blob: f81810f9541682924013281356e8f97f45609de0 [file] [log] [blame]
//===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines and implements a bit vector classes.
///
/// SmallBitVector is a drop in replacement for llvm::SmallBitVector. It uses
/// inline storage, at the expense of limited, static size.
///
/// BitVector is a allocator aware version of llvm::BitVector. Its
/// implementation was copied ipsis literis from llvm.
///
//===----------------------------------------------------------------------===//
#ifndef SUBZERO_SRC_ICEBITVECTOR_H
#define SUBZERO_SRC_ICEBITVECTOR_H
#include "IceMemory.h"
#include "IceOperand.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <memory>
#include <type_traits>
#include <utility>
namespace Ice {
class SmallBitVector {
public:
using ElementType = uint64_t;
static constexpr SizeT BitIndexSize = 6; // log2(NumBitsPerPos);
static constexpr SizeT NumBitsPerPos = sizeof(ElementType) * CHAR_BIT;
static_assert(1 << BitIndexSize == NumBitsPerPos, "Invalid BitIndexSize.");
SmallBitVector(const SmallBitVector &BV) { *this = BV; }
SmallBitVector &operator=(const SmallBitVector &BV) {
if (&BV != this) {
resize(BV.size());
memcpy(Bits, BV.Bits, sizeof(Bits));
}
return *this;
}
SmallBitVector() { reset(); }
explicit SmallBitVector(SizeT S) : SmallBitVector() {
assert(S <= MaxBits);
resize(S);
}
class Reference {
Reference() = delete;
public:
Reference(const Reference &) = default;
Reference &operator=(const Reference &Rhs) { return *this = (bool)Rhs; }
Reference &operator=(bool t) {
if (t) {
*Data |= _1 << Bit;
} else {
*Data &= ~(_1 << Bit);
}
return *this;
}
operator bool() const { return (*Data & (_1 << Bit)) != 0; }
private:
friend class SmallBitVector;
Reference(ElementType *D, SizeT B) : Data(D), Bit(B) {
assert(B < NumBitsPerPos);
}
ElementType *const Data;
const SizeT Bit;
};
Reference operator[](unsigned Idx) {
assert(Idx < size());
return Reference(Bits + (Idx >> BitIndexSize),
Idx & ((_1 << BitIndexSize) - 1));
}
bool operator[](unsigned Idx) const {
assert(Idx < size());
return Bits[Idx >> BitIndexSize] &
(_1 << (Idx & ((_1 << BitIndexSize) - 1)));
}
int find_first() const { return find_first<0>(); }
int find_next(unsigned Prev) const { return find_next<0>(Prev); }
bool any() const {
for (SizeT i = 0; i < BitsElements; ++i) {
if (Bits[i]) {
return true;
}
}
return false;
}
SizeT size() const { return Size; }
void resize(SizeT Size) {
assert(Size <= MaxBits);
this->Size = Size;
}
void reserve(SizeT Size) {
assert(Size <= MaxBits);
(void)Size;
}
void set(unsigned Idx) { (*this)[Idx] = true; }
void set() {
for (SizeT ii = 0; ii < size(); ++ii) {
(*this)[ii] = true;
}
}
SizeT count() const {
SizeT Count = 0;
for (SizeT i = 0; i < BitsElements; ++i) {
Count += llvm::countPopulation(Bits[i]);
}
return Count;
}
SmallBitVector operator&(const SmallBitVector &Rhs) const {
assert(size() == Rhs.size());
SmallBitVector Ret(std::max(size(), Rhs.size()));
for (SizeT i = 0; i < BitsElements; ++i) {
Ret.Bits[i] = Bits[i] & Rhs.Bits[i];
}
return Ret;
}
SmallBitVector operator~() const {
SmallBitVector Ret = *this;
Ret.invert<0>();
return Ret;
}
SmallBitVector &operator|=(const SmallBitVector &Rhs) {
assert(size() == Rhs.size());
resize(std::max(size(), Rhs.size()));
for (SizeT i = 0; i < BitsElements; ++i) {
Bits[i] |= Rhs.Bits[i];
}
return *this;
}
SmallBitVector operator|(const SmallBitVector &Rhs) const {
assert(size() == Rhs.size());
SmallBitVector Ret(std::max(size(), Rhs.size()));
for (SizeT i = 0; i < BitsElements; ++i) {
Ret.Bits[i] = Bits[i] | Rhs.Bits[i];
}
return Ret;
}
void reset() { memset(Bits, 0, sizeof(Bits)); }
void reset(const SmallBitVector &Mask) {
for (const auto V : RegNumBVIter(Mask)) {
(*this)[unsigned(V)] = false;
}
}
private:
// _1 is the constant 1 of type ElementType.
static constexpr ElementType _1 = ElementType(1);
static constexpr SizeT BitsElements = 2;
ElementType Bits[BitsElements];
// MaxBits is defined here because it needs Bits to be defined.
static constexpr SizeT MaxBits = sizeof(SmallBitVector::Bits) * CHAR_BIT;
static_assert(sizeof(SmallBitVector::Bits) == 16,
"Bits must be 16 bytes wide.");
SizeT Size = 0;
template <SizeT Pos>
typename std::enable_if<Pos == BitsElements, int>::type find_first() const {
return -1;
}
template <SizeT Pos>
typename std::enable_if <
Pos<BitsElements, int>::type find_first() const {
if (Bits[Pos] != 0) {
return NumBitsPerPos * Pos + llvm::countTrailingZeros(Bits[Pos]);
}
return find_first<Pos + 1>();
}
template <SizeT Pos>
typename std::enable_if<Pos == BitsElements, int>::type
find_next(unsigned) const {
return -1;
}
template <SizeT Pos>
typename std::enable_if <
Pos<BitsElements, int>::type find_next(unsigned Prev) const {
if (Prev + 1 < (Pos + 1) * NumBitsPerPos) {
const ElementType Mask =
(ElementType(1) << ((Prev + 1) - Pos * NumBitsPerPos)) - 1;
const ElementType B = Bits[Pos] & ~Mask;
if (B != 0) {
return NumBitsPerPos * Pos + llvm::countTrailingZeros(B);
}
Prev = (1 + Pos) * NumBitsPerPos - 1;
}
return find_next<Pos + 1>(Prev);
}
template <SizeT Pos>
typename std::enable_if<Pos == BitsElements, void>::type invert() {}
template <SizeT Pos>
typename std::enable_if < Pos<BitsElements, void>::type invert() {
if (size() < Pos * NumBitsPerPos) {
Bits[Pos] = 0;
} else if ((Pos + 1) * NumBitsPerPos < size()) {
Bits[Pos] ^= ~ElementType(0);
} else {
const ElementType Mask =
(ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1;
Bits[Pos] ^= Mask;
}
invert<Pos + 1>();
}
};
template <template <typename> class AT> class BitVectorTmpl {
typedef unsigned long BitWord;
using Allocator = AT<BitWord>;
enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
"Unsupported word size");
BitWord *Bits; // Actual bits.
unsigned Size; // Size of bitvector in bits.
unsigned Capacity; // Size of allocated memory in BitWord.
Allocator Alloc;
uint64_t alignTo(uint64_t Value, uint64_t Align) {
#ifdef PNACL_LLVM
return llvm::RoundUpToAlignment(Value, Align);
#else // !PNACL_LLVM
return llvm::alignTo(Value, Align);
#endif // !PNACL_LLVM
}
public:
typedef unsigned size_type;
// Encapsulation of a single bit.
class reference {
friend class BitVectorTmpl;
BitWord *WordRef;
unsigned BitPos;
reference(); // Undefined
public:
reference(BitVectorTmpl &b, unsigned Idx) {
WordRef = &b.Bits[Idx / BITWORD_SIZE];
BitPos = Idx % BITWORD_SIZE;
}
reference(const reference &) = default;
reference &operator=(reference t) {
*this = bool(t);
return *this;
}
reference &operator=(bool t) {
if (t)
*WordRef |= BitWord(1) << BitPos;
else
*WordRef &= ~(BitWord(1) << BitPos);
return *this;
}
operator bool() const {
return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false;
}
};
/// BitVectorTmpl default ctor - Creates an empty bitvector.
BitVectorTmpl(Allocator A = Allocator())
: Size(0), Capacity(0), Alloc(std::move(A)) {
Bits = nullptr;
}
/// BitVectorTmpl ctor - Creates a bitvector of specified number of bits. All
/// bits are initialized to the specified value.
explicit BitVectorTmpl(unsigned s, bool t = false, Allocator A = Allocator())
: Size(s), Alloc(std::move(A)) {
Capacity = NumBitWords(s);
Bits = Alloc.allocate(Capacity);
init_words(Bits, Capacity, t);
if (t)
clear_unused_bits();
}
/// BitVectorTmpl copy ctor.
BitVectorTmpl(const BitVectorTmpl &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) {
if (Size == 0) {
Bits = nullptr;
Capacity = 0;
return;
}
Capacity = NumBitWords(RHS.size());
Bits = Alloc.allocate(Capacity);
std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
}
BitVectorTmpl(BitVectorTmpl &&RHS)
: Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity),
Alloc(std::move(RHS.Alloc)) {
RHS.Bits = nullptr;
}
~BitVectorTmpl() {
if (Bits != nullptr) {
Alloc.deallocate(Bits, Capacity);
}
}
/// empty - Tests whether there are no bits in this bitvector.
bool empty() const { return Size == 0; }
/// size - Returns the number of bits in this bitvector.
size_type size() const { return Size; }
/// count - Returns the number of bits which are set.
size_type count() const {
unsigned NumBits = 0;
for (unsigned i = 0; i < NumBitWords(size()); ++i)
NumBits += llvm::countPopulation(Bits[i]);
return NumBits;
}
/// any - Returns true if any bit is set.
bool any() const {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
if (Bits[i] != 0)
return true;
return false;
}
/// all - Returns true if all bits are set.
bool all() const {
for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
if (Bits[i] != ~0UL)
return false;
// If bits remain check that they are ones. The unused bits are always zero.
if (unsigned Remainder = Size % BITWORD_SIZE)
return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
return true;
}
/// none - Returns true if none of the bits are set.
bool none() const { return !any(); }
/// find_first - Returns the index of the first set bit, -1 if none
/// of the bits are set.
int find_first() const {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
if (Bits[i] != 0)
return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]);
return -1;
}
/// find_next - Returns the index of the next set bit following the
/// "Prev" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Prev) const {
++Prev;
if (Prev >= Size)
return -1;
unsigned WordPos = Prev / BITWORD_SIZE;
unsigned BitPos = Prev % BITWORD_SIZE;
BitWord Copy = Bits[WordPos];
// Mask off previous bits.
Copy &= ~0UL << BitPos;
if (Copy != 0)
return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy);
// Check subsequent words.
for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i)
if (Bits[i] != 0)
return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]);
return -1;
}
/// clear - Clear all bits.
void clear() { Size = 0; }
/// resize - Grow or shrink the bitvector.
void resize(unsigned N, bool t = false) {
if (N > Capacity * BITWORD_SIZE) {
unsigned OldCapacity = Capacity;
grow(N);
init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t);
}
// Set any old unused bits that are now included in the BitVectorTmpl. This
// may set bits that are not included in the new vector, but we will clear
// them back out below.
if (N > Size)
set_unused_bits(t);
// Update the size, and clear out any bits that are now unused
unsigned OldSize = Size;
Size = N;
if (t || N < OldSize)
clear_unused_bits();
}
void reserve(unsigned N) {
if (N > Capacity * BITWORD_SIZE)
grow(N);
}
// Set, reset, flip
BitVectorTmpl &set() {
init_words(Bits, Capacity, true);
clear_unused_bits();
return *this;
}
BitVectorTmpl &set(unsigned Idx) {
assert(Bits && "Bits never allocated");
Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
return *this;
}
/// set - Efficiently set a range of bits in [I, E)
BitVectorTmpl &set(unsigned I, unsigned E) {
assert(I <= E && "Attempted to set backwards range!");
assert(E <= size() && "Attempted to set out-of-bounds range!");
if (I == E)
return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
BitWord EMask = 1UL << (E % BITWORD_SIZE);
BitWord IMask = 1UL << (I % BITWORD_SIZE);
BitWord Mask = EMask - IMask;
Bits[I / BITWORD_SIZE] |= Mask;
return *this;
}
BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
Bits[I / BITWORD_SIZE] |= PrefixMask;
I = alignTo(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
Bits[I / BITWORD_SIZE] = ~0UL;
BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
if (I < E)
Bits[I / BITWORD_SIZE] |= PostfixMask;
return *this;
}
BitVectorTmpl &reset() {
init_words(Bits, Capacity, false);
return *this;
}
BitVectorTmpl &reset(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
return *this;
}
/// reset - Efficiently reset a range of bits in [I, E)
BitVectorTmpl &reset(unsigned I, unsigned E) {
assert(I <= E && "Attempted to reset backwards range!");
assert(E <= size() && "Attempted to reset out-of-bounds range!");
if (I == E)
return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
BitWord EMask = 1UL << (E % BITWORD_SIZE);
BitWord IMask = 1UL << (I % BITWORD_SIZE);
BitWord Mask = EMask - IMask;
Bits[I / BITWORD_SIZE] &= ~Mask;
return *this;
}
BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
Bits[I / BITWORD_SIZE] &= ~PrefixMask;
I = alignTo(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
Bits[I / BITWORD_SIZE] = 0UL;
BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
if (I < E)
Bits[I / BITWORD_SIZE] &= ~PostfixMask;
return *this;
}
BitVectorTmpl &flip() {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
Bits[i] = ~Bits[i];
clear_unused_bits();
return *this;
}
BitVectorTmpl &flip(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
return *this;
}
// Indexing.
reference operator[](unsigned Idx) {
assert(Idx < Size && "Out-of-bounds Bit access.");
return reference(*this, Idx);
}
bool operator[](unsigned Idx) const {
assert(Idx < Size && "Out-of-bounds Bit access.");
BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
}
bool test(unsigned Idx) const { return (*this)[Idx]; }
/// Test if any common bits are set.
bool anyCommon(const BitVectorTmpl &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
if (Bits[i] & RHS.Bits[i])
return true;
return false;
}
// Comparison operators.
bool operator==(const BitVectorTmpl &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
if (Bits[i] != RHS.Bits[i])
return false;
// Verify that any extra words are all zeros.
if (i != ThisWords) {
for (; i != ThisWords; ++i)
if (Bits[i])
return false;
} else if (i != RHSWords) {
for (; i != RHSWords; ++i)
if (RHS.Bits[i])
return false;
}
return true;
}
bool operator!=(const BitVectorTmpl &RHS) const { return !(*this == RHS); }
/// Intersection, union, disjoint union.
BitVectorTmpl &operator&=(const BitVectorTmpl &RHS) {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
Bits[i] &= RHS.Bits[i];
// Any bits that are just in this bitvector become zero, because they aren't
// in the RHS bit vector. Any words only in RHS are ignored because they
// are already zero in the LHS.
for (; i != ThisWords; ++i)
Bits[i] = 0;
return *this;
}
/// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
BitVectorTmpl &reset(const BitVectorTmpl &RHS) {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
Bits[i] &= ~RHS.Bits[i];
return *this;
}
/// test - Check if (This - RHS) is zero.
/// This is the same as reset(RHS) and any().
bool test(const BitVectorTmpl &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
if ((Bits[i] & ~RHS.Bits[i]) != 0)
return true;
for (; i != ThisWords; ++i)
if (Bits[i] != 0)
return true;
return false;
}
BitVectorTmpl &operator|=(const BitVectorTmpl &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
Bits[i] |= RHS.Bits[i];
return *this;
}
BitVectorTmpl &operator^=(const BitVectorTmpl &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
Bits[i] ^= RHS.Bits[i];
return *this;
}
// Assignment operator.
const BitVectorTmpl &operator=(const BitVectorTmpl &RHS) {
if (this == &RHS)
return *this;
Size = RHS.size();
unsigned RHSWords = NumBitWords(Size);
if (Size <= Capacity * BITWORD_SIZE) {
if (Size)
std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
clear_unused_bits();
return *this;
}
// Currently, BitVectorTmpl is only used by liveness analysis. With the
// following assert, we make sure BitVectorTmpls grow in a single step from
// 0 to their final capacity, rather than growing slowly and "leaking"
// memory in the process.
assert(Capacity == 0);
// Grow the bitvector to have enough elements.
const auto OldCapacity = Capacity;
Capacity = RHSWords;
assert(Capacity > 0 && "negative capacity?");
BitWord *NewBits = Alloc.allocate(Capacity);
std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
// Destroy the old bits.
Alloc.deallocate(Bits, OldCapacity);
Bits = NewBits;
return *this;
}
const BitVectorTmpl &operator=(BitVectorTmpl &&RHS) {
if (this == &RHS)
return *this;
Alloc.deallocate(Bits, Capacity);
Bits = RHS.Bits;
Size = RHS.Size;
Capacity = RHS.Capacity;
RHS.Bits = nullptr;
return *this;
}
void swap(BitVectorTmpl &RHS) {
std::swap(Bits, RHS.Bits);
std::swap(Size, RHS.Size);
std::swap(Capacity, RHS.Capacity);
}
//===--------------------------------------------------------------------===//
// Portable bit mask operations.
//===--------------------------------------------------------------------===//
//
// These methods all operate on arrays of uint32_t, each holding 32 bits. The
// fixed word size makes it easier to work with literal bit vector constants
// in portable code.
//
// The LSB in each word is the lowest numbered bit. The size of a portable
// bit mask is always a whole multiple of 32 bits. If no bit mask size is
// given, the bit mask is assumed to cover the entire BitVectorTmpl.
/// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
/// This computes "*this |= Mask".
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<true, false>(Mask, MaskWords);
}
/// clearBitsInMask - Clear any bits in this vector that are set in Mask.
/// Don't resize. This computes "*this &= ~Mask".
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<false, false>(Mask, MaskWords);
}
/// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this |= ~Mask".
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<true, true>(Mask, MaskWords);
}
/// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this &= Mask".
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<false, true>(Mask, MaskWords);
}
private:
unsigned NumBitWords(unsigned S) const {
return (S + BITWORD_SIZE - 1) / BITWORD_SIZE;
}
// Set the unused bits in the high words.
void set_unused_bits(bool t = true) {
// Set high words first.
unsigned UsedWords = NumBitWords(Size);
if (Capacity > UsedWords)
init_words(&Bits[UsedWords], (Capacity - UsedWords), t);
// Then set any stray high bits of the last used word.
unsigned ExtraBits = Size % BITWORD_SIZE;
if (ExtraBits) {
BitWord ExtraBitMask = ~0UL << ExtraBits;
if (t)
Bits[UsedWords - 1] |= ExtraBitMask;
else
Bits[UsedWords - 1] &= ~ExtraBitMask;
}
}
// Clear the unused bits in the high words.
void clear_unused_bits() { set_unused_bits(false); }
void grow(unsigned NewSize) {
const auto OldCapacity = Capacity;
Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
assert(Capacity > 0 && "realloc-ing zero space");
auto *NewBits = Alloc.allocate(Capacity);
std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord));
Alloc.deallocate(Bits, OldCapacity);
Bits = NewBits;
clear_unused_bits();
}
void init_words(BitWord *B, unsigned NumWords, bool t) {
memset(B, 0 - (int)t, NumWords * sizeof(BitWord));
}
template <bool AddBits, bool InvertMask>
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
MaskWords = std::min(MaskWords, (size() + 31) / 32);
const unsigned Scale = BITWORD_SIZE / 32;
unsigned i;
for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
BitWord BW = Bits[i];
// This inner loop should unroll completely when BITWORD_SIZE > 32.
for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
uint32_t M = *Mask++;
if (InvertMask)
M = ~M;
if (AddBits)
BW |= BitWord(M) << b;
else
BW &= ~(BitWord(M) << b);
}
Bits[i] = BW;
}
for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
uint32_t M = *Mask++;
if (InvertMask)
M = ~M;
if (AddBits)
Bits[i] |= BitWord(M) << b;
else
Bits[i] &= ~(BitWord(M) << b);
}
if (AddBits)
clear_unused_bits();
}
};
using BitVector = BitVectorTmpl<CfgLocalAllocator>;
} // end of namespace Ice
namespace std {
/// Implement std::swap in terms of BitVectorTmpl swap.
template <template <typename> class AT>
inline void swap(Ice::BitVectorTmpl<AT> &LHS, Ice::BitVectorTmpl<AT> &RHS) {
LHS.swap(RHS);
}
}
#endif // SUBZERO_SRC_ICEBITVECTOR_H