| //===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the X86 x87 FPU instruction set, defining the |
| // instructions, and properties of the instructions which are needed for code |
| // generation, machine code emission, and analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // FPStack specific DAG Nodes. |
| //===----------------------------------------------------------------------===// |
| |
| def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, |
| SDTCisVT<1, f80>]>; |
| def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>, |
| SDTCisPtrTy<1>, |
| SDTCisVT<2, OtherVT>]>; |
| def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>, |
| SDTCisPtrTy<1>, |
| SDTCisVT<2, OtherVT>]>; |
| def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, |
| SDTCisVT<2, OtherVT>]>; |
| def SDTX86Fnstsw : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>; |
| def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>; |
| |
| def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; |
| |
| def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, |
| [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; |
| def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, |
| [SDNPHasChain, SDNPInGlue, SDNPMayStore, |
| SDNPMemOperand]>; |
| def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild, |
| [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; |
| def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild, |
| [SDNPHasChain, SDNPOutGlue, SDNPMayLoad, |
| SDNPMemOperand]>; |
| def X86fp_stsw : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>; |
| def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem, |
| [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem, |
| [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem, |
| [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore, |
| [SDNPHasChain, SDNPMayStore, SDNPSideEffect, |
| SDNPMemOperand]>; |
| |
| //===----------------------------------------------------------------------===// |
| // FPStack pattern fragments |
| //===----------------------------------------------------------------------===// |
| |
| def fpimm0 : FPImmLeaf<fAny, [{ |
| return Imm.isExactlyValue(+0.0); |
| }]>; |
| |
| def fpimmneg0 : FPImmLeaf<fAny, [{ |
| return Imm.isExactlyValue(-0.0); |
| }]>; |
| |
| def fpimm1 : FPImmLeaf<fAny, [{ |
| return Imm.isExactlyValue(+1.0); |
| }]>; |
| |
| def fpimmneg1 : FPImmLeaf<fAny, [{ |
| return Imm.isExactlyValue(-1.0); |
| }]>; |
| |
| // Some 'special' instructions - expanded after instruction selection. |
| let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in { |
| def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src), |
| [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; |
| def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src), |
| [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; |
| def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src), |
| [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; |
| def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src), |
| [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; |
| def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src), |
| [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; |
| def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src), |
| [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; |
| def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src), |
| [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; |
| def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src), |
| [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; |
| def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src), |
| [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; |
| } |
| |
| // All FP Stack operations are represented with four instructions here. The |
| // first three instructions, generated by the instruction selector, use "RFP32" |
| // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, |
| // 64-bit or 80-bit floating point values. These sizes apply to the values, |
| // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be |
| // copied to each other without losing information. These instructions are all |
| // pseudo instructions and use the "_Fp" suffix. |
| // In some cases there are additional variants with a mixture of different |
| // register sizes. |
| // The second instruction is defined with FPI, which is the actual instruction |
| // emitted by the assembler. These use "RST" registers, although frequently |
| // the actual register(s) used are implicit. These are always 80 bits. |
| // The FP stackifier pass converts one to the other after register allocation |
| // occurs. |
| // |
| // Note that the FpI instruction should have instruction selection info (e.g. |
| // a pattern) and the FPI instruction should have emission info (e.g. opcode |
| // encoding and asm printing info). |
| |
| // FpIf32, FpIf64 - Floating Point Pseudo Instruction template. |
| // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. |
| // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. |
| // f80 instructions cannot use SSE and use neither of these. |
| class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> : |
| FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>; |
| class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> : |
| FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>; |
| |
| // Factoring for arithmetic. |
| multiclass FPBinary_rr<SDNode OpNode> { |
| // Register op register -> register |
| // These are separated out because they have no reversed form. |
| def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, |
| [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; |
| def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, |
| [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; |
| def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, |
| [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; |
| } |
| // The FopST0 series are not included here because of the irregularities |
| // in where the 'r' goes in assembly output. |
| // These instructions cannot address 80-bit memory. |
| multiclass FPBinary<SDNode OpNode, Format fp, string asmstring, |
| bit Forward = 1> { |
| let mayLoad = 1, hasSideEffects = 1 in { |
| // ST(0) = ST(0) + [mem] |
| def _Fp32m : FpIf32<(outs RFP32:$dst), |
| (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, |
| [!if(Forward, |
| (set RFP32:$dst, |
| (OpNode RFP32:$src1, (loadf32 addr:$src2))), |
| (set RFP32:$dst, |
| (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>; |
| def _Fp64m : FpIf64<(outs RFP64:$dst), |
| (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, |
| [!if(Forward, |
| (set RFP64:$dst, |
| (OpNode RFP64:$src1, (loadf64 addr:$src2))), |
| (set RFP64:$dst, |
| (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>; |
| def _Fp64m32: FpIf64<(outs RFP64:$dst), |
| (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, |
| [!if(Forward, |
| (set RFP64:$dst, |
| (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))), |
| (set RFP64:$dst, |
| (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>; |
| def _Fp80m32: FpI_<(outs RFP80:$dst), |
| (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, |
| [!if(Forward, |
| (set RFP80:$dst, |
| (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))), |
| (set RFP80:$dst, |
| (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>; |
| def _Fp80m64: FpI_<(outs RFP80:$dst), |
| (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, |
| [!if(Forward, |
| (set RFP80:$dst, |
| (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))), |
| (set RFP80:$dst, |
| (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>; |
| def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), |
| !strconcat("f", asmstring, "{s}\t$src")>; |
| def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), |
| !strconcat("f", asmstring, "{l}\t$src")>; |
| // ST(0) = ST(0) + [memint] |
| def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), |
| OneArgFPRW, |
| [!if(Forward, |
| (set RFP32:$dst, |
| (OpNode RFP32:$src1, (X86fild addr:$src2, i16))), |
| (set RFP32:$dst, |
| (OpNode (X86fild addr:$src2, i16), RFP32:$src1)))]>; |
| def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), |
| OneArgFPRW, |
| [!if(Forward, |
| (set RFP32:$dst, |
| (OpNode RFP32:$src1, (X86fild addr:$src2, i32))), |
| (set RFP32:$dst, |
| (OpNode (X86fild addr:$src2, i32), RFP32:$src1)))]>; |
| def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), |
| OneArgFPRW, |
| [!if(Forward, |
| (set RFP64:$dst, |
| (OpNode RFP64:$src1, (X86fild addr:$src2, i16))), |
| (set RFP64:$dst, |
| (OpNode (X86fild addr:$src2, i16), RFP64:$src1)))]>; |
| def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), |
| OneArgFPRW, |
| [!if(Forward, |
| (set RFP64:$dst, |
| (OpNode RFP64:$src1, (X86fild addr:$src2, i32))), |
| (set RFP64:$dst, |
| (OpNode (X86fild addr:$src2, i32), RFP64:$src1)))]>; |
| def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), |
| OneArgFPRW, |
| [!if(Forward, |
| (set RFP80:$dst, |
| (OpNode RFP80:$src1, (X86fild addr:$src2, i16))), |
| (set RFP80:$dst, |
| (OpNode (X86fild addr:$src2, i16), RFP80:$src1)))]>; |
| def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), |
| OneArgFPRW, |
| [!if(Forward, |
| (set RFP80:$dst, |
| (OpNode RFP80:$src1, (X86fild addr:$src2, i32))), |
| (set RFP80:$dst, |
| (OpNode (X86fild addr:$src2, i32), RFP80:$src1)))]>; |
| def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), |
| !strconcat("fi", asmstring, "{s}\t$src")>; |
| def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), |
| !strconcat("fi", asmstring, "{l}\t$src")>; |
| } // mayLoad = 1, hasSideEffects = 1 |
| } |
| |
| let Defs = [FPSW] in { |
| // FPBinary_rr just defines pseudo-instructions, no need to set a scheduling |
| // resources. |
| let hasNoSchedulingInfo = 1 in { |
| defm ADD : FPBinary_rr<fadd>; |
| defm SUB : FPBinary_rr<fsub>; |
| defm MUL : FPBinary_rr<fmul>; |
| defm DIV : FPBinary_rr<fdiv>; |
| } |
| |
| // Sets the scheduling resources for the actual NAME#_F<size>m defintions. |
| let SchedRW = [WriteFAddLd] in { |
| defm ADD : FPBinary<fadd, MRM0m, "add">; |
| defm SUB : FPBinary<fsub, MRM4m, "sub">; |
| defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>; |
| } |
| |
| let SchedRW = [WriteFMulLd] in { |
| defm MUL : FPBinary<fmul, MRM1m, "mul">; |
| } |
| |
| let SchedRW = [WriteFDivLd] in { |
| defm DIV : FPBinary<fdiv, MRM6m, "div">; |
| defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>; |
| } |
| } // Defs = [FPSW] |
| |
| class FPST0rInst<Format fp, string asm> |
| : FPI<0xD8, fp, (outs), (ins RST:$op), asm>; |
| class FPrST0Inst<Format fp, string asm> |
| : FPI<0xDC, fp, (outs), (ins RST:$op), asm>; |
| class FPrST0PInst<Format fp, string asm> |
| : FPI<0xDE, fp, (outs), (ins RST:$op), asm>; |
| |
| // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion |
| // of some of the 'reverse' forms of the fsub and fdiv instructions. As such, |
| // we have to put some 'r's in and take them out of weird places. |
| let SchedRW = [WriteFAdd] in { |
| def ADD_FST0r : FPST0rInst <MRM0r, "fadd\t$op">; |
| def ADD_FrST0 : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">; |
| def ADD_FPrST0 : FPrST0PInst<MRM0r, "faddp\t$op">; |
| def SUBR_FST0r : FPST0rInst <MRM5r, "fsubr\t$op">; |
| def SUB_FrST0 : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">; |
| def SUB_FPrST0 : FPrST0PInst<MRM5r, "fsub{r}p\t$op">; |
| def SUB_FST0r : FPST0rInst <MRM4r, "fsub\t$op">; |
| def SUBR_FrST0 : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">; |
| def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">; |
| } // SchedRW |
| let SchedRW = [WriteFCom] in { |
| def COM_FST0r : FPST0rInst <MRM2r, "fcom\t$op">; |
| def COMP_FST0r : FPST0rInst <MRM3r, "fcomp\t$op">; |
| } // SchedRW |
| let SchedRW = [WriteFMul] in { |
| def MUL_FST0r : FPST0rInst <MRM1r, "fmul\t$op">; |
| def MUL_FrST0 : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">; |
| def MUL_FPrST0 : FPrST0PInst<MRM1r, "fmulp\t$op">; |
| } // SchedRW |
| let SchedRW = [WriteFDiv] in { |
| def DIVR_FST0r : FPST0rInst <MRM7r, "fdivr\t$op">; |
| def DIV_FrST0 : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">; |
| def DIV_FPrST0 : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">; |
| def DIV_FST0r : FPST0rInst <MRM6r, "fdiv\t$op">; |
| def DIVR_FrST0 : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">; |
| def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">; |
| } // SchedRW |
| |
| // Unary operations. |
| multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> { |
| def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, |
| [(set RFP32:$dst, (OpNode RFP32:$src))]>; |
| def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, |
| [(set RFP64:$dst, (OpNode RFP64:$src))]>; |
| def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, |
| [(set RFP80:$dst, (OpNode RFP80:$src))]>; |
| def _F : FPI<0xD9, fp, (outs), (ins), asmstring>; |
| } |
| |
| let Defs = [FPSW] in { |
| |
| let SchedRW = [WriteFSign] in { |
| defm CHS : FPUnary<fneg, MRM_E0, "fchs">; |
| defm ABS : FPUnary<fabs, MRM_E1, "fabs">; |
| } |
| |
| let SchedRW = [WriteFSqrt80] in |
| defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">; |
| |
| let SchedRW = [WriteMicrocoded] in { |
| defm SIN : FPUnary<fsin, MRM_FE, "fsin">; |
| defm COS : FPUnary<fcos, MRM_FF, "fcos">; |
| } |
| |
| let SchedRW = [WriteFCom] in { |
| let hasSideEffects = 0 in { |
| def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; |
| def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; |
| def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; |
| } // hasSideEffects |
| |
| def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">; |
| } // SchedRW |
| } // Defs = [FPSW] |
| |
| // Versions of FP instructions that take a single memory operand. Added for the |
| // disassembler; remove as they are included with patterns elsewhere. |
| let SchedRW = [WriteFComLd] in { |
| def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">; |
| def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">; |
| |
| def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">; |
| def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">; |
| |
| def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">; |
| def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">; |
| |
| def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">; |
| def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">; |
| } // SchedRW |
| |
| let SchedRW = [WriteMicrocoded] in { |
| def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">; |
| def FSTENVm : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">; |
| |
| def FRSTORm : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">; |
| def FSAVEm : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">; |
| def FNSTSWm : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">; |
| |
| def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">; |
| def FBSTPm : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">; |
| } // SchedRW |
| |
| // Floating point cmovs. |
| class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : |
| FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>; |
| class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : |
| FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>; |
| |
| multiclass FPCMov<PatLeaf cc> { |
| def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), |
| CondMovFP, |
| [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, |
| cc, EFLAGS))]>; |
| def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), |
| CondMovFP, |
| [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, |
| cc, EFLAGS))]>; |
| def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), |
| CondMovFP, |
| [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, |
| cc, EFLAGS))]>, |
| Requires<[HasCMov]>; |
| } |
| |
| let Defs = [FPSW] in { |
| let SchedRW = [WriteFCMOV] in { |
| let Uses = [EFLAGS], Constraints = "$src1 = $dst" in { |
| defm CMOVB : FPCMov<X86_COND_B>; |
| defm CMOVBE : FPCMov<X86_COND_BE>; |
| defm CMOVE : FPCMov<X86_COND_E>; |
| defm CMOVP : FPCMov<X86_COND_P>; |
| defm CMOVNB : FPCMov<X86_COND_AE>; |
| defm CMOVNBE: FPCMov<X86_COND_A>; |
| defm CMOVNE : FPCMov<X86_COND_NE>; |
| defm CMOVNP : FPCMov<X86_COND_NP>; |
| } // Uses = [EFLAGS], Constraints = "$src1 = $dst" |
| |
| let Predicates = [HasCMov] in { |
| // These are not factored because there's no clean way to pass DA/DB. |
| def CMOVB_F : FPI<0xDA, MRM0r, (outs), (ins RST:$op), |
| "fcmovb\t{$op, %st(0)|st(0), $op}">; |
| def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RST:$op), |
| "fcmovbe\t{$op, %st(0)|st(0), $op}">; |
| def CMOVE_F : FPI<0xDA, MRM1r, (outs), (ins RST:$op), |
| "fcmove\t{$op, %st(0)|st(0), $op}">; |
| def CMOVP_F : FPI<0xDA, MRM3r, (outs), (ins RST:$op), |
| "fcmovu\t{$op, %st(0)|st(0), $op}">; |
| def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RST:$op), |
| "fcmovnb\t{$op, %st(0)|st(0), $op}">; |
| def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RST:$op), |
| "fcmovnbe\t{$op, %st(0)|st(0), $op}">; |
| def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RST:$op), |
| "fcmovne\t{$op, %st(0)|st(0), $op}">; |
| def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RST:$op), |
| "fcmovnu\t{$op, %st(0)|st(0), $op}">; |
| } // Predicates = [HasCMov] |
| } // SchedRW |
| |
| // Floating point loads & stores. |
| let SchedRW = [WriteLoad] in { |
| let canFoldAsLoad = 1 in { |
| def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, |
| [(set RFP32:$dst, (loadf32 addr:$src))]>; |
| let isReMaterializable = 1 in |
| def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, |
| [(set RFP64:$dst, (loadf64 addr:$src))]>; |
| def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, |
| [(set RFP80:$dst, (loadf80 addr:$src))]>; |
| } // canFoldAsLoad |
| def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, |
| [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; |
| def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, |
| [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; |
| def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, |
| [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; |
| def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, |
| [(set RFP32:$dst, (X86fild addr:$src, i16))]>; |
| def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, |
| [(set RFP32:$dst, (X86fild addr:$src, i32))]>; |
| def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, |
| [(set RFP32:$dst, (X86fild addr:$src, i64))]>; |
| def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, |
| [(set RFP64:$dst, (X86fild addr:$src, i16))]>; |
| def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, |
| [(set RFP64:$dst, (X86fild addr:$src, i32))]>; |
| def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, |
| [(set RFP64:$dst, (X86fild addr:$src, i64))]>; |
| def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, |
| [(set RFP80:$dst, (X86fild addr:$src, i16))]>; |
| def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, |
| [(set RFP80:$dst, (X86fild addr:$src, i32))]>; |
| def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, |
| [(set RFP80:$dst, (X86fild addr:$src, i64))]>; |
| } // SchedRW |
| |
| let SchedRW = [WriteStore] in { |
| def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, |
| [(store RFP32:$src, addr:$op)]>; |
| def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, |
| [(truncstoref32 RFP64:$src, addr:$op)]>; |
| def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, |
| [(store RFP64:$src, addr:$op)]>; |
| def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, |
| [(truncstoref32 RFP80:$src, addr:$op)]>; |
| def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, |
| [(truncstoref64 RFP80:$src, addr:$op)]>; |
| // FST does not support 80-bit memory target; FSTP must be used. |
| |
| let mayStore = 1, hasSideEffects = 0 in { |
| def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; |
| def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; |
| def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; |
| def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; |
| def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; |
| } // mayStore |
| |
| def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, |
| [(store RFP80:$src, addr:$op)]>; |
| |
| let mayStore = 1, hasSideEffects = 0 in { |
| def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; |
| def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; |
| def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; |
| def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; |
| def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; |
| def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; |
| def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; |
| def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; |
| def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; |
| } // mayStore |
| } // SchedRW |
| |
| let mayLoad = 1, SchedRW = [WriteLoad] in { |
| def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">; |
| def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">; |
| def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">; |
| def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">; |
| def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">; |
| def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">; |
| } |
| let mayStore = 1, SchedRW = [WriteStore] in { |
| def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">; |
| def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">; |
| def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">; |
| def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">; |
| def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">; |
| def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">; |
| def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">; |
| def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">; |
| def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">; |
| def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">; |
| } |
| |
| // FISTTP requires SSE3 even though it's a FPStack op. |
| let Predicates = [HasSSE3], SchedRW = [WriteStore] in { |
| def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, |
| [(X86fp_to_i16mem RFP32:$src, addr:$op)]>; |
| def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, |
| [(X86fp_to_i32mem RFP32:$src, addr:$op)]>; |
| def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, |
| [(X86fp_to_i64mem RFP32:$src, addr:$op)]>; |
| def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, |
| [(X86fp_to_i16mem RFP64:$src, addr:$op)]>; |
| def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, |
| [(X86fp_to_i32mem RFP64:$src, addr:$op)]>; |
| def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, |
| [(X86fp_to_i64mem RFP64:$src, addr:$op)]>; |
| def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, |
| [(X86fp_to_i16mem RFP80:$src, addr:$op)]>; |
| def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, |
| [(X86fp_to_i32mem RFP80:$src, addr:$op)]>; |
| def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, |
| [(X86fp_to_i64mem RFP80:$src, addr:$op)]>; |
| } // Predicates = [HasSSE3] |
| |
| let mayStore = 1, SchedRW = [WriteStore] in { |
| def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">; |
| def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">; |
| def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">; |
| } |
| |
| // FP Stack manipulation instructions. |
| let SchedRW = [WriteMove] in { |
| def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op">; |
| def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op">; |
| def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op">; |
| def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op">; |
| } |
| |
| // Floating point constant loads. |
| let isReMaterializable = 1, SchedRW = [WriteZero] in { |
| def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, |
| [(set RFP32:$dst, fpimm0)]>; |
| def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, |
| [(set RFP32:$dst, fpimm1)]>; |
| def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, |
| [(set RFP64:$dst, fpimm0)]>; |
| def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, |
| [(set RFP64:$dst, fpimm1)]>; |
| def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, |
| [(set RFP80:$dst, fpimm0)]>; |
| def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, |
| [(set RFP80:$dst, fpimm1)]>; |
| } |
| |
| let SchedRW = [WriteFLD0] in |
| def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">; |
| |
| let SchedRW = [WriteFLD1] in |
| def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">; |
| |
| let SchedRW = [WriteFLDC], Defs = [FPSW] in { |
| def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>; |
| def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>; |
| def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>; |
| def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>; |
| def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>; |
| } // SchedRW |
| |
| // Floating point compares. |
| let SchedRW = [WriteFCom] in { |
| def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, |
| [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>; |
| def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, |
| [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>; |
| def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, |
| [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>; |
| } // SchedRW |
| } // Defs = [FPSW] |
| |
| let SchedRW = [WriteFCom] in { |
| // CC = ST(0) cmp ST(i) |
| let Defs = [EFLAGS, FPSW] in { |
| def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, |
| [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>; |
| def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, |
| [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>; |
| def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, |
| [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>; |
| } |
| |
| let Defs = [FPSW], Uses = [ST0] in { |
| def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i) |
| (outs), (ins RST:$reg), "fucom\t$reg">; |
| def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop |
| (outs), (ins RST:$reg), "fucomp\t$reg">; |
| def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop |
| (outs), (ins), "fucompp">; |
| } |
| |
| let Defs = [EFLAGS, FPSW], Uses = [ST0] in { |
| def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i) |
| (outs), (ins RST:$reg), "fucomi\t$reg">; |
| def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop |
| (outs), (ins RST:$reg), "fucompi\t$reg">; |
| } |
| |
| let Defs = [EFLAGS, FPSW] in { |
| def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg), "fcomi\t$reg">; |
| def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg), "fcompi\t$reg">; |
| } |
| } // SchedRW |
| |
| // Floating point flag ops. |
| let SchedRW = [WriteALU] in { |
| let Defs = [AX], Uses = [FPSW] in |
| def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags |
| (outs), (ins), "fnstsw\t{%ax|ax}", |
| [(set AX, (X86fp_stsw FPSW))]>; |
| let Defs = [FPSW] in |
| def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world |
| (outs), (ins i16mem:$dst), "fnstcw\t$dst", |
| [(X86fp_cwd_get16 addr:$dst)]>; |
| } // SchedRW |
| let Defs = [FPSW], mayLoad = 1 in |
| def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] |
| (outs), (ins i16mem:$dst), "fldcw\t$dst", []>, |
| Sched<[WriteLoad]>; |
| |
| // FPU control instructions |
| let SchedRW = [WriteMicrocoded] in { |
| let Defs = [FPSW] in { |
| def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>; |
| def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg), "ffree\t$reg">; |
| def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RST:$reg), "ffreep\t$reg">; |
| |
| // Clear exceptions |
| def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>; |
| } // Defs = [FPSW] |
| } // SchedRW |
| |
| // Operand-less floating-point instructions for the disassembler. |
| def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>; |
| |
| let SchedRW = [WriteMicrocoded] in { |
| let Defs = [FPSW] in { |
| def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>; |
| def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", []>; |
| def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>; |
| def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>; |
| def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>; |
| def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>; |
| def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>; |
| def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>; |
| def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>; |
| def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>; |
| def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>; |
| def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>; |
| def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>; |
| def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>; |
| def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>; |
| def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>; |
| } // Defs = [FPSW] |
| |
| def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst), |
| "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, TB, |
| Requires<[HasFXSR]>; |
| def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst), |
| "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>, |
| TB, Requires<[HasFXSR, In64BitMode]>; |
| def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src), |
| "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>, |
| TB, Requires<[HasFXSR]>; |
| def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src), |
| "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>, |
| TB, Requires<[HasFXSR, In64BitMode]>; |
| } // SchedRW |
| |
| //===----------------------------------------------------------------------===// |
| // Non-Instruction Patterns |
| //===----------------------------------------------------------------------===// |
| |
| // Required for RET of f32 / f64 / f80 values. |
| def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>; |
| def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>; |
| def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>; |
| |
| // Required for CALL which return f32 / f64 / f80 values. |
| def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>; |
| def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, |
| RFP64:$src)>; |
| def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>; |
| def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, |
| RFP80:$src)>; |
| def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, |
| RFP80:$src)>; |
| def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, |
| RFP80:$src)>; |
| |
| // Floating point constant -0.0 and -1.0 |
| def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; |
| def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; |
| def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; |
| def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; |
| def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; |
| def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; |
| |
| // Used to conv. i64 to f64 since there isn't a SSE version. |
| def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; |
| |
| // FP extensions map onto simple pseudo-value conversions if they are to/from |
| // the FP stack. |
| def : Pat<(f64 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>, |
| Requires<[FPStackf32]>; |
| def : Pat<(f80 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>, |
| Requires<[FPStackf32]>; |
| def : Pat<(f80 (fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>, |
| Requires<[FPStackf64]>; |
| |
| // FP truncations map onto simple pseudo-value conversions if they are to/from |
| // the FP stack. We have validated that only value-preserving truncations make |
| // it through isel. |
| def : Pat<(f32 (fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>, |
| Requires<[FPStackf32]>; |
| def : Pat<(f32 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>, |
| Requires<[FPStackf32]>; |
| def : Pat<(f64 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>, |
| Requires<[FPStackf64]>; |