|  | //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Hexagon.h" | 
|  | #include "HexagonISelDAGToDAG.h" | 
|  | #include "HexagonISelLowering.h" | 
|  | #include "HexagonTargetMachine.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  |  | 
|  | #include <deque> | 
|  | #include <map> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "hexagon-isel" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // -------------------------------------------------------------------- | 
|  | // Implementation of permutation networks. | 
|  |  | 
|  | // Implementation of the node routing through butterfly networks: | 
|  | // - Forward delta. | 
|  | // - Reverse delta. | 
|  | // - Benes. | 
|  | // | 
|  | // | 
|  | // Forward delta network consists of log(N) steps, where N is the number | 
|  | // of inputs. In each step, an input can stay in place, or it can get | 
|  | // routed to another position[1]. The step after that consists of two | 
|  | // networks, each half in size in terms of the number of nodes. In those | 
|  | // terms, in the given step, an input can go to either the upper or the | 
|  | // lower network in the next step. | 
|  | // | 
|  | // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both | 
|  | // positions as long as there is no conflict. | 
|  |  | 
|  | // Here's a delta network for 8 inputs, only the switching routes are | 
|  | // shown: | 
|  | // | 
|  | //         Steps: | 
|  | //         |- 1 ---------------|- 2 -----|- 3 -| | 
|  | // | 
|  | // Inp[0] ***                 ***       ***   *** Out[0] | 
|  | //           \               /   \     /   \ / | 
|  | //            \             /     \   /     X | 
|  | //             \           /       \ /     / \ | 
|  | // Inp[1] ***   \         /   ***   X   ***   *** Out[1] | 
|  | //           \   \       /   /   \ / \ / | 
|  | //            \   \     /   /     X   X | 
|  | //             \   \   /   /     / \ / \ | 
|  | // Inp[2] ***   \   \ /   /   ***   X   ***   *** Out[2] | 
|  | //           \   \   X   /   /     / \     \ / | 
|  | //            \   \ / \ /   /     /   \     X | 
|  | //             \   X   X   /     /     \   / \ | 
|  | // Inp[3] ***   \ / \ / \ /   ***       ***   *** Out[3] | 
|  | //           \   X   X   X   / | 
|  | //            \ / \ / \ / \ / | 
|  | //             X   X   X   X | 
|  | //            / \ / \ / \ / \ | 
|  | //           /   X   X   X   \ | 
|  | // Inp[4] ***   / \ / \ / \   ***       ***   *** Out[4] | 
|  | //             /   X   X   \     \     /   \ / | 
|  | //            /   / \ / \   \     \   /     X | 
|  | //           /   /   X   \   \     \ /     / \ | 
|  | // Inp[5] ***   /   / \   \   ***   X   ***   *** Out[5] | 
|  | //             /   /   \   \     \ / \ / | 
|  | //            /   /     \   \     X   X | 
|  | //           /   /       \   \   / \ / \ | 
|  | // Inp[6] ***   /         \   ***   X   ***   *** Out[6] | 
|  | //             /           \       / \     \ / | 
|  | //            /             \     /   \     X | 
|  | //           /               \   /     \   / \ | 
|  | // Inp[7] ***                 ***       ***   *** Out[7] | 
|  | // | 
|  | // | 
|  | // Reverse delta network is same as delta network, with the steps in | 
|  | // the opposite order. | 
|  | // | 
|  | // | 
|  | // Benes network is a forward delta network immediately followed by | 
|  | // a reverse delta network. | 
|  |  | 
|  | enum class ColorKind { None, Red, Black }; | 
|  |  | 
|  | // Graph coloring utility used to partition nodes into two groups: | 
|  | // they will correspond to nodes routed to the upper and lower networks. | 
|  | struct Coloring { | 
|  | using Node = int; | 
|  | using MapType = std::map<Node, ColorKind>; | 
|  | static constexpr Node Ignore = Node(-1); | 
|  |  | 
|  | Coloring(ArrayRef<Node> Ord) : Order(Ord) { | 
|  | build(); | 
|  | if (!color()) | 
|  | Colors.clear(); | 
|  | } | 
|  |  | 
|  | const MapType &colors() const { | 
|  | return Colors; | 
|  | } | 
|  |  | 
|  | ColorKind other(ColorKind Color) { | 
|  | if (Color == ColorKind::None) | 
|  | return ColorKind::Red; | 
|  | return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red; | 
|  | } | 
|  |  | 
|  | void dump() const; | 
|  |  | 
|  | private: | 
|  | ArrayRef<Node> Order; | 
|  | MapType Colors; | 
|  | std::set<Node> Needed; | 
|  |  | 
|  | using NodeSet = std::set<Node>; | 
|  | std::map<Node,NodeSet> Edges; | 
|  |  | 
|  | Node conj(Node Pos) { | 
|  | Node Num = Order.size(); | 
|  | return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; | 
|  | } | 
|  |  | 
|  | ColorKind getColor(Node N) { | 
|  | auto F = Colors.find(N); | 
|  | return F != Colors.end() ? F->second : ColorKind::None; | 
|  | } | 
|  |  | 
|  | std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes); | 
|  |  | 
|  | void build(); | 
|  | bool color(); | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) { | 
|  | auto Color = ColorKind::None; | 
|  | for (Node N : Nodes) { | 
|  | ColorKind ColorN = getColor(N); | 
|  | if (ColorN == ColorKind::None) | 
|  | continue; | 
|  | if (Color == ColorKind::None) | 
|  | Color = ColorN; | 
|  | else if (Color != ColorKind::None && Color != ColorN) | 
|  | return { false, ColorKind::None }; | 
|  | } | 
|  | return { true, Color }; | 
|  | } | 
|  |  | 
|  | void Coloring::build() { | 
|  | // Add Order[P] and Order[conj(P)] to Edges. | 
|  | for (unsigned P = 0; P != Order.size(); ++P) { | 
|  | Node I = Order[P]; | 
|  | if (I != Ignore) { | 
|  | Needed.insert(I); | 
|  | Node PC = Order[conj(P)]; | 
|  | if (PC != Ignore && PC != I) | 
|  | Edges[I].insert(PC); | 
|  | } | 
|  | } | 
|  | // Add I and conj(I) to Edges. | 
|  | for (unsigned I = 0; I != Order.size(); ++I) { | 
|  | if (!Needed.count(I)) | 
|  | continue; | 
|  | Node C = conj(I); | 
|  | // This will create an entry in the edge table, even if I is not | 
|  | // connected to any other node. This is necessary, because it still | 
|  | // needs to be colored. | 
|  | NodeSet &Is = Edges[I]; | 
|  | if (Needed.count(C)) | 
|  | Is.insert(C); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Coloring::color() { | 
|  | SetVector<Node> FirstQ; | 
|  | auto Enqueue = [this,&FirstQ] (Node N) { | 
|  | SetVector<Node> Q; | 
|  | Q.insert(N); | 
|  | for (unsigned I = 0; I != Q.size(); ++I) { | 
|  | NodeSet &Ns = Edges[Q[I]]; | 
|  | Q.insert(Ns.begin(), Ns.end()); | 
|  | } | 
|  | FirstQ.insert(Q.begin(), Q.end()); | 
|  | }; | 
|  | for (Node N : Needed) | 
|  | Enqueue(N); | 
|  |  | 
|  | for (Node N : FirstQ) { | 
|  | if (Colors.count(N)) | 
|  | continue; | 
|  | NodeSet &Ns = Edges[N]; | 
|  | auto P = getUniqueColor(Ns); | 
|  | if (!P.first) | 
|  | return false; | 
|  | Colors[N] = other(P.second); | 
|  | } | 
|  |  | 
|  | // First, color nodes that don't have any dups. | 
|  | for (auto E : Edges) { | 
|  | Node N = E.first; | 
|  | if (!Needed.count(conj(N)) || Colors.count(N)) | 
|  | continue; | 
|  | auto P = getUniqueColor(E.second); | 
|  | if (!P.first) | 
|  | return false; | 
|  | Colors[N] = other(P.second); | 
|  | } | 
|  |  | 
|  | // Now, nodes that are still uncolored. Since the graph can be modified | 
|  | // in this step, create a work queue. | 
|  | std::vector<Node> WorkQ; | 
|  | for (auto E : Edges) { | 
|  | Node N = E.first; | 
|  | if (!Colors.count(N)) | 
|  | WorkQ.push_back(N); | 
|  | } | 
|  |  | 
|  | for (unsigned I = 0; I < WorkQ.size(); ++I) { | 
|  | Node N = WorkQ[I]; | 
|  | NodeSet &Ns = Edges[N]; | 
|  | auto P = getUniqueColor(Ns); | 
|  | if (P.first) { | 
|  | Colors[N] = other(P.second); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Coloring failed. Split this node. | 
|  | Node C = conj(N); | 
|  | ColorKind ColorN = other(ColorKind::None); | 
|  | ColorKind ColorC = other(ColorN); | 
|  | NodeSet &Cs = Edges[C]; | 
|  | NodeSet CopyNs = Ns; | 
|  | for (Node M : CopyNs) { | 
|  | ColorKind ColorM = getColor(M); | 
|  | if (ColorM == ColorC) { | 
|  | // Connect M with C, disconnect M from N. | 
|  | Cs.insert(M); | 
|  | Edges[M].insert(C); | 
|  | Ns.erase(M); | 
|  | Edges[M].erase(N); | 
|  | } | 
|  | } | 
|  | Colors[N] = ColorN; | 
|  | Colors[C] = ColorC; | 
|  | } | 
|  |  | 
|  | // Explicitly assign "None" to all uncolored nodes. | 
|  | for (unsigned I = 0; I != Order.size(); ++I) | 
|  | if (Colors.count(I) == 0) | 
|  | Colors[I] = ColorKind::None; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD | 
|  | void Coloring::dump() const { | 
|  | dbgs() << "{ Order:   {"; | 
|  | for (unsigned I = 0; I != Order.size(); ++I) { | 
|  | Node P = Order[I]; | 
|  | if (P != Ignore) | 
|  | dbgs() << ' ' << P; | 
|  | else | 
|  | dbgs() << " -"; | 
|  | } | 
|  | dbgs() << " }\n"; | 
|  | dbgs() << "  Needed: {"; | 
|  | for (Node N : Needed) | 
|  | dbgs() << ' ' << N; | 
|  | dbgs() << " }\n"; | 
|  |  | 
|  | dbgs() << "  Edges: {\n"; | 
|  | for (auto E : Edges) { | 
|  | dbgs() << "    " << E.first << " -> {"; | 
|  | for (auto N : E.second) | 
|  | dbgs() << ' ' << N; | 
|  | dbgs() << " }\n"; | 
|  | } | 
|  | dbgs() << "  }\n"; | 
|  |  | 
|  | auto ColorKindToName = [](ColorKind C) { | 
|  | switch (C) { | 
|  | case ColorKind::None: | 
|  | return "None"; | 
|  | case ColorKind::Red: | 
|  | return "Red"; | 
|  | case ColorKind::Black: | 
|  | return "Black"; | 
|  | } | 
|  | llvm_unreachable("all ColorKinds should be handled by the switch above"); | 
|  | }; | 
|  |  | 
|  | dbgs() << "  Colors: {\n"; | 
|  | for (auto C : Colors) | 
|  | dbgs() << "    " << C.first << " -> " << ColorKindToName(C.second) << "\n"; | 
|  | dbgs() << "  }\n}\n"; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Base class of for reordering networks. They don't strictly need to be | 
|  | // permutations, as outputs with repeated occurrences of an input element | 
|  | // are allowed. | 
|  | struct PermNetwork { | 
|  | using Controls = std::vector<uint8_t>; | 
|  | using ElemType = int; | 
|  | static constexpr ElemType Ignore = ElemType(-1); | 
|  |  | 
|  | enum : uint8_t { | 
|  | None, | 
|  | Pass, | 
|  | Switch | 
|  | }; | 
|  | enum : uint8_t { | 
|  | Forward, | 
|  | Reverse | 
|  | }; | 
|  |  | 
|  | PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { | 
|  | Order.assign(Ord.data(), Ord.data()+Ord.size()); | 
|  | Log = 0; | 
|  |  | 
|  | unsigned S = Order.size(); | 
|  | while (S >>= 1) | 
|  | ++Log; | 
|  |  | 
|  | Table.resize(Order.size()); | 
|  | for (RowType &Row : Table) | 
|  | Row.resize(Mult*Log, None); | 
|  | } | 
|  |  | 
|  | void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { | 
|  | unsigned Size = Order.size(); | 
|  | V.resize(Size); | 
|  | for (unsigned I = 0; I != Size; ++I) { | 
|  | unsigned W = 0; | 
|  | for (unsigned L = 0; L != Log; ++L) { | 
|  | unsigned C = ctl(I, StartAt+L) == Switch; | 
|  | if (Dir == Forward) | 
|  | W |= C << (Log-1-L); | 
|  | else | 
|  | W |= C << L; | 
|  | } | 
|  | assert(isUInt<8>(W)); | 
|  | V[I] = uint8_t(W); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint8_t ctl(ElemType Pos, unsigned Step) const { | 
|  | return Table[Pos][Step]; | 
|  | } | 
|  | unsigned size() const { | 
|  | return Order.size(); | 
|  | } | 
|  | unsigned steps() const { | 
|  | return Log; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | unsigned Log; | 
|  | std::vector<ElemType> Order; | 
|  | using RowType = std::vector<uint8_t>; | 
|  | std::vector<RowType> Table; | 
|  | }; | 
|  |  | 
|  | struct ForwardDeltaNetwork : public PermNetwork { | 
|  | ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} | 
|  |  | 
|  | bool run(Controls &V) { | 
|  | if (!route(Order.data(), Table.data(), size(), 0)) | 
|  | return false; | 
|  | getControls(V, 0, Forward); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); | 
|  | }; | 
|  |  | 
|  | struct ReverseDeltaNetwork : public PermNetwork { | 
|  | ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} | 
|  |  | 
|  | bool run(Controls &V) { | 
|  | if (!route(Order.data(), Table.data(), size(), 0)) | 
|  | return false; | 
|  | getControls(V, 0, Reverse); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); | 
|  | }; | 
|  |  | 
|  | struct BenesNetwork : public PermNetwork { | 
|  | BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} | 
|  |  | 
|  | bool run(Controls &F, Controls &R) { | 
|  | if (!route(Order.data(), Table.data(), size(), 0)) | 
|  | return false; | 
|  |  | 
|  | getControls(F, 0, Forward); | 
|  | getControls(R, Log, Reverse); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, | 
|  | unsigned Step) { | 
|  | bool UseUp = false, UseDown = false; | 
|  | ElemType Num = Size; | 
|  |  | 
|  | // Cannot use coloring here, because coloring is used to determine | 
|  | // the "big" switch, i.e. the one that changes halves, and in a forward | 
|  | // network, a color can be simultaneously routed to both halves in the | 
|  | // step we're working on. | 
|  | for (ElemType J = 0; J != Num; ++J) { | 
|  | ElemType I = P[J]; | 
|  | // I is the position in the input, | 
|  | // J is the position in the output. | 
|  | if (I == Ignore) | 
|  | continue; | 
|  | uint8_t S; | 
|  | if (I < Num/2) | 
|  | S = (J < Num/2) ? Pass : Switch; | 
|  | else | 
|  | S = (J < Num/2) ? Switch : Pass; | 
|  |  | 
|  | // U is the element in the table that needs to be updated. | 
|  | ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); | 
|  | if (U < Num/2) | 
|  | UseUp = true; | 
|  | else | 
|  | UseDown = true; | 
|  | if (T[U][Step] != S && T[U][Step] != None) | 
|  | return false; | 
|  | T[U][Step] = S; | 
|  | } | 
|  |  | 
|  | for (ElemType J = 0; J != Num; ++J) | 
|  | if (P[J] != Ignore && P[J] >= Num/2) | 
|  | P[J] -= Num/2; | 
|  |  | 
|  | if (Step+1 < Log) { | 
|  | if (UseUp   && !route(P,        T,        Size/2, Step+1)) | 
|  | return false; | 
|  | if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, | 
|  | unsigned Step) { | 
|  | unsigned Pets = Log-1 - Step; | 
|  | bool UseUp = false, UseDown = false; | 
|  | ElemType Num = Size; | 
|  |  | 
|  | // In this step half-switching occurs, so coloring can be used. | 
|  | Coloring G({P,Size}); | 
|  | const Coloring::MapType &M = G.colors(); | 
|  | if (M.empty()) | 
|  | return false; | 
|  |  | 
|  | ColorKind ColorUp = ColorKind::None; | 
|  | for (ElemType J = 0; J != Num; ++J) { | 
|  | ElemType I = P[J]; | 
|  | // I is the position in the input, | 
|  | // J is the position in the output. | 
|  | if (I == Ignore) | 
|  | continue; | 
|  | ColorKind C = M.at(I); | 
|  | if (C == ColorKind::None) | 
|  | continue; | 
|  | // During "Step", inputs cannot switch halves, so if the "up" color | 
|  | // is still unknown, make sure that it is selected in such a way that | 
|  | // "I" will stay in the same half. | 
|  | bool InpUp = I < Num/2; | 
|  | if (ColorUp == ColorKind::None) | 
|  | ColorUp = InpUp ? C : G.other(C); | 
|  | if ((C == ColorUp) != InpUp) { | 
|  | // If I should go to a different half than where is it now, give up. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8_t S; | 
|  | if (InpUp) { | 
|  | S = (J < Num/2) ? Pass : Switch; | 
|  | UseUp = true; | 
|  | } else { | 
|  | S = (J < Num/2) ? Switch : Pass; | 
|  | UseDown = true; | 
|  | } | 
|  | T[J][Pets] = S; | 
|  | } | 
|  |  | 
|  | // Reorder the working permutation according to the computed switch table | 
|  | // for the last step (i.e. Pets). | 
|  | for (ElemType J = 0, E = Size / 2; J != E; ++J) { | 
|  | ElemType PJ = P[J];         // Current values of P[J] | 
|  | ElemType PC = P[J+Size/2];  // and P[conj(J)] | 
|  | ElemType QJ = PJ;           // New values of P[J] | 
|  | ElemType QC = PC;           // and P[conj(J)] | 
|  | if (T[J][Pets] == Switch) | 
|  | QC = PJ; | 
|  | if (T[J+Size/2][Pets] == Switch) | 
|  | QJ = PC; | 
|  | P[J] = QJ; | 
|  | P[J+Size/2] = QC; | 
|  | } | 
|  |  | 
|  | for (ElemType J = 0; J != Num; ++J) | 
|  | if (P[J] != Ignore && P[J] >= Num/2) | 
|  | P[J] -= Num/2; | 
|  |  | 
|  | if (Step+1 < Log) { | 
|  | if (UseUp && !route(P, T, Size/2, Step+1)) | 
|  | return false; | 
|  | if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, | 
|  | unsigned Step) { | 
|  | Coloring G({P,Size}); | 
|  | const Coloring::MapType &M = G.colors(); | 
|  | if (M.empty()) | 
|  | return false; | 
|  | ElemType Num = Size; | 
|  |  | 
|  | unsigned Pets = 2*Log-1 - Step; | 
|  | bool UseUp = false, UseDown = false; | 
|  |  | 
|  | // Both assignments, i.e. Red->Up and Red->Down are valid, but they will | 
|  | // result in different controls. Let's pick the one where the first | 
|  | // control will be "Pass". | 
|  | ColorKind ColorUp = ColorKind::None; | 
|  | for (ElemType J = 0; J != Num; ++J) { | 
|  | ElemType I = P[J]; | 
|  | if (I == Ignore) | 
|  | continue; | 
|  | ColorKind C = M.at(I); | 
|  | if (C == ColorKind::None) | 
|  | continue; | 
|  | if (ColorUp == ColorKind::None) { | 
|  | ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black; | 
|  | } | 
|  | unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; | 
|  | if (C == ColorUp) { | 
|  | if (I < Num/2) | 
|  | T[I][Step] = Pass; | 
|  | else | 
|  | T[CI][Step] = Switch; | 
|  | T[J][Pets] = (J < Num/2) ? Pass : Switch; | 
|  | UseUp = true; | 
|  | } else { // Down | 
|  | if (I < Num/2) | 
|  | T[CI][Step] = Switch; | 
|  | else | 
|  | T[I][Step] = Pass; | 
|  | T[J][Pets] = (J < Num/2) ? Switch : Pass; | 
|  | UseDown = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reorder the working permutation according to the computed switch table | 
|  | // for the last step (i.e. Pets). | 
|  | for (ElemType J = 0; J != Num/2; ++J) { | 
|  | ElemType PJ = P[J];         // Current values of P[J] | 
|  | ElemType PC = P[J+Num/2];   // and P[conj(J)] | 
|  | ElemType QJ = PJ;           // New values of P[J] | 
|  | ElemType QC = PC;           // and P[conj(J)] | 
|  | if (T[J][Pets] == Switch) | 
|  | QC = PJ; | 
|  | if (T[J+Num/2][Pets] == Switch) | 
|  | QJ = PC; | 
|  | P[J] = QJ; | 
|  | P[J+Num/2] = QC; | 
|  | } | 
|  |  | 
|  | for (ElemType J = 0; J != Num; ++J) | 
|  | if (P[J] != Ignore && P[J] >= Num/2) | 
|  | P[J] -= Num/2; | 
|  |  | 
|  | if (Step+1 < Log) { | 
|  | if (UseUp && !route(P, T, Size/2, Step+1)) | 
|  | return false; | 
|  | if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // -------------------------------------------------------------------- | 
|  | // Support for building selection results (output instructions that are | 
|  | // parts of the final selection). | 
|  |  | 
|  | namespace { | 
|  | struct OpRef { | 
|  | OpRef(SDValue V) : OpV(V) {} | 
|  | bool isValue() const { return OpV.getNode() != nullptr; } | 
|  | bool isValid() const { return isValue() || !(OpN & Invalid); } | 
|  | static OpRef res(int N) { return OpRef(Whole | (N & Index)); } | 
|  | static OpRef fail() { return OpRef(Invalid); } | 
|  |  | 
|  | static OpRef lo(const OpRef &R) { | 
|  | assert(!R.isValue()); | 
|  | return OpRef(R.OpN & (Undef | Index | LoHalf)); | 
|  | } | 
|  | static OpRef hi(const OpRef &R) { | 
|  | assert(!R.isValue()); | 
|  | return OpRef(R.OpN & (Undef | Index | HiHalf)); | 
|  | } | 
|  | static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } | 
|  |  | 
|  | // Direct value. | 
|  | SDValue OpV = SDValue(); | 
|  |  | 
|  | // Reference to the operand of the input node: | 
|  | // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the | 
|  | // operand index: | 
|  | // If bit 30 is set, it's the high half of the operand. | 
|  | // If bit 29 is set, it's the low half of the operand. | 
|  | unsigned OpN = 0; | 
|  |  | 
|  | enum : unsigned { | 
|  | Invalid = 0x10000000, | 
|  | LoHalf  = 0x20000000, | 
|  | HiHalf  = 0x40000000, | 
|  | Whole   = LoHalf | HiHalf, | 
|  | Undef   = 0x80000000, | 
|  | Index   = 0x0FFFFFFF,  // Mask of the index value. | 
|  | IndexBits = 28, | 
|  | }; | 
|  |  | 
|  | void print(raw_ostream &OS, const SelectionDAG &G) const; | 
|  |  | 
|  | private: | 
|  | OpRef(unsigned N) : OpN(N) {} | 
|  | }; | 
|  |  | 
|  | struct NodeTemplate { | 
|  | NodeTemplate() = default; | 
|  | unsigned Opc = 0; | 
|  | MVT Ty = MVT::Other; | 
|  | std::vector<OpRef> Ops; | 
|  |  | 
|  | void print(raw_ostream &OS, const SelectionDAG &G) const; | 
|  | }; | 
|  |  | 
|  | struct ResultStack { | 
|  | ResultStack(SDNode *Inp) | 
|  | : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {} | 
|  | SDNode *InpNode; | 
|  | MVT InpTy; | 
|  | unsigned push(const NodeTemplate &Res) { | 
|  | List.push_back(Res); | 
|  | return List.size()-1; | 
|  | } | 
|  | unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { | 
|  | NodeTemplate Res; | 
|  | Res.Opc = Opc; | 
|  | Res.Ty = Ty; | 
|  | Res.Ops = Ops; | 
|  | return push(Res); | 
|  | } | 
|  | bool empty() const { return List.empty(); } | 
|  | unsigned size() const { return List.size(); } | 
|  | unsigned top() const { return size()-1; } | 
|  | const NodeTemplate &operator[](unsigned I) const { return List[I]; } | 
|  | unsigned reset(unsigned NewTop) { | 
|  | List.resize(NewTop+1); | 
|  | return NewTop; | 
|  | } | 
|  |  | 
|  | using BaseType = std::vector<NodeTemplate>; | 
|  | BaseType::iterator begin() { return List.begin(); } | 
|  | BaseType::iterator end()   { return List.end(); } | 
|  | BaseType::const_iterator begin() const { return List.begin(); } | 
|  | BaseType::const_iterator end() const   { return List.end(); } | 
|  |  | 
|  | BaseType List; | 
|  |  | 
|  | void print(raw_ostream &OS, const SelectionDAG &G) const; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { | 
|  | if (isValue()) { | 
|  | OpV.getNode()->print(OS, &G); | 
|  | return; | 
|  | } | 
|  | if (OpN & Invalid) { | 
|  | OS << "invalid"; | 
|  | return; | 
|  | } | 
|  | if (OpN & Undef) { | 
|  | OS << "undef"; | 
|  | return; | 
|  | } | 
|  | if ((OpN & Whole) != Whole) { | 
|  | assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); | 
|  | if (OpN & LoHalf) | 
|  | OS << "lo "; | 
|  | else | 
|  | OS << "hi "; | 
|  | } | 
|  | OS << '#' << SignExtend32(OpN & Index, IndexBits); | 
|  | } | 
|  |  | 
|  | void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { | 
|  | const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); | 
|  | OS << format("%8s", EVT(Ty).getEVTString().c_str()) << "  " | 
|  | << TII.getName(Opc); | 
|  | bool Comma = false; | 
|  | for (const auto &R : Ops) { | 
|  | if (Comma) | 
|  | OS << ','; | 
|  | Comma = true; | 
|  | OS << ' '; | 
|  | R.print(OS, G); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { | 
|  | OS << "Input node:\n"; | 
|  | #ifndef NDEBUG | 
|  | InpNode->dumpr(&G); | 
|  | #endif | 
|  | OS << "Result templates:\n"; | 
|  | for (unsigned I = 0, E = List.size(); I != E; ++I) { | 
|  | OS << '[' << I << "] "; | 
|  | List[I].print(OS, G); | 
|  | OS << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct ShuffleMask { | 
|  | ShuffleMask(ArrayRef<int> M) : Mask(M) { | 
|  | for (unsigned I = 0, E = Mask.size(); I != E; ++I) { | 
|  | int M = Mask[I]; | 
|  | if (M == -1) | 
|  | continue; | 
|  | MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M); | 
|  | MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M); | 
|  | } | 
|  | } | 
|  |  | 
|  | ArrayRef<int> Mask; | 
|  | int MinSrc = -1, MaxSrc = -1; | 
|  |  | 
|  | ShuffleMask lo() const { | 
|  | size_t H = Mask.size()/2; | 
|  | return ShuffleMask(Mask.take_front(H)); | 
|  | } | 
|  | ShuffleMask hi() const { | 
|  | size_t H = Mask.size()/2; | 
|  | return ShuffleMask(Mask.take_back(H)); | 
|  | } | 
|  |  | 
|  | void print(raw_ostream &OS) const { | 
|  | OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {"; | 
|  | for (int M : Mask) | 
|  | OS << ' ' << M; | 
|  | OS << " }"; | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | // -------------------------------------------------------------------- | 
|  | // The HvxSelector class. | 
|  |  | 
|  | static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { | 
|  | return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); | 
|  | } | 
|  | static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { | 
|  | return static_cast<const HexagonSubtarget&>(G.getSubtarget()); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | struct HvxSelector { | 
|  | const HexagonTargetLowering &Lower; | 
|  | HexagonDAGToDAGISel &ISel; | 
|  | SelectionDAG &DAG; | 
|  | const HexagonSubtarget &HST; | 
|  | const unsigned HwLen; | 
|  |  | 
|  | HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) | 
|  | : Lower(getHexagonLowering(G)),  ISel(HS), DAG(G), | 
|  | HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} | 
|  |  | 
|  | MVT getSingleVT(MVT ElemTy) const { | 
|  | unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8); | 
|  | return MVT::getVectorVT(ElemTy, NumElems); | 
|  | } | 
|  |  | 
|  | MVT getPairVT(MVT ElemTy) const { | 
|  | unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8); | 
|  | return MVT::getVectorVT(ElemTy, NumElems); | 
|  | } | 
|  |  | 
|  | void selectShuffle(SDNode *N); | 
|  | void selectRor(SDNode *N); | 
|  | void selectVAlign(SDNode *N); | 
|  |  | 
|  | private: | 
|  | void materialize(const ResultStack &Results); | 
|  |  | 
|  | SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); | 
|  |  | 
|  | enum : unsigned { | 
|  | None, | 
|  | PackMux, | 
|  | }; | 
|  | OpRef concat(OpRef Va, OpRef Vb, ResultStack &Results); | 
|  | OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, | 
|  | MutableArrayRef<int> NewMask, unsigned Options = None); | 
|  | OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, | 
|  | MutableArrayRef<int> NewMask); | 
|  | OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results); | 
|  | OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results); | 
|  |  | 
|  | OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); | 
|  | OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); | 
|  | OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); | 
|  | OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); | 
|  |  | 
|  | OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); | 
|  | OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); | 
|  | OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); | 
|  | OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); | 
|  |  | 
|  | bool selectVectorConstants(SDNode *N); | 
|  | bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, | 
|  | SDValue Va, SDValue Vb, SDNode *N); | 
|  |  | 
|  | }; | 
|  | } | 
|  |  | 
|  | static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, | 
|  | MutableArrayRef<int> MaskR) { | 
|  | unsigned VecLen = Mask.size(); | 
|  | assert(MaskL.size() == VecLen && MaskR.size() == VecLen); | 
|  | for (unsigned I = 0; I != VecLen; ++I) { | 
|  | int M = Mask[I]; | 
|  | if (M < 0) { | 
|  | MaskL[I] = MaskR[I] = -1; | 
|  | } else if (unsigned(M) < VecLen) { | 
|  | MaskL[I] = M; | 
|  | MaskR[I] = -1; | 
|  | } else { | 
|  | MaskL[I] = -1; | 
|  | MaskR[I] = M-VecLen; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, | 
|  | unsigned MaxLen) { | 
|  | assert(A.size() > 0 && A.size() >= MaxLen); | 
|  | int F = A[0]; | 
|  | int E = F; | 
|  | for (unsigned I = 1; I != MaxLen; ++I) { | 
|  | if (A[I] - E != Inc) | 
|  | return { F, I }; | 
|  | E = A[I]; | 
|  | } | 
|  | return { F, MaxLen }; | 
|  | } | 
|  |  | 
|  | static bool isUndef(ArrayRef<int> Mask) { | 
|  | for (int Idx : Mask) | 
|  | if (Idx != -1) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isIdentity(ArrayRef<int> Mask) { | 
|  | for (int I = 0, E = Mask.size(); I != E; ++I) { | 
|  | int M = Mask[I]; | 
|  | if (M >= 0 && M != I) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isPermutation(ArrayRef<int> Mask) { | 
|  | // Check by adding all numbers only works if there is no overflow. | 
|  | assert(Mask.size() < 0x00007FFF && "Sanity failure"); | 
|  | int Sum = 0; | 
|  | for (int Idx : Mask) { | 
|  | if (Idx == -1) | 
|  | return false; | 
|  | Sum += Idx; | 
|  | } | 
|  | int N = Mask.size(); | 
|  | return 2*Sum == N*(N-1); | 
|  | } | 
|  |  | 
|  | bool HvxSelector::selectVectorConstants(SDNode *N) { | 
|  | // Constant vectors are generated as loads from constant pools or as | 
|  | // splats of a constant value. Since they are generated during the | 
|  | // selection process, the main selection algorithm is not aware of them. | 
|  | // Select them directly here. | 
|  | SmallVector<SDNode*,4> Nodes; | 
|  | SetVector<SDNode*> WorkQ; | 
|  |  | 
|  | // The one-use test for VSPLATW's operand may fail due to dead nodes | 
|  | // left over in the DAG. | 
|  | DAG.RemoveDeadNodes(); | 
|  |  | 
|  | // The DAG can change (due to CSE) during selection, so cache all the | 
|  | // unselected nodes first to avoid traversing a mutating DAG. | 
|  |  | 
|  | auto IsNodeToSelect = [] (SDNode *N) { | 
|  | if (N->isMachineOpcode()) | 
|  | return false; | 
|  | switch (N->getOpcode()) { | 
|  | case HexagonISD::VZERO: | 
|  | case HexagonISD::VSPLATW: | 
|  | return true; | 
|  | case ISD::LOAD: { | 
|  | SDValue Addr = cast<LoadSDNode>(N)->getBasePtr(); | 
|  | unsigned AddrOpc = Addr.getOpcode(); | 
|  | if (AddrOpc == HexagonISD::AT_PCREL || AddrOpc == HexagonISD::CP) | 
|  | if (Addr.getOperand(0).getOpcode() == ISD::TargetConstantPool) | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Make sure to select the operand of VSPLATW. | 
|  | bool IsSplatOp = N->hasOneUse() && | 
|  | N->use_begin()->getOpcode() == HexagonISD::VSPLATW; | 
|  | return IsSplatOp; | 
|  | }; | 
|  |  | 
|  | WorkQ.insert(N); | 
|  | for (unsigned i = 0; i != WorkQ.size(); ++i) { | 
|  | SDNode *W = WorkQ[i]; | 
|  | if (IsNodeToSelect(W)) | 
|  | Nodes.push_back(W); | 
|  | for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) | 
|  | WorkQ.insert(W->getOperand(j).getNode()); | 
|  | } | 
|  |  | 
|  | for (SDNode *L : Nodes) | 
|  | ISel.Select(L); | 
|  |  | 
|  | return !Nodes.empty(); | 
|  | } | 
|  |  | 
|  | void HvxSelector::materialize(const ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", { | 
|  | dbgs() << "Materializing\n"; | 
|  | Results.print(dbgs(), DAG); | 
|  | }); | 
|  | if (Results.empty()) | 
|  | return; | 
|  | const SDLoc &dl(Results.InpNode); | 
|  | std::vector<SDValue> Output; | 
|  |  | 
|  | for (unsigned I = 0, E = Results.size(); I != E; ++I) { | 
|  | const NodeTemplate &Node = Results[I]; | 
|  | std::vector<SDValue> Ops; | 
|  | for (const OpRef &R : Node.Ops) { | 
|  | assert(R.isValid()); | 
|  | if (R.isValue()) { | 
|  | Ops.push_back(R.OpV); | 
|  | continue; | 
|  | } | 
|  | if (R.OpN & OpRef::Undef) { | 
|  | MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); | 
|  | Ops.push_back(ISel.selectUndef(dl, MVT(SVT))); | 
|  | continue; | 
|  | } | 
|  | // R is an index of a result. | 
|  | unsigned Part = R.OpN & OpRef::Whole; | 
|  | int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits); | 
|  | if (Idx < 0) | 
|  | Idx += I; | 
|  | assert(Idx >= 0 && unsigned(Idx) < Output.size()); | 
|  | SDValue Op = Output[Idx]; | 
|  | MVT OpTy = Op.getValueType().getSimpleVT(); | 
|  | if (Part != OpRef::Whole) { | 
|  | assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); | 
|  | MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(), | 
|  | OpTy.getVectorNumElements()/2); | 
|  | unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo | 
|  | : Hexagon::vsub_hi; | 
|  | Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op); | 
|  | } | 
|  | Ops.push_back(Op); | 
|  | } // for (Node : Results) | 
|  |  | 
|  | assert(Node.Ty != MVT::Other); | 
|  | SDNode *ResN = (Node.Opc == TargetOpcode::COPY) | 
|  | ? Ops.front().getNode() | 
|  | : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops); | 
|  | Output.push_back(SDValue(ResN, 0)); | 
|  | } | 
|  |  | 
|  | SDNode *OutN = Output.back().getNode(); | 
|  | SDNode *InpN = Results.InpNode; | 
|  | DEBUG_WITH_TYPE("isel", { | 
|  | dbgs() << "Generated node:\n"; | 
|  | OutN->dumpr(&DAG); | 
|  | }); | 
|  |  | 
|  | ISel.ReplaceNode(InpN, OutN); | 
|  | selectVectorConstants(OutN); | 
|  | DAG.RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::concat(OpRef Lo, OpRef Hi, ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | const SDLoc &dl(Results.InpNode); | 
|  | Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), { | 
|  | DAG.getTargetConstant(Hexagon::HvxWRRegClassID, dl, MVT::i32), | 
|  | Lo, DAG.getTargetConstant(Hexagon::vsub_lo, dl, MVT::i32), | 
|  | Hi, DAG.getTargetConstant(Hexagon::vsub_hi, dl, MVT::i32), | 
|  | }); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | // Va, Vb are single vectors, SM can be arbitrarily long. | 
|  | OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results, MutableArrayRef<int> NewMask, | 
|  | unsigned Options) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | if (!Va.isValid() || !Vb.isValid()) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | int VecLen = SM.Mask.size(); | 
|  | MVT Ty = getSingleVT(MVT::i8); | 
|  |  | 
|  | auto IsExtSubvector = [] (ShuffleMask M) { | 
|  | assert(M.MinSrc >= 0 && M.MaxSrc >= 0); | 
|  | for (int I = 0, E = M.Mask.size(); I != E; ++I) { | 
|  | if (M.Mask[I] >= 0 && M.Mask[I]-I != M.MinSrc) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (SM.MaxSrc - SM.MinSrc < int(HwLen)) { | 
|  | if (SM.MinSrc == 0 || SM.MinSrc == int(HwLen) || !IsExtSubvector(SM)) { | 
|  | // If the mask picks elements from only one of the operands, return | 
|  | // that operand, and update the mask to use index 0 to refer to the | 
|  | // first element of that operand. | 
|  | // If the mask extracts a subvector, it will be handled below, so | 
|  | // skip it here. | 
|  | if (SM.MaxSrc < int(HwLen)) { | 
|  | memcpy(NewMask.data(), SM.Mask.data(), sizeof(int)*VecLen); | 
|  | return Va; | 
|  | } | 
|  | if (SM.MinSrc >= int(HwLen)) { | 
|  | for (int I = 0; I != VecLen; ++I) { | 
|  | int M = SM.Mask[I]; | 
|  | if (M != -1) | 
|  | M -= HwLen; | 
|  | NewMask[I] = M; | 
|  | } | 
|  | return Vb; | 
|  | } | 
|  | } | 
|  | int MinSrc = SM.MinSrc; | 
|  | if (SM.MaxSrc < int(HwLen)) { | 
|  | Vb = Va; | 
|  | } else if (SM.MinSrc > int(HwLen)) { | 
|  | Va = Vb; | 
|  | MinSrc = SM.MinSrc - HwLen; | 
|  | } | 
|  | const SDLoc &dl(Results.InpNode); | 
|  | if (isUInt<3>(MinSrc) || isUInt<3>(HwLen-MinSrc)) { | 
|  | bool IsRight = isUInt<3>(MinSrc); // Right align. | 
|  | SDValue S = DAG.getTargetConstant(IsRight ? MinSrc : HwLen-MinSrc, | 
|  | dl, MVT::i32); | 
|  | unsigned Opc = IsRight ? Hexagon::V6_valignbi | 
|  | : Hexagon::V6_vlalignbi; | 
|  | Results.push(Opc, Ty, {Vb, Va, S}); | 
|  | } else { | 
|  | SDValue S = DAG.getTargetConstant(MinSrc, dl, MVT::i32); | 
|  | Results.push(Hexagon::A2_tfrsi, MVT::i32, {S}); | 
|  | unsigned Top = Results.top(); | 
|  | Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(Top)}); | 
|  | } | 
|  | for (int I = 0; I != VecLen; ++I) { | 
|  | int M = SM.Mask[I]; | 
|  | if (M != -1) | 
|  | M -= SM.MinSrc; | 
|  | NewMask[I] = M; | 
|  | } | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | if (Options & PackMux) { | 
|  | // If elements picked from Va and Vb have all different (source) indexes | 
|  | // (relative to the start of the argument), do a mux, and update the mask. | 
|  | BitVector Picked(HwLen); | 
|  | SmallVector<uint8_t,128> MuxBytes(HwLen); | 
|  | bool CanMux = true; | 
|  | for (int I = 0; I != VecLen; ++I) { | 
|  | int M = SM.Mask[I]; | 
|  | if (M == -1) | 
|  | continue; | 
|  | if (M >= int(HwLen)) | 
|  | M -= HwLen; | 
|  | else | 
|  | MuxBytes[M] = 0xFF; | 
|  | if (Picked[M]) { | 
|  | CanMux = false; | 
|  | break; | 
|  | } | 
|  | NewMask[I] = M; | 
|  | } | 
|  | if (CanMux) | 
|  | return vmuxs(MuxBytes, Va, Vb, Results); | 
|  | } | 
|  |  | 
|  | return OpRef::fail(); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results, MutableArrayRef<int> NewMask) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | unsigned HalfMask = 0; | 
|  | unsigned LogHw = Log2_32(HwLen); | 
|  | for (int M : SM.Mask) { | 
|  | if (M == -1) | 
|  | continue; | 
|  | HalfMask |= (1u << (M >> LogHw)); | 
|  | } | 
|  |  | 
|  | if (HalfMask == 0) | 
|  | return OpRef::undef(getPairVT(MVT::i8)); | 
|  |  | 
|  | // If more than two halves are used, bail. | 
|  | // TODO: be more aggressive here? | 
|  | if (countPopulation(HalfMask) > 2) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | MVT HalfTy = getSingleVT(MVT::i8); | 
|  |  | 
|  | OpRef Inp[2] = { Va, Vb }; | 
|  | OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) }; | 
|  |  | 
|  | uint8_t HalfIdx[4] = { 0xFF, 0xFF, 0xFF, 0xFF }; | 
|  | unsigned Idx = 0; | 
|  | for (unsigned I = 0; I != 4; ++I) { | 
|  | if ((HalfMask & (1u << I)) == 0) | 
|  | continue; | 
|  | assert(Idx < 2); | 
|  | OpRef Op = Inp[I/2]; | 
|  | Out[Idx] = (I & 1) ? OpRef::hi(Op) : OpRef::lo(Op); | 
|  | HalfIdx[I] = Idx++; | 
|  | } | 
|  |  | 
|  | int VecLen = SM.Mask.size(); | 
|  | for (int I = 0; I != VecLen; ++I) { | 
|  | int M = SM.Mask[I]; | 
|  | if (M >= 0) { | 
|  | uint8_t Idx = HalfIdx[M >> LogHw]; | 
|  | assert(Idx == 0 || Idx == 1); | 
|  | M = (M & (HwLen-1)) + HwLen*Idx; | 
|  | } | 
|  | NewMask[I] = M; | 
|  | } | 
|  |  | 
|  | return concat(Out[0], Out[1], Results); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | MVT ByteTy = getSingleVT(MVT::i8); | 
|  | MVT BoolTy = MVT::getVectorVT(MVT::i1, 8*HwLen); // XXX | 
|  | const SDLoc &dl(Results.InpNode); | 
|  | SDValue B = getVectorConstant(Bytes, dl); | 
|  | Results.push(Hexagon::V6_vd0, ByteTy, {}); | 
|  | Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)}); | 
|  | Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va}); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | size_t S = Bytes.size() / 2; | 
|  | OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results); | 
|  | OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results); | 
|  | return concat(L, H, Results); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | unsigned VecLen = SM.Mask.size(); | 
|  | assert(HwLen == VecLen); | 
|  | (void)VecLen; | 
|  | assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); | 
|  |  | 
|  | if (isIdentity(SM.Mask)) | 
|  | return Va; | 
|  | if (isUndef(SM.Mask)) | 
|  | return OpRef::undef(getSingleVT(MVT::i8)); | 
|  |  | 
|  | OpRef P = perfect(SM, Va, Results); | 
|  | if (P.isValid()) | 
|  | return P; | 
|  | return butterfly(SM, Va, Results); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | if (isUndef(SM.Mask)) | 
|  | return OpRef::undef(getSingleVT(MVT::i8)); | 
|  |  | 
|  | OpRef C = contracting(SM, Va, Vb, Results); | 
|  | if (C.isValid()) | 
|  | return C; | 
|  |  | 
|  | int VecLen = SM.Mask.size(); | 
|  | SmallVector<int,128> NewMask(VecLen); | 
|  | OpRef P = packs(SM, Va, Vb, Results, NewMask); | 
|  | if (P.isValid()) | 
|  | return shuffs1(ShuffleMask(NewMask), P, Results); | 
|  |  | 
|  | SmallVector<int,128> MaskL(VecLen), MaskR(VecLen); | 
|  | splitMask(SM.Mask, MaskL, MaskR); | 
|  |  | 
|  | OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results); | 
|  | OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results); | 
|  | if (!L.isValid() || !R.isValid()) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | SmallVector<uint8_t,128> Bytes(VecLen); | 
|  | for (int I = 0; I != VecLen; ++I) { | 
|  | if (MaskL[I] != -1) | 
|  | Bytes[I] = 0xFF; | 
|  | } | 
|  | return vmuxs(Bytes, L, R, Results); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | int VecLen = SM.Mask.size(); | 
|  |  | 
|  | if (isIdentity(SM.Mask)) | 
|  | return Va; | 
|  | if (isUndef(SM.Mask)) | 
|  | return OpRef::undef(getPairVT(MVT::i8)); | 
|  |  | 
|  | SmallVector<int,128> PackedMask(VecLen); | 
|  | OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask); | 
|  | if (P.isValid()) { | 
|  | ShuffleMask PM(PackedMask); | 
|  | OpRef E = expanding(PM, P, Results); | 
|  | if (E.isValid()) | 
|  | return E; | 
|  |  | 
|  | OpRef L = shuffs1(PM.lo(), P, Results); | 
|  | OpRef H = shuffs1(PM.hi(), P, Results); | 
|  | if (L.isValid() && H.isValid()) | 
|  | return concat(L, H, Results); | 
|  | } | 
|  |  | 
|  | OpRef R = perfect(SM, Va, Results); | 
|  | if (R.isValid()) | 
|  | return R; | 
|  | // TODO commute the mask and try the opposite order of the halves. | 
|  |  | 
|  | OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results); | 
|  | OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results); | 
|  | if (L.isValid() && H.isValid()) | 
|  | return concat(L, H, Results); | 
|  |  | 
|  | return OpRef::fail(); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | if (isUndef(SM.Mask)) | 
|  | return OpRef::undef(getPairVT(MVT::i8)); | 
|  |  | 
|  | int VecLen = SM.Mask.size(); | 
|  | SmallVector<int,256> PackedMask(VecLen); | 
|  | OpRef P = packp(SM, Va, Vb, Results, PackedMask); | 
|  | if (P.isValid()) | 
|  | return shuffp1(ShuffleMask(PackedMask), P, Results); | 
|  |  | 
|  | SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); | 
|  | splitMask(SM.Mask, MaskL, MaskR); | 
|  |  | 
|  | OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results); | 
|  | OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results); | 
|  | if (!L.isValid() || !R.isValid()) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | // Mux the results. | 
|  | SmallVector<uint8_t,256> Bytes(VecLen); | 
|  | for (int I = 0; I != VecLen; ++I) { | 
|  | if (MaskL[I] != -1) | 
|  | Bytes[I] = 0xFF; | 
|  | } | 
|  | return vmuxp(Bytes, L, R, Results); | 
|  | } | 
|  |  | 
|  | bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, | 
|  | MVT ResTy, SDValue Va, SDValue Vb, | 
|  | SDNode *N) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | MVT ElemTy = ResTy.getVectorElementType(); | 
|  | assert(ElemTy == MVT::i8); | 
|  | unsigned VecLen = Mask.size(); | 
|  | bool HavePairs = (2*HwLen == VecLen); | 
|  | MVT SingleTy = getSingleVT(MVT::i8); | 
|  |  | 
|  | SmallVector<SDValue,128> Ops; | 
|  | for (int I : Mask) { | 
|  | if (I < 0) { | 
|  | Ops.push_back(ISel.selectUndef(dl, ElemTy)); | 
|  | continue; | 
|  | } | 
|  | SDValue Vec; | 
|  | unsigned M = I; | 
|  | if (M < VecLen) { | 
|  | Vec = Va; | 
|  | } else { | 
|  | Vec = Vb; | 
|  | M -= VecLen; | 
|  | } | 
|  | if (HavePairs) { | 
|  | if (M < HwLen) { | 
|  | Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec); | 
|  | } else { | 
|  | Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec); | 
|  | M -= HwLen; | 
|  | } | 
|  | } | 
|  | SDValue Idx = DAG.getConstant(M, dl, MVT::i32); | 
|  | SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ElemTy, {Vec, Idx}); | 
|  | SDValue L = Lower.LowerOperation(Ex, DAG); | 
|  | assert(L.getNode()); | 
|  | Ops.push_back(L); | 
|  | } | 
|  |  | 
|  | SDValue LV; | 
|  | if (2*HwLen == VecLen) { | 
|  | SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen}); | 
|  | SDValue L0 = Lower.LowerOperation(B0, DAG); | 
|  | SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen}); | 
|  | SDValue L1 = Lower.LowerOperation(B1, DAG); | 
|  | // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering) | 
|  | // functions may expect to be called only for illegal operations, so | 
|  | // make sure that they are not called for legal ones. Develop a better | 
|  | // mechanism for dealing with this. | 
|  | LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1}); | 
|  | } else { | 
|  | SDValue BV = DAG.getBuildVector(ResTy, dl, Ops); | 
|  | LV = Lower.LowerOperation(BV, DAG); | 
|  | } | 
|  |  | 
|  | assert(!N->use_empty()); | 
|  | ISel.ReplaceNode(N, LV.getNode()); | 
|  | DAG.RemoveDeadNodes(); | 
|  |  | 
|  | std::deque<SDNode*> SubNodes; | 
|  | SubNodes.push_back(LV.getNode()); | 
|  | for (unsigned I = 0; I != SubNodes.size(); ++I) { | 
|  | for (SDValue Op : SubNodes[I]->ops()) | 
|  | SubNodes.push_back(Op.getNode()); | 
|  | } | 
|  | while (!SubNodes.empty()) { | 
|  | SDNode *S = SubNodes.front(); | 
|  | SubNodes.pop_front(); | 
|  | if (S->use_empty()) | 
|  | continue; | 
|  | // This isn't great, but users need to be selected before any nodes that | 
|  | // they use. (The reason is to match larger patterns, and avoid nodes that | 
|  | // cannot be matched on their own, e.g. ValueType, TokenFactor, etc.). | 
|  | bool PendingUser = llvm::any_of(S->uses(), [&SubNodes](const SDNode *U) { | 
|  | return llvm::any_of(SubNodes, [U](const SDNode *T) { | 
|  | return T == U; | 
|  | }); | 
|  | }); | 
|  | if (PendingUser) | 
|  | SubNodes.push_back(S); | 
|  | else | 
|  | ISel.Select(S); | 
|  | } | 
|  |  | 
|  | DAG.RemoveDeadNodes(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, | 
|  | ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | if (!Va.isValid() || !Vb.isValid()) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | // Contracting shuffles, i.e. instructions that always discard some bytes | 
|  | // from the operand vectors. | 
|  | // | 
|  | // V6_vshuff{e,o}b | 
|  | // V6_vdealb4w | 
|  | // V6_vpack{e,o}{b,h} | 
|  |  | 
|  | int VecLen = SM.Mask.size(); | 
|  | std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); | 
|  | MVT ResTy = getSingleVT(MVT::i8); | 
|  |  | 
|  | // The following shuffles only work for bytes and halfwords. This requires | 
|  | // the strip length to be 1 or 2. | 
|  | if (Strip.second != 1 && Strip.second != 2) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | // The patterns for the shuffles, in terms of the starting offsets of the | 
|  | // consecutive strips (L = length of the strip, N = VecLen): | 
|  | // | 
|  | // vpacke:    0, 2L, 4L ... N+0, N+2L, N+4L ...      L = 1 or 2 | 
|  | // vpacko:    L, 3L, 5L ... N+L, N+3L, N+5L ...      L = 1 or 2 | 
|  | // | 
|  | // vshuffe:   0, N+0, 2L, N+2L, 4L ...               L = 1 or 2 | 
|  | // vshuffo:   L, N+L, 3L, N+3L, 5L ...               L = 1 or 2 | 
|  | // | 
|  | // vdealb4w:  0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ... | 
|  |  | 
|  | // The value of the element in the mask following the strip will decide | 
|  | // what kind of a shuffle this can be. | 
|  | int NextInMask = SM.Mask[Strip.second]; | 
|  |  | 
|  | // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask | 
|  | // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would | 
|  | // satisfy this. | 
|  | if (NextInMask < VecLen) { | 
|  | // vpack{e,o} or vdealb4w | 
|  | if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) { | 
|  | int N = VecLen; | 
|  | // Check if this is vdealb4w (L=1). | 
|  | for (int I = 0; I != N/4; ++I) | 
|  | if (SM.Mask[I] != 4*I) | 
|  | return OpRef::fail(); | 
|  | for (int I = 0; I != N/4; ++I) | 
|  | if (SM.Mask[I+N/4] != 2 + 4*I) | 
|  | return OpRef::fail(); | 
|  | for (int I = 0; I != N/4; ++I) | 
|  | if (SM.Mask[I+N/2] != N + 4*I) | 
|  | return OpRef::fail(); | 
|  | for (int I = 0; I != N/4; ++I) | 
|  | if (SM.Mask[I+3*N/4] != N+2 + 4*I) | 
|  | return OpRef::fail(); | 
|  | // Matched mask for vdealb4w. | 
|  | Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va}); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | // Check if this is vpack{e,o}. | 
|  | int N = VecLen; | 
|  | int L = Strip.second; | 
|  | // Check if the first strip starts at 0 or at L. | 
|  | if (Strip.first != 0 && Strip.first != L) | 
|  | return OpRef::fail(); | 
|  | // Examine the rest of the mask. | 
|  | for (int I = L; I < N; I += L) { | 
|  | auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); | 
|  | // Check whether the mask element at the beginning of each strip | 
|  | // increases by 2L each time. | 
|  | if (S.first - Strip.first != 2*I) | 
|  | return OpRef::fail(); | 
|  | // Check whether each strip is of the same length. | 
|  | if (S.second != unsigned(L)) | 
|  | return OpRef::fail(); | 
|  | } | 
|  |  | 
|  | // Strip.first == 0  =>  vpacke | 
|  | // Strip.first == L  =>  vpacko | 
|  | assert(Strip.first == 0 || Strip.first == L); | 
|  | using namespace Hexagon; | 
|  | NodeTemplate Res; | 
|  | Res.Opc = Strip.second == 1 // Number of bytes. | 
|  | ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob) | 
|  | : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh); | 
|  | Res.Ty = ResTy; | 
|  | Res.Ops = { Vb, Va }; | 
|  | Results.push(Res); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | // Check if this is vshuff{e,o}. | 
|  | int N = VecLen; | 
|  | int L = Strip.second; | 
|  | std::pair<int,unsigned> PrevS = Strip; | 
|  | bool Flip = false; | 
|  | for (int I = L; I < N; I += L) { | 
|  | auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); | 
|  | if (S.second != PrevS.second) | 
|  | return OpRef::fail(); | 
|  | int Diff = Flip ? PrevS.first - S.first + 2*L | 
|  | : S.first - PrevS.first; | 
|  | if (Diff != N) | 
|  | return OpRef::fail(); | 
|  | Flip ^= true; | 
|  | PrevS = S; | 
|  | } | 
|  | // Strip.first == 0  =>  vshuffe | 
|  | // Strip.first == L  =>  vshuffo | 
|  | assert(Strip.first == 0 || Strip.first == L); | 
|  | using namespace Hexagon; | 
|  | NodeTemplate Res; | 
|  | Res.Opc = Strip.second == 1 // Number of bytes. | 
|  | ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob) | 
|  | : (Strip.first == 0 ?  V6_vshufeh :  V6_vshufoh); | 
|  | Res.Ty = ResTy; | 
|  | Res.Ops = { Vb, Va }; | 
|  | Results.push(Res); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | // Expanding shuffles (using all elements and inserting into larger vector): | 
|  | // | 
|  | // V6_vunpacku{b,h} [*] | 
|  | // | 
|  | // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask. | 
|  | // | 
|  | // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so | 
|  | // they are not shuffles. | 
|  | // | 
|  | // The argument is a single vector. | 
|  |  | 
|  | int VecLen = SM.Mask.size(); | 
|  | assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type"); | 
|  |  | 
|  | std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); | 
|  |  | 
|  | // The patterns for the unpacks, in terms of the starting offsets of the | 
|  | // consecutive strips (L = length of the strip, N = VecLen): | 
|  | // | 
|  | // vunpacku:  0, -1, L, -1, 2L, -1 ... | 
|  |  | 
|  | if (Strip.first != 0) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | // The vunpackus only handle byte and half-word. | 
|  | if (Strip.second != 1 && Strip.second != 2) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | int N = VecLen; | 
|  | int L = Strip.second; | 
|  |  | 
|  | // First, check the non-ignored strips. | 
|  | for (int I = 2*L; I < 2*N; I += 2*L) { | 
|  | auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); | 
|  | if (S.second != unsigned(L)) | 
|  | return OpRef::fail(); | 
|  | if (2*S.first != I) | 
|  | return OpRef::fail(); | 
|  | } | 
|  | // Check the -1s. | 
|  | for (int I = L; I < 2*N; I += 2*L) { | 
|  | auto S = findStrip(SM.Mask.drop_front(I), 0, N-I); | 
|  | if (S.first != -1 || S.second != unsigned(L)) | 
|  | return OpRef::fail(); | 
|  | } | 
|  |  | 
|  | unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub | 
|  | : Hexagon::V6_vunpackuh; | 
|  | Results.push(Opc, getPairVT(MVT::i8), {Va}); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | // V6_vdeal{b,h} | 
|  | // V6_vshuff{b,h} | 
|  |  | 
|  | // V6_vshufoe{b,h}  those are quivalent to vshuffvdd(..,{1,2}) | 
|  | // V6_vshuffvdd (V6_vshuff) | 
|  | // V6_dealvdd (V6_vdeal) | 
|  |  | 
|  | int VecLen = SM.Mask.size(); | 
|  | assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); | 
|  | unsigned LogLen = Log2_32(VecLen); | 
|  | unsigned HwLog = Log2_32(HwLen); | 
|  | // The result length must be the same as the length of a single vector, | 
|  | // or a vector pair. | 
|  | assert(LogLen == HwLog || LogLen == HwLog+1); | 
|  | bool Extend = (LogLen == HwLog); | 
|  |  | 
|  | if (!isPermutation(SM.Mask)) | 
|  | return OpRef::fail(); | 
|  |  | 
|  | SmallVector<unsigned,8> Perm(LogLen); | 
|  |  | 
|  | // Check if this could be a perfect shuffle, or a combination of perfect | 
|  | // shuffles. | 
|  | // | 
|  | // Consider this permutation (using hex digits to make the ASCII diagrams | 
|  | // easier to read): | 
|  | //   { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }. | 
|  | // This is a "deal" operation: divide the input into two halves, and | 
|  | // create the output by picking elements by alternating between these two | 
|  | // halves: | 
|  | //   0 1 2 3 4 5 6 7    -->    0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F  [*] | 
|  | //   8 9 A B C D E F | 
|  | // | 
|  | // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides | 
|  | // a somwehat different mechanism that could be used to perform shuffle/ | 
|  | // deal operations: a 2x2 transpose. | 
|  | // Consider the halves of inputs again, they can be interpreted as a 2x8 | 
|  | // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated | 
|  | // together. Now, when considering 2 elements at a time, it will be a 2x4 | 
|  | // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices: | 
|  | //   01 23  45 67 | 
|  | //   89 AB  CD EF | 
|  | // With groups of 4, this will become a single 2x2 matrix, and so on. | 
|  | // | 
|  | // The 2x2 transpose instruction works by transposing each of the 2x2 | 
|  | // matrices (or "sub-matrices"), given a specific group size. For example, | 
|  | // if the group size is 1 (i.e. each element is its own group), there | 
|  | // will be four transposes of the four 2x2 matrices that form the 2x8. | 
|  | // For example, with the inputs as above, the result will be: | 
|  | //   0 8  2 A  4 C  6 E | 
|  | //   1 9  3 B  5 D  7 F | 
|  | // Now, this result can be tranposed again, but with the group size of 2: | 
|  | //   08 19  4C 5D | 
|  | //   2A 3B  6E 7F | 
|  | // If we then transpose that result, but with the group size of 4, we get: | 
|  | //   0819 2A3B | 
|  | //   4C5D 6E7F | 
|  | // If we concatenate these two rows, it will be | 
|  | //   0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F | 
|  | // which is the same as the "deal" [*] above. | 
|  | // | 
|  | // In general, a "deal" of individual elements is a series of 2x2 transposes, | 
|  | // with changing group size. HVX has two instructions: | 
|  | //   Vdd = V6_vdealvdd Vu, Vv, Rt | 
|  | //   Vdd = V6_shufvdd  Vu, Vv, Rt | 
|  | // that perform exactly that. The register Rt controls which transposes are | 
|  | // going to happen: a bit at position n (counting from 0) indicates that a | 
|  | // transpose with a group size of 2^n will take place. If multiple bits are | 
|  | // set, multiple transposes will happen: vdealvdd will perform them starting | 
|  | // with the largest group size, vshuffvdd will do them in the reverse order. | 
|  | // | 
|  | // The main observation is that each 2x2 transpose corresponds to swapping | 
|  | // columns of bits in the binary representation of the values. | 
|  | // | 
|  | // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits | 
|  | // in a given column. The * denote the columns that will be swapped. | 
|  | // The transpose with the group size 2^n corresponds to swapping columns | 
|  | // 3 (the highest log) and log2(n): | 
|  | // | 
|  | //     3 2 1 0         0 2 1 3         0 2 3 1 | 
|  | //     *     *             * *           * * | 
|  | //  0  0 0 0 0      0  0 0 0 0      0  0 0 0 0      0  0 0 0 0 | 
|  | //  1  0 0 0 1      8  1 0 0 0      8  1 0 0 0      8  1 0 0 0 | 
|  | //  2  0 0 1 0      2  0 0 1 0      1  0 0 0 1      1  0 0 0 1 | 
|  | //  3  0 0 1 1      A  1 0 1 0      9  1 0 0 1      9  1 0 0 1 | 
|  | //  4  0 1 0 0      4  0 1 0 0      4  0 1 0 0      2  0 0 1 0 | 
|  | //  5  0 1 0 1      C  1 1 0 0      C  1 1 0 0      A  1 0 1 0 | 
|  | //  6  0 1 1 0      6  0 1 1 0      5  0 1 0 1      3  0 0 1 1 | 
|  | //  7  0 1 1 1      E  1 1 1 0      D  1 1 0 1      B  1 0 1 1 | 
|  | //  8  1 0 0 0      1  0 0 0 1      2  0 0 1 0      4  0 1 0 0 | 
|  | //  9  1 0 0 1      9  1 0 0 1      A  1 0 1 0      C  1 1 0 0 | 
|  | //  A  1 0 1 0      3  0 0 1 1      3  0 0 1 1      5  0 1 0 1 | 
|  | //  B  1 0 1 1      B  1 0 1 1      B  1 0 1 1      D  1 1 0 1 | 
|  | //  C  1 1 0 0      5  0 1 0 1      6  0 1 1 0      6  0 1 1 0 | 
|  | //  D  1 1 0 1      D  1 1 0 1      E  1 1 1 0      E  1 1 1 0 | 
|  | //  E  1 1 1 0      7  0 1 1 1      7  0 1 1 1      7  0 1 1 1 | 
|  | //  F  1 1 1 1      F  1 1 1 1      F  1 1 1 1      F  1 1 1 1 | 
|  |  | 
|  | auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) { | 
|  | unsigned X = Mask[0] ^ Mask[Num/2]; | 
|  | // Check that the first half has the X's bits clear. | 
|  | if ((Mask[0] & X) != 0) | 
|  | return 0u; | 
|  | for (unsigned I = 1; I != Num/2; ++I) { | 
|  | if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X) | 
|  | return 0u; | 
|  | if ((Mask[I] & X) != 0) | 
|  | return 0u; | 
|  | } | 
|  | return X; | 
|  | }; | 
|  |  | 
|  | // Create a vector of log2's for each column: Perm[i] corresponds to | 
|  | // the i-th bit (lsb is 0). | 
|  | assert(VecLen > 2); | 
|  | for (unsigned I = VecLen; I >= 2; I >>= 1) { | 
|  | // Examine the initial segment of Mask of size I. | 
|  | unsigned X = XorPow2(SM.Mask, I); | 
|  | if (!isPowerOf2_32(X)) | 
|  | return OpRef::fail(); | 
|  | // Check the other segments of Mask. | 
|  | for (int J = I; J < VecLen; J += I) { | 
|  | if (XorPow2(SM.Mask.slice(J, I), I) != X) | 
|  | return OpRef::fail(); | 
|  | } | 
|  | Perm[Log2_32(X)] = Log2_32(I)-1; | 
|  | } | 
|  |  | 
|  | // Once we have Perm, represent it as cycles. Denote the maximum log2 | 
|  | // (equal to log2(VecLen)-1) as M. The cycle containing M can then be | 
|  | // written as (M a1 a2 a3 ... an). That cycle can be broken up into | 
|  | // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition | 
|  | // order being from left to right. Any (contiguous) segment where the | 
|  | // values ai, ai+1...aj are either all increasing or all decreasing, | 
|  | // can be implemented via a single vshuffvdd/vdealvdd respectively. | 
|  | // | 
|  | // If there is a cycle (a1 a2 ... an) that does not involve M, it can | 
|  | // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can | 
|  | // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure | 
|  | // can be used to generate a sequence of vshuffvdd/vdealvdd. | 
|  | // | 
|  | // Example: | 
|  | // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written | 
|  | // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply | 
|  | //   (4 0 1)(4 0)(4 2 3)(4 2). | 
|  | // It can then be expanded into swaps as | 
|  | //   (4 0)(4 1)(4 0)(4 2)(4 3)(4 2), | 
|  | // and broken up into "increasing" segments as | 
|  | //   [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)]. | 
|  | // This is equivalent to | 
|  | //   (4 0 1)(4 0 2 3)(4 2), | 
|  | // which can be implemented as 3 vshufvdd instructions. | 
|  |  | 
|  | using CycleType = SmallVector<unsigned,8>; | 
|  | std::set<CycleType> Cycles; | 
|  | std::set<unsigned> All; | 
|  |  | 
|  | for (unsigned I : Perm) | 
|  | All.insert(I); | 
|  |  | 
|  | // If the cycle contains LogLen-1, move it to the front of the cycle. | 
|  | // Otherwise, return the cycle unchanged. | 
|  | auto canonicalize = [LogLen](const CycleType &C) -> CycleType { | 
|  | unsigned LogPos, N = C.size(); | 
|  | for (LogPos = 0; LogPos != N; ++LogPos) | 
|  | if (C[LogPos] == LogLen-1) | 
|  | break; | 
|  | if (LogPos == N) | 
|  | return C; | 
|  |  | 
|  | CycleType NewC(C.begin()+LogPos, C.end()); | 
|  | NewC.append(C.begin(), C.begin()+LogPos); | 
|  | return NewC; | 
|  | }; | 
|  |  | 
|  | auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { | 
|  | // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6), | 
|  | // for bytes zero is included, for halfwords is not. | 
|  | if (Cs.size() != 1) | 
|  | return 0u; | 
|  | const CycleType &C = *Cs.begin(); | 
|  | if (C[0] != Len-1) | 
|  | return 0u; | 
|  | int D = Len - C.size(); | 
|  | if (D != 0 && D != 1) | 
|  | return 0u; | 
|  |  | 
|  | bool IsDeal = true, IsShuff = true; | 
|  | for (unsigned I = 1; I != Len-D; ++I) { | 
|  | if (C[I] != Len-1-I) | 
|  | IsDeal = false; | 
|  | if (C[I] != I-(1-D))  // I-1, I | 
|  | IsShuff = false; | 
|  | } | 
|  | // At most one, IsDeal or IsShuff, can be non-zero. | 
|  | assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); | 
|  | static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh }; | 
|  | static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh }; | 
|  | return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); | 
|  | }; | 
|  |  | 
|  | while (!All.empty()) { | 
|  | unsigned A = *All.begin(); | 
|  | All.erase(A); | 
|  | CycleType C; | 
|  | C.push_back(A); | 
|  | for (unsigned B = Perm[A]; B != A; B = Perm[B]) { | 
|  | C.push_back(B); | 
|  | All.erase(B); | 
|  | } | 
|  | if (C.size() <= 1) | 
|  | continue; | 
|  | Cycles.insert(canonicalize(C)); | 
|  | } | 
|  |  | 
|  | MVT SingleTy = getSingleVT(MVT::i8); | 
|  | MVT PairTy = getPairVT(MVT::i8); | 
|  |  | 
|  | // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}. | 
|  | if (unsigned(VecLen) == HwLen) { | 
|  | if (unsigned SingleOpc = pfs(Cycles, LogLen)) { | 
|  | Results.push(SingleOpc, SingleTy, {Va}); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned,8> SwapElems; | 
|  | if (HwLen == unsigned(VecLen)) | 
|  | SwapElems.push_back(LogLen-1); | 
|  |  | 
|  | for (const CycleType &C : Cycles) { | 
|  | unsigned First = (C[0] == LogLen-1) ? 1 : 0; | 
|  | SwapElems.append(C.begin()+First, C.end()); | 
|  | if (First == 0) | 
|  | SwapElems.push_back(C[0]); | 
|  | } | 
|  |  | 
|  | const SDLoc &dl(Results.InpNode); | 
|  | OpRef Arg = !Extend ? Va | 
|  | : concat(Va, OpRef::undef(SingleTy), Results); | 
|  |  | 
|  | for (unsigned I = 0, E = SwapElems.size(); I != E; ) { | 
|  | bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1]; | 
|  | unsigned S = (1u << SwapElems[I]); | 
|  | if (I < E-1) { | 
|  | while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1])) | 
|  | S |= 1u << SwapElems[I]; | 
|  | // The above loop will not add a bit for the final SwapElems[I+1], | 
|  | // so add it here. | 
|  | S |= 1u << SwapElems[I]; | 
|  | } | 
|  | ++I; | 
|  |  | 
|  | NodeTemplate Res; | 
|  | Results.push(Hexagon::A2_tfrsi, MVT::i32, | 
|  | { DAG.getTargetConstant(S, dl, MVT::i32) }); | 
|  | Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; | 
|  | Res.Ty = PairTy; | 
|  | Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) }; | 
|  | Results.push(Res); | 
|  | Arg = OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | return !Extend ? Arg : OpRef::lo(Arg); | 
|  | } | 
|  |  | 
|  | OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { | 
|  | DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | 
|  | // Butterfly shuffles. | 
|  | // | 
|  | // V6_vdelta | 
|  | // V6_vrdelta | 
|  | // V6_vror | 
|  |  | 
|  | // The assumption here is that all elements picked by Mask are in the | 
|  | // first operand to the vector_shuffle. This assumption is enforced | 
|  | // by the caller. | 
|  |  | 
|  | MVT ResTy = getSingleVT(MVT::i8); | 
|  | PermNetwork::Controls FC, RC; | 
|  | const SDLoc &dl(Results.InpNode); | 
|  | int VecLen = SM.Mask.size(); | 
|  |  | 
|  | for (int M : SM.Mask) { | 
|  | if (M != -1 && M >= VecLen) | 
|  | return OpRef::fail(); | 
|  | } | 
|  |  | 
|  | // Try the deltas/benes for both single vectors and vector pairs. | 
|  | ForwardDeltaNetwork FN(SM.Mask); | 
|  | if (FN.run(FC)) { | 
|  | SDValue Ctl = getVectorConstant(FC, dl); | 
|  | Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)}); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | // Try reverse delta. | 
|  | ReverseDeltaNetwork RN(SM.Mask); | 
|  | if (RN.run(RC)) { | 
|  | SDValue Ctl = getVectorConstant(RC, dl); | 
|  | Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)}); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | // Do Benes. | 
|  | BenesNetwork BN(SM.Mask); | 
|  | if (BN.run(FC, RC)) { | 
|  | SDValue CtlF = getVectorConstant(FC, dl); | 
|  | SDValue CtlR = getVectorConstant(RC, dl); | 
|  | Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)}); | 
|  | Results.push(Hexagon::V6_vrdelta, ResTy, | 
|  | {OpRef::res(-1), OpRef(CtlR)}); | 
|  | return OpRef::res(Results.top()); | 
|  | } | 
|  |  | 
|  | return OpRef::fail(); | 
|  | } | 
|  |  | 
|  | SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, | 
|  | const SDLoc &dl) { | 
|  | SmallVector<SDValue, 128> Elems; | 
|  | for (uint8_t C : Data) | 
|  | Elems.push_back(DAG.getConstant(C, dl, MVT::i8)); | 
|  | MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size()); | 
|  | SDValue BV = DAG.getBuildVector(VecTy, dl, Elems); | 
|  | SDValue LV = Lower.LowerOperation(BV, DAG); | 
|  | DAG.RemoveDeadNode(BV.getNode()); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | void HvxSelector::selectShuffle(SDNode *N) { | 
|  | DEBUG_WITH_TYPE("isel", { | 
|  | dbgs() << "Starting " << __func__ << " on node:\n"; | 
|  | N->dump(&DAG); | 
|  | }); | 
|  | MVT ResTy = N->getValueType(0).getSimpleVT(); | 
|  | // Assume that vector shuffles operate on vectors of bytes. | 
|  | assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); | 
|  |  | 
|  | auto *SN = cast<ShuffleVectorSDNode>(N); | 
|  | std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); | 
|  | // This shouldn't really be necessary. Is it? | 
|  | for (int &Idx : Mask) | 
|  | if (Idx != -1 && Idx < 0) | 
|  | Idx = -1; | 
|  |  | 
|  | unsigned VecLen = Mask.size(); | 
|  | bool HavePairs = (2*HwLen == VecLen); | 
|  | assert(ResTy.getSizeInBits() / 8 == VecLen); | 
|  |  | 
|  | // Vd = vector_shuffle Va, Vb, Mask | 
|  | // | 
|  |  | 
|  | bool UseLeft = false, UseRight = false; | 
|  | for (unsigned I = 0; I != VecLen; ++I) { | 
|  | if (Mask[I] == -1) | 
|  | continue; | 
|  | unsigned Idx = Mask[I]; | 
|  | assert(Idx < 2*VecLen); | 
|  | if (Idx < VecLen) | 
|  | UseLeft = true; | 
|  | else | 
|  | UseRight = true; | 
|  | } | 
|  |  | 
|  | DEBUG_WITH_TYPE("isel", { | 
|  | dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" | 
|  | << UseLeft << " UseRight=" << UseRight << " HavePairs=" | 
|  | << HavePairs << '\n'; | 
|  | }); | 
|  | // If the mask is all -1's, generate "undef". | 
|  | if (!UseLeft && !UseRight) { | 
|  | ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Vec0 = N->getOperand(0); | 
|  | SDValue Vec1 = N->getOperand(1); | 
|  | ResultStack Results(SN); | 
|  | Results.push(TargetOpcode::COPY, ResTy, {Vec0}); | 
|  | Results.push(TargetOpcode::COPY, ResTy, {Vec1}); | 
|  | OpRef Va = OpRef::res(Results.top()-1); | 
|  | OpRef Vb = OpRef::res(Results.top()); | 
|  |  | 
|  | OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results) | 
|  | : shuffp2(ShuffleMask(Mask), Va, Vb, Results); | 
|  |  | 
|  | bool Done = Res.isValid(); | 
|  | if (Done) { | 
|  | // Make sure that Res is on the stack before materializing. | 
|  | Results.push(TargetOpcode::COPY, ResTy, {Res}); | 
|  | materialize(Results); | 
|  | } else { | 
|  | Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N); | 
|  | } | 
|  |  | 
|  | if (!Done) { | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "Unhandled shuffle:\n"; | 
|  | SN->dumpr(&DAG); | 
|  | #endif | 
|  | llvm_unreachable("Failed to select vector shuffle"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HvxSelector::selectRor(SDNode *N) { | 
|  | // If this is a rotation by less than 8, use V6_valignbi. | 
|  | MVT Ty = N->getValueType(0).getSimpleVT(); | 
|  | const SDLoc &dl(N); | 
|  | SDValue VecV = N->getOperand(0); | 
|  | SDValue RotV = N->getOperand(1); | 
|  | SDNode *NewN = nullptr; | 
|  |  | 
|  | if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) { | 
|  | unsigned S = CN->getZExtValue() % HST.getVectorLength(); | 
|  | if (S == 0) { | 
|  | NewN = VecV.getNode(); | 
|  | } else if (isUInt<3>(S)) { | 
|  | SDValue C = DAG.getTargetConstant(S, dl, MVT::i32); | 
|  | NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty, | 
|  | {VecV, VecV, C}); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NewN) | 
|  | NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV}); | 
|  |  | 
|  | ISel.ReplaceNode(N, NewN); | 
|  | } | 
|  |  | 
|  | void HvxSelector::selectVAlign(SDNode *N) { | 
|  | SDValue Vv = N->getOperand(0); | 
|  | SDValue Vu = N->getOperand(1); | 
|  | SDValue Rt = N->getOperand(2); | 
|  | SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N), | 
|  | N->getValueType(0), {Vv, Vu, Rt}); | 
|  | ISel.ReplaceNode(N, NewN); | 
|  | DAG.RemoveDeadNode(N); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { | 
|  | HvxSelector(*this, *CurDAG).selectShuffle(N); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { | 
|  | HvxSelector(*this, *CurDAG).selectRor(N); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) { | 
|  | HvxSelector(*this, *CurDAG).selectVAlign(N); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { | 
|  | if (!HST->usePackets()) { | 
|  | report_fatal_error("Support for gather requires packets, " | 
|  | "which are disabled"); | 
|  | } | 
|  | const SDLoc &dl(N); | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Address = N->getOperand(2); | 
|  | SDValue Predicate = N->getOperand(3); | 
|  | SDValue Base = N->getOperand(4); | 
|  | SDValue Modifier = N->getOperand(5); | 
|  | SDValue Offset = N->getOperand(6); | 
|  |  | 
|  | unsigned Opcode; | 
|  | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected HVX gather intrinsic."); | 
|  | case Intrinsic::hexagon_V6_vgathermhq: | 
|  | case Intrinsic::hexagon_V6_vgathermhq_128B: | 
|  | Opcode = Hexagon::V6_vgathermhq_pseudo; | 
|  | break; | 
|  | case Intrinsic::hexagon_V6_vgathermwq: | 
|  | case Intrinsic::hexagon_V6_vgathermwq_128B: | 
|  | Opcode = Hexagon::V6_vgathermwq_pseudo; | 
|  | break; | 
|  | case Intrinsic::hexagon_V6_vgathermhwq: | 
|  | case Intrinsic::hexagon_V6_vgathermhwq_128B: | 
|  | Opcode = Hexagon::V6_vgathermhwq_pseudo; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::Other); | 
|  | SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain }; | 
|  | SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); | 
|  |  | 
|  | ReplaceNode(N, Result); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { | 
|  | if (!HST->usePackets()) { | 
|  | report_fatal_error("Support for gather requires packets, " | 
|  | "which are disabled"); | 
|  | } | 
|  | const SDLoc &dl(N); | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Address = N->getOperand(2); | 
|  | SDValue Base = N->getOperand(3); | 
|  | SDValue Modifier = N->getOperand(4); | 
|  | SDValue Offset = N->getOperand(5); | 
|  |  | 
|  | unsigned Opcode; | 
|  | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected HVX gather intrinsic."); | 
|  | case Intrinsic::hexagon_V6_vgathermh: | 
|  | case Intrinsic::hexagon_V6_vgathermh_128B: | 
|  | Opcode = Hexagon::V6_vgathermh_pseudo; | 
|  | break; | 
|  | case Intrinsic::hexagon_V6_vgathermw: | 
|  | case Intrinsic::hexagon_V6_vgathermw_128B: | 
|  | Opcode = Hexagon::V6_vgathermw_pseudo; | 
|  | break; | 
|  | case Intrinsic::hexagon_V6_vgathermhw: | 
|  | case Intrinsic::hexagon_V6_vgathermhw_128B: | 
|  | Opcode = Hexagon::V6_vgathermhw_pseudo; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::Other); | 
|  | SDValue Ops[] = { Address, Base, Modifier, Offset, Chain }; | 
|  | SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); | 
|  |  | 
|  | ReplaceNode(N, Result); | 
|  | } | 
|  |  | 
|  | void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { | 
|  | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
|  | SDNode *Result; | 
|  | switch (IID) { | 
|  | case Intrinsic::hexagon_V6_vaddcarry: { | 
|  | SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), | 
|  | N->getOperand(3) }; | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1); | 
|  | Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::hexagon_V6_vaddcarry_128B: { | 
|  | SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), | 
|  | N->getOperand(3) }; | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1); | 
|  | Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::hexagon_V6_vsubcarry: { | 
|  | SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), | 
|  | N->getOperand(3) }; | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1); | 
|  | Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::hexagon_V6_vsubcarry_128B: { | 
|  | SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), | 
|  | N->getOperand(3) }; | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1); | 
|  | Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unexpected HVX dual output intrinsic."); | 
|  | } | 
|  | ReplaceUses(N, Result); | 
|  | ReplaceUses(SDValue(N, 0), SDValue(Result, 0)); | 
|  | ReplaceUses(SDValue(N, 1), SDValue(Result, 1)); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | } |