| //===--- X86DomainReassignment.cpp - Selectively switch register classes---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass attempts to find instruction chains (closures) in one domain, |
| // and convert them to equivalent instructions in a different domain, |
| // if profitable. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Printable.h" |
| #include <bitset> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| void initializeX86DomainReassignmentPass(PassRegistry &); |
| } |
| |
| #define DEBUG_TYPE "x86-domain-reassignment" |
| |
| STATISTIC(NumClosuresConverted, "Number of closures converted by the pass"); |
| |
| static cl::opt<bool> DisableX86DomainReassignment( |
| "disable-x86-domain-reassignment", cl::Hidden, |
| cl::desc("X86: Disable Virtual Register Reassignment."), cl::init(false)); |
| |
| namespace { |
| enum RegDomain { NoDomain = -1, GPRDomain, MaskDomain, OtherDomain, NumDomains }; |
| |
| static bool isGPR(const TargetRegisterClass *RC) { |
| return X86::GR64RegClass.hasSubClassEq(RC) || |
| X86::GR32RegClass.hasSubClassEq(RC) || |
| X86::GR16RegClass.hasSubClassEq(RC) || |
| X86::GR8RegClass.hasSubClassEq(RC); |
| } |
| |
| static bool isMask(const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) { |
| return X86::VK16RegClass.hasSubClassEq(RC); |
| } |
| |
| static RegDomain getDomain(const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) { |
| if (isGPR(RC)) |
| return GPRDomain; |
| if (isMask(RC, TRI)) |
| return MaskDomain; |
| return OtherDomain; |
| } |
| |
| /// Return a register class equivalent to \p SrcRC, in \p Domain. |
| static const TargetRegisterClass *getDstRC(const TargetRegisterClass *SrcRC, |
| RegDomain Domain) { |
| assert(Domain == MaskDomain && "add domain"); |
| if (X86::GR8RegClass.hasSubClassEq(SrcRC)) |
| return &X86::VK8RegClass; |
| if (X86::GR16RegClass.hasSubClassEq(SrcRC)) |
| return &X86::VK16RegClass; |
| if (X86::GR32RegClass.hasSubClassEq(SrcRC)) |
| return &X86::VK32RegClass; |
| if (X86::GR64RegClass.hasSubClassEq(SrcRC)) |
| return &X86::VK64RegClass; |
| llvm_unreachable("add register class"); |
| return nullptr; |
| } |
| |
| /// Abstract Instruction Converter class. |
| class InstrConverterBase { |
| protected: |
| unsigned SrcOpcode; |
| |
| public: |
| InstrConverterBase(unsigned SrcOpcode) : SrcOpcode(SrcOpcode) {} |
| |
| virtual ~InstrConverterBase() {} |
| |
| /// \returns true if \p MI is legal to convert. |
| virtual bool isLegal(const MachineInstr *MI, |
| const TargetInstrInfo *TII) const { |
| assert(MI->getOpcode() == SrcOpcode && |
| "Wrong instruction passed to converter"); |
| return true; |
| } |
| |
| /// Applies conversion to \p MI. |
| /// |
| /// \returns true if \p MI is no longer need, and can be deleted. |
| virtual bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, |
| MachineRegisterInfo *MRI) const = 0; |
| |
| /// \returns the cost increment incurred by converting \p MI. |
| virtual double getExtraCost(const MachineInstr *MI, |
| MachineRegisterInfo *MRI) const = 0; |
| }; |
| |
| /// An Instruction Converter which ignores the given instruction. |
| /// For example, PHI instructions can be safely ignored since only the registers |
| /// need to change. |
| class InstrIgnore : public InstrConverterBase { |
| public: |
| InstrIgnore(unsigned SrcOpcode) : InstrConverterBase(SrcOpcode) {} |
| |
| bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, |
| MachineRegisterInfo *MRI) const override { |
| assert(isLegal(MI, TII) && "Cannot convert instruction"); |
| return false; |
| } |
| |
| double getExtraCost(const MachineInstr *MI, |
| MachineRegisterInfo *MRI) const override { |
| return 0; |
| } |
| }; |
| |
| /// An Instruction Converter which replaces an instruction with another. |
| class InstrReplacer : public InstrConverterBase { |
| public: |
| /// Opcode of the destination instruction. |
| unsigned DstOpcode; |
| |
| InstrReplacer(unsigned SrcOpcode, unsigned DstOpcode) |
| : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {} |
| |
| bool isLegal(const MachineInstr *MI, |
| const TargetInstrInfo *TII) const override { |
| if (!InstrConverterBase::isLegal(MI, TII)) |
| return false; |
| // It's illegal to replace an instruction that implicitly defines a register |
| // with an instruction that doesn't, unless that register dead. |
| for (auto &MO : MI->implicit_operands()) |
| if (MO.isReg() && MO.isDef() && !MO.isDead() && |
| !TII->get(DstOpcode).hasImplicitDefOfPhysReg(MO.getReg())) |
| return false; |
| return true; |
| } |
| |
| bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, |
| MachineRegisterInfo *MRI) const override { |
| assert(isLegal(MI, TII) && "Cannot convert instruction"); |
| MachineInstrBuilder Bld = |
| BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(DstOpcode)); |
| // Transfer explicit operands from original instruction. Implicit operands |
| // are handled by BuildMI. |
| for (auto &Op : MI->explicit_operands()) |
| Bld.add(Op); |
| return true; |
| } |
| |
| double getExtraCost(const MachineInstr *MI, |
| MachineRegisterInfo *MRI) const override { |
| // Assuming instructions have the same cost. |
| return 0; |
| } |
| }; |
| |
| /// An Instruction Converter which replaces an instruction with another, and |
| /// adds a COPY from the new instruction's destination to the old one's. |
| class InstrReplacerDstCOPY : public InstrConverterBase { |
| public: |
| unsigned DstOpcode; |
| |
| InstrReplacerDstCOPY(unsigned SrcOpcode, unsigned DstOpcode) |
| : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {} |
| |
| bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, |
| MachineRegisterInfo *MRI) const override { |
| assert(isLegal(MI, TII) && "Cannot convert instruction"); |
| MachineBasicBlock *MBB = MI->getParent(); |
| auto &DL = MI->getDebugLoc(); |
| |
| unsigned Reg = MRI->createVirtualRegister( |
| TII->getRegClass(TII->get(DstOpcode), 0, MRI->getTargetRegisterInfo(), |
| *MBB->getParent())); |
| MachineInstrBuilder Bld = BuildMI(*MBB, MI, DL, TII->get(DstOpcode), Reg); |
| for (unsigned Idx = 1, End = MI->getNumOperands(); Idx < End; ++Idx) |
| Bld.add(MI->getOperand(Idx)); |
| |
| BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::COPY)) |
| .add(MI->getOperand(0)) |
| .addReg(Reg); |
| |
| return true; |
| } |
| |
| double getExtraCost(const MachineInstr *MI, |
| MachineRegisterInfo *MRI) const override { |
| // Assuming instructions have the same cost, and that COPY is in the same |
| // domain so it will be eliminated. |
| return 0; |
| } |
| }; |
| |
| /// An Instruction Converter for replacing COPY instructions. |
| class InstrCOPYReplacer : public InstrReplacer { |
| public: |
| RegDomain DstDomain; |
| |
| InstrCOPYReplacer(unsigned SrcOpcode, RegDomain DstDomain, unsigned DstOpcode) |
| : InstrReplacer(SrcOpcode, DstOpcode), DstDomain(DstDomain) {} |
| |
| bool isLegal(const MachineInstr *MI, |
| const TargetInstrInfo *TII) const override { |
| if (!InstrConverterBase::isLegal(MI, TII)) |
| return false; |
| |
| // Don't allow copies to/flow GR8/GR16 physical registers. |
| // FIXME: Is there some better way to support this? |
| unsigned DstReg = MI->getOperand(0).getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(DstReg) && |
| (X86::GR8RegClass.contains(DstReg) || |
| X86::GR16RegClass.contains(DstReg))) |
| return false; |
| unsigned SrcReg = MI->getOperand(1).getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(SrcReg) && |
| (X86::GR8RegClass.contains(SrcReg) || |
| X86::GR16RegClass.contains(SrcReg))) |
| return false; |
| |
| return true; |
| } |
| |
| double getExtraCost(const MachineInstr *MI, |
| MachineRegisterInfo *MRI) const override { |
| assert(MI->getOpcode() == TargetOpcode::COPY && "Expected a COPY"); |
| |
| for (auto &MO : MI->operands()) { |
| // Physical registers will not be converted. Assume that converting the |
| // COPY to the destination domain will eventually result in a actual |
| // instruction. |
| if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) |
| return 1; |
| |
| RegDomain OpDomain = getDomain(MRI->getRegClass(MO.getReg()), |
| MRI->getTargetRegisterInfo()); |
| // Converting a cross domain COPY to a same domain COPY should eliminate |
| // an insturction |
| if (OpDomain == DstDomain) |
| return -1; |
| } |
| return 0; |
| } |
| }; |
| |
| /// An Instruction Converter which replaces an instruction with a COPY. |
| class InstrReplaceWithCopy : public InstrConverterBase { |
| public: |
| // Source instruction operand Index, to be used as the COPY source. |
| unsigned SrcOpIdx; |
| |
| InstrReplaceWithCopy(unsigned SrcOpcode, unsigned SrcOpIdx) |
| : InstrConverterBase(SrcOpcode), SrcOpIdx(SrcOpIdx) {} |
| |
| bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, |
| MachineRegisterInfo *MRI) const override { |
| assert(isLegal(MI, TII) && "Cannot convert instruction"); |
| BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), |
| TII->get(TargetOpcode::COPY)) |
| .add({MI->getOperand(0), MI->getOperand(SrcOpIdx)}); |
| return true; |
| } |
| |
| double getExtraCost(const MachineInstr *MI, |
| MachineRegisterInfo *MRI) const override { |
| return 0; |
| } |
| }; |
| |
| // Key type to be used by the Instruction Converters map. |
| // A converter is identified by <destination domain, source opcode> |
| typedef std::pair<int, unsigned> InstrConverterBaseKeyTy; |
| |
| typedef DenseMap<InstrConverterBaseKeyTy, InstrConverterBase *> |
| InstrConverterBaseMap; |
| |
| /// A closure is a set of virtual register representing all of the edges in |
| /// the closure, as well as all of the instructions connected by those edges. |
| /// |
| /// A closure may encompass virtual registers in the same register bank that |
| /// have different widths. For example, it may contain 32-bit GPRs as well as |
| /// 64-bit GPRs. |
| /// |
| /// A closure that computes an address (i.e. defines a virtual register that is |
| /// used in a memory operand) excludes the instructions that contain memory |
| /// operands using the address. Such an instruction will be included in a |
| /// different closure that manipulates the loaded or stored value. |
| class Closure { |
| private: |
| /// Virtual registers in the closure. |
| DenseSet<unsigned> Edges; |
| |
| /// Instructions in the closure. |
| SmallVector<MachineInstr *, 8> Instrs; |
| |
| /// Domains which this closure can legally be reassigned to. |
| std::bitset<NumDomains> LegalDstDomains; |
| |
| /// An ID to uniquely identify this closure, even when it gets |
| /// moved around |
| unsigned ID; |
| |
| public: |
| Closure(unsigned ID, std::initializer_list<RegDomain> LegalDstDomainList) : ID(ID) { |
| for (RegDomain D : LegalDstDomainList) |
| LegalDstDomains.set(D); |
| } |
| |
| /// Mark this closure as illegal for reassignment to all domains. |
| void setAllIllegal() { LegalDstDomains.reset(); } |
| |
| /// \returns true if this closure has domains which are legal to reassign to. |
| bool hasLegalDstDomain() const { return LegalDstDomains.any(); } |
| |
| /// \returns true if is legal to reassign this closure to domain \p RD. |
| bool isLegal(RegDomain RD) const { return LegalDstDomains[RD]; } |
| |
| /// Mark this closure as illegal for reassignment to domain \p RD. |
| void setIllegal(RegDomain RD) { LegalDstDomains[RD] = false; } |
| |
| bool empty() const { return Edges.empty(); } |
| |
| bool insertEdge(unsigned Reg) { |
| return Edges.insert(Reg).second; |
| } |
| |
| using const_edge_iterator = DenseSet<unsigned>::const_iterator; |
| iterator_range<const_edge_iterator> edges() const { |
| return iterator_range<const_edge_iterator>(Edges.begin(), Edges.end()); |
| } |
| |
| void addInstruction(MachineInstr *I) { |
| Instrs.push_back(I); |
| } |
| |
| ArrayRef<MachineInstr *> instructions() const { |
| return Instrs; |
| } |
| |
| LLVM_DUMP_METHOD void dump(const MachineRegisterInfo *MRI) const { |
| dbgs() << "Registers: "; |
| bool First = true; |
| for (unsigned Reg : Edges) { |
| if (!First) |
| dbgs() << ", "; |
| First = false; |
| dbgs() << printReg(Reg, MRI->getTargetRegisterInfo(), 0, MRI); |
| } |
| dbgs() << "\n" << "Instructions:"; |
| for (MachineInstr *MI : Instrs) { |
| dbgs() << "\n "; |
| MI->print(dbgs()); |
| } |
| dbgs() << "\n"; |
| } |
| |
| unsigned getID() const { |
| return ID; |
| } |
| |
| }; |
| |
| class X86DomainReassignment : public MachineFunctionPass { |
| const X86Subtarget *STI; |
| MachineRegisterInfo *MRI; |
| const X86InstrInfo *TII; |
| |
| /// All edges that are included in some closure |
| DenseSet<unsigned> EnclosedEdges; |
| |
| /// All instructions that are included in some closure. |
| DenseMap<MachineInstr *, unsigned> EnclosedInstrs; |
| |
| public: |
| static char ID; |
| |
| X86DomainReassignment() : MachineFunctionPass(ID) { |
| initializeX86DomainReassignmentPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| StringRef getPassName() const override { |
| return "X86 Domain Reassignment Pass"; |
| } |
| |
| private: |
| /// A map of available Instruction Converters. |
| InstrConverterBaseMap Converters; |
| |
| /// Initialize Converters map. |
| void initConverters(); |
| |
| /// Starting from \Reg, expand the closure as much as possible. |
| void buildClosure(Closure &, unsigned Reg); |
| |
| /// Enqueue \p Reg to be considered for addition to the closure. |
| void visitRegister(Closure &, unsigned Reg, RegDomain &Domain, |
| SmallVectorImpl<unsigned> &Worklist); |
| |
| /// Reassign the closure to \p Domain. |
| void reassign(const Closure &C, RegDomain Domain) const; |
| |
| /// Add \p MI to the closure. |
| void encloseInstr(Closure &C, MachineInstr *MI); |
| |
| /// /returns true if it is profitable to reassign the closure to \p Domain. |
| bool isReassignmentProfitable(const Closure &C, RegDomain Domain) const; |
| |
| /// Calculate the total cost of reassigning the closure to \p Domain. |
| double calculateCost(const Closure &C, RegDomain Domain) const; |
| }; |
| |
| char X86DomainReassignment::ID = 0; |
| |
| } // End anonymous namespace. |
| |
| void X86DomainReassignment::visitRegister(Closure &C, unsigned Reg, |
| RegDomain &Domain, |
| SmallVectorImpl<unsigned> &Worklist) { |
| if (EnclosedEdges.count(Reg)) |
| return; |
| |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| return; |
| |
| if (!MRI->hasOneDef(Reg)) |
| return; |
| |
| RegDomain RD = getDomain(MRI->getRegClass(Reg), MRI->getTargetRegisterInfo()); |
| // First edge in closure sets the domain. |
| if (Domain == NoDomain) |
| Domain = RD; |
| |
| if (Domain != RD) |
| return; |
| |
| Worklist.push_back(Reg); |
| } |
| |
| void X86DomainReassignment::encloseInstr(Closure &C, MachineInstr *MI) { |
| auto I = EnclosedInstrs.find(MI); |
| if (I != EnclosedInstrs.end()) { |
| if (I->second != C.getID()) |
| // Instruction already belongs to another closure, avoid conflicts between |
| // closure and mark this closure as illegal. |
| C.setAllIllegal(); |
| return; |
| } |
| |
| EnclosedInstrs[MI] = C.getID(); |
| C.addInstruction(MI); |
| |
| // Mark closure as illegal for reassignment to domains, if there is no |
| // converter for the instruction or if the converter cannot convert the |
| // instruction. |
| for (int i = 0; i != NumDomains; ++i) { |
| if (C.isLegal((RegDomain)i)) { |
| InstrConverterBase *IC = Converters.lookup({i, MI->getOpcode()}); |
| if (!IC || !IC->isLegal(MI, TII)) |
| C.setIllegal((RegDomain)i); |
| } |
| } |
| } |
| |
| double X86DomainReassignment::calculateCost(const Closure &C, |
| RegDomain DstDomain) const { |
| assert(C.isLegal(DstDomain) && "Cannot calculate cost for illegal closure"); |
| |
| double Cost = 0.0; |
| for (auto *MI : C.instructions()) |
| Cost += |
| Converters.lookup({DstDomain, MI->getOpcode()})->getExtraCost(MI, MRI); |
| return Cost; |
| } |
| |
| bool X86DomainReassignment::isReassignmentProfitable(const Closure &C, |
| RegDomain Domain) const { |
| return calculateCost(C, Domain) < 0.0; |
| } |
| |
| void X86DomainReassignment::reassign(const Closure &C, RegDomain Domain) const { |
| assert(C.isLegal(Domain) && "Cannot convert illegal closure"); |
| |
| // Iterate all instructions in the closure, convert each one using the |
| // appropriate converter. |
| SmallVector<MachineInstr *, 8> ToErase; |
| for (auto *MI : C.instructions()) |
| if (Converters.lookup({Domain, MI->getOpcode()}) |
| ->convertInstr(MI, TII, MRI)) |
| ToErase.push_back(MI); |
| |
| // Iterate all registers in the closure, replace them with registers in the |
| // destination domain. |
| for (unsigned Reg : C.edges()) { |
| MRI->setRegClass(Reg, getDstRC(MRI->getRegClass(Reg), Domain)); |
| for (auto &MO : MRI->use_operands(Reg)) { |
| if (MO.isReg()) |
| // Remove all subregister references as they are not valid in the |
| // destination domain. |
| MO.setSubReg(0); |
| } |
| } |
| |
| for (auto MI : ToErase) |
| MI->eraseFromParent(); |
| } |
| |
| /// \returns true when \p Reg is used as part of an address calculation in \p |
| /// MI. |
| static bool usedAsAddr(const MachineInstr &MI, unsigned Reg, |
| const TargetInstrInfo *TII) { |
| if (!MI.mayLoadOrStore()) |
| return false; |
| |
| const MCInstrDesc &Desc = TII->get(MI.getOpcode()); |
| int MemOpStart = X86II::getMemoryOperandNo(Desc.TSFlags); |
| if (MemOpStart == -1) |
| return false; |
| |
| MemOpStart += X86II::getOperandBias(Desc); |
| for (unsigned MemOpIdx = MemOpStart, |
| MemOpEnd = MemOpStart + X86::AddrNumOperands; |
| MemOpIdx < MemOpEnd; ++MemOpIdx) { |
| auto &Op = MI.getOperand(MemOpIdx); |
| if (Op.isReg() && Op.getReg() == Reg) |
| return true; |
| } |
| return false; |
| } |
| |
| void X86DomainReassignment::buildClosure(Closure &C, unsigned Reg) { |
| SmallVector<unsigned, 4> Worklist; |
| RegDomain Domain = NoDomain; |
| visitRegister(C, Reg, Domain, Worklist); |
| while (!Worklist.empty()) { |
| unsigned CurReg = Worklist.pop_back_val(); |
| |
| // Register already in this closure. |
| if (!C.insertEdge(CurReg)) |
| continue; |
| |
| MachineInstr *DefMI = MRI->getVRegDef(CurReg); |
| encloseInstr(C, DefMI); |
| |
| // Add register used by the defining MI to the worklist. |
| // Do not add registers which are used in address calculation, they will be |
| // added to a different closure. |
| int OpEnd = DefMI->getNumOperands(); |
| const MCInstrDesc &Desc = DefMI->getDesc(); |
| int MemOp = X86II::getMemoryOperandNo(Desc.TSFlags); |
| if (MemOp != -1) |
| MemOp += X86II::getOperandBias(Desc); |
| for (int OpIdx = 0; OpIdx < OpEnd; ++OpIdx) { |
| if (OpIdx == MemOp) { |
| // skip address calculation. |
| OpIdx += (X86::AddrNumOperands - 1); |
| continue; |
| } |
| auto &Op = DefMI->getOperand(OpIdx); |
| if (!Op.isReg() || !Op.isUse()) |
| continue; |
| visitRegister(C, Op.getReg(), Domain, Worklist); |
| } |
| |
| // Expand closure through register uses. |
| for (auto &UseMI : MRI->use_nodbg_instructions(CurReg)) { |
| // We would like to avoid converting closures which calculare addresses, |
| // as this should remain in GPRs. |
| if (usedAsAddr(UseMI, CurReg, TII)) { |
| C.setAllIllegal(); |
| continue; |
| } |
| encloseInstr(C, &UseMI); |
| |
| for (auto &DefOp : UseMI.defs()) { |
| if (!DefOp.isReg()) |
| continue; |
| |
| unsigned DefReg = DefOp.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DefReg)) { |
| C.setAllIllegal(); |
| continue; |
| } |
| visitRegister(C, DefReg, Domain, Worklist); |
| } |
| } |
| } |
| } |
| |
| void X86DomainReassignment::initConverters() { |
| Converters[{MaskDomain, TargetOpcode::PHI}] = |
| new InstrIgnore(TargetOpcode::PHI); |
| |
| Converters[{MaskDomain, TargetOpcode::IMPLICIT_DEF}] = |
| new InstrIgnore(TargetOpcode::IMPLICIT_DEF); |
| |
| Converters[{MaskDomain, TargetOpcode::INSERT_SUBREG}] = |
| new InstrReplaceWithCopy(TargetOpcode::INSERT_SUBREG, 2); |
| |
| Converters[{MaskDomain, TargetOpcode::COPY}] = |
| new InstrCOPYReplacer(TargetOpcode::COPY, MaskDomain, TargetOpcode::COPY); |
| |
| auto createReplacerDstCOPY = [&](unsigned From, unsigned To) { |
| Converters[{MaskDomain, From}] = new InstrReplacerDstCOPY(From, To); |
| }; |
| |
| createReplacerDstCOPY(X86::MOVZX32rm16, X86::KMOVWkm); |
| createReplacerDstCOPY(X86::MOVZX64rm16, X86::KMOVWkm); |
| |
| createReplacerDstCOPY(X86::MOVZX32rr16, X86::KMOVWkk); |
| createReplacerDstCOPY(X86::MOVZX64rr16, X86::KMOVWkk); |
| |
| if (STI->hasDQI()) { |
| createReplacerDstCOPY(X86::MOVZX16rm8, X86::KMOVBkm); |
| createReplacerDstCOPY(X86::MOVZX32rm8, X86::KMOVBkm); |
| createReplacerDstCOPY(X86::MOVZX64rm8, X86::KMOVBkm); |
| |
| createReplacerDstCOPY(X86::MOVZX16rr8, X86::KMOVBkk); |
| createReplacerDstCOPY(X86::MOVZX32rr8, X86::KMOVBkk); |
| createReplacerDstCOPY(X86::MOVZX64rr8, X86::KMOVBkk); |
| } |
| |
| auto createReplacer = [&](unsigned From, unsigned To) { |
| Converters[{MaskDomain, From}] = new InstrReplacer(From, To); |
| }; |
| |
| createReplacer(X86::MOV16rm, X86::KMOVWkm); |
| createReplacer(X86::MOV16mr, X86::KMOVWmk); |
| createReplacer(X86::MOV16rr, X86::KMOVWkk); |
| createReplacer(X86::SHR16ri, X86::KSHIFTRWri); |
| createReplacer(X86::SHL16ri, X86::KSHIFTLWri); |
| createReplacer(X86::NOT16r, X86::KNOTWrr); |
| createReplacer(X86::OR16rr, X86::KORWrr); |
| createReplacer(X86::AND16rr, X86::KANDWrr); |
| createReplacer(X86::XOR16rr, X86::KXORWrr); |
| |
| if (STI->hasBWI()) { |
| createReplacer(X86::MOV32rm, X86::KMOVDkm); |
| createReplacer(X86::MOV64rm, X86::KMOVQkm); |
| |
| createReplacer(X86::MOV32mr, X86::KMOVDmk); |
| createReplacer(X86::MOV64mr, X86::KMOVQmk); |
| |
| createReplacer(X86::MOV32rr, X86::KMOVDkk); |
| createReplacer(X86::MOV64rr, X86::KMOVQkk); |
| |
| createReplacer(X86::SHR32ri, X86::KSHIFTRDri); |
| createReplacer(X86::SHR64ri, X86::KSHIFTRQri); |
| |
| createReplacer(X86::SHL32ri, X86::KSHIFTLDri); |
| createReplacer(X86::SHL64ri, X86::KSHIFTLQri); |
| |
| createReplacer(X86::ADD32rr, X86::KADDDrr); |
| createReplacer(X86::ADD64rr, X86::KADDQrr); |
| |
| createReplacer(X86::NOT32r, X86::KNOTDrr); |
| createReplacer(X86::NOT64r, X86::KNOTQrr); |
| |
| createReplacer(X86::OR32rr, X86::KORDrr); |
| createReplacer(X86::OR64rr, X86::KORQrr); |
| |
| createReplacer(X86::AND32rr, X86::KANDDrr); |
| createReplacer(X86::AND64rr, X86::KANDQrr); |
| |
| createReplacer(X86::ANDN32rr, X86::KANDNDrr); |
| createReplacer(X86::ANDN64rr, X86::KANDNQrr); |
| |
| createReplacer(X86::XOR32rr, X86::KXORDrr); |
| createReplacer(X86::XOR64rr, X86::KXORQrr); |
| |
| // TODO: KTEST is not a replacement for TEST due to flag differences. Need |
| // to prove only Z flag is used. |
| //createReplacer(X86::TEST32rr, X86::KTESTDrr); |
| //createReplacer(X86::TEST64rr, X86::KTESTQrr); |
| } |
| |
| if (STI->hasDQI()) { |
| createReplacer(X86::ADD8rr, X86::KADDBrr); |
| createReplacer(X86::ADD16rr, X86::KADDWrr); |
| |
| createReplacer(X86::AND8rr, X86::KANDBrr); |
| |
| createReplacer(X86::MOV8rm, X86::KMOVBkm); |
| createReplacer(X86::MOV8mr, X86::KMOVBmk); |
| createReplacer(X86::MOV8rr, X86::KMOVBkk); |
| |
| createReplacer(X86::NOT8r, X86::KNOTBrr); |
| |
| createReplacer(X86::OR8rr, X86::KORBrr); |
| |
| createReplacer(X86::SHR8ri, X86::KSHIFTRBri); |
| createReplacer(X86::SHL8ri, X86::KSHIFTLBri); |
| |
| // TODO: KTEST is not a replacement for TEST due to flag differences. Need |
| // to prove only Z flag is used. |
| //createReplacer(X86::TEST8rr, X86::KTESTBrr); |
| //createReplacer(X86::TEST16rr, X86::KTESTWrr); |
| |
| createReplacer(X86::XOR8rr, X86::KXORBrr); |
| } |
| } |
| |
| bool X86DomainReassignment::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| if (DisableX86DomainReassignment) |
| return false; |
| |
| LLVM_DEBUG( |
| dbgs() << "***** Machine Function before Domain Reassignment *****\n"); |
| LLVM_DEBUG(MF.print(dbgs())); |
| |
| STI = &MF.getSubtarget<X86Subtarget>(); |
| // GPR->K is the only transformation currently supported, bail out early if no |
| // AVX512. |
| if (!STI->hasAVX512()) |
| return false; |
| |
| MRI = &MF.getRegInfo(); |
| assert(MRI->isSSA() && "Expected MIR to be in SSA form"); |
| |
| TII = STI->getInstrInfo(); |
| initConverters(); |
| bool Changed = false; |
| |
| EnclosedEdges.clear(); |
| EnclosedInstrs.clear(); |
| |
| std::vector<Closure> Closures; |
| |
| // Go over all virtual registers and calculate a closure. |
| unsigned ClosureID = 0; |
| for (unsigned Idx = 0; Idx < MRI->getNumVirtRegs(); ++Idx) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(Idx); |
| |
| // GPR only current source domain supported. |
| if (!isGPR(MRI->getRegClass(Reg))) |
| continue; |
| |
| // Register already in closure. |
| if (EnclosedEdges.count(Reg)) |
| continue; |
| |
| // Calculate closure starting with Reg. |
| Closure C(ClosureID++, {MaskDomain}); |
| buildClosure(C, Reg); |
| |
| // Collect all closures that can potentially be converted. |
| if (!C.empty() && C.isLegal(MaskDomain)) |
| Closures.push_back(std::move(C)); |
| } |
| |
| for (Closure &C : Closures) { |
| LLVM_DEBUG(C.dump(MRI)); |
| if (isReassignmentProfitable(C, MaskDomain)) { |
| reassign(C, MaskDomain); |
| ++NumClosuresConverted; |
| Changed = true; |
| } |
| } |
| |
| DeleteContainerSeconds(Converters); |
| |
| LLVM_DEBUG( |
| dbgs() << "***** Machine Function after Domain Reassignment *****\n"); |
| LLVM_DEBUG(MF.print(dbgs())); |
| |
| return Changed; |
| } |
| |
| INITIALIZE_PASS(X86DomainReassignment, "x86-domain-reassignment", |
| "X86 Domain Reassignment Pass", false, false) |
| |
| /// Returns an instance of the Domain Reassignment pass. |
| FunctionPass *llvm::createX86DomainReassignmentPass() { |
| return new X86DomainReassignment(); |
| } |