| //===- HexagonSplitDouble.cpp ---------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "hsdr" |
| |
| #include "HexagonInstrInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <limits> |
| #include <map> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| |
| FunctionPass *createHexagonSplitDoubleRegs(); |
| void initializeHexagonSplitDoubleRegsPass(PassRegistry&); |
| |
| } // end namespace llvm |
| |
| static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1), |
| cl::desc("Maximum number of split partitions")); |
| static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true), |
| cl::desc("Do not split loads or stores")); |
| static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false), |
| cl::desc("Split all partitions")); |
| |
| namespace { |
| |
| class HexagonSplitDoubleRegs : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {} |
| |
| StringRef getPassName() const override { |
| return "Hexagon Split Double Registers"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| private: |
| static const TargetRegisterClass *const DoubleRC; |
| |
| const HexagonRegisterInfo *TRI = nullptr; |
| const HexagonInstrInfo *TII = nullptr; |
| const MachineLoopInfo *MLI; |
| MachineRegisterInfo *MRI; |
| |
| using USet = std::set<unsigned>; |
| using UUSetMap = std::map<unsigned, USet>; |
| using UUPair = std::pair<unsigned, unsigned>; |
| using UUPairMap = std::map<unsigned, UUPair>; |
| using LoopRegMap = std::map<const MachineLoop *, USet>; |
| |
| bool isInduction(unsigned Reg, LoopRegMap &IRM) const; |
| bool isVolatileInstr(const MachineInstr *MI) const; |
| bool isFixedInstr(const MachineInstr *MI) const; |
| void partitionRegisters(UUSetMap &P2Rs); |
| int32_t profit(const MachineInstr *MI) const; |
| int32_t profit(unsigned Reg) const; |
| bool isProfitable(const USet &Part, LoopRegMap &IRM) const; |
| |
| void collectIndRegsForLoop(const MachineLoop *L, USet &Rs); |
| void collectIndRegs(LoopRegMap &IRM); |
| |
| void createHalfInstr(unsigned Opc, MachineInstr *MI, |
| const UUPairMap &PairMap, unsigned SubR); |
| void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap); |
| void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap); |
| void splitCombine(MachineInstr *MI, const UUPairMap &PairMap); |
| void splitExt(MachineInstr *MI, const UUPairMap &PairMap); |
| void splitShift(MachineInstr *MI, const UUPairMap &PairMap); |
| void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap); |
| bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap); |
| void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap); |
| void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap); |
| bool splitPartition(const USet &Part); |
| |
| static int Counter; |
| |
| static void dump_partition(raw_ostream&, const USet&, |
| const TargetRegisterInfo&); |
| }; |
| |
| } // end anonymous namespace |
| |
| char HexagonSplitDoubleRegs::ID; |
| int HexagonSplitDoubleRegs::Counter = 0; |
| const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC = |
| &Hexagon::DoubleRegsRegClass; |
| |
| INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double", |
| "Hexagon Split Double Registers", false, false) |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os, |
| const USet &Part, const TargetRegisterInfo &TRI) { |
| dbgs() << '{'; |
| for (auto I : Part) |
| dbgs() << ' ' << printReg(I, &TRI); |
| dbgs() << " }"; |
| } |
| #endif |
| |
| bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const { |
| for (auto I : IRM) { |
| const USet &Rs = I.second; |
| if (Rs.find(Reg) != Rs.end()) |
| return true; |
| } |
| return false; |
| } |
| |
| bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const { |
| for (auto &I : MI->memoperands()) |
| if (I->isVolatile()) |
| return true; |
| return false; |
| } |
| |
| bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const { |
| if (MI->mayLoad() || MI->mayStore()) |
| if (MemRefsFixed || isVolatileInstr(MI)) |
| return true; |
| if (MI->isDebugInstr()) |
| return false; |
| |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| default: |
| return true; |
| |
| case TargetOpcode::PHI: |
| case TargetOpcode::COPY: |
| break; |
| |
| case Hexagon::L2_loadrd_io: |
| // Not handling stack stores (only reg-based addresses). |
| if (MI->getOperand(1).isReg()) |
| break; |
| return true; |
| case Hexagon::S2_storerd_io: |
| // Not handling stack stores (only reg-based addresses). |
| if (MI->getOperand(0).isReg()) |
| break; |
| return true; |
| case Hexagon::L2_loadrd_pi: |
| case Hexagon::S2_storerd_pi: |
| |
| case Hexagon::A2_tfrpi: |
| case Hexagon::A2_combineii: |
| case Hexagon::A4_combineir: |
| case Hexagon::A4_combineii: |
| case Hexagon::A4_combineri: |
| case Hexagon::A2_combinew: |
| case Hexagon::CONST64: |
| |
| case Hexagon::A2_sxtw: |
| |
| case Hexagon::A2_andp: |
| case Hexagon::A2_orp: |
| case Hexagon::A2_xorp: |
| case Hexagon::S2_asl_i_p_or: |
| case Hexagon::S2_asl_i_p: |
| case Hexagon::S2_asr_i_p: |
| case Hexagon::S2_lsr_i_p: |
| break; |
| } |
| |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg()) |
| continue; |
| unsigned R = Op.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(R)) |
| return true; |
| } |
| return false; |
| } |
| |
| void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) { |
| using UUMap = std::map<unsigned, unsigned>; |
| using UVect = std::vector<unsigned>; |
| |
| unsigned NumRegs = MRI->getNumVirtRegs(); |
| BitVector DoubleRegs(NumRegs); |
| for (unsigned i = 0; i < NumRegs; ++i) { |
| unsigned R = TargetRegisterInfo::index2VirtReg(i); |
| if (MRI->getRegClass(R) == DoubleRC) |
| DoubleRegs.set(i); |
| } |
| |
| BitVector FixedRegs(NumRegs); |
| for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { |
| unsigned R = TargetRegisterInfo::index2VirtReg(x); |
| MachineInstr *DefI = MRI->getVRegDef(R); |
| // In some cases a register may exist, but never be defined or used. |
| // It should never appear anywhere, but mark it as "fixed", just to be |
| // safe. |
| if (!DefI || isFixedInstr(DefI)) |
| FixedRegs.set(x); |
| } |
| |
| UUSetMap AssocMap; |
| for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { |
| if (FixedRegs[x]) |
| continue; |
| unsigned R = TargetRegisterInfo::index2VirtReg(x); |
| LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~"); |
| USet &Asc = AssocMap[R]; |
| for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end(); |
| U != Z; ++U) { |
| MachineOperand &Op = *U; |
| MachineInstr *UseI = Op.getParent(); |
| if (isFixedInstr(UseI)) |
| continue; |
| for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) { |
| MachineOperand &MO = UseI->getOperand(i); |
| // Skip non-registers or registers with subregisters. |
| if (&MO == &Op || !MO.isReg() || MO.getSubReg()) |
| continue; |
| unsigned T = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(T)) { |
| FixedRegs.set(x); |
| continue; |
| } |
| if (MRI->getRegClass(T) != DoubleRC) |
| continue; |
| unsigned u = TargetRegisterInfo::virtReg2Index(T); |
| if (FixedRegs[u]) |
| continue; |
| LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI)); |
| Asc.insert(T); |
| // Make it symmetric. |
| AssocMap[T].insert(R); |
| } |
| } |
| LLVM_DEBUG(dbgs() << '\n'); |
| } |
| |
| UUMap R2P; |
| unsigned NextP = 1; |
| USet Visited; |
| for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { |
| unsigned R = TargetRegisterInfo::index2VirtReg(x); |
| if (Visited.count(R)) |
| continue; |
| // Create a new partition for R. |
| unsigned ThisP = FixedRegs[x] ? 0 : NextP++; |
| UVect WorkQ; |
| WorkQ.push_back(R); |
| for (unsigned i = 0; i < WorkQ.size(); ++i) { |
| unsigned T = WorkQ[i]; |
| if (Visited.count(T)) |
| continue; |
| R2P[T] = ThisP; |
| Visited.insert(T); |
| // Add all registers associated with T. |
| USet &Asc = AssocMap[T]; |
| for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J) |
| WorkQ.push_back(*J); |
| } |
| } |
| |
| for (auto I : R2P) |
| P2Rs[I.second].insert(I.first); |
| } |
| |
| static inline int32_t profitImm(unsigned Imm) { |
| int32_t P = 0; |
| if (Imm == 0 || Imm == 0xFFFFFFFF) |
| P += 10; |
| return P; |
| } |
| |
| int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const { |
| unsigned ImmX = 0; |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case TargetOpcode::PHI: |
| for (const auto &Op : MI->operands()) |
| if (!Op.getSubReg()) |
| return 0; |
| return 10; |
| case TargetOpcode::COPY: |
| if (MI->getOperand(1).getSubReg() != 0) |
| return 10; |
| return 0; |
| |
| case Hexagon::L2_loadrd_io: |
| case Hexagon::S2_storerd_io: |
| return -1; |
| case Hexagon::L2_loadrd_pi: |
| case Hexagon::S2_storerd_pi: |
| return 2; |
| |
| case Hexagon::A2_tfrpi: |
| case Hexagon::CONST64: { |
| uint64_t D = MI->getOperand(1).getImm(); |
| unsigned Lo = D & 0xFFFFFFFFULL; |
| unsigned Hi = D >> 32; |
| return profitImm(Lo) + profitImm(Hi); |
| } |
| case Hexagon::A2_combineii: |
| case Hexagon::A4_combineii: { |
| const MachineOperand &Op1 = MI->getOperand(1); |
| const MachineOperand &Op2 = MI->getOperand(2); |
| int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0; |
| int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0; |
| return Prof1 + Prof2; |
| } |
| case Hexagon::A4_combineri: |
| ImmX++; |
| // Fall through into A4_combineir. |
| LLVM_FALLTHROUGH; |
| case Hexagon::A4_combineir: { |
| ImmX++; |
| const MachineOperand &OpX = MI->getOperand(ImmX); |
| if (OpX.isImm()) { |
| int64_t V = OpX.getImm(); |
| if (V == 0 || V == -1) |
| return 10; |
| } |
| // Fall through into A2_combinew. |
| LLVM_FALLTHROUGH; |
| } |
| case Hexagon::A2_combinew: |
| return 2; |
| |
| case Hexagon::A2_sxtw: |
| return 3; |
| |
| case Hexagon::A2_andp: |
| case Hexagon::A2_orp: |
| case Hexagon::A2_xorp: { |
| unsigned Rs = MI->getOperand(1).getReg(); |
| unsigned Rt = MI->getOperand(2).getReg(); |
| return profit(Rs) + profit(Rt); |
| } |
| |
| case Hexagon::S2_asl_i_p_or: { |
| unsigned S = MI->getOperand(3).getImm(); |
| if (S == 0 || S == 32) |
| return 10; |
| return -1; |
| } |
| case Hexagon::S2_asl_i_p: |
| case Hexagon::S2_asr_i_p: |
| case Hexagon::S2_lsr_i_p: |
| unsigned S = MI->getOperand(2).getImm(); |
| if (S == 0 || S == 32) |
| return 10; |
| if (S == 16) |
| return 5; |
| if (S == 48) |
| return 7; |
| return -10; |
| } |
| |
| return 0; |
| } |
| |
| int32_t HexagonSplitDoubleRegs::profit(unsigned Reg) const { |
| assert(TargetRegisterInfo::isVirtualRegister(Reg)); |
| |
| const MachineInstr *DefI = MRI->getVRegDef(Reg); |
| switch (DefI->getOpcode()) { |
| case Hexagon::A2_tfrpi: |
| case Hexagon::CONST64: |
| case Hexagon::A2_combineii: |
| case Hexagon::A4_combineii: |
| case Hexagon::A4_combineri: |
| case Hexagon::A4_combineir: |
| case Hexagon::A2_combinew: |
| return profit(DefI); |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM) |
| const { |
| unsigned FixedNum = 0, LoopPhiNum = 0; |
| int32_t TotalP = 0; |
| |
| for (unsigned DR : Part) { |
| MachineInstr *DefI = MRI->getVRegDef(DR); |
| int32_t P = profit(DefI); |
| if (P == std::numeric_limits<int>::min()) |
| return false; |
| TotalP += P; |
| // Reduce the profitability of splitting induction registers. |
| if (isInduction(DR, IRM)) |
| TotalP -= 30; |
| |
| for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); |
| U != W; ++U) { |
| MachineInstr *UseI = U->getParent(); |
| if (isFixedInstr(UseI)) { |
| FixedNum++; |
| // Calculate the cost of generating REG_SEQUENCE instructions. |
| for (auto &Op : UseI->operands()) { |
| if (Op.isReg() && Part.count(Op.getReg())) |
| if (Op.getSubReg()) |
| TotalP -= 2; |
| } |
| continue; |
| } |
| // If a register from this partition is used in a fixed instruction, |
| // and there is also a register in this partition that is used in |
| // a loop phi node, then decrease the splitting profit as this can |
| // confuse the modulo scheduler. |
| if (UseI->isPHI()) { |
| const MachineBasicBlock *PB = UseI->getParent(); |
| const MachineLoop *L = MLI->getLoopFor(PB); |
| if (L && L->getHeader() == PB) |
| LoopPhiNum++; |
| } |
| // Splittable instruction. |
| int32_t P = profit(UseI); |
| if (P == std::numeric_limits<int>::min()) |
| return false; |
| TotalP += P; |
| } |
| } |
| |
| if (FixedNum > 0 && LoopPhiNum > 0) |
| TotalP -= 20*LoopPhiNum; |
| |
| LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n'); |
| if (SplitAll) |
| return true; |
| return TotalP > 0; |
| } |
| |
| void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L, |
| USet &Rs) { |
| const MachineBasicBlock *HB = L->getHeader(); |
| const MachineBasicBlock *LB = L->getLoopLatch(); |
| if (!HB || !LB) |
| return; |
| |
| // Examine the latch branch. Expect it to be a conditional branch to |
| // the header (either "br-cond header" or "br-cond exit; br header"). |
| MachineBasicBlock *TB = nullptr, *FB = nullptr; |
| MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB); |
| SmallVector<MachineOperand,2> Cond; |
| bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false); |
| // Only analyzable conditional branches. HII::analyzeBranch will put |
| // the branch opcode as the first element of Cond, and the predicate |
| // operand as the second. |
| if (BadLB || Cond.size() != 2) |
| return; |
| // Only simple jump-conditional (with or without negation). |
| if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm())) |
| return; |
| // Must go to the header. |
| if (TB != HB && FB != HB) |
| return; |
| assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch"); |
| // Expect a predicate register. |
| unsigned PR = Cond[1].getReg(); |
| assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass); |
| |
| // Get the registers on which the loop controlling compare instruction |
| // depends. |
| unsigned CmpR1 = 0, CmpR2 = 0; |
| const MachineInstr *CmpI = MRI->getVRegDef(PR); |
| while (CmpI->getOpcode() == Hexagon::C2_not) |
| CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg()); |
| |
| int Mask = 0, Val = 0; |
| bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val); |
| if (!OkCI) |
| return; |
| // Eliminate non-double input registers. |
| if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC) |
| CmpR1 = 0; |
| if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC) |
| CmpR2 = 0; |
| if (!CmpR1 && !CmpR2) |
| return; |
| |
| // Now examine the top of the loop: the phi nodes that could poten- |
| // tially define loop induction registers. The registers defined by |
| // such a phi node would be used in a 64-bit add, which then would |
| // be used in the loop compare instruction. |
| |
| // Get the set of all double registers defined by phi nodes in the |
| // loop header. |
| using UVect = std::vector<unsigned>; |
| |
| UVect DP; |
| for (auto &MI : *HB) { |
| if (!MI.isPHI()) |
| break; |
| const MachineOperand &MD = MI.getOperand(0); |
| unsigned R = MD.getReg(); |
| if (MRI->getRegClass(R) == DoubleRC) |
| DP.push_back(R); |
| } |
| if (DP.empty()) |
| return; |
| |
| auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool { |
| for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end(); |
| I != E; ++I) { |
| const MachineInstr *UseI = I->getParent(); |
| if (UseI->getOpcode() != Hexagon::A2_addp) |
| continue; |
| // Get the output from the add. If it is one of the inputs to the |
| // loop-controlling compare instruction, then R is likely an induc- |
| // tion register. |
| unsigned T = UseI->getOperand(0).getReg(); |
| if (T == CmpR1 || T == CmpR2) |
| return false; |
| } |
| return true; |
| }; |
| UVect::iterator End = llvm::remove_if(DP, NoIndOp); |
| Rs.insert(DP.begin(), End); |
| Rs.insert(CmpR1); |
| Rs.insert(CmpR2); |
| |
| LLVM_DEBUG({ |
| dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: "; |
| dump_partition(dbgs(), Rs, *TRI); |
| dbgs() << '\n'; |
| }); |
| } |
| |
| void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) { |
| using LoopVector = std::vector<MachineLoop *>; |
| |
| LoopVector WorkQ; |
| |
| for (auto I : *MLI) |
| WorkQ.push_back(I); |
| for (unsigned i = 0; i < WorkQ.size(); ++i) { |
| for (auto I : *WorkQ[i]) |
| WorkQ.push_back(I); |
| } |
| |
| USet Rs; |
| for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) { |
| MachineLoop *L = WorkQ[i]; |
| Rs.clear(); |
| collectIndRegsForLoop(L, Rs); |
| if (!Rs.empty()) |
| IRM.insert(std::make_pair(L, Rs)); |
| } |
| } |
| |
| void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI, |
| const UUPairMap &PairMap, unsigned SubR) { |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc)); |
| |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg()) { |
| NewI->addOperand(Op); |
| continue; |
| } |
| // For register operands, set the subregister. |
| unsigned R = Op.getReg(); |
| unsigned SR = Op.getSubReg(); |
| bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R); |
| bool isKill = Op.isKill(); |
| if (isVirtReg && MRI->getRegClass(R) == DoubleRC) { |
| isKill = false; |
| UUPairMap::const_iterator F = PairMap.find(R); |
| if (F == PairMap.end()) { |
| SR = SubR; |
| } else { |
| const UUPair &P = F->second; |
| R = (SubR == Hexagon::isub_lo) ? P.first : P.second; |
| SR = 0; |
| } |
| } |
| auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill, |
| Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(), |
| Op.isInternalRead()); |
| NewI->addOperand(CO); |
| } |
| } |
| |
| void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| bool Load = MI->mayLoad(); |
| unsigned OrigOpc = MI->getOpcode(); |
| bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi || |
| OrigOpc == Hexagon::S2_storerd_pi); |
| MachineInstr *LowI, *HighI; |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| // Index of the base-address-register operand. |
| unsigned AdrX = PostInc ? (Load ? 2 : 1) |
| : (Load ? 1 : 0); |
| MachineOperand &AdrOp = MI->getOperand(AdrX); |
| unsigned RSA = getRegState(AdrOp); |
| MachineOperand &ValOp = Load ? MI->getOperand(0) |
| : (PostInc ? MI->getOperand(3) |
| : MI->getOperand(2)); |
| UUPairMap::const_iterator F = PairMap.find(ValOp.getReg()); |
| assert(F != PairMap.end()); |
| |
| if (Load) { |
| const UUPair &P = F->second; |
| int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm(); |
| LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first) |
| .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) |
| .addImm(Off); |
| HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second) |
| .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) |
| .addImm(Off+4); |
| } else { |
| const UUPair &P = F->second; |
| int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm(); |
| LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) |
| .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) |
| .addImm(Off) |
| .addReg(P.first); |
| HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) |
| .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) |
| .addImm(Off+4) |
| .addReg(P.second); |
| } |
| |
| if (PostInc) { |
| // Create the increment of the address register. |
| int64_t Inc = Load ? MI->getOperand(3).getImm() |
| : MI->getOperand(2).getImm(); |
| MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0); |
| const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg()); |
| unsigned NewR = MRI->createVirtualRegister(RC); |
| assert(!UpdOp.getSubReg() && "Def operand with subreg"); |
| BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR) |
| .addReg(AdrOp.getReg(), RSA) |
| .addImm(Inc); |
| MRI->replaceRegWith(UpdOp.getReg(), NewR); |
| // The original instruction will be deleted later. |
| } |
| |
| // Generate a new pair of memory-operands. |
| MachineFunction &MF = *B.getParent(); |
| for (auto &MO : MI->memoperands()) { |
| const MachinePointerInfo &Ptr = MO->getPointerInfo(); |
| MachineMemOperand::Flags F = MO->getFlags(); |
| int A = MO->getAlignment(); |
| |
| auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A); |
| LowI->addMemOperand(MF, Tmp1); |
| auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4)); |
| HighI->addMemOperand(MF, Tmp2); |
| } |
| } |
| |
| void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| MachineOperand &Op0 = MI->getOperand(0); |
| MachineOperand &Op1 = MI->getOperand(1); |
| assert(Op0.isReg() && Op1.isImm()); |
| uint64_t V = Op1.getImm(); |
| |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); |
| assert(F != PairMap.end()); |
| const UUPair &P = F->second; |
| |
| // The operand to A2_tfrsi can only have 32 significant bits. Immediate |
| // values in MachineOperand are stored as 64-bit integers, and so the |
| // value -1 may be represented either as 64-bit -1, or 4294967295. Both |
| // will have the 32 higher bits truncated in the end, but -1 will remain |
| // as -1, while the latter may appear to be a large unsigned value |
| // requiring a constant extender. The casting to int32_t will select the |
| // former representation. (The same reasoning applies to all 32-bit |
| // values.) |
| BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) |
| .addImm(int32_t(V & 0xFFFFFFFFULL)); |
| BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) |
| .addImm(int32_t(V >> 32)); |
| } |
| |
| void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| MachineOperand &Op0 = MI->getOperand(0); |
| MachineOperand &Op1 = MI->getOperand(1); |
| MachineOperand &Op2 = MI->getOperand(2); |
| assert(Op0.isReg()); |
| |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); |
| assert(F != PairMap.end()); |
| const UUPair &P = F->second; |
| |
| if (!Op1.isReg()) { |
| BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) |
| .add(Op1); |
| } else { |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second) |
| .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg()); |
| } |
| |
| if (!Op2.isReg()) { |
| BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) |
| .add(Op2); |
| } else { |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) |
| .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg()); |
| } |
| } |
| |
| void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| MachineOperand &Op0 = MI->getOperand(0); |
| MachineOperand &Op1 = MI->getOperand(1); |
| assert(Op0.isReg() && Op1.isReg()); |
| |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); |
| assert(F != PairMap.end()); |
| const UUPair &P = F->second; |
| unsigned RS = getRegState(Op1); |
| |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg()); |
| BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second) |
| .addReg(Op1.getReg(), RS, Op1.getSubReg()) |
| .addImm(31); |
| } |
| |
| void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| using namespace Hexagon; |
| |
| MachineOperand &Op0 = MI->getOperand(0); |
| MachineOperand &Op1 = MI->getOperand(1); |
| MachineOperand &Op2 = MI->getOperand(2); |
| assert(Op0.isReg() && Op1.isReg() && Op2.isImm()); |
| int64_t Sh64 = Op2.getImm(); |
| assert(Sh64 >= 0 && Sh64 < 64); |
| unsigned S = Sh64; |
| |
| UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); |
| assert(F != PairMap.end()); |
| const UUPair &P = F->second; |
| unsigned LoR = P.first; |
| unsigned HiR = P.second; |
| |
| unsigned Opc = MI->getOpcode(); |
| bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p); |
| bool Left = !Right; |
| bool Signed = (Opc == S2_asr_i_p); |
| |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| unsigned RS = getRegState(Op1); |
| unsigned ShiftOpc = Left ? S2_asl_i_r |
| : (Signed ? S2_asr_i_r : S2_lsr_i_r); |
| unsigned LoSR = isub_lo; |
| unsigned HiSR = isub_hi; |
| |
| if (S == 0) { |
| // No shift, subregister copy. |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR) |
| .addReg(Op1.getReg(), RS, HiSR); |
| } else if (S < 32) { |
| const TargetRegisterClass *IntRC = &IntRegsRegClass; |
| unsigned TmpR = MRI->createVirtualRegister(IntRC); |
| // Expansion: |
| // Shift left: DR = shl R, #s |
| // LoR = shl R.lo, #s |
| // TmpR = extractu R.lo, #s, #32-s |
| // HiR = or (TmpR, asl(R.hi, #s)) |
| // Shift right: DR = shr R, #s |
| // HiR = shr R.hi, #s |
| // TmpR = shr R.lo, #s |
| // LoR = insert TmpR, R.hi, #s, #32-s |
| |
| // Shift left: |
| // LoR = shl R.lo, #s |
| // Shift right: |
| // TmpR = shr R.lo, #s |
| |
| // Make a special case for A2_aslh and A2_asrh (they are predicable as |
| // opposed to S2_asl_i_r/S2_asr_i_r). |
| if (S == 16 && Left) |
| BuildMI(B, MI, DL, TII->get(A2_aslh), LoR) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); |
| else if (S == 16 && Signed) |
| BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); |
| else |
| BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR)) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) |
| .addImm(S); |
| |
| if (Left) { |
| // TmpR = extractu R.lo, #s, #32-s |
| BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) |
| .addImm(S) |
| .addImm(32-S); |
| // HiR = or (TmpR, asl(R.hi, #s)) |
| BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) |
| .addReg(TmpR) |
| .addReg(Op1.getReg(), RS, HiSR) |
| .addImm(S); |
| } else { |
| // HiR = shr R.hi, #s |
| BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR) |
| .addImm(S); |
| // LoR = insert TmpR, R.hi, #s, #32-s |
| BuildMI(B, MI, DL, TII->get(S2_insert), LoR) |
| .addReg(TmpR) |
| .addReg(Op1.getReg(), RS, HiSR) |
| .addImm(S) |
| .addImm(32-S); |
| } |
| } else if (S == 32) { |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR)) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)); |
| if (!Signed) |
| BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) |
| .addImm(0); |
| else // Must be right shift. |
| BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) |
| .addReg(Op1.getReg(), RS, HiSR) |
| .addImm(31); |
| } else if (S < 64) { |
| S -= 32; |
| if (S == 16 && Left) |
| BuildMI(B, MI, DL, TII->get(A2_aslh), HiR) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); |
| else if (S == 16 && Signed) |
| BuildMI(B, MI, DL, TII->get(A2_asrh), LoR) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR); |
| else |
| BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR)) |
| .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)) |
| .addImm(S); |
| |
| if (Signed) |
| BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) |
| .addReg(Op1.getReg(), RS, HiSR) |
| .addImm(31); |
| else |
| BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) |
| .addImm(0); |
| } |
| } |
| |
| void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| using namespace Hexagon; |
| |
| MachineOperand &Op0 = MI->getOperand(0); |
| MachineOperand &Op1 = MI->getOperand(1); |
| MachineOperand &Op2 = MI->getOperand(2); |
| MachineOperand &Op3 = MI->getOperand(3); |
| assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm()); |
| int64_t Sh64 = Op3.getImm(); |
| assert(Sh64 >= 0 && Sh64 < 64); |
| unsigned S = Sh64; |
| |
| UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); |
| assert(F != PairMap.end()); |
| const UUPair &P = F->second; |
| unsigned LoR = P.first; |
| unsigned HiR = P.second; |
| |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| unsigned RS1 = getRegState(Op1); |
| unsigned RS2 = getRegState(Op2); |
| const TargetRegisterClass *IntRC = &IntRegsRegClass; |
| |
| unsigned LoSR = isub_lo; |
| unsigned HiSR = isub_hi; |
| |
| // Op0 = S2_asl_i_p_or Op1, Op2, Op3 |
| // means: Op0 = or (Op1, asl(Op2, Op3)) |
| |
| // Expansion of |
| // DR = or (R1, asl(R2, #s)) |
| // |
| // LoR = or (R1.lo, asl(R2.lo, #s)) |
| // Tmp1 = extractu R2.lo, #s, #32-s |
| // Tmp2 = or R1.hi, Tmp1 |
| // HiR = or (Tmp2, asl(R2.hi, #s)) |
| |
| if (S == 0) { |
| // DR = or (R1, asl(R2, #0)) |
| // -> or (R1, R2) |
| // i.e. LoR = or R1.lo, R2.lo |
| // HiR = or R1.hi, R2.hi |
| BuildMI(B, MI, DL, TII->get(A2_or), LoR) |
| .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) |
| .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR); |
| BuildMI(B, MI, DL, TII->get(A2_or), HiR) |
| .addReg(Op1.getReg(), RS1, HiSR) |
| .addReg(Op2.getReg(), RS2, HiSR); |
| } else if (S < 32) { |
| BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR) |
| .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) |
| .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) |
| .addImm(S); |
| unsigned TmpR1 = MRI->createVirtualRegister(IntRC); |
| BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1) |
| .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) |
| .addImm(S) |
| .addImm(32-S); |
| unsigned TmpR2 = MRI->createVirtualRegister(IntRC); |
| BuildMI(B, MI, DL, TII->get(A2_or), TmpR2) |
| .addReg(Op1.getReg(), RS1, HiSR) |
| .addReg(TmpR1); |
| BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) |
| .addReg(TmpR2) |
| .addReg(Op2.getReg(), RS2, HiSR) |
| .addImm(S); |
| } else if (S == 32) { |
| // DR = or (R1, asl(R2, #32)) |
| // -> or R1, R2.lo |
| // LoR = R1.lo |
| // HiR = or R1.hi, R2.lo |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) |
| .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); |
| BuildMI(B, MI, DL, TII->get(A2_or), HiR) |
| .addReg(Op1.getReg(), RS1, HiSR) |
| .addReg(Op2.getReg(), RS2, LoSR); |
| } else if (S < 64) { |
| // DR = or (R1, asl(R2, #s)) |
| // |
| // LoR = R1:lo |
| // HiR = or (R1:hi, asl(R2:lo, #s-32)) |
| S -= 32; |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) |
| .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); |
| BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) |
| .addReg(Op1.getReg(), RS1, HiSR) |
| .addReg(Op2.getReg(), RS2, LoSR) |
| .addImm(S); |
| } |
| } |
| |
| bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| using namespace Hexagon; |
| |
| LLVM_DEBUG(dbgs() << "Splitting: " << *MI); |
| bool Split = false; |
| unsigned Opc = MI->getOpcode(); |
| |
| switch (Opc) { |
| case TargetOpcode::PHI: |
| case TargetOpcode::COPY: { |
| unsigned DstR = MI->getOperand(0).getReg(); |
| if (MRI->getRegClass(DstR) == DoubleRC) { |
| createHalfInstr(Opc, MI, PairMap, isub_lo); |
| createHalfInstr(Opc, MI, PairMap, isub_hi); |
| Split = true; |
| } |
| break; |
| } |
| case A2_andp: |
| createHalfInstr(A2_and, MI, PairMap, isub_lo); |
| createHalfInstr(A2_and, MI, PairMap, isub_hi); |
| Split = true; |
| break; |
| case A2_orp: |
| createHalfInstr(A2_or, MI, PairMap, isub_lo); |
| createHalfInstr(A2_or, MI, PairMap, isub_hi); |
| Split = true; |
| break; |
| case A2_xorp: |
| createHalfInstr(A2_xor, MI, PairMap, isub_lo); |
| createHalfInstr(A2_xor, MI, PairMap, isub_hi); |
| Split = true; |
| break; |
| |
| case L2_loadrd_io: |
| case L2_loadrd_pi: |
| case S2_storerd_io: |
| case S2_storerd_pi: |
| splitMemRef(MI, PairMap); |
| Split = true; |
| break; |
| |
| case A2_tfrpi: |
| case CONST64: |
| splitImmediate(MI, PairMap); |
| Split = true; |
| break; |
| |
| case A2_combineii: |
| case A4_combineir: |
| case A4_combineii: |
| case A4_combineri: |
| case A2_combinew: |
| splitCombine(MI, PairMap); |
| Split = true; |
| break; |
| |
| case A2_sxtw: |
| splitExt(MI, PairMap); |
| Split = true; |
| break; |
| |
| case S2_asl_i_p: |
| case S2_asr_i_p: |
| case S2_lsr_i_p: |
| splitShift(MI, PairMap); |
| Split = true; |
| break; |
| |
| case S2_asl_i_p_or: |
| splitAslOr(MI, PairMap); |
| Split = true; |
| break; |
| |
| default: |
| llvm_unreachable("Instruction not splitable"); |
| return false; |
| } |
| |
| return Split; |
| } |
| |
| void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg() || !Op.isUse() || !Op.getSubReg()) |
| continue; |
| unsigned R = Op.getReg(); |
| UUPairMap::const_iterator F = PairMap.find(R); |
| if (F == PairMap.end()) |
| continue; |
| const UUPair &P = F->second; |
| switch (Op.getSubReg()) { |
| case Hexagon::isub_lo: |
| Op.setReg(P.first); |
| break; |
| case Hexagon::isub_hi: |
| Op.setReg(P.second); |
| break; |
| } |
| Op.setSubReg(0); |
| } |
| } |
| |
| void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI, |
| const UUPairMap &PairMap) { |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg() || !Op.isUse()) |
| continue; |
| unsigned R = Op.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(R)) |
| continue; |
| if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg()) |
| continue; |
| UUPairMap::const_iterator F = PairMap.find(R); |
| if (F == PairMap.end()) |
| continue; |
| const UUPair &Pr = F->second; |
| unsigned NewDR = MRI->createVirtualRegister(DoubleRC); |
| BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR) |
| .addReg(Pr.first) |
| .addImm(Hexagon::isub_lo) |
| .addReg(Pr.second) |
| .addImm(Hexagon::isub_hi); |
| Op.setReg(NewDR); |
| } |
| } |
| |
| bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) { |
| using MISet = std::set<MachineInstr *>; |
| |
| const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; |
| bool Changed = false; |
| |
| LLVM_DEBUG(dbgs() << "Splitting partition: "; |
| dump_partition(dbgs(), Part, *TRI); dbgs() << '\n'); |
| |
| UUPairMap PairMap; |
| |
| MISet SplitIns; |
| for (unsigned DR : Part) { |
| MachineInstr *DefI = MRI->getVRegDef(DR); |
| SplitIns.insert(DefI); |
| |
| // Collect all instructions, including fixed ones. We won't split them, |
| // but we need to visit them again to insert the REG_SEQUENCE instructions. |
| for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); |
| U != W; ++U) |
| SplitIns.insert(U->getParent()); |
| |
| unsigned LoR = MRI->createVirtualRegister(IntRC); |
| unsigned HiR = MRI->createVirtualRegister(IntRC); |
| LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> " |
| << printReg(HiR, TRI) << ':' << printReg(LoR, TRI) |
| << '\n'); |
| PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR))); |
| } |
| |
| MISet Erase; |
| for (auto MI : SplitIns) { |
| if (isFixedInstr(MI)) { |
| collapseRegPairs(MI, PairMap); |
| } else { |
| bool Done = splitInstr(MI, PairMap); |
| if (Done) |
| Erase.insert(MI); |
| Changed |= Done; |
| } |
| } |
| |
| for (unsigned DR : Part) { |
| // Before erasing "double" instructions, revisit all uses of the double |
| // registers in this partition, and replace all uses of them with subre- |
| // gisters, with the corresponding single registers. |
| MISet Uses; |
| for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); |
| U != W; ++U) |
| Uses.insert(U->getParent()); |
| for (auto M : Uses) |
| replaceSubregUses(M, PairMap); |
| } |
| |
| for (auto MI : Erase) { |
| MachineBasicBlock *B = MI->getParent(); |
| B->erase(MI); |
| } |
| |
| return Changed; |
| } |
| |
| bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Splitting double registers in function: " |
| << MF.getName() << '\n'); |
| |
| auto &ST = MF.getSubtarget<HexagonSubtarget>(); |
| TRI = ST.getRegisterInfo(); |
| TII = ST.getInstrInfo(); |
| MRI = &MF.getRegInfo(); |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| |
| UUSetMap P2Rs; |
| LoopRegMap IRM; |
| |
| collectIndRegs(IRM); |
| partitionRegisters(P2Rs); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Register partitioning: (partition #0 is fixed)\n"; |
| for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { |
| dbgs() << '#' << I->first << " -> "; |
| dump_partition(dbgs(), I->second, *TRI); |
| dbgs() << '\n'; |
| } |
| }); |
| |
| bool Changed = false; |
| int Limit = MaxHSDR; |
| |
| for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { |
| if (I->first == 0) |
| continue; |
| if (Limit >= 0 && Counter >= Limit) |
| break; |
| USet &Part = I->second; |
| LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first |
| << '\n'); |
| if (!isProfitable(Part, IRM)) |
| continue; |
| Counter++; |
| Changed |= splitPartition(Part); |
| } |
| |
| return Changed; |
| } |
| |
| FunctionPass *llvm::createHexagonSplitDoubleRegs() { |
| return new HexagonSplitDoubleRegs(); |
| } |