blob: 2fa7888dd02bbf9ae65015eebbe2487e4c1dbf7d [file] [log] [blame]
//===--- HexagonBranchRelaxation.cpp - Identify and relax long jumps ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hexagon-brelax"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
using namespace llvm;
// Since we have no exact knowledge of code layout, allow some safety buffer
// for jump target. This is measured in bytes.
static cl::opt<uint32_t> BranchRelaxSafetyBuffer("branch-relax-safety-buffer",
cl::init(200), cl::Hidden, cl::ZeroOrMore, cl::desc("safety buffer size"));
namespace llvm {
FunctionPass *createHexagonBranchRelaxation();
void initializeHexagonBranchRelaxationPass(PassRegistry&);
} // end namespace llvm
namespace {
struct HexagonBranchRelaxation : public MachineFunctionPass {
public:
static char ID;
HexagonBranchRelaxation() : MachineFunctionPass(ID) {
initializeHexagonBranchRelaxationPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "Hexagon Branch Relaxation";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
const HexagonInstrInfo *HII;
const HexagonRegisterInfo *HRI;
bool relaxBranches(MachineFunction &MF);
void computeOffset(MachineFunction &MF,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
bool reGenerateBranch(MachineFunction &MF,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
bool isJumpOutOfRange(MachineInstr &MI,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
};
char HexagonBranchRelaxation::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(HexagonBranchRelaxation, "hexagon-brelax",
"Hexagon Branch Relaxation", false, false)
FunctionPass *llvm::createHexagonBranchRelaxation() {
return new HexagonBranchRelaxation();
}
bool HexagonBranchRelaxation::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "****** Hexagon Branch Relaxation ******\n");
auto &HST = MF.getSubtarget<HexagonSubtarget>();
HII = HST.getInstrInfo();
HRI = HST.getRegisterInfo();
bool Changed = false;
Changed = relaxBranches(MF);
return Changed;
}
void HexagonBranchRelaxation::computeOffset(MachineFunction &MF,
DenseMap<MachineBasicBlock*, unsigned> &OffsetMap) {
// offset of the current instruction from the start.
unsigned InstOffset = 0;
for (auto &B : MF) {
if (B.getAlignment()) {
// Although we don't know the exact layout of the final code, we need
// to account for alignment padding somehow. This heuristic pads each
// aligned basic block according to the alignment value.
int ByteAlign = (1u << B.getAlignment()) - 1;
InstOffset = (InstOffset + ByteAlign) & ~(ByteAlign);
}
OffsetMap[&B] = InstOffset;
for (auto &MI : B.instrs()) {
InstOffset += HII->getSize(MI);
// Assume that all extendable branches will be extended.
if (MI.isBranch() && HII->isExtendable(MI))
InstOffset += HEXAGON_INSTR_SIZE;
}
}
}
/// relaxBranches - For Hexagon, if the jump target/loop label is too far from
/// the jump/loop instruction then, we need to make sure that we have constant
/// extenders set for jumps and loops.
/// There are six iterations in this phase. It's self explanatory below.
bool HexagonBranchRelaxation::relaxBranches(MachineFunction &MF) {
// Compute the offset of each basic block
// offset of the current instruction from the start.
// map for each instruction to the beginning of the function
DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
computeOffset(MF, BlockToInstOffset);
return reGenerateBranch(MF, BlockToInstOffset);
}
/// Check if a given instruction is:
/// - a jump to a distant target
/// - that exceeds its immediate range
/// If both conditions are true, it requires constant extension.
bool HexagonBranchRelaxation::isJumpOutOfRange(MachineInstr &MI,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
MachineBasicBlock &B = *MI.getParent();
auto FirstTerm = B.getFirstInstrTerminator();
if (FirstTerm == B.instr_end())
return false;
if (HII->isExtended(MI))
return false;
unsigned InstOffset = BlockToInstOffset[&B];
unsigned Distance = 0;
// To save time, estimate exact position of a branch instruction
// as one at the end of the MBB.
// Number of instructions times typical instruction size.
InstOffset += HII->nonDbgBBSize(&B) * HEXAGON_INSTR_SIZE;
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
// Try to analyze this branch.
if (HII->analyzeBranch(B, TBB, FBB, Cond, false)) {
// Could not analyze it. See if this is something we can recognize.
// If it is a NVJ, it should always have its target in
// a fixed location.
if (HII->isNewValueJump(*FirstTerm))
TBB = FirstTerm->getOperand(HII->getCExtOpNum(*FirstTerm)).getMBB();
}
if (TBB && &MI == &*FirstTerm) {
Distance = std::abs((long long)InstOffset - BlockToInstOffset[TBB])
+ BranchRelaxSafetyBuffer;
return !HII->isJumpWithinBranchRange(*FirstTerm, Distance);
}
if (FBB) {
// Look for second terminator.
auto SecondTerm = std::next(FirstTerm);
assert(SecondTerm != B.instr_end() &&
(SecondTerm->isBranch() || SecondTerm->isCall()) &&
"Bad second terminator");
if (&MI != &*SecondTerm)
return false;
// Analyze the second branch in the BB.
Distance = std::abs((long long)InstOffset - BlockToInstOffset[FBB])
+ BranchRelaxSafetyBuffer;
return !HII->isJumpWithinBranchRange(*SecondTerm, Distance);
}
return false;
}
bool HexagonBranchRelaxation::reGenerateBranch(MachineFunction &MF,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
bool Changed = false;
for (auto &B : MF) {
for (auto &MI : B) {
if (!MI.isBranch() || !isJumpOutOfRange(MI, BlockToInstOffset))
continue;
LLVM_DEBUG(dbgs() << "Long distance jump. isExtendable("
<< HII->isExtendable(MI) << ") isConstExtended("
<< HII->isConstExtended(MI) << ") " << MI);
// Since we have not merged HW loops relaxation into
// this code (yet), soften our approach for the moment.
if (!HII->isExtendable(MI) && !HII->isExtended(MI)) {
LLVM_DEBUG(dbgs() << "\tUnderimplemented relax branch instruction.\n");
} else {
// Find which operand is expandable.
int ExtOpNum = HII->getCExtOpNum(MI);
MachineOperand &MO = MI.getOperand(ExtOpNum);
// This need to be something we understand. So far we assume all
// branches have only MBB address as expandable field.
// If it changes, this will need to be expanded.
assert(MO.isMBB() && "Branch with unknown expandable field type");
// Mark given operand as extended.
MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
Changed = true;
}
}
}
return Changed;
}