a particular node in the |
| // graph. |
| C.getOuterRefSCC().replaceNodeFunction(N, *NewF); |
| OldF.eraseFromParent(); |
| } |
| |
| Changed |= LocalChange; |
| } while (LocalChange); |
| |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| return PreservedAnalyses::none(); |
| } |
| |
| namespace { |
| |
| /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. |
| struct ArgPromotion : public CallGraphSCCPass { |
| // Pass identification, replacement for typeid |
| static char ID; |
| |
| explicit ArgPromotion(unsigned MaxElements = 3) |
| : CallGraphSCCPass(ID), MaxElements(MaxElements) { |
| initializeArgPromotionPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| getAAResultsAnalysisUsage(AU); |
| CallGraphSCCPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnSCC(CallGraphSCC &SCC) override; |
| |
| private: |
| using llvm::Pass::doInitialization; |
| |
| bool doInitialization(CallGraph &CG) override; |
| |
| /// The maximum number of elements to expand, or 0 for unlimited. |
| unsigned MaxElements; |
| }; |
| |
| } // end anonymous namespace |
| |
| char ArgPromotion::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", |
| "Promote 'by reference' arguments to scalars", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(ArgPromotion, "argpromotion", |
| "Promote 'by reference' arguments to scalars", false, false) |
| |
| Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { |
| return new ArgPromotion(MaxElements); |
| } |
| |
| bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { |
| if (skipSCC(SCC)) |
| return false; |
| |
| // Get the callgraph information that we need to update to reflect our |
| // changes. |
| CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); |
| |
| LegacyAARGetter AARGetter(*this); |
| |
| bool Changed = false, LocalChange; |
| |
| // Iterate until we stop promoting from this SCC. |
| do { |
| LocalChange = false; |
| // Attempt to promote arguments from all functions in this SCC. |
| for (CallGraphNode *OldNode : SCC) { |
| Function *OldF = OldNode->getFunction(); |
| if (!OldF) |
| continue; |
| |
| auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) { |
| Function *Caller = OldCS.getInstruction()->getParent()->getParent(); |
| CallGraphNode *NewCalleeNode = |
| CG.getOrInsertFunction(NewCS.getCalledFunction()); |
| CallGraphNode *CallerNode = CG[Caller]; |
| CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()), |
| *cast<CallBase>(NewCS.getInstruction()), |
| NewCalleeNode); |
| }; |
| |
| const TargetTransformInfo &TTI = |
| getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); |
| if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, |
| {ReplaceCallSite}, TTI)) { |
| LocalChange = true; |
| |
| // Update the call graph for the newly promoted function. |
| CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); |
| NewNode->stealCalledFunctionsFrom(OldNode); |
| if (OldNode->getNumReferences() == 0) |
| delete CG.removeFunctionFromModule(OldNode); |
| else |
| OldF->setLinkage(Function::ExternalLinkage); |
| |
| // And updat ethe SCC we're iterating as well. |
| SCC.ReplaceNode(OldNode, NewNode); |
| } |
| } |
| // Remember that we changed something. |
| Changed |= LocalChange; |
| } while (LocalChange); |
| |
| return Changed; |
| } |
| |
| bool ArgPromotion::doInitialization(CallGraph &CG) { |
| return CallGraphSCCPass::doInitialization(CG); |
| } |