| //===- X86RegisterBankInfo.cpp -----------------------------------*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the RegisterBankInfo class for X86. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86RegisterBankInfo.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| |
| #define GET_TARGET_REGBANK_IMPL |
| #include "X86GenRegisterBank.inc" |
| |
| using namespace llvm; |
| // This file will be TableGen'ed at some point. |
| #define GET_TARGET_REGBANK_INFO_IMPL |
| #include "X86GenRegisterBankInfo.def" |
| |
| X86RegisterBankInfo::X86RegisterBankInfo(const TargetRegisterInfo &TRI) |
| : X86GenRegisterBankInfo() { |
| |
| // validate RegBank initialization. |
| const RegisterBank &RBGPR = getRegBank(X86::GPRRegBankID); |
| (void)RBGPR; |
| assert(&X86::GPRRegBank == &RBGPR && "Incorrect RegBanks inizalization."); |
| |
| // The GPR register bank is fully defined by all the registers in |
| // GR64 + its subclasses. |
| assert(RBGPR.covers(*TRI.getRegClass(X86::GR64RegClassID)) && |
| "Subclass not added?"); |
| assert(RBGPR.getSize() == 64 && "GPRs should hold up to 64-bit"); |
| } |
| |
| const RegisterBank &X86RegisterBankInfo::getRegBankFromRegClass( |
| const TargetRegisterClass &RC) const { |
| |
| if (X86::GR8RegClass.hasSubClassEq(&RC) || |
| X86::GR16RegClass.hasSubClassEq(&RC) || |
| X86::GR32RegClass.hasSubClassEq(&RC) || |
| X86::GR64RegClass.hasSubClassEq(&RC)) |
| return getRegBank(X86::GPRRegBankID); |
| |
| if (X86::FR32XRegClass.hasSubClassEq(&RC) || |
| X86::FR64XRegClass.hasSubClassEq(&RC) || |
| X86::VR128XRegClass.hasSubClassEq(&RC) || |
| X86::VR256XRegClass.hasSubClassEq(&RC) || |
| X86::VR512RegClass.hasSubClassEq(&RC)) |
| return getRegBank(X86::VECRRegBankID); |
| |
| llvm_unreachable("Unsupported register kind yet."); |
| } |
| |
| X86GenRegisterBankInfo::PartialMappingIdx |
| X86GenRegisterBankInfo::getPartialMappingIdx(const LLT &Ty, bool isFP) { |
| if ((Ty.isScalar() && !isFP) || Ty.isPointer()) { |
| switch (Ty.getSizeInBits()) { |
| case 1: |
| case 8: |
| return PMI_GPR8; |
| case 16: |
| return PMI_GPR16; |
| case 32: |
| return PMI_GPR32; |
| case 64: |
| return PMI_GPR64; |
| case 128: |
| return PMI_VEC128; |
| break; |
| default: |
| llvm_unreachable("Unsupported register size."); |
| } |
| } else if (Ty.isScalar()) { |
| switch (Ty.getSizeInBits()) { |
| case 32: |
| return PMI_FP32; |
| case 64: |
| return PMI_FP64; |
| case 128: |
| return PMI_VEC128; |
| default: |
| llvm_unreachable("Unsupported register size."); |
| } |
| } else { |
| switch (Ty.getSizeInBits()) { |
| case 128: |
| return PMI_VEC128; |
| case 256: |
| return PMI_VEC256; |
| case 512: |
| return PMI_VEC512; |
| default: |
| llvm_unreachable("Unsupported register size."); |
| } |
| } |
| |
| return PMI_None; |
| } |
| |
| void X86RegisterBankInfo::getInstrPartialMappingIdxs( |
| const MachineInstr &MI, const MachineRegisterInfo &MRI, const bool isFP, |
| SmallVectorImpl<PartialMappingIdx> &OpRegBankIdx) { |
| |
| unsigned NumOperands = MI.getNumOperands(); |
| for (unsigned Idx = 0; Idx < NumOperands; ++Idx) { |
| auto &MO = MI.getOperand(Idx); |
| if (!MO.isReg()) |
| OpRegBankIdx[Idx] = PMI_None; |
| else |
| OpRegBankIdx[Idx] = getPartialMappingIdx(MRI.getType(MO.getReg()), isFP); |
| } |
| } |
| |
| bool X86RegisterBankInfo::getInstrValueMapping( |
| const MachineInstr &MI, |
| const SmallVectorImpl<PartialMappingIdx> &OpRegBankIdx, |
| SmallVectorImpl<const ValueMapping *> &OpdsMapping) { |
| |
| unsigned NumOperands = MI.getNumOperands(); |
| for (unsigned Idx = 0; Idx < NumOperands; ++Idx) { |
| if (!MI.getOperand(Idx).isReg()) |
| continue; |
| |
| auto Mapping = getValueMapping(OpRegBankIdx[Idx], 1); |
| if (!Mapping->isValid()) |
| return false; |
| |
| OpdsMapping[Idx] = Mapping; |
| } |
| return true; |
| } |
| |
| const RegisterBankInfo::InstructionMapping & |
| X86RegisterBankInfo::getSameOperandsMapping(const MachineInstr &MI, |
| bool isFP) const { |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| unsigned NumOperands = MI.getNumOperands(); |
| LLT Ty = MRI.getType(MI.getOperand(0).getReg()); |
| |
| if (NumOperands != 3 || (Ty != MRI.getType(MI.getOperand(1).getReg())) || |
| (Ty != MRI.getType(MI.getOperand(2).getReg()))) |
| llvm_unreachable("Unsupported operand mapping yet."); |
| |
| auto Mapping = getValueMapping(getPartialMappingIdx(Ty, isFP), 3); |
| return getInstructionMapping(DefaultMappingID, 1, Mapping, NumOperands); |
| } |
| |
| const RegisterBankInfo::InstructionMapping & |
| X86RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const { |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| auto Opc = MI.getOpcode(); |
| |
| // Try the default logic for non-generic instructions that are either copies |
| // or already have some operands assigned to banks. |
| if (!isPreISelGenericOpcode(Opc) || Opc == TargetOpcode::G_PHI) { |
| const InstructionMapping &Mapping = getInstrMappingImpl(MI); |
| if (Mapping.isValid()) |
| return Mapping; |
| } |
| |
| switch (Opc) { |
| case TargetOpcode::G_ADD: |
| case TargetOpcode::G_SUB: |
| case TargetOpcode::G_MUL: |
| case TargetOpcode::G_SHL: |
| case TargetOpcode::G_LSHR: |
| case TargetOpcode::G_ASHR: |
| return getSameOperandsMapping(MI, false); |
| break; |
| case TargetOpcode::G_FADD: |
| case TargetOpcode::G_FSUB: |
| case TargetOpcode::G_FMUL: |
| case TargetOpcode::G_FDIV: |
| return getSameOperandsMapping(MI, true); |
| break; |
| default: |
| break; |
| } |
| |
| unsigned NumOperands = MI.getNumOperands(); |
| SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands); |
| |
| switch (Opc) { |
| case TargetOpcode::G_FPEXT: |
| case TargetOpcode::G_FCONSTANT: |
| // Instruction having only floating-point operands (all scalars in VECRReg) |
| getInstrPartialMappingIdxs(MI, MRI, /* isFP */ true, OpRegBankIdx); |
| break; |
| case TargetOpcode::G_SITOFP: { |
| // Some of the floating-point instructions have mixed GPR and FP operands: |
| // fine-tune the computed mapping. |
| auto &Op0 = MI.getOperand(0); |
| auto &Op1 = MI.getOperand(1); |
| const LLT Ty0 = MRI.getType(Op0.getReg()); |
| const LLT Ty1 = MRI.getType(Op1.getReg()); |
| OpRegBankIdx[0] = getPartialMappingIdx(Ty0, /* isFP */ true); |
| OpRegBankIdx[1] = getPartialMappingIdx(Ty1, /* isFP */ false); |
| break; |
| } |
| case TargetOpcode::G_TRUNC: |
| case TargetOpcode::G_ANYEXT: { |
| auto &Op0 = MI.getOperand(0); |
| auto &Op1 = MI.getOperand(1); |
| const LLT Ty0 = MRI.getType(Op0.getReg()); |
| const LLT Ty1 = MRI.getType(Op1.getReg()); |
| |
| bool isFPTrunc = (Ty0.getSizeInBits() == 32 || Ty0.getSizeInBits() == 64) && |
| Ty1.getSizeInBits() == 128 && Opc == TargetOpcode::G_TRUNC; |
| bool isFPAnyExt = |
| Ty0.getSizeInBits() == 128 && |
| (Ty1.getSizeInBits() == 32 || Ty1.getSizeInBits() == 64) && |
| Opc == TargetOpcode::G_ANYEXT; |
| |
| getInstrPartialMappingIdxs(MI, MRI, /* isFP */ isFPTrunc || isFPAnyExt, |
| OpRegBankIdx); |
| } break; |
| default: |
| // Track the bank of each register, use NotFP mapping (all scalars in GPRs) |
| getInstrPartialMappingIdxs(MI, MRI, /* isFP */ false, OpRegBankIdx); |
| break; |
| } |
| |
| // Finally construct the computed mapping. |
| SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands); |
| if (!getInstrValueMapping(MI, OpRegBankIdx, OpdsMapping)) |
| return getInvalidInstructionMapping(); |
| |
| return getInstructionMapping(DefaultMappingID, /* Cost */ 1, |
| getOperandsMapping(OpdsMapping), NumOperands); |
| } |
| |
| void X86RegisterBankInfo::applyMappingImpl( |
| const OperandsMapper &OpdMapper) const { |
| return applyDefaultMapping(OpdMapper); |
| } |
| |
| RegisterBankInfo::InstructionMappings |
| X86RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const { |
| |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const TargetSubtargetInfo &STI = MF.getSubtarget(); |
| const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| switch (MI.getOpcode()) { |
| case TargetOpcode::G_LOAD: |
| case TargetOpcode::G_STORE: |
| case TargetOpcode::G_IMPLICIT_DEF: { |
| // we going to try to map 32/64 bit to PMI_FP32/PMI_FP64 |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI); |
| if (Size != 32 && Size != 64) |
| break; |
| |
| unsigned NumOperands = MI.getNumOperands(); |
| |
| // Track the bank of each register, use FP mapping (all scalars in VEC) |
| SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands); |
| getInstrPartialMappingIdxs(MI, MRI, /* isFP */ true, OpRegBankIdx); |
| |
| // Finally construct the computed mapping. |
| SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands); |
| if (!getInstrValueMapping(MI, OpRegBankIdx, OpdsMapping)) |
| break; |
| |
| const RegisterBankInfo::InstructionMapping &Mapping = getInstructionMapping( |
| /*ID*/ 1, /*Cost*/ 1, getOperandsMapping(OpdsMapping), NumOperands); |
| InstructionMappings AltMappings; |
| AltMappings.push_back(&Mapping); |
| return AltMappings; |
| } |
| default: |
| break; |
| } |
| return RegisterBankInfo::getInstrAlternativeMappings(MI); |
| } |