| //===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Defines and implements a bit vector classes. |
| /// |
| /// SmallBitVector is a drop in replacement for llvm::SmallBitVector. It uses |
| /// inline storage, at the expense of limited, static size. |
| /// |
| /// BitVector is a allocator aware version of llvm::BitVector. Its |
| /// implementation was copied ipsis literis from llvm. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICEBITVECTOR_H |
| #define SUBZERO_SRC_ICEBITVECTOR_H |
| |
| #include "IceMemory.h" |
| #include "IceOperand.h" |
| |
| #include "llvm/Support/MathExtras.h" |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| |
| namespace Ice { |
| class SmallBitVector { |
| public: |
| using ElementType = uint64_t; |
| static constexpr SizeT BitIndexSize = 6; // log2(NumBitsPerPos); |
| static constexpr SizeT NumBitsPerPos = sizeof(ElementType) * CHAR_BIT; |
| static_assert(1 << BitIndexSize == NumBitsPerPos, "Invalid BitIndexSize."); |
| |
| SmallBitVector(const SmallBitVector &BV) { *this = BV; } |
| |
| SmallBitVector &operator=(const SmallBitVector &BV) { |
| if (&BV != this) { |
| resize(BV.size()); |
| memcpy(Bits, BV.Bits, sizeof(Bits)); |
| } |
| return *this; |
| } |
| |
| SmallBitVector() { reset(); } |
| |
| explicit SmallBitVector(SizeT S) : SmallBitVector() { |
| assert(S <= MaxBits); |
| resize(S); |
| } |
| |
| class Reference { |
| Reference() = delete; |
| |
| public: |
| Reference(const Reference &) = default; |
| Reference &operator=(const Reference &Rhs) { return *this = (bool)Rhs; } |
| Reference &operator=(bool t) { |
| if (t) { |
| *Data |= _1 << Bit; |
| } else { |
| *Data &= ~(_1 << Bit); |
| } |
| return *this; |
| } |
| operator bool() const { return (*Data & (_1 << Bit)) != 0; } |
| |
| private: |
| friend class SmallBitVector; |
| Reference(ElementType *D, SizeT B) : Data(D), Bit(B) { |
| assert(B < NumBitsPerPos); |
| } |
| |
| ElementType *const Data; |
| const SizeT Bit; |
| }; |
| |
| Reference operator[](unsigned Idx) { |
| assert(Idx < size()); |
| return Reference(Bits + (Idx >> BitIndexSize), |
| Idx & ((_1 << BitIndexSize) - 1)); |
| } |
| |
| bool operator[](unsigned Idx) const { |
| assert(Idx < size()); |
| return Bits[Idx >> BitIndexSize] & |
| (_1 << (Idx & ((_1 << BitIndexSize) - 1))); |
| } |
| |
| int find_first() const { return find_first<0>(); } |
| |
| int find_next(unsigned Prev) const { return find_next<0>(Prev); } |
| |
| bool any() const { |
| for (SizeT i = 0; i < BitsElements; ++i) { |
| if (Bits[i]) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| SizeT size() const { return Size; } |
| |
| void resize(SizeT Size) { |
| assert(Size <= MaxBits); |
| this->Size = Size; |
| } |
| |
| void reserve(SizeT Size) { |
| assert(Size <= MaxBits); |
| (void)Size; |
| } |
| |
| void set(unsigned Idx) { (*this)[Idx] = true; } |
| |
| void set() { |
| for (SizeT ii = 0; ii < size(); ++ii) { |
| (*this)[ii] = true; |
| } |
| } |
| |
| SizeT count() const { |
| SizeT Count = 0; |
| for (SizeT i = 0; i < BitsElements; ++i) { |
| Count += llvm::countPopulation(Bits[i]); |
| } |
| return Count; |
| } |
| |
| SmallBitVector operator&(const SmallBitVector &Rhs) const { |
| assert(size() == Rhs.size()); |
| SmallBitVector Ret(std::max(size(), Rhs.size())); |
| for (SizeT i = 0; i < BitsElements; ++i) { |
| Ret.Bits[i] = Bits[i] & Rhs.Bits[i]; |
| } |
| return Ret; |
| } |
| |
| SmallBitVector operator~() const { |
| SmallBitVector Ret = *this; |
| Ret.invert<0>(); |
| return Ret; |
| } |
| |
| SmallBitVector &operator|=(const SmallBitVector &Rhs) { |
| assert(size() == Rhs.size()); |
| resize(std::max(size(), Rhs.size())); |
| for (SizeT i = 0; i < BitsElements; ++i) { |
| Bits[i] |= Rhs.Bits[i]; |
| } |
| return *this; |
| } |
| |
| SmallBitVector operator|(const SmallBitVector &Rhs) const { |
| assert(size() == Rhs.size()); |
| SmallBitVector Ret(std::max(size(), Rhs.size())); |
| for (SizeT i = 0; i < BitsElements; ++i) { |
| Ret.Bits[i] = Bits[i] | Rhs.Bits[i]; |
| } |
| return Ret; |
| } |
| |
| void reset() { memset(Bits, 0, sizeof(Bits)); } |
| |
| void reset(const SmallBitVector &Mask) { |
| for (const auto V : RegNumBVIter(Mask)) { |
| (*this)[unsigned(V)] = false; |
| } |
| } |
| |
| private: |
| // _1 is the constant 1 of type ElementType. |
| static constexpr ElementType _1 = ElementType(1); |
| |
| static constexpr SizeT BitsElements = 2; |
| ElementType Bits[BitsElements]; |
| |
| // MaxBits is defined here because it needs Bits to be defined. |
| static constexpr SizeT MaxBits = sizeof(SmallBitVector::Bits) * CHAR_BIT; |
| static_assert(sizeof(SmallBitVector::Bits) == 16, |
| "Bits must be 16 bytes wide."); |
| SizeT Size = 0; |
| |
| template <SizeT Pos> |
| typename std::enable_if<Pos == BitsElements, int>::type find_first() const { |
| return -1; |
| } |
| |
| template <SizeT Pos> |
| typename std::enable_if < |
| Pos<BitsElements, int>::type find_first() const { |
| if (Bits[Pos] != 0) { |
| return NumBitsPerPos * Pos + llvm::countTrailingZeros(Bits[Pos]); |
| } |
| return find_first<Pos + 1>(); |
| } |
| |
| template <SizeT Pos> |
| typename std::enable_if<Pos == BitsElements, int>::type |
| find_next(unsigned) const { |
| return -1; |
| } |
| |
| template <SizeT Pos> |
| typename std::enable_if < |
| Pos<BitsElements, int>::type find_next(unsigned Prev) const { |
| if (Prev + 1 < (Pos + 1) * NumBitsPerPos) { |
| const ElementType Mask = |
| (ElementType(1) << ((Prev + 1) - Pos * NumBitsPerPos)) - 1; |
| const ElementType B = Bits[Pos] & ~Mask; |
| if (B != 0) { |
| return NumBitsPerPos * Pos + llvm::countTrailingZeros(B); |
| } |
| Prev = (1 + Pos) * NumBitsPerPos - 1; |
| } |
| return find_next<Pos + 1>(Prev); |
| } |
| |
| template <SizeT Pos> |
| typename std::enable_if<Pos == BitsElements, void>::type invert() {} |
| |
| template <SizeT Pos> |
| typename std::enable_if < Pos<BitsElements, void>::type invert() { |
| if (size() < Pos * NumBitsPerPos) { |
| Bits[Pos] = 0; |
| } else if ((Pos + 1) * NumBitsPerPos < size()) { |
| Bits[Pos] ^= ~ElementType(0); |
| } else { |
| const ElementType Mask = |
| (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; |
| Bits[Pos] ^= Mask; |
| } |
| invert<Pos + 1>(); |
| } |
| }; |
| |
| template <template <typename> class AT> class BitVectorTmpl { |
| typedef unsigned long BitWord; |
| using Allocator = AT<BitWord>; |
| |
| enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; |
| |
| static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, |
| "Unsupported word size"); |
| |
| BitWord *Bits; // Actual bits. |
| unsigned Size; // Size of bitvector in bits. |
| unsigned Capacity; // Size of allocated memory in BitWord. |
| Allocator Alloc; |
| |
| uint64_t alignTo(uint64_t Value, uint64_t Align) { |
| #ifdef PNACL_LLVM |
| return llvm::RoundUpToAlignment(Value, Align); |
| #else // !PNACL_LLVM |
| return llvm::alignTo(Value, Align); |
| #endif // !PNACL_LLVM |
| } |
| |
| public: |
| typedef unsigned size_type; |
| // Encapsulation of a single bit. |
| class reference { |
| friend class BitVectorTmpl; |
| |
| BitWord *WordRef; |
| unsigned BitPos; |
| |
| reference(); // Undefined |
| |
| public: |
| reference(BitVectorTmpl &b, unsigned Idx) { |
| WordRef = &b.Bits[Idx / BITWORD_SIZE]; |
| BitPos = Idx % BITWORD_SIZE; |
| } |
| |
| reference(const reference &) = default; |
| |
| reference &operator=(reference t) { |
| *this = bool(t); |
| return *this; |
| } |
| |
| reference &operator=(bool t) { |
| if (t) |
| *WordRef |= BitWord(1) << BitPos; |
| else |
| *WordRef &= ~(BitWord(1) << BitPos); |
| return *this; |
| } |
| |
| operator bool() const { |
| return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; |
| } |
| }; |
| |
| /// BitVectorTmpl default ctor - Creates an empty bitvector. |
| BitVectorTmpl(Allocator A = Allocator()) |
| : Size(0), Capacity(0), Alloc(std::move(A)) { |
| Bits = nullptr; |
| } |
| |
| /// BitVectorTmpl ctor - Creates a bitvector of specified number of bits. All |
| /// bits are initialized to the specified value. |
| explicit BitVectorTmpl(unsigned s, bool t = false, Allocator A = Allocator()) |
| : Size(s), Alloc(std::move(A)) { |
| Capacity = NumBitWords(s); |
| Bits = Alloc.allocate(Capacity); |
| init_words(Bits, Capacity, t); |
| if (t) |
| clear_unused_bits(); |
| } |
| |
| /// BitVectorTmpl copy ctor. |
| BitVectorTmpl(const BitVectorTmpl &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { |
| if (Size == 0) { |
| Bits = nullptr; |
| Capacity = 0; |
| return; |
| } |
| |
| Capacity = NumBitWords(RHS.size()); |
| Bits = Alloc.allocate(Capacity); |
| std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); |
| } |
| |
| BitVectorTmpl(BitVectorTmpl &&RHS) |
| : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), |
| Alloc(std::move(RHS.Alloc)) { |
| RHS.Bits = nullptr; |
| } |
| |
| ~BitVectorTmpl() { |
| if (Bits != nullptr) { |
| Alloc.deallocate(Bits, Capacity); |
| } |
| } |
| |
| /// empty - Tests whether there are no bits in this bitvector. |
| bool empty() const { return Size == 0; } |
| |
| /// size - Returns the number of bits in this bitvector. |
| size_type size() const { return Size; } |
| |
| /// count - Returns the number of bits which are set. |
| size_type count() const { |
| unsigned NumBits = 0; |
| for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| NumBits += llvm::countPopulation(Bits[i]); |
| return NumBits; |
| } |
| |
| /// any - Returns true if any bit is set. |
| bool any() const { |
| for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| if (Bits[i] != 0) |
| return true; |
| return false; |
| } |
| |
| /// all - Returns true if all bits are set. |
| bool all() const { |
| for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) |
| if (Bits[i] != ~0UL) |
| return false; |
| |
| // If bits remain check that they are ones. The unused bits are always zero. |
| if (unsigned Remainder = Size % BITWORD_SIZE) |
| return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; |
| |
| return true; |
| } |
| |
| /// none - Returns true if none of the bits are set. |
| bool none() const { return !any(); } |
| |
| /// find_first - Returns the index of the first set bit, -1 if none |
| /// of the bits are set. |
| int find_first() const { |
| for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| if (Bits[i] != 0) |
| return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); |
| return -1; |
| } |
| |
| /// find_next - Returns the index of the next set bit following the |
| /// "Prev" bit. Returns -1 if the next set bit is not found. |
| int find_next(unsigned Prev) const { |
| ++Prev; |
| if (Prev >= Size) |
| return -1; |
| |
| unsigned WordPos = Prev / BITWORD_SIZE; |
| unsigned BitPos = Prev % BITWORD_SIZE; |
| BitWord Copy = Bits[WordPos]; |
| // Mask off previous bits. |
| Copy &= ~0UL << BitPos; |
| |
| if (Copy != 0) |
| return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy); |
| |
| // Check subsequent words. |
| for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) |
| if (Bits[i] != 0) |
| return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); |
| return -1; |
| } |
| |
| /// clear - Clear all bits. |
| void clear() { Size = 0; } |
| |
| /// resize - Grow or shrink the bitvector. |
| void resize(unsigned N, bool t = false) { |
| if (N > Capacity * BITWORD_SIZE) { |
| unsigned OldCapacity = Capacity; |
| grow(N); |
| init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); |
| } |
| |
| // Set any old unused bits that are now included in the BitVectorTmpl. This |
| // may set bits that are not included in the new vector, but we will clear |
| // them back out below. |
| if (N > Size) |
| set_unused_bits(t); |
| |
| // Update the size, and clear out any bits that are now unused |
| unsigned OldSize = Size; |
| Size = N; |
| if (t || N < OldSize) |
| clear_unused_bits(); |
| } |
| |
| void reserve(unsigned N) { |
| if (N > Capacity * BITWORD_SIZE) |
| grow(N); |
| } |
| |
| // Set, reset, flip |
| BitVectorTmpl &set() { |
| init_words(Bits, Capacity, true); |
| clear_unused_bits(); |
| return *this; |
| } |
| |
| BitVectorTmpl &set(unsigned Idx) { |
| assert(Bits && "Bits never allocated"); |
| Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); |
| return *this; |
| } |
| |
| /// set - Efficiently set a range of bits in [I, E) |
| BitVectorTmpl &set(unsigned I, unsigned E) { |
| assert(I <= E && "Attempted to set backwards range!"); |
| assert(E <= size() && "Attempted to set out-of-bounds range!"); |
| |
| if (I == E) |
| return *this; |
| |
| if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| BitWord EMask = 1UL << (E % BITWORD_SIZE); |
| BitWord IMask = 1UL << (I % BITWORD_SIZE); |
| BitWord Mask = EMask - IMask; |
| Bits[I / BITWORD_SIZE] |= Mask; |
| return *this; |
| } |
| |
| BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); |
| Bits[I / BITWORD_SIZE] |= PrefixMask; |
| I = alignTo(I, BITWORD_SIZE); |
| |
| for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| Bits[I / BITWORD_SIZE] = ~0UL; |
| |
| BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; |
| if (I < E) |
| Bits[I / BITWORD_SIZE] |= PostfixMask; |
| |
| return *this; |
| } |
| |
| BitVectorTmpl &reset() { |
| init_words(Bits, Capacity, false); |
| return *this; |
| } |
| |
| BitVectorTmpl &reset(unsigned Idx) { |
| Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); |
| return *this; |
| } |
| |
| /// reset - Efficiently reset a range of bits in [I, E) |
| BitVectorTmpl &reset(unsigned I, unsigned E) { |
| assert(I <= E && "Attempted to reset backwards range!"); |
| assert(E <= size() && "Attempted to reset out-of-bounds range!"); |
| |
| if (I == E) |
| return *this; |
| |
| if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| BitWord EMask = 1UL << (E % BITWORD_SIZE); |
| BitWord IMask = 1UL << (I % BITWORD_SIZE); |
| BitWord Mask = EMask - IMask; |
| Bits[I / BITWORD_SIZE] &= ~Mask; |
| return *this; |
| } |
| |
| BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); |
| Bits[I / BITWORD_SIZE] &= ~PrefixMask; |
| I = alignTo(I, BITWORD_SIZE); |
| |
| for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| Bits[I / BITWORD_SIZE] = 0UL; |
| |
| BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; |
| if (I < E) |
| Bits[I / BITWORD_SIZE] &= ~PostfixMask; |
| |
| return *this; |
| } |
| |
| BitVectorTmpl &flip() { |
| for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| Bits[i] = ~Bits[i]; |
| clear_unused_bits(); |
| return *this; |
| } |
| |
| BitVectorTmpl &flip(unsigned Idx) { |
| Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); |
| return *this; |
| } |
| |
| // Indexing. |
| reference operator[](unsigned Idx) { |
| assert(Idx < Size && "Out-of-bounds Bit access."); |
| return reference(*this, Idx); |
| } |
| |
| bool operator[](unsigned Idx) const { |
| assert(Idx < Size && "Out-of-bounds Bit access."); |
| BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); |
| return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; |
| } |
| |
| bool test(unsigned Idx) const { return (*this)[Idx]; } |
| |
| /// Test if any common bits are set. |
| bool anyCommon(const BitVectorTmpl &RHS) const { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) |
| if (Bits[i] & RHS.Bits[i]) |
| return true; |
| return false; |
| } |
| |
| // Comparison operators. |
| bool operator==(const BitVectorTmpl &RHS) const { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| unsigned i; |
| for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| if (Bits[i] != RHS.Bits[i]) |
| return false; |
| |
| // Verify that any extra words are all zeros. |
| if (i != ThisWords) { |
| for (; i != ThisWords; ++i) |
| if (Bits[i]) |
| return false; |
| } else if (i != RHSWords) { |
| for (; i != RHSWords; ++i) |
| if (RHS.Bits[i]) |
| return false; |
| } |
| return true; |
| } |
| |
| bool operator!=(const BitVectorTmpl &RHS) const { return !(*this == RHS); } |
| |
| /// Intersection, union, disjoint union. |
| BitVectorTmpl &operator&=(const BitVectorTmpl &RHS) { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| unsigned i; |
| for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| Bits[i] &= RHS.Bits[i]; |
| |
| // Any bits that are just in this bitvector become zero, because they aren't |
| // in the RHS bit vector. Any words only in RHS are ignored because they |
| // are already zero in the LHS. |
| for (; i != ThisWords; ++i) |
| Bits[i] = 0; |
| |
| return *this; |
| } |
| |
| /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. |
| BitVectorTmpl &reset(const BitVectorTmpl &RHS) { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| unsigned i; |
| for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| Bits[i] &= ~RHS.Bits[i]; |
| return *this; |
| } |
| |
| /// test - Check if (This - RHS) is zero. |
| /// This is the same as reset(RHS) and any(). |
| bool test(const BitVectorTmpl &RHS) const { |
| unsigned ThisWords = NumBitWords(size()); |
| unsigned RHSWords = NumBitWords(RHS.size()); |
| unsigned i; |
| for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| if ((Bits[i] & ~RHS.Bits[i]) != 0) |
| return true; |
| |
| for (; i != ThisWords; ++i) |
| if (Bits[i] != 0) |
| return true; |
| |
| return false; |
| } |
| |
| BitVectorTmpl &operator|=(const BitVectorTmpl &RHS) { |
| if (size() < RHS.size()) |
| resize(RHS.size()); |
| for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
| Bits[i] |= RHS.Bits[i]; |
| return *this; |
| } |
| |
| BitVectorTmpl &operator^=(const BitVectorTmpl &RHS) { |
| if (size() < RHS.size()) |
| resize(RHS.size()); |
| for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
| Bits[i] ^= RHS.Bits[i]; |
| return *this; |
| } |
| |
| // Assignment operator. |
| const BitVectorTmpl &operator=(const BitVectorTmpl &RHS) { |
| if (this == &RHS) |
| return *this; |
| |
| Size = RHS.size(); |
| unsigned RHSWords = NumBitWords(Size); |
| if (Size <= Capacity * BITWORD_SIZE) { |
| if (Size) |
| std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); |
| clear_unused_bits(); |
| return *this; |
| } |
| |
| // Currently, BitVectorTmpl is only used by liveness analysis. With the |
| // following assert, we make sure BitVectorTmpls grow in a single step from |
| // 0 to their final capacity, rather than growing slowly and "leaking" |
| // memory in the process. |
| assert(Capacity == 0); |
| |
| // Grow the bitvector to have enough elements. |
| const auto OldCapacity = Capacity; |
| Capacity = RHSWords; |
| assert(Capacity > 0 && "negative capacity?"); |
| BitWord *NewBits = Alloc.allocate(Capacity); |
| std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); |
| |
| // Destroy the old bits. |
| Alloc.deallocate(Bits, OldCapacity); |
| Bits = NewBits; |
| |
| return *this; |
| } |
| |
| const BitVectorTmpl &operator=(BitVectorTmpl &&RHS) { |
| if (this == &RHS) |
| return *this; |
| |
| Alloc.deallocate(Bits, Capacity); |
| Bits = RHS.Bits; |
| Size = RHS.Size; |
| Capacity = RHS.Capacity; |
| |
| RHS.Bits = nullptr; |
| |
| return *this; |
| } |
| |
| void swap(BitVectorTmpl &RHS) { |
| std::swap(Bits, RHS.Bits); |
| std::swap(Size, RHS.Size); |
| std::swap(Capacity, RHS.Capacity); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Portable bit mask operations. |
| //===--------------------------------------------------------------------===// |
| // |
| // These methods all operate on arrays of uint32_t, each holding 32 bits. The |
| // fixed word size makes it easier to work with literal bit vector constants |
| // in portable code. |
| // |
| // The LSB in each word is the lowest numbered bit. The size of a portable |
| // bit mask is always a whole multiple of 32 bits. If no bit mask size is |
| // given, the bit mask is assumed to cover the entire BitVectorTmpl. |
| |
| /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. |
| /// This computes "*this |= Mask". |
| void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| applyMask<true, false>(Mask, MaskWords); |
| } |
| |
| /// clearBitsInMask - Clear any bits in this vector that are set in Mask. |
| /// Don't resize. This computes "*this &= ~Mask". |
| void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| applyMask<false, false>(Mask, MaskWords); |
| } |
| |
| /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. |
| /// Don't resize. This computes "*this |= ~Mask". |
| void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| applyMask<true, true>(Mask, MaskWords); |
| } |
| |
| /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. |
| /// Don't resize. This computes "*this &= Mask". |
| void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| applyMask<false, true>(Mask, MaskWords); |
| } |
| |
| private: |
| unsigned NumBitWords(unsigned S) const { |
| return (S + BITWORD_SIZE - 1) / BITWORD_SIZE; |
| } |
| |
| // Set the unused bits in the high words. |
| void set_unused_bits(bool t = true) { |
| // Set high words first. |
| unsigned UsedWords = NumBitWords(Size); |
| if (Capacity > UsedWords) |
| init_words(&Bits[UsedWords], (Capacity - UsedWords), t); |
| |
| // Then set any stray high bits of the last used word. |
| unsigned ExtraBits = Size % BITWORD_SIZE; |
| if (ExtraBits) { |
| BitWord ExtraBitMask = ~0UL << ExtraBits; |
| if (t) |
| Bits[UsedWords - 1] |= ExtraBitMask; |
| else |
| Bits[UsedWords - 1] &= ~ExtraBitMask; |
| } |
| } |
| |
| // Clear the unused bits in the high words. |
| void clear_unused_bits() { set_unused_bits(false); } |
| |
| void grow(unsigned NewSize) { |
| const auto OldCapacity = Capacity; |
| Capacity = std::max(NumBitWords(NewSize), Capacity * 2); |
| assert(Capacity > 0 && "realloc-ing zero space"); |
| auto *NewBits = Alloc.allocate(Capacity); |
| std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord)); |
| Alloc.deallocate(Bits, OldCapacity); |
| Bits = NewBits; |
| |
| clear_unused_bits(); |
| } |
| |
| void init_words(BitWord *B, unsigned NumWords, bool t) { |
| memset(B, 0 - (int)t, NumWords * sizeof(BitWord)); |
| } |
| |
| template <bool AddBits, bool InvertMask> |
| void applyMask(const uint32_t *Mask, unsigned MaskWords) { |
| static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); |
| MaskWords = std::min(MaskWords, (size() + 31) / 32); |
| const unsigned Scale = BITWORD_SIZE / 32; |
| unsigned i; |
| for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { |
| BitWord BW = Bits[i]; |
| // This inner loop should unroll completely when BITWORD_SIZE > 32. |
| for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { |
| uint32_t M = *Mask++; |
| if (InvertMask) |
| M = ~M; |
| if (AddBits) |
| BW |= BitWord(M) << b; |
| else |
| BW &= ~(BitWord(M) << b); |
| } |
| Bits[i] = BW; |
| } |
| for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { |
| uint32_t M = *Mask++; |
| if (InvertMask) |
| M = ~M; |
| if (AddBits) |
| Bits[i] |= BitWord(M) << b; |
| else |
| Bits[i] &= ~(BitWord(M) << b); |
| } |
| if (AddBits) |
| clear_unused_bits(); |
| } |
| }; |
| |
| using BitVector = BitVectorTmpl<CfgLocalAllocator>; |
| |
| } // end of namespace Ice |
| |
| namespace std { |
| /// Implement std::swap in terms of BitVectorTmpl swap. |
| template <template <typename> class AT> |
| inline void swap(Ice::BitVectorTmpl<AT> &LHS, Ice::BitVectorTmpl<AT> &RHS) { |
| LHS.swap(RHS); |
| } |
| } |
| |
| #endif // SUBZERO_SRC_ICEBITVECTOR_H |