| //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the X86 specific subclass of TargetSubtargetInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H |
| #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H |
| |
| #include "X86FrameLowering.h" |
| #include "X86ISelLowering.h" |
| #include "X86InstrInfo.h" |
| #include "X86SelectionDAGInfo.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <climits> |
| #include <memory> |
| |
| #define GET_SUBTARGETINFO_HEADER |
| #include "X86GenSubtargetInfo.inc" |
| |
| namespace llvm { |
| |
| class GlobalValue; |
| |
| /// The X86 backend supports a number of different styles of PIC. |
| /// |
| namespace PICStyles { |
| |
| enum Style { |
| StubPIC, // Used on i386-darwin in pic mode. |
| GOT, // Used on 32 bit elf on when in pic mode. |
| RIPRel, // Used on X86-64 when in pic mode. |
| None // Set when not in pic mode. |
| }; |
| |
| } // end namespace PICStyles |
| |
| class X86Subtarget final : public X86GenSubtargetInfo { |
| public: |
| enum X86ProcFamilyEnum { |
| Others, |
| IntelAtom, |
| IntelSLM, |
| IntelGLM, |
| IntelGLP, |
| IntelTRM, |
| IntelHaswell, |
| IntelBroadwell, |
| IntelSkylake, |
| IntelKNL, |
| IntelSKX, |
| IntelCannonlake, |
| IntelIcelakeClient, |
| IntelIcelakeServer, |
| }; |
| |
| protected: |
| enum X86SSEEnum { |
| NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F |
| }; |
| |
| enum X863DNowEnum { |
| NoThreeDNow, MMX, ThreeDNow, ThreeDNowA |
| }; |
| |
| /// X86 processor family: Intel Atom, and others |
| X86ProcFamilyEnum X86ProcFamily = Others; |
| |
| /// Which PIC style to use |
| PICStyles::Style PICStyle; |
| |
| const TargetMachine &TM; |
| |
| /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported. |
| X86SSEEnum X86SSELevel = NoSSE; |
| |
| /// MMX, 3DNow, 3DNow Athlon, or none supported. |
| X863DNowEnum X863DNowLevel = NoThreeDNow; |
| |
| /// True if the processor supports X87 instructions. |
| bool HasX87 = false; |
| |
| /// True if this processor has NOPL instruction |
| /// (generally pentium pro+). |
| bool HasNOPL = false; |
| |
| /// True if this processor has conditional move instructions |
| /// (generally pentium pro+). |
| bool HasCMov = false; |
| |
| /// True if the processor supports X86-64 instructions. |
| bool HasX86_64 = false; |
| |
| /// True if the processor supports POPCNT. |
| bool HasPOPCNT = false; |
| |
| /// True if the processor supports SSE4A instructions. |
| bool HasSSE4A = false; |
| |
| /// Target has AES instructions |
| bool HasAES = false; |
| bool HasVAES = false; |
| |
| /// Target has FXSAVE/FXRESTOR instructions |
| bool HasFXSR = false; |
| |
| /// Target has XSAVE instructions |
| bool HasXSAVE = false; |
| |
| /// Target has XSAVEOPT instructions |
| bool HasXSAVEOPT = false; |
| |
| /// Target has XSAVEC instructions |
| bool HasXSAVEC = false; |
| |
| /// Target has XSAVES instructions |
| bool HasXSAVES = false; |
| |
| /// Target has carry-less multiplication |
| bool HasPCLMUL = false; |
| bool HasVPCLMULQDQ = false; |
| |
| /// Target has Galois Field Arithmetic instructions |
| bool HasGFNI = false; |
| |
| /// Target has 3-operand fused multiply-add |
| bool HasFMA = false; |
| |
| /// Target has 4-operand fused multiply-add |
| bool HasFMA4 = false; |
| |
| /// Target has XOP instructions |
| bool HasXOP = false; |
| |
| /// Target has TBM instructions. |
| bool HasTBM = false; |
| |
| /// Target has LWP instructions |
| bool HasLWP = false; |
| |
| /// True if the processor has the MOVBE instruction. |
| bool HasMOVBE = false; |
| |
| /// True if the processor has the RDRAND instruction. |
| bool HasRDRAND = false; |
| |
| /// Processor has 16-bit floating point conversion instructions. |
| bool HasF16C = false; |
| |
| /// Processor has FS/GS base insturctions. |
| bool HasFSGSBase = false; |
| |
| /// Processor has LZCNT instruction. |
| bool HasLZCNT = false; |
| |
| /// Processor has BMI1 instructions. |
| bool HasBMI = false; |
| |
| /// Processor has BMI2 instructions. |
| bool HasBMI2 = false; |
| |
| /// Processor has VBMI instructions. |
| bool HasVBMI = false; |
| |
| /// Processor has VBMI2 instructions. |
| bool HasVBMI2 = false; |
| |
| /// Processor has Integer Fused Multiply Add |
| bool HasIFMA = false; |
| |
| /// Processor has RTM instructions. |
| bool HasRTM = false; |
| |
| /// Processor has ADX instructions. |
| bool HasADX = false; |
| |
| /// Processor has SHA instructions. |
| bool HasSHA = false; |
| |
| /// Processor has PRFCHW instructions. |
| bool HasPRFCHW = false; |
| |
| /// Processor has RDSEED instructions. |
| bool HasRDSEED = false; |
| |
| /// Processor has LAHF/SAHF instructions. |
| bool HasLAHFSAHF = false; |
| |
| /// Processor has MONITORX/MWAITX instructions. |
| bool HasMWAITX = false; |
| |
| /// Processor has Cache Line Zero instruction |
| bool HasCLZERO = false; |
| |
| /// Processor has Cache Line Demote instruction |
| bool HasCLDEMOTE = false; |
| |
| /// Processor has MOVDIRI instruction (direct store integer). |
| bool HasMOVDIRI = false; |
| |
| /// Processor has MOVDIR64B instruction (direct store 64 bytes). |
| bool HasMOVDIR64B = false; |
| |
| /// Processor has ptwrite instruction. |
| bool HasPTWRITE = false; |
| |
| /// Processor has Prefetch with intent to Write instruction |
| bool HasPREFETCHWT1 = false; |
| |
| /// True if SHLD instructions are slow. |
| bool IsSHLDSlow = false; |
| |
| /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and |
| // PMULUDQ. |
| bool IsPMULLDSlow = false; |
| |
| /// True if unaligned memory accesses of 16-bytes are slow. |
| bool IsUAMem16Slow = false; |
| |
| /// True if unaligned memory accesses of 32-bytes are slow. |
| bool IsUAMem32Slow = false; |
| |
| /// True if SSE operations can have unaligned memory operands. |
| /// This may require setting a configuration bit in the processor. |
| bool HasSSEUnalignedMem = false; |
| |
| /// True if this processor has the CMPXCHG16B instruction; |
| /// this is true for most x86-64 chips, but not the first AMD chips. |
| bool HasCmpxchg16b = false; |
| |
| /// True if the LEA instruction should be used for adjusting |
| /// the stack pointer. This is an optimization for Intel Atom processors. |
| bool UseLeaForSP = false; |
| |
| /// True if POPCNT instruction has a false dependency on the destination register. |
| bool HasPOPCNTFalseDeps = false; |
| |
| /// True if LZCNT/TZCNT instructions have a false dependency on the destination register. |
| bool HasLZCNTFalseDeps = false; |
| |
| /// True if its preferable to combine to a single shuffle using a variable |
| /// mask over multiple fixed shuffles. |
| bool HasFastVariableShuffle = false; |
| |
| /// True if there is no performance penalty to writing only the lower parts |
| /// of a YMM or ZMM register without clearing the upper part. |
| bool HasFastPartialYMMorZMMWrite = false; |
| |
| /// True if there is no performance penalty for writing NOPs with up to |
| /// 11 bytes. |
| bool HasFast11ByteNOP = false; |
| |
| /// True if there is no performance penalty for writing NOPs with up to |
| /// 15 bytes. |
| bool HasFast15ByteNOP = false; |
| |
| /// True if gather is reasonably fast. This is true for Skylake client and |
| /// all AVX-512 CPUs. |
| bool HasFastGather = false; |
| |
| /// True if hardware SQRTSS instruction is at least as fast (latency) as |
| /// RSQRTSS followed by a Newton-Raphson iteration. |
| bool HasFastScalarFSQRT = false; |
| |
| /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast |
| /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration. |
| bool HasFastVectorFSQRT = false; |
| |
| /// True if 8-bit divisions are significantly faster than |
| /// 32-bit divisions and should be used when possible. |
| bool HasSlowDivide32 = false; |
| |
| /// True if 32-bit divides are significantly faster than |
| /// 64-bit divisions and should be used when possible. |
| bool HasSlowDivide64 = false; |
| |
| /// True if LZCNT instruction is fast. |
| bool HasFastLZCNT = false; |
| |
| /// True if SHLD based rotate is fast. |
| bool HasFastSHLDRotate = false; |
| |
| /// True if the processor supports macrofusion. |
| bool HasMacroFusion = false; |
| |
| /// True if the processor has enhanced REP MOVSB/STOSB. |
| bool HasERMSB = false; |
| |
| /// True if the short functions should be padded to prevent |
| /// a stall when returning too early. |
| bool PadShortFunctions = false; |
| |
| /// True if two memory operand instructions should use a temporary register |
| /// instead. |
| bool SlowTwoMemOps = false; |
| |
| /// True if the LEA instruction inputs have to be ready at address generation |
| /// (AG) time. |
| bool LEAUsesAG = false; |
| |
| /// True if the LEA instruction with certain arguments is slow |
| bool SlowLEA = false; |
| |
| /// True if the LEA instruction has all three source operands: base, index, |
| /// and offset or if the LEA instruction uses base and index registers where |
| /// the base is EBP, RBP,or R13 |
| bool Slow3OpsLEA = false; |
| |
| /// True if INC and DEC instructions are slow when writing to flags |
| bool SlowIncDec = false; |
| |
| /// Processor has AVX-512 PreFetch Instructions |
| bool HasPFI = false; |
| |
| /// Processor has AVX-512 Exponential and Reciprocal Instructions |
| bool HasERI = false; |
| |
| /// Processor has AVX-512 Conflict Detection Instructions |
| bool HasCDI = false; |
| |
| /// Processor has AVX-512 population count Instructions |
| bool HasVPOPCNTDQ = false; |
| |
| /// Processor has AVX-512 Doubleword and Quadword instructions |
| bool HasDQI = false; |
| |
| /// Processor has AVX-512 Byte and Word instructions |
| bool HasBWI = false; |
| |
| /// Processor has AVX-512 Vector Length eXtenstions |
| bool HasVLX = false; |
| |
| /// Processor has PKU extenstions |
| bool HasPKU = false; |
| |
| /// Processor has AVX-512 Vector Neural Network Instructions |
| bool HasVNNI = false; |
| |
| /// Processor has AVX-512 Bit Algorithms instructions |
| bool HasBITALG = false; |
| |
| /// Processor supports MPX - Memory Protection Extensions |
| bool HasMPX = false; |
| |
| /// Processor supports CET SHSTK - Control-Flow Enforcement Technology |
| /// using Shadow Stack |
| bool HasSHSTK = false; |
| |
| /// Processor supports Invalidate Process-Context Identifier |
| bool HasINVPCID = false; |
| |
| /// Processor has Software Guard Extensions |
| bool HasSGX = false; |
| |
| /// Processor supports Flush Cache Line instruction |
| bool HasCLFLUSHOPT = false; |
| |
| /// Processor supports Cache Line Write Back instruction |
| bool HasCLWB = false; |
| |
| /// Processor supports Write Back No Invalidate instruction |
| bool HasWBNOINVD = false; |
| |
| /// Processor support RDPID instruction |
| bool HasRDPID = false; |
| |
| /// Processor supports WaitPKG instructions |
| bool HasWAITPKG = false; |
| |
| /// Processor supports PCONFIG instruction |
| bool HasPCONFIG = false; |
| |
| /// Use a retpoline thunk rather than indirect calls to block speculative |
| /// execution. |
| bool UseRetpoline = false; |
| |
| /// When using a retpoline thunk, call an externally provided thunk rather |
| /// than emitting one inside the compiler. |
| bool UseRetpolineExternalThunk = false; |
| |
| /// Use software floating point for code generation. |
| bool UseSoftFloat = false; |
| |
| /// The minimum alignment known to hold of the stack frame on |
| /// entry to the function and which must be maintained by every function. |
| unsigned stackAlignment = 4; |
| |
| /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. |
| /// |
| // FIXME: this is a known good value for Yonah. How about others? |
| unsigned MaxInlineSizeThreshold = 128; |
| |
| /// Indicates target prefers 256 bit instructions. |
| bool Prefer256Bit = false; |
| |
| /// What processor and OS we're targeting. |
| Triple TargetTriple; |
| |
| /// GlobalISel related APIs. |
| std::unique_ptr<CallLowering> CallLoweringInfo; |
| std::unique_ptr<LegalizerInfo> Legalizer; |
| std::unique_ptr<RegisterBankInfo> RegBankInfo; |
| std::unique_ptr<InstructionSelector> InstSelector; |
| |
| private: |
| /// Override the stack alignment. |
| unsigned StackAlignOverride; |
| |
| /// Preferred vector width from function attribute. |
| unsigned PreferVectorWidthOverride; |
| |
| /// Resolved preferred vector width from function attribute and subtarget |
| /// features. |
| unsigned PreferVectorWidth = UINT32_MAX; |
| |
| /// Required vector width from function attribute. |
| unsigned RequiredVectorWidth; |
| |
| /// True if compiling for 64-bit, false for 16-bit or 32-bit. |
| bool In64BitMode; |
| |
| /// True if compiling for 32-bit, false for 16-bit or 64-bit. |
| bool In32BitMode; |
| |
| /// True if compiling for 16-bit, false for 32-bit or 64-bit. |
| bool In16BitMode; |
| |
| /// Contains the Overhead of gather\scatter instructions |
| int GatherOverhead = 1024; |
| int ScatterOverhead = 1024; |
| |
| X86SelectionDAGInfo TSInfo; |
| // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which |
| // X86TargetLowering needs. |
| X86InstrInfo InstrInfo; |
| X86TargetLowering TLInfo; |
| X86FrameLowering FrameLowering; |
| |
| public: |
| /// This constructor initializes the data members to match that |
| /// of the specified triple. |
| /// |
| X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS, |
| const X86TargetMachine &TM, unsigned StackAlignOverride, |
| unsigned PreferVectorWidthOverride, |
| unsigned RequiredVectorWidth); |
| |
| const X86TargetLowering *getTargetLowering() const override { |
| return &TLInfo; |
| } |
| |
| const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; } |
| |
| const X86FrameLowering *getFrameLowering() const override { |
| return &FrameLowering; |
| } |
| |
| const X86SelectionDAGInfo *getSelectionDAGInfo() const override { |
| return &TSInfo; |
| } |
| |
| const X86RegisterInfo *getRegisterInfo() const override { |
| return &getInstrInfo()->getRegisterInfo(); |
| } |
| |
| /// Returns the minimum alignment known to hold of the |
| /// stack frame on entry to the function and which must be maintained by every |
| /// function for this subtarget. |
| unsigned getStackAlignment() const { return stackAlignment; } |
| |
| /// Returns the maximum memset / memcpy size |
| /// that still makes it profitable to inline the call. |
| unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; } |
| |
| /// ParseSubtargetFeatures - Parses features string setting specified |
| /// subtarget options. Definition of function is auto generated by tblgen. |
| void ParseSubtargetFeatures(StringRef CPU, StringRef FS); |
| |
| /// Methods used by Global ISel |
| const CallLowering *getCallLowering() const override; |
| const InstructionSelector *getInstructionSelector() const override; |
| const LegalizerInfo *getLegalizerInfo() const override; |
| const RegisterBankInfo *getRegBankInfo() const override; |
| |
| private: |
| /// Initialize the full set of dependencies so we can use an initializer |
| /// list for X86Subtarget. |
| X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); |
| void initSubtargetFeatures(StringRef CPU, StringRef FS); |
| |
| public: |
| /// Is this x86_64? (disregarding specific ABI / programming model) |
| bool is64Bit() const { |
| return In64BitMode; |
| } |
| |
| bool is32Bit() const { |
| return In32BitMode; |
| } |
| |
| bool is16Bit() const { |
| return In16BitMode; |
| } |
| |
| /// Is this x86_64 with the ILP32 programming model (x32 ABI)? |
| bool isTarget64BitILP32() const { |
| return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 || |
| TargetTriple.isOSNaCl()); |
| } |
| |
| /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? |
| bool isTarget64BitLP64() const { |
| return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 && |
| !TargetTriple.isOSNaCl()); |
| } |
| |
| PICStyles::Style getPICStyle() const { return PICStyle; } |
| void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } |
| |
| bool hasX87() const { return HasX87; } |
| bool hasNOPL() const { return HasNOPL; } |
| bool hasCMov() const { return HasCMov; } |
| bool hasSSE1() const { return X86SSELevel >= SSE1; } |
| bool hasSSE2() const { return X86SSELevel >= SSE2; } |
| bool hasSSE3() const { return X86SSELevel >= SSE3; } |
| bool hasSSSE3() const { return X86SSELevel >= SSSE3; } |
| bool hasSSE41() const { return X86SSELevel >= SSE41; } |
| bool hasSSE42() const { return X86SSELevel >= SSE42; } |
| bool hasAVX() const { return X86SSELevel >= AVX; } |
| bool hasAVX2() const { return X86SSELevel >= AVX2; } |
| bool hasAVX512() const { return X86SSELevel >= AVX512F; } |
| bool hasInt256() const { return hasAVX2(); } |
| bool hasSSE4A() const { return HasSSE4A; } |
| bool hasMMX() const { return X863DNowLevel >= MMX; } |
| bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } |
| bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } |
| bool hasPOPCNT() const { return HasPOPCNT; } |
| bool hasAES() const { return HasAES; } |
| bool hasVAES() const { return HasVAES; } |
| bool hasFXSR() const { return HasFXSR; } |
| bool hasXSAVE() const { return HasXSAVE; } |
| bool hasXSAVEOPT() const { return HasXSAVEOPT; } |
| bool hasXSAVEC() const { return HasXSAVEC; } |
| bool hasXSAVES() const { return HasXSAVES; } |
| bool hasPCLMUL() const { return HasPCLMUL; } |
| bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; } |
| bool hasGFNI() const { return HasGFNI; } |
| // Prefer FMA4 to FMA - its better for commutation/memory folding and |
| // has equal or better performance on all supported targets. |
| bool hasFMA() const { return HasFMA; } |
| bool hasFMA4() const { return HasFMA4; } |
| bool hasAnyFMA() const { return hasFMA() || hasFMA4(); } |
| bool hasXOP() const { return HasXOP; } |
| bool hasTBM() const { return HasTBM; } |
| bool hasLWP() const { return HasLWP; } |
| bool hasMOVBE() const { return HasMOVBE; } |
| bool hasRDRAND() const { return HasRDRAND; } |
| bool hasF16C() const { return HasF16C; } |
| bool hasFSGSBase() const { return HasFSGSBase; } |
| bool hasLZCNT() const { return HasLZCNT; } |
| bool hasBMI() const { return HasBMI; } |
| bool hasBMI2() const { return HasBMI2; } |
| bool hasVBMI() const { return HasVBMI; } |
| bool hasVBMI2() const { return HasVBMI2; } |
| bool hasIFMA() const { return HasIFMA; } |
| bool hasRTM() const { return HasRTM; } |
| bool hasADX() const { return HasADX; } |
| bool hasSHA() const { return HasSHA; } |
| bool hasPRFCHW() const { return HasPRFCHW || HasPREFETCHWT1; } |
| bool hasPREFETCHWT1() const { return HasPREFETCHWT1; } |
| bool hasSSEPrefetch() const { |
| // We implicitly enable these when we have a write prefix supporting cache |
| // level OR if we have prfchw, but don't already have a read prefetch from |
| // 3dnow. |
| return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1(); |
| } |
| bool hasRDSEED() const { return HasRDSEED; } |
| bool hasLAHFSAHF() const { return HasLAHFSAHF; } |
| bool hasMWAITX() const { return HasMWAITX; } |
| bool hasCLZERO() const { return HasCLZERO; } |
| bool hasCLDEMOTE() const { return HasCLDEMOTE; } |
| bool hasMOVDIRI() const { return HasMOVDIRI; } |
| bool hasMOVDIR64B() const { return HasMOVDIR64B; } |
| bool hasPTWRITE() const { return HasPTWRITE; } |
| bool isSHLDSlow() const { return IsSHLDSlow; } |
| bool isPMULLDSlow() const { return IsPMULLDSlow; } |
| bool isUnalignedMem16Slow() const { return IsUAMem16Slow; } |
| bool isUnalignedMem32Slow() const { return IsUAMem32Slow; } |
| int getGatherOverhead() const { return GatherOverhead; } |
| int getScatterOverhead() const { return ScatterOverhead; } |
| bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; } |
| bool hasCmpxchg16b() const { return HasCmpxchg16b; } |
| bool useLeaForSP() const { return UseLeaForSP; } |
| bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; } |
| bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; } |
| bool hasFastVariableShuffle() const { |
| return HasFastVariableShuffle; |
| } |
| bool hasFastPartialYMMorZMMWrite() const { |
| return HasFastPartialYMMorZMMWrite; |
| } |
| bool hasFastGather() const { return HasFastGather; } |
| bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; } |
| bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; } |
| bool hasFastLZCNT() const { return HasFastLZCNT; } |
| bool hasFastSHLDRotate() const { return HasFastSHLDRotate; } |
| bool hasMacroFusion() const { return HasMacroFusion; } |
| bool hasERMSB() const { return HasERMSB; } |
| bool hasSlowDivide32() const { return HasSlowDivide32; } |
| bool hasSlowDivide64() const { return HasSlowDivide64; } |
| bool padShortFunctions() const { return PadShortFunctions; } |
| bool slowTwoMemOps() const { return SlowTwoMemOps; } |
| bool LEAusesAG() const { return LEAUsesAG; } |
| bool slowLEA() const { return SlowLEA; } |
| bool slow3OpsLEA() const { return Slow3OpsLEA; } |
| bool slowIncDec() const { return SlowIncDec; } |
| bool hasCDI() const { return HasCDI; } |
| bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; } |
| bool hasPFI() const { return HasPFI; } |
| bool hasERI() const { return HasERI; } |
| bool hasDQI() const { return HasDQI; } |
| bool hasBWI() const { return HasBWI; } |
| bool hasVLX() const { return HasVLX; } |
| bool hasPKU() const { return HasPKU; } |
| bool hasVNNI() const { return HasVNNI; } |
| bool hasBITALG() const { return HasBITALG; } |
| bool hasMPX() const { return HasMPX; } |
| bool hasSHSTK() const { return HasSHSTK; } |
| bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; } |
| bool hasCLWB() const { return HasCLWB; } |
| bool hasWBNOINVD() const { return HasWBNOINVD; } |
| bool hasRDPID() const { return HasRDPID; } |
| bool hasWAITPKG() const { return HasWAITPKG; } |
| bool hasPCONFIG() const { return HasPCONFIG; } |
| bool hasSGX() const { return HasSGX; } |
| bool hasINVPCID() const { return HasINVPCID; } |
| bool useRetpoline() const { return UseRetpoline; } |
| bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; } |
| |
| unsigned getPreferVectorWidth() const { return PreferVectorWidth; } |
| unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; } |
| |
| // Helper functions to determine when we should allow widening to 512-bit |
| // during codegen. |
| // TODO: Currently we're always allowing widening on CPUs without VLX, |
| // because for many cases we don't have a better option. |
| bool canExtendTo512DQ() const { |
| return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512); |
| } |
| bool canExtendTo512BW() const { |
| return hasBWI() && canExtendTo512DQ(); |
| } |
| |
| // If there are no 512-bit vectors and we prefer not to use 512-bit registers, |
| // disable them in the legalizer. |
| bool useAVX512Regs() const { |
| return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256); |
| } |
| |
| bool useBWIRegs() const { |
| return hasBWI() && useAVX512Regs(); |
| } |
| |
| bool isXRaySupported() const override { return is64Bit(); } |
| |
| X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; } |
| |
| /// TODO: to be removed later and replaced with suitable properties |
| bool isAtom() const { return X86ProcFamily == IntelAtom; } |
| bool isSLM() const { return X86ProcFamily == IntelSLM; } |
| bool isGLM() const { |
| return X86ProcFamily == IntelGLM || |
| X86ProcFamily == IntelGLP || |
| X86ProcFamily == IntelTRM; |
| } |
| bool useSoftFloat() const { return UseSoftFloat; } |
| |
| /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for |
| /// no-sse2). There isn't any reason to disable it if the target processor |
| /// supports it. |
| bool hasMFence() const { return hasSSE2() || is64Bit(); } |
| |
| const Triple &getTargetTriple() const { return TargetTriple; } |
| |
| bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } |
| bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); } |
| bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); } |
| bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); } |
| bool isTargetPS4() const { return TargetTriple.isPS4CPU(); } |
| |
| bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } |
| bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } |
| bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } |
| |
| bool isTargetLinux() const { return TargetTriple.isOSLinux(); } |
| bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); } |
| bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); } |
| bool isTargetAndroid() const { return TargetTriple.isAndroid(); } |
| bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } |
| bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } |
| bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } |
| bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); } |
| bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); } |
| |
| bool isTargetWindowsMSVC() const { |
| return TargetTriple.isWindowsMSVCEnvironment(); |
| } |
| |
| bool isTargetKnownWindowsMSVC() const { |
| return TargetTriple.isKnownWindowsMSVCEnvironment(); |
| } |
| |
| bool isTargetWindowsCoreCLR() const { |
| return TargetTriple.isWindowsCoreCLREnvironment(); |
| } |
| |
| bool isTargetWindowsCygwin() const { |
| return TargetTriple.isWindowsCygwinEnvironment(); |
| } |
| |
| bool isTargetWindowsGNU() const { |
| return TargetTriple.isWindowsGNUEnvironment(); |
| } |
| |
| bool isTargetWindowsItanium() const { |
| return TargetTriple.isWindowsItaniumEnvironment(); |
| } |
| |
| bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); } |
| |
| bool isOSWindows() const { return TargetTriple.isOSWindows(); } |
| |
| bool isTargetWin64() const { return In64BitMode && isOSWindows(); } |
| |
| bool isTargetWin32() const { return !In64BitMode && isOSWindows(); } |
| |
| bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; } |
| bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; } |
| |
| bool isPICStyleStubPIC() const { |
| return PICStyle == PICStyles::StubPIC; |
| } |
| |
| bool isPositionIndependent() const { return TM.isPositionIndependent(); } |
| |
| bool isCallingConvWin64(CallingConv::ID CC) const { |
| switch (CC) { |
| // On Win64, all these conventions just use the default convention. |
| case CallingConv::C: |
| case CallingConv::Fast: |
| case CallingConv::Swift: |
| case CallingConv::X86_FastCall: |
| case CallingConv::X86_StdCall: |
| case CallingConv::X86_ThisCall: |
| case CallingConv::X86_VectorCall: |
| case CallingConv::Intel_OCL_BI: |
| return isTargetWin64(); |
| // This convention allows using the Win64 convention on other targets. |
| case CallingConv::Win64: |
| return true; |
| // This convention allows using the SysV convention on Windows targets. |
| case CallingConv::X86_64_SysV: |
| return false; |
| // Otherwise, who knows what this is. |
| default: |
| return false; |
| } |
| } |
| |
| /// Classify a global variable reference for the current subtarget according |
| /// to how we should reference it in a non-pcrel context. |
| unsigned char classifyLocalReference(const GlobalValue *GV) const; |
| |
| unsigned char classifyGlobalReference(const GlobalValue *GV, |
| const Module &M) const; |
| unsigned char classifyGlobalReference(const GlobalValue *GV) const; |
| |
| /// Classify a global function reference for the current subtarget. |
| unsigned char classifyGlobalFunctionReference(const GlobalValue *GV, |
| const Module &M) const; |
| unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const; |
| |
| /// Classify a blockaddress reference for the current subtarget according to |
| /// how we should reference it in a non-pcrel context. |
| unsigned char classifyBlockAddressReference() const; |
| |
| /// Return true if the subtarget allows calls to immediate address. |
| bool isLegalToCallImmediateAddr() const; |
| |
| /// If we are using retpolines, we need to expand indirectbr to avoid it |
| /// lowering to an actual indirect jump. |
| bool enableIndirectBrExpand() const override { return useRetpoline(); } |
| |
| /// Enable the MachineScheduler pass for all X86 subtargets. |
| bool enableMachineScheduler() const override { return true; } |
| |
| // TODO: Update the regression tests and return true. |
| bool supportPrintSchedInfo() const override { return false; } |
| |
| bool enableEarlyIfConversion() const override; |
| |
| AntiDepBreakMode getAntiDepBreakMode() const override { |
| return TargetSubtargetInfo::ANTIDEP_CRITICAL; |
| } |
| |
| bool enableAdvancedRASplitCost() const override { return true; } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H |