| //===--- RDFDeadCode.cpp --------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // RDF-based generic dead code elimination. |
| |
| #include "RDFDeadCode.h" |
| #include "RDFGraph.h" |
| #include "RDFLiveness.h" |
| |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| |
| #include <queue> |
| |
| using namespace llvm; |
| using namespace rdf; |
| |
| // This drastically improves execution time in "collect" over using |
| // SetVector as a work queue, and popping the first element from it. |
| template<typename T> struct DeadCodeElimination::SetQueue { |
| SetQueue() : Set(), Queue() {} |
| |
| bool empty() const { |
| return Queue.empty(); |
| } |
| T pop_front() { |
| T V = Queue.front(); |
| Queue.pop(); |
| Set.erase(V); |
| return V; |
| } |
| void push_back(T V) { |
| if (Set.count(V)) |
| return; |
| Queue.push(V); |
| Set.insert(V); |
| } |
| |
| private: |
| DenseSet<T> Set; |
| std::queue<T> Queue; |
| }; |
| |
| |
| // Check if the given instruction has observable side-effects, i.e. if |
| // it should be considered "live". It is safe for this function to be |
| // overly conservative (i.e. return "true" for all instructions), but it |
| // is not safe to return "false" for an instruction that should not be |
| // considered removable. |
| bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const { |
| if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn()) |
| return true; |
| if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() || |
| MI->isPosition()) |
| return true; |
| if (MI->isPHI()) |
| return false; |
| for (auto &Op : MI->operands()) { |
| if (Op.isReg() && MRI.isReserved(Op.getReg())) |
| return true; |
| if (Op.isRegMask()) { |
| const uint32_t *BM = Op.getRegMask(); |
| for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) { |
| if (BM[R/32] & (1u << (R%32))) |
| continue; |
| if (MRI.isReserved(R)) |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA, |
| SetQueue<NodeId> &WorkQ) { |
| if (!DFG.IsCode<NodeAttrs::Stmt>(IA)) |
| return; |
| if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode())) |
| return; |
| for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) { |
| if (!LiveNodes.count(RA.Id)) |
| WorkQ.push_back(RA.Id); |
| } |
| } |
| |
| void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA, |
| SetQueue<NodeId> &WorkQ) { |
| NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); |
| for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { |
| if (!LiveNodes.count(UA.Id)) |
| WorkQ.push_back(UA.Id); |
| } |
| for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA)) |
| LiveNodes.insert(TA.Id); |
| } |
| |
| void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA, |
| SetQueue<NodeId> &WorkQ) { |
| for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) { |
| if (!LiveNodes.count(DA.Id)) |
| WorkQ.push_back(DA.Id); |
| } |
| } |
| |
| // Traverse the DFG and collect the set dead RefNodes and the set of |
| // dead instructions. Return "true" if any of these sets is non-empty, |
| // "false" otherwise. |
| bool DeadCodeElimination::collect() { |
| // This function works by first finding all live nodes. The dead nodes |
| // are then the complement of the set of live nodes. |
| // |
| // Assume that all nodes are dead. Identify instructions which must be |
| // considered live, i.e. instructions with observable side-effects, such |
| // as calls and stores. All arguments of such instructions are considered |
| // live. For each live def, all operands used in the corresponding |
| // instruction are considered live. For each live use, all its reaching |
| // defs are considered live. |
| LiveNodes.clear(); |
| SetQueue<NodeId> WorkQ; |
| for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) |
| for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) |
| scanInstr(IA, WorkQ); |
| |
| while (!WorkQ.empty()) { |
| NodeId N = WorkQ.pop_front(); |
| LiveNodes.insert(N); |
| auto RA = DFG.addr<RefNode*>(N); |
| if (DFG.IsDef(RA)) |
| processDef(RA, WorkQ); |
| else |
| processUse(RA, WorkQ); |
| } |
| |
| if (trace()) { |
| dbgs() << "Live nodes:\n"; |
| for (NodeId N : LiveNodes) { |
| auto RA = DFG.addr<RefNode*>(N); |
| dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n"; |
| } |
| } |
| |
| auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool { |
| for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG)) |
| if (LiveNodes.count(DA.Id)) |
| return false; |
| return true; |
| }; |
| |
| for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { |
| for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { |
| for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) |
| if (!LiveNodes.count(RA.Id)) |
| DeadNodes.insert(RA.Id); |
| if (DFG.IsCode<NodeAttrs::Stmt>(IA)) |
| if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode())) |
| continue; |
| if (IsDead(IA)) { |
| DeadInstrs.insert(IA.Id); |
| if (trace()) |
| dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n"; |
| } |
| } |
| } |
| |
| return !DeadNodes.empty(); |
| } |
| |
| // Erase the nodes given in the Nodes set from DFG. In addition to removing |
| // them from the DFG, if a node corresponds to a statement, the corresponding |
| // machine instruction is erased from the function. |
| bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) { |
| if (Nodes.empty()) |
| return false; |
| |
| // Prepare the actual set of ref nodes to remove: ref nodes from Nodes |
| // are included directly, for each InstrNode in Nodes, include the set |
| // of all RefNodes from it. |
| NodeList DRNs, DINs; |
| for (auto I : Nodes) { |
| auto BA = DFG.addr<NodeBase*>(I); |
| uint16_t Type = BA.Addr->getType(); |
| if (Type == NodeAttrs::Ref) { |
| DRNs.push_back(DFG.addr<RefNode*>(I)); |
| continue; |
| } |
| |
| // If it's a code node, add all ref nodes from it. |
| uint16_t Kind = BA.Addr->getKind(); |
| if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) { |
| for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG)) |
| DRNs.push_back(N); |
| DINs.push_back(DFG.addr<InstrNode*>(I)); |
| } else { |
| llvm_unreachable("Unexpected code node"); |
| return false; |
| } |
| } |
| |
| // Sort the list so that use nodes are removed first. This makes the |
| // "unlink" functions a bit faster. |
| auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool { |
| uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind(); |
| if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def) |
| return true; |
| if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use) |
| return false; |
| return A.Id < B.Id; |
| }; |
| llvm::sort(DRNs.begin(), DRNs.end(), UsesFirst); |
| |
| if (trace()) |
| dbgs() << "Removing dead ref nodes:\n"; |
| for (NodeAddr<RefNode*> RA : DRNs) { |
| if (trace()) |
| dbgs() << " " << PrintNode<RefNode*>(RA, DFG) << '\n'; |
| if (DFG.IsUse(RA)) |
| DFG.unlinkUse(RA, true); |
| else if (DFG.IsDef(RA)) |
| DFG.unlinkDef(RA, true); |
| } |
| |
| // Now, remove all dead instruction nodes. |
| for (NodeAddr<InstrNode*> IA : DINs) { |
| NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| BA.Addr->removeMember(IA, DFG); |
| if (!DFG.IsCode<NodeAttrs::Stmt>(IA)) |
| continue; |
| |
| MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); |
| if (trace()) |
| dbgs() << "erasing: " << *MI; |
| MI->eraseFromParent(); |
| } |
| return true; |
| } |