| //===- HexagonBitSimplify.cpp ---------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "BitTracker.h" |
| #include "HexagonBitTracker.h" |
| #include "HexagonInstrInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "hexbit" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden, |
| cl::init(true), cl::desc("Preserve subregisters in tied operands")); |
| static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden, |
| cl::init(true), cl::desc("Generate extract instructions")); |
| static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden, |
| cl::init(true), cl::desc("Generate bitsplit instructions")); |
| |
| static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden, |
| cl::init(std::numeric_limits<unsigned>::max())); |
| static unsigned CountExtract = 0; |
| static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden, |
| cl::init(std::numeric_limits<unsigned>::max())); |
| static unsigned CountBitSplit = 0; |
| |
| namespace llvm { |
| |
| void initializeHexagonBitSimplifyPass(PassRegistry& Registry); |
| FunctionPass *createHexagonBitSimplify(); |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| // Set of virtual registers, based on BitVector. |
| struct RegisterSet : private BitVector { |
| RegisterSet() = default; |
| explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} |
| RegisterSet(const RegisterSet &RS) = default; |
| |
| using BitVector::clear; |
| using BitVector::count; |
| |
| unsigned find_first() const { |
| int First = BitVector::find_first(); |
| if (First < 0) |
| return 0; |
| return x2v(First); |
| } |
| |
| unsigned find_next(unsigned Prev) const { |
| int Next = BitVector::find_next(v2x(Prev)); |
| if (Next < 0) |
| return 0; |
| return x2v(Next); |
| } |
| |
| RegisterSet &insert(unsigned R) { |
| unsigned Idx = v2x(R); |
| ensure(Idx); |
| return static_cast<RegisterSet&>(BitVector::set(Idx)); |
| } |
| RegisterSet &remove(unsigned R) { |
| unsigned Idx = v2x(R); |
| if (Idx >= size()) |
| return *this; |
| return static_cast<RegisterSet&>(BitVector::reset(Idx)); |
| } |
| |
| RegisterSet &insert(const RegisterSet &Rs) { |
| return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); |
| } |
| RegisterSet &remove(const RegisterSet &Rs) { |
| return static_cast<RegisterSet&>(BitVector::reset(Rs)); |
| } |
| |
| reference operator[](unsigned R) { |
| unsigned Idx = v2x(R); |
| ensure(Idx); |
| return BitVector::operator[](Idx); |
| } |
| bool operator[](unsigned R) const { |
| unsigned Idx = v2x(R); |
| assert(Idx < size()); |
| return BitVector::operator[](Idx); |
| } |
| bool has(unsigned R) const { |
| unsigned Idx = v2x(R); |
| if (Idx >= size()) |
| return false; |
| return BitVector::test(Idx); |
| } |
| |
| bool empty() const { |
| return !BitVector::any(); |
| } |
| bool includes(const RegisterSet &Rs) const { |
| // A.BitVector::test(B) <=> A-B != {} |
| return !Rs.BitVector::test(*this); |
| } |
| bool intersects(const RegisterSet &Rs) const { |
| return BitVector::anyCommon(Rs); |
| } |
| |
| private: |
| void ensure(unsigned Idx) { |
| if (size() <= Idx) |
| resize(std::max(Idx+1, 32U)); |
| } |
| |
| static inline unsigned v2x(unsigned v) { |
| return TargetRegisterInfo::virtReg2Index(v); |
| } |
| |
| static inline unsigned x2v(unsigned x) { |
| return TargetRegisterInfo::index2VirtReg(x); |
| } |
| }; |
| |
| struct PrintRegSet { |
| PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) |
| : RS(S), TRI(RI) {} |
| |
| friend raw_ostream &operator<< (raw_ostream &OS, |
| const PrintRegSet &P); |
| |
| private: |
| const RegisterSet &RS; |
| const TargetRegisterInfo *TRI; |
| }; |
| |
| raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) |
| LLVM_ATTRIBUTE_UNUSED; |
| raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { |
| OS << '{'; |
| for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) |
| OS << ' ' << printReg(R, P.TRI); |
| OS << " }"; |
| return OS; |
| } |
| |
| class Transformation; |
| |
| class HexagonBitSimplify : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| HexagonBitSimplify() : MachineFunctionPass(ID) {} |
| |
| StringRef getPassName() const override { |
| return "Hexagon bit simplification"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs); |
| static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses); |
| static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1, |
| const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W); |
| static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B, |
| uint16_t W); |
| static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B, |
| uint16_t W, uint64_t &U); |
| static bool replaceReg(unsigned OldR, unsigned NewR, |
| MachineRegisterInfo &MRI); |
| static bool getSubregMask(const BitTracker::RegisterRef &RR, |
| unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI); |
| static bool replaceRegWithSub(unsigned OldR, unsigned NewR, |
| unsigned NewSR, MachineRegisterInfo &MRI); |
| static bool replaceSubWithSub(unsigned OldR, unsigned OldSR, |
| unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI); |
| static bool parseRegSequence(const MachineInstr &I, |
| BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH, |
| const MachineRegisterInfo &MRI); |
| |
| static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits, |
| uint16_t Begin); |
| static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits, |
| uint16_t Begin, const HexagonInstrInfo &HII); |
| |
| static const TargetRegisterClass *getFinalVRegClass( |
| const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI); |
| static bool isTransparentCopy(const BitTracker::RegisterRef &RD, |
| const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI); |
| |
| private: |
| MachineDominatorTree *MDT = nullptr; |
| |
| bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs); |
| static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, |
| unsigned NewSub = Hexagon::NoSubRegister); |
| }; |
| |
| using HBS = HexagonBitSimplify; |
| |
| // The purpose of this class is to provide a common facility to traverse |
| // the function top-down or bottom-up via the dominator tree, and keep |
| // track of the available registers. |
| class Transformation { |
| public: |
| bool TopDown; |
| |
| Transformation(bool TD) : TopDown(TD) {} |
| virtual ~Transformation() = default; |
| |
| virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0; |
| }; |
| |
| } // end anonymous namespace |
| |
| char HexagonBitSimplify::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify", |
| "Hexagon bit simplification", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify", |
| "Hexagon bit simplification", false, false) |
| |
| bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T, |
| RegisterSet &AVs) { |
| bool Changed = false; |
| |
| if (T.TopDown) |
| Changed = T.processBlock(B, AVs); |
| |
| RegisterSet Defs; |
| for (auto &I : B) |
| getInstrDefs(I, Defs); |
| RegisterSet NewAVs = AVs; |
| NewAVs.insert(Defs); |
| |
| for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B))) |
| Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs); |
| |
| if (!T.TopDown) |
| Changed |= T.processBlock(B, AVs); |
| |
| return Changed; |
| } |
| |
| // |
| // Utility functions: |
| // |
| void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI, |
| RegisterSet &Defs) { |
| for (auto &Op : MI.operands()) { |
| if (!Op.isReg() || !Op.isDef()) |
| continue; |
| unsigned R = Op.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(R)) |
| continue; |
| Defs.insert(R); |
| } |
| } |
| |
| void HexagonBitSimplify::getInstrUses(const MachineInstr &MI, |
| RegisterSet &Uses) { |
| for (auto &Op : MI.operands()) { |
| if (!Op.isReg() || !Op.isUse()) |
| continue; |
| unsigned R = Op.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(R)) |
| continue; |
| Uses.insert(R); |
| } |
| } |
| |
| // Check if all the bits in range [B, E) in both cells are equal. |
| bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1, |
| uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2, |
| uint16_t W) { |
| for (uint16_t i = 0; i < W; ++i) { |
| // If RC1[i] is "bottom", it cannot be proven equal to RC2[i]. |
| if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0) |
| return false; |
| // Same for RC2[i]. |
| if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0) |
| return false; |
| if (RC1[B1+i] != RC2[B2+i]) |
| return false; |
| } |
| return true; |
| } |
| |
| bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC, |
| uint16_t B, uint16_t W) { |
| assert(B < RC.width() && B+W <= RC.width()); |
| for (uint16_t i = B; i < B+W; ++i) |
| if (!RC[i].is(0)) |
| return false; |
| return true; |
| } |
| |
| bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC, |
| uint16_t B, uint16_t W, uint64_t &U) { |
| assert(B < RC.width() && B+W <= RC.width()); |
| int64_t T = 0; |
| for (uint16_t i = B+W; i > B; --i) { |
| const BitTracker::BitValue &BV = RC[i-1]; |
| T <<= 1; |
| if (BV.is(1)) |
| T |= 1; |
| else if (!BV.is(0)) |
| return false; |
| } |
| U = T; |
| return true; |
| } |
| |
| bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR, |
| MachineRegisterInfo &MRI) { |
| if (!TargetRegisterInfo::isVirtualRegister(OldR) || |
| !TargetRegisterInfo::isVirtualRegister(NewR)) |
| return false; |
| auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); |
| decltype(End) NextI; |
| for (auto I = Begin; I != End; I = NextI) { |
| NextI = std::next(I); |
| I->setReg(NewR); |
| } |
| return Begin != End; |
| } |
| |
| bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR, |
| unsigned NewSR, MachineRegisterInfo &MRI) { |
| if (!TargetRegisterInfo::isVirtualRegister(OldR) || |
| !TargetRegisterInfo::isVirtualRegister(NewR)) |
| return false; |
| if (hasTiedUse(OldR, MRI, NewSR)) |
| return false; |
| auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); |
| decltype(End) NextI; |
| for (auto I = Begin; I != End; I = NextI) { |
| NextI = std::next(I); |
| I->setReg(NewR); |
| I->setSubReg(NewSR); |
| } |
| return Begin != End; |
| } |
| |
| bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR, |
| unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) { |
| if (!TargetRegisterInfo::isVirtualRegister(OldR) || |
| !TargetRegisterInfo::isVirtualRegister(NewR)) |
| return false; |
| if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR)) |
| return false; |
| auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); |
| decltype(End) NextI; |
| for (auto I = Begin; I != End; I = NextI) { |
| NextI = std::next(I); |
| if (I->getSubReg() != OldSR) |
| continue; |
| I->setReg(NewR); |
| I->setSubReg(NewSR); |
| } |
| return Begin != End; |
| } |
| |
| // For a register ref (pair Reg:Sub), set Begin to the position of the LSB |
| // of Sub in Reg, and set Width to the size of Sub in bits. Return true, |
| // if this succeeded, otherwise return false. |
| bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR, |
| unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) { |
| const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg); |
| if (RR.Sub == 0) { |
| Begin = 0; |
| Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC); |
| return true; |
| } |
| |
| Begin = 0; |
| |
| switch (RC->getID()) { |
| case Hexagon::DoubleRegsRegClassID: |
| case Hexagon::HvxWRRegClassID: |
| Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2; |
| if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi) |
| Begin = Width; |
| break; |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| |
| // For a REG_SEQUENCE, set SL to the low subregister and SH to the high |
| // subregister. |
| bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I, |
| BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH, |
| const MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE); |
| unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm(); |
| auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg()); |
| auto &HRI = static_cast<const HexagonRegisterInfo&>( |
| *MRI.getTargetRegisterInfo()); |
| unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo); |
| unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi); |
| assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo)); |
| if (Sub1 == SubLo && Sub2 == SubHi) { |
| SL = I.getOperand(1); |
| SH = I.getOperand(3); |
| return true; |
| } |
| if (Sub1 == SubHi && Sub2 == SubLo) { |
| SH = I.getOperand(1); |
| SL = I.getOperand(3); |
| return true; |
| } |
| return false; |
| } |
| |
| // All stores (except 64-bit stores) take a 32-bit register as the source |
| // of the value to be stored. If the instruction stores into a location |
| // that is shorter than 32 bits, some bits of the source register are not |
| // used. For each store instruction, calculate the set of used bits in |
| // the source register, and set appropriate bits in Bits. Return true if |
| // the bits are calculated, false otherwise. |
| bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits, |
| uint16_t Begin) { |
| using namespace Hexagon; |
| |
| switch (Opc) { |
| // Store byte |
| case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32 |
| case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new |
| case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32 |
| case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32 |
| case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32 |
| case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32 |
| case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new |
| case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new |
| case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new |
| case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new |
| case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32 |
| case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new |
| case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32 |
| case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32 |
| case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32 |
| case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32 |
| case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new |
| case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new |
| case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new |
| case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new |
| case S4_storerb_ap: // memb(Re32=#U6)=Rt32 |
| case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new |
| case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32 |
| case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new |
| case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32 |
| case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new |
| case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32 |
| case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new |
| case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32 |
| case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new |
| case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32 |
| case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new |
| case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32 |
| case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new |
| case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32 |
| case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32 |
| case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 |
| case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 |
| case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new |
| case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new |
| case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new |
| case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new |
| case S2_storerbgp: // memb(gp+#u16:0)=Rt32 |
| case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new |
| case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32 |
| case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32 |
| case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32 |
| case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32 |
| case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new |
| case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new |
| case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new |
| case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new |
| Bits.set(Begin, Begin+8); |
| return true; |
| |
| // Store low half |
| case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32 |
| case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new |
| case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32 |
| case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32 |
| case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32 |
| case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32 |
| case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new |
| case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new |
| case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new |
| case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new |
| case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32 |
| case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new |
| case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32 |
| case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32 |
| case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32 |
| case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32 |
| case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new |
| case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new |
| case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new |
| case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new |
| case S4_storerh_ap: // memh(Re32=#U6)=Rt32 |
| case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new |
| case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32 |
| case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new |
| case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32 |
| case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new |
| case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32 |
| case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new |
| case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32 |
| case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new |
| case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32 |
| case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new |
| case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32 |
| case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32 |
| case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32 |
| case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 |
| case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 |
| case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new |
| case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new |
| case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new |
| case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new |
| case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new |
| case S2_storerhgp: // memh(gp+#u16:1)=Rt32 |
| case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new |
| case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32 |
| case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32 |
| case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32 |
| case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32 |
| case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new |
| case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new |
| case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new |
| case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new |
| Bits.set(Begin, Begin+16); |
| return true; |
| |
| // Store high half |
| case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32 |
| case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32 |
| case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32 |
| case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32 |
| case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32 |
| case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32 |
| case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32 |
| case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32 |
| case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32 |
| case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32 |
| case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32 |
| case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32 |
| case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32 |
| case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32 |
| case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32 |
| case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32 |
| case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32 |
| case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32 |
| case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32 |
| case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32 |
| case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32 |
| case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32 |
| Bits.set(Begin+16, Begin+32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // For an instruction with opcode Opc, calculate the set of bits that it |
| // uses in a register in operand OpN. This only calculates the set of used |
| // bits for cases where it does not depend on any operands (as is the case |
| // in shifts, for example). For concrete instructions from a program, the |
| // operand may be a subregister of a larger register, while Bits would |
| // correspond to the larger register in its entirety. Because of that, |
| // the parameter Begin can be used to indicate which bit of Bits should be |
| // considered the LSB of the operand. |
| bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN, |
| BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) { |
| using namespace Hexagon; |
| |
| const MCInstrDesc &D = HII.get(Opc); |
| if (D.mayStore()) { |
| if (OpN == D.getNumOperands()-1) |
| return getUsedBitsInStore(Opc, Bits, Begin); |
| return false; |
| } |
| |
| switch (Opc) { |
| // One register source. Used bits: R1[0-7]. |
| case A2_sxtb: |
| case A2_zxtb: |
| case A4_cmpbeqi: |
| case A4_cmpbgti: |
| case A4_cmpbgtui: |
| if (OpN == 1) { |
| Bits.set(Begin, Begin+8); |
| return true; |
| } |
| break; |
| |
| // One register source. Used bits: R1[0-15]. |
| case A2_aslh: |
| case A2_sxth: |
| case A2_zxth: |
| case A4_cmpheqi: |
| case A4_cmphgti: |
| case A4_cmphgtui: |
| if (OpN == 1) { |
| Bits.set(Begin, Begin+16); |
| return true; |
| } |
| break; |
| |
| // One register source. Used bits: R1[16-31]. |
| case A2_asrh: |
| if (OpN == 1) { |
| Bits.set(Begin+16, Begin+32); |
| return true; |
| } |
| break; |
| |
| // Two register sources. Used bits: R1[0-7], R2[0-7]. |
| case A4_cmpbeq: |
| case A4_cmpbgt: |
| case A4_cmpbgtu: |
| if (OpN == 1) { |
| Bits.set(Begin, Begin+8); |
| return true; |
| } |
| break; |
| |
| // Two register sources. Used bits: R1[0-15], R2[0-15]. |
| case A4_cmpheq: |
| case A4_cmphgt: |
| case A4_cmphgtu: |
| case A2_addh_h16_ll: |
| case A2_addh_h16_sat_ll: |
| case A2_addh_l16_ll: |
| case A2_addh_l16_sat_ll: |
| case A2_combine_ll: |
| case A2_subh_h16_ll: |
| case A2_subh_h16_sat_ll: |
| case A2_subh_l16_ll: |
| case A2_subh_l16_sat_ll: |
| case M2_mpy_acc_ll_s0: |
| case M2_mpy_acc_ll_s1: |
| case M2_mpy_acc_sat_ll_s0: |
| case M2_mpy_acc_sat_ll_s1: |
| case M2_mpy_ll_s0: |
| case M2_mpy_ll_s1: |
| case M2_mpy_nac_ll_s0: |
| case M2_mpy_nac_ll_s1: |
| case M2_mpy_nac_sat_ll_s0: |
| case M2_mpy_nac_sat_ll_s1: |
| case M2_mpy_rnd_ll_s0: |
| case M2_mpy_rnd_ll_s1: |
| case M2_mpy_sat_ll_s0: |
| case M2_mpy_sat_ll_s1: |
| case M2_mpy_sat_rnd_ll_s0: |
| case M2_mpy_sat_rnd_ll_s1: |
| case M2_mpyd_acc_ll_s0: |
| case M2_mpyd_acc_ll_s1: |
| case M2_mpyd_ll_s0: |
| case M2_mpyd_ll_s1: |
| case M2_mpyd_nac_ll_s0: |
| case M2_mpyd_nac_ll_s1: |
| case M2_mpyd_rnd_ll_s0: |
| case M2_mpyd_rnd_ll_s1: |
| case M2_mpyu_acc_ll_s0: |
| case M2_mpyu_acc_ll_s1: |
| case M2_mpyu_ll_s0: |
| case M2_mpyu_ll_s1: |
| case M2_mpyu_nac_ll_s0: |
| case M2_mpyu_nac_ll_s1: |
| case M2_mpyud_acc_ll_s0: |
| case M2_mpyud_acc_ll_s1: |
| case M2_mpyud_ll_s0: |
| case M2_mpyud_ll_s1: |
| case M2_mpyud_nac_ll_s0: |
| case M2_mpyud_nac_ll_s1: |
| if (OpN == 1 || OpN == 2) { |
| Bits.set(Begin, Begin+16); |
| return true; |
| } |
| break; |
| |
| // Two register sources. Used bits: R1[0-15], R2[16-31]. |
| case A2_addh_h16_lh: |
| case A2_addh_h16_sat_lh: |
| case A2_combine_lh: |
| case A2_subh_h16_lh: |
| case A2_subh_h16_sat_lh: |
| case M2_mpy_acc_lh_s0: |
| case M2_mpy_acc_lh_s1: |
| case M2_mpy_acc_sat_lh_s0: |
| case M2_mpy_acc_sat_lh_s1: |
| case M2_mpy_lh_s0: |
| case M2_mpy_lh_s1: |
| case M2_mpy_nac_lh_s0: |
| case M2_mpy_nac_lh_s1: |
| case M2_mpy_nac_sat_lh_s0: |
| case M2_mpy_nac_sat_lh_s1: |
| case M2_mpy_rnd_lh_s0: |
| case M2_mpy_rnd_lh_s1: |
| case M2_mpy_sat_lh_s0: |
| case M2_mpy_sat_lh_s1: |
| case M2_mpy_sat_rnd_lh_s0: |
| case M2_mpy_sat_rnd_lh_s1: |
| case M2_mpyd_acc_lh_s0: |
| case M2_mpyd_acc_lh_s1: |
| case M2_mpyd_lh_s0: |
| case M2_mpyd_lh_s1: |
| case M2_mpyd_nac_lh_s0: |
| case M2_mpyd_nac_lh_s1: |
| case M2_mpyd_rnd_lh_s0: |
| case M2_mpyd_rnd_lh_s1: |
| case M2_mpyu_acc_lh_s0: |
| case M2_mpyu_acc_lh_s1: |
| case M2_mpyu_lh_s0: |
| case M2_mpyu_lh_s1: |
| case M2_mpyu_nac_lh_s0: |
| case M2_mpyu_nac_lh_s1: |
| case M2_mpyud_acc_lh_s0: |
| case M2_mpyud_acc_lh_s1: |
| case M2_mpyud_lh_s0: |
| case M2_mpyud_lh_s1: |
| case M2_mpyud_nac_lh_s0: |
| case M2_mpyud_nac_lh_s1: |
| // These four are actually LH. |
| case A2_addh_l16_hl: |
| case A2_addh_l16_sat_hl: |
| case A2_subh_l16_hl: |
| case A2_subh_l16_sat_hl: |
| if (OpN == 1) { |
| Bits.set(Begin, Begin+16); |
| return true; |
| } |
| if (OpN == 2) { |
| Bits.set(Begin+16, Begin+32); |
| return true; |
| } |
| break; |
| |
| // Two register sources, used bits: R1[16-31], R2[0-15]. |
| case A2_addh_h16_hl: |
| case A2_addh_h16_sat_hl: |
| case A2_combine_hl: |
| case A2_subh_h16_hl: |
| case A2_subh_h16_sat_hl: |
| case M2_mpy_acc_hl_s0: |
| case M2_mpy_acc_hl_s1: |
| case M2_mpy_acc_sat_hl_s0: |
| case M2_mpy_acc_sat_hl_s1: |
| case M2_mpy_hl_s0: |
| case M2_mpy_hl_s1: |
| case M2_mpy_nac_hl_s0: |
| case M2_mpy_nac_hl_s1: |
| case M2_mpy_nac_sat_hl_s0: |
| case M2_mpy_nac_sat_hl_s1: |
| case M2_mpy_rnd_hl_s0: |
| case M2_mpy_rnd_hl_s1: |
| case M2_mpy_sat_hl_s0: |
| case M2_mpy_sat_hl_s1: |
| case M2_mpy_sat_rnd_hl_s0: |
| case M2_mpy_sat_rnd_hl_s1: |
| case M2_mpyd_acc_hl_s0: |
| case M2_mpyd_acc_hl_s1: |
| case M2_mpyd_hl_s0: |
| case M2_mpyd_hl_s1: |
| case M2_mpyd_nac_hl_s0: |
| case M2_mpyd_nac_hl_s1: |
| case M2_mpyd_rnd_hl_s0: |
| case M2_mpyd_rnd_hl_s1: |
| case M2_mpyu_acc_hl_s0: |
| case M2_mpyu_acc_hl_s1: |
| case M2_mpyu_hl_s0: |
| case M2_mpyu_hl_s1: |
| case M2_mpyu_nac_hl_s0: |
| case M2_mpyu_nac_hl_s1: |
| case M2_mpyud_acc_hl_s0: |
| case M2_mpyud_acc_hl_s1: |
| case M2_mpyud_hl_s0: |
| case M2_mpyud_hl_s1: |
| case M2_mpyud_nac_hl_s0: |
| case M2_mpyud_nac_hl_s1: |
| if (OpN == 1) { |
| Bits.set(Begin+16, Begin+32); |
| return true; |
| } |
| if (OpN == 2) { |
| Bits.set(Begin, Begin+16); |
| return true; |
| } |
| break; |
| |
| // Two register sources, used bits: R1[16-31], R2[16-31]. |
| case A2_addh_h16_hh: |
| case A2_addh_h16_sat_hh: |
| case A2_combine_hh: |
| case A2_subh_h16_hh: |
| case A2_subh_h16_sat_hh: |
| case M2_mpy_acc_hh_s0: |
| case M2_mpy_acc_hh_s1: |
| case M2_mpy_acc_sat_hh_s0: |
| case M2_mpy_acc_sat_hh_s1: |
| case M2_mpy_hh_s0: |
| case M2_mpy_hh_s1: |
| case M2_mpy_nac_hh_s0: |
| case M2_mpy_nac_hh_s1: |
| case M2_mpy_nac_sat_hh_s0: |
| case M2_mpy_nac_sat_hh_s1: |
| case M2_mpy_rnd_hh_s0: |
| case M2_mpy_rnd_hh_s1: |
| case M2_mpy_sat_hh_s0: |
| case M2_mpy_sat_hh_s1: |
| case M2_mpy_sat_rnd_hh_s0: |
| case M2_mpy_sat_rnd_hh_s1: |
| case M2_mpyd_acc_hh_s0: |
| case M2_mpyd_acc_hh_s1: |
| case M2_mpyd_hh_s0: |
| case M2_mpyd_hh_s1: |
| case M2_mpyd_nac_hh_s0: |
| case M2_mpyd_nac_hh_s1: |
| case M2_mpyd_rnd_hh_s0: |
| case M2_mpyd_rnd_hh_s1: |
| case M2_mpyu_acc_hh_s0: |
| case M2_mpyu_acc_hh_s1: |
| case M2_mpyu_hh_s0: |
| case M2_mpyu_hh_s1: |
| case M2_mpyu_nac_hh_s0: |
| case M2_mpyu_nac_hh_s1: |
| case M2_mpyud_acc_hh_s0: |
| case M2_mpyud_acc_hh_s1: |
| case M2_mpyud_hh_s0: |
| case M2_mpyud_hh_s1: |
| case M2_mpyud_nac_hh_s0: |
| case M2_mpyud_nac_hh_s1: |
| if (OpN == 1 || OpN == 2) { |
| Bits.set(Begin+16, Begin+32); |
| return true; |
| } |
| break; |
| } |
| |
| return false; |
| } |
| |
| // Calculate the register class that matches Reg:Sub. For example, if |
| // %1 is a double register, then %1:isub_hi would match the "int" |
| // register class. |
| const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass( |
| const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) { |
| if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) |
| return nullptr; |
| auto *RC = MRI.getRegClass(RR.Reg); |
| if (RR.Sub == 0) |
| return RC; |
| auto &HRI = static_cast<const HexagonRegisterInfo&>( |
| *MRI.getTargetRegisterInfo()); |
| |
| auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void { |
| (void)HRI; |
| assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) || |
| Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi)); |
| }; |
| |
| switch (RC->getID()) { |
| case Hexagon::DoubleRegsRegClassID: |
| VerifySR(RC, RR.Sub); |
| return &Hexagon::IntRegsRegClass; |
| case Hexagon::HvxWRRegClassID: |
| VerifySR(RC, RR.Sub); |
| return &Hexagon::HvxVRRegClass; |
| } |
| return nullptr; |
| } |
| |
| // Check if RD could be replaced with RS at any possible use of RD. |
| // For example a predicate register cannot be replaced with a integer |
| // register, but a 64-bit register with a subregister can be replaced |
| // with a 32-bit register. |
| bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD, |
| const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) { |
| if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) || |
| !TargetRegisterInfo::isVirtualRegister(RS.Reg)) |
| return false; |
| // Return false if one (or both) classes are nullptr. |
| auto *DRC = getFinalVRegClass(RD, MRI); |
| if (!DRC) |
| return false; |
| |
| return DRC == getFinalVRegClass(RS, MRI); |
| } |
| |
| bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, |
| unsigned NewSub) { |
| if (!PreserveTiedOps) |
| return false; |
| return llvm::any_of(MRI.use_operands(Reg), |
| [NewSub] (const MachineOperand &Op) -> bool { |
| return Op.getSubReg() != NewSub && Op.isTied(); |
| }); |
| } |
| |
| namespace { |
| |
| class DeadCodeElimination { |
| public: |
| DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt) |
| : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()), |
| MDT(mdt), MRI(mf.getRegInfo()) {} |
| |
| bool run() { |
| return runOnNode(MDT.getRootNode()); |
| } |
| |
| private: |
| bool isDead(unsigned R) const; |
| bool runOnNode(MachineDomTreeNode *N); |
| |
| MachineFunction &MF; |
| const HexagonInstrInfo &HII; |
| MachineDominatorTree &MDT; |
| MachineRegisterInfo &MRI; |
| }; |
| |
| } // end anonymous namespace |
| |
| bool DeadCodeElimination::isDead(unsigned R) const { |
| for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { |
| MachineInstr *UseI = I->getParent(); |
| if (UseI->isDebugValue()) |
| continue; |
| if (UseI->isPHI()) { |
| assert(!UseI->getOperand(0).getSubReg()); |
| unsigned DR = UseI->getOperand(0).getReg(); |
| if (DR == R) |
| continue; |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) { |
| bool Changed = false; |
| |
| for (auto *DTN : children<MachineDomTreeNode*>(N)) |
| Changed |= runOnNode(DTN); |
| |
| MachineBasicBlock *B = N->getBlock(); |
| std::vector<MachineInstr*> Instrs; |
| for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) |
| Instrs.push_back(&*I); |
| |
| for (auto MI : Instrs) { |
| unsigned Opc = MI->getOpcode(); |
| // Do not touch lifetime markers. This is why the target-independent DCE |
| // cannot be used. |
| if (Opc == TargetOpcode::LIFETIME_START || |
| Opc == TargetOpcode::LIFETIME_END) |
| continue; |
| bool Store = false; |
| if (MI->isInlineAsm()) |
| continue; |
| // Delete PHIs if possible. |
| if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store)) |
| continue; |
| |
| bool AllDead = true; |
| SmallVector<unsigned,2> Regs; |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg() || !Op.isDef()) |
| continue; |
| unsigned R = Op.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) { |
| AllDead = false; |
| break; |
| } |
| Regs.push_back(R); |
| } |
| if (!AllDead) |
| continue; |
| |
| B->erase(MI); |
| for (unsigned i = 0, n = Regs.size(); i != n; ++i) |
| MRI.markUsesInDebugValueAsUndef(Regs[i]); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| namespace { |
| |
| // Eliminate redundant instructions |
| // |
| // This transformation will identify instructions where the output register |
| // is the same as one of its input registers. This only works on instructions |
| // that define a single register (unlike post-increment loads, for example). |
| // The equality check is actually more detailed: the code calculates which |
| // bits of the output are used, and only compares these bits with the input |
| // registers. |
| // If the output matches an input, the instruction is replaced with COPY. |
| // The copies will be removed by another transformation. |
| class RedundantInstrElimination : public Transformation { |
| public: |
| RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii, |
| const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) |
| : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {} |
| |
| bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| |
| private: |
| bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN, |
| unsigned &LostB, unsigned &LostE); |
| bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN, |
| unsigned &LostB, unsigned &LostE); |
| bool computeUsedBits(unsigned Reg, BitVector &Bits); |
| bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits, |
| uint16_t Begin); |
| bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS); |
| |
| const HexagonInstrInfo &HII; |
| const HexagonRegisterInfo &HRI; |
| MachineRegisterInfo &MRI; |
| BitTracker &BT; |
| }; |
| |
| } // end anonymous namespace |
| |
| // Check if the instruction is a lossy shift left, where the input being |
| // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range |
| // of bit indices that are lost. |
| bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI, |
| unsigned OpN, unsigned &LostB, unsigned &LostE) { |
| using namespace Hexagon; |
| |
| unsigned Opc = MI.getOpcode(); |
| unsigned ImN, RegN, Width; |
| switch (Opc) { |
| case S2_asl_i_p: |
| ImN = 2; |
| RegN = 1; |
| Width = 64; |
| break; |
| case S2_asl_i_p_acc: |
| case S2_asl_i_p_and: |
| case S2_asl_i_p_nac: |
| case S2_asl_i_p_or: |
| case S2_asl_i_p_xacc: |
| ImN = 3; |
| RegN = 2; |
| Width = 64; |
| break; |
| case S2_asl_i_r: |
| ImN = 2; |
| RegN = 1; |
| Width = 32; |
| break; |
| case S2_addasl_rrri: |
| case S4_andi_asl_ri: |
| case S4_ori_asl_ri: |
| case S4_addi_asl_ri: |
| case S4_subi_asl_ri: |
| case S2_asl_i_r_acc: |
| case S2_asl_i_r_and: |
| case S2_asl_i_r_nac: |
| case S2_asl_i_r_or: |
| case S2_asl_i_r_sat: |
| case S2_asl_i_r_xacc: |
| ImN = 3; |
| RegN = 2; |
| Width = 32; |
| break; |
| default: |
| return false; |
| } |
| |
| if (RegN != OpN) |
| return false; |
| |
| assert(MI.getOperand(ImN).isImm()); |
| unsigned S = MI.getOperand(ImN).getImm(); |
| if (S == 0) |
| return false; |
| LostB = Width-S; |
| LostE = Width; |
| return true; |
| } |
| |
| // Check if the instruction is a lossy shift right, where the input being |
| // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range |
| // of bit indices that are lost. |
| bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI, |
| unsigned OpN, unsigned &LostB, unsigned &LostE) { |
| using namespace Hexagon; |
| |
| unsigned Opc = MI.getOpcode(); |
| unsigned ImN, RegN; |
| switch (Opc) { |
| case S2_asr_i_p: |
| case S2_lsr_i_p: |
| ImN = 2; |
| RegN = 1; |
| break; |
| case S2_asr_i_p_acc: |
| case S2_asr_i_p_and: |
| case S2_asr_i_p_nac: |
| case S2_asr_i_p_or: |
| case S2_lsr_i_p_acc: |
| case S2_lsr_i_p_and: |
| case S2_lsr_i_p_nac: |
| case S2_lsr_i_p_or: |
| case S2_lsr_i_p_xacc: |
| ImN = 3; |
| RegN = 2; |
| break; |
| case S2_asr_i_r: |
| case S2_lsr_i_r: |
| ImN = 2; |
| RegN = 1; |
| break; |
| case S4_andi_lsr_ri: |
| case S4_ori_lsr_ri: |
| case S4_addi_lsr_ri: |
| case S4_subi_lsr_ri: |
| case S2_asr_i_r_acc: |
| case S2_asr_i_r_and: |
| case S2_asr_i_r_nac: |
| case S2_asr_i_r_or: |
| case S2_lsr_i_r_acc: |
| case S2_lsr_i_r_and: |
| case S2_lsr_i_r_nac: |
| case S2_lsr_i_r_or: |
| case S2_lsr_i_r_xacc: |
| ImN = 3; |
| RegN = 2; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| if (RegN != OpN) |
| return false; |
| |
| assert(MI.getOperand(ImN).isImm()); |
| unsigned S = MI.getOperand(ImN).getImm(); |
| LostB = 0; |
| LostE = S; |
| return true; |
| } |
| |
| // Calculate the bit vector that corresponds to the used bits of register Reg. |
| // The vector Bits has the same size, as the size of Reg in bits. If the cal- |
| // culation fails (i.e. the used bits are unknown), it returns false. Other- |
| // wise, it returns true and sets the corresponding bits in Bits. |
| bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) { |
| BitVector Used(Bits.size()); |
| RegisterSet Visited; |
| std::vector<unsigned> Pending; |
| Pending.push_back(Reg); |
| |
| for (unsigned i = 0; i < Pending.size(); ++i) { |
| unsigned R = Pending[i]; |
| if (Visited.has(R)) |
| continue; |
| Visited.insert(R); |
| for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { |
| BitTracker::RegisterRef UR = *I; |
| unsigned B, W; |
| if (!HBS::getSubregMask(UR, B, W, MRI)) |
| return false; |
| MachineInstr &UseI = *I->getParent(); |
| if (UseI.isPHI() || UseI.isCopy()) { |
| unsigned DefR = UseI.getOperand(0).getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DefR)) |
| return false; |
| Pending.push_back(DefR); |
| } else { |
| if (!computeUsedBits(UseI, I.getOperandNo(), Used, B)) |
| return false; |
| } |
| } |
| } |
| Bits |= Used; |
| return true; |
| } |
| |
| // Calculate the bits used by instruction MI in a register in operand OpN. |
| // Return true/false if the calculation succeeds/fails. If is succeeds, set |
| // used bits in Bits. This function does not reset any bits in Bits, so |
| // subsequent calls over different instructions will result in the union |
| // of the used bits in all these instructions. |
| // The register in question may be used with a sub-register, whereas Bits |
| // holds the bits for the entire register. To keep track of that, the |
| // argument Begin indicates where in Bits is the lowest-significant bit |
| // of the register used in operand OpN. For example, in instruction: |
| // %1 = S2_lsr_i_r %2:isub_hi, 10 |
| // the operand 1 is a 32-bit register, which happens to be a subregister |
| // of the 64-bit register %2, and that subregister starts at position 32. |
| // In this case Begin=32, since Bits[32] would be the lowest-significant bit |
| // of %2:isub_hi. |
| bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI, |
| unsigned OpN, BitVector &Bits, uint16_t Begin) { |
| unsigned Opc = MI.getOpcode(); |
| BitVector T(Bits.size()); |
| bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII); |
| // Even if we don't have bits yet, we could still provide some information |
| // if the instruction is a lossy shift: the lost bits will be marked as |
| // not used. |
| unsigned LB, LE; |
| if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) { |
| assert(MI.getOperand(OpN).isReg()); |
| BitTracker::RegisterRef RR = MI.getOperand(OpN); |
| const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI); |
| uint16_t Width = HRI.getRegSizeInBits(*RC); |
| |
| if (!GotBits) |
| T.set(Begin, Begin+Width); |
| assert(LB <= LE && LB < Width && LE <= Width); |
| T.reset(Begin+LB, Begin+LE); |
| GotBits = true; |
| } |
| if (GotBits) |
| Bits |= T; |
| return GotBits; |
| } |
| |
| // Calculates the used bits in RD ("defined register"), and checks if these |
| // bits in RS ("used register") and RD are identical. |
| bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD, |
| BitTracker::RegisterRef RS) { |
| const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); |
| const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); |
| |
| unsigned DB, DW; |
| if (!HBS::getSubregMask(RD, DB, DW, MRI)) |
| return false; |
| unsigned SB, SW; |
| if (!HBS::getSubregMask(RS, SB, SW, MRI)) |
| return false; |
| if (SW != DW) |
| return false; |
| |
| BitVector Used(DC.width()); |
| if (!computeUsedBits(RD.Reg, Used)) |
| return false; |
| |
| for (unsigned i = 0; i != DW; ++i) |
| if (Used[i+DB] && DC[DB+i] != SC[SB+i]) |
| return false; |
| return true; |
| } |
| |
| bool RedundantInstrElimination::processBlock(MachineBasicBlock &B, |
| const RegisterSet&) { |
| if (!BT.reached(&B)) |
| return false; |
| bool Changed = false; |
| |
| for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) { |
| NextI = std::next(I); |
| MachineInstr *MI = &*I; |
| |
| if (MI->getOpcode() == TargetOpcode::COPY) |
| continue; |
| if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) |
| continue; |
| unsigned NumD = MI->getDesc().getNumDefs(); |
| if (NumD != 1) |
| continue; |
| |
| BitTracker::RegisterRef RD = MI->getOperand(0); |
| if (!BT.has(RD.Reg)) |
| continue; |
| const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); |
| auto At = MachineBasicBlock::iterator(MI); |
| |
| // Find a source operand that is equal to the result. |
| for (auto &Op : MI->uses()) { |
| if (!Op.isReg()) |
| continue; |
| BitTracker::RegisterRef RS = Op; |
| if (!BT.has(RS.Reg)) |
| continue; |
| if (!HBS::isTransparentCopy(RD, RS, MRI)) |
| continue; |
| |
| unsigned BN, BW; |
| if (!HBS::getSubregMask(RS, BN, BW, MRI)) |
| continue; |
| |
| const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); |
| if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW)) |
| continue; |
| |
| // If found, replace the instruction with a COPY. |
| const DebugLoc &DL = MI->getDebugLoc(); |
| const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); |
| unsigned NewR = MRI.createVirtualRegister(FRC); |
| MachineInstr *CopyI = |
| BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) |
| .addReg(RS.Reg, 0, RS.Sub); |
| HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| // This pass can create copies between registers that don't have the |
| // exact same values. Updating the tracker has to involve updating |
| // all dependent cells. Example: |
| // %1 = inst %2 ; %1 != %2, but used bits are equal |
| // |
| // %3 = copy %2 ; <- inserted |
| // ... = %3 ; <- replaced from %2 |
| // Indirectly, we can create a "copy" between %1 and %2 even |
| // though their exact values do not match. |
| BT.visit(*CopyI); |
| Changed = true; |
| break; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| namespace { |
| |
| // Recognize instructions that produce constant values known at compile-time. |
| // Replace them with register definitions that load these constants directly. |
| class ConstGeneration : public Transformation { |
| public: |
| ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii, |
| MachineRegisterInfo &mri) |
| : Transformation(true), HII(hii), MRI(mri), BT(bt) {} |
| |
| bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| static bool isTfrConst(const MachineInstr &MI); |
| |
| private: |
| unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C, |
| MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL); |
| |
| const HexagonInstrInfo &HII; |
| MachineRegisterInfo &MRI; |
| BitTracker &BT; |
| }; |
| |
| } // end anonymous namespace |
| |
| bool ConstGeneration::isTfrConst(const MachineInstr &MI) { |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| case Hexagon::A2_combineii: |
| case Hexagon::A4_combineii: |
| case Hexagon::A2_tfrsi: |
| case Hexagon::A2_tfrpi: |
| case Hexagon::PS_true: |
| case Hexagon::PS_false: |
| case Hexagon::CONST32: |
| case Hexagon::CONST64: |
| return true; |
| } |
| return false; |
| } |
| |
| // Generate a transfer-immediate instruction that is appropriate for the |
| // register class and the actual value being transferred. |
| unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C, |
| MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) { |
| unsigned Reg = MRI.createVirtualRegister(RC); |
| if (RC == &Hexagon::IntRegsRegClass) { |
| BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg) |
| .addImm(int32_t(C)); |
| return Reg; |
| } |
| |
| if (RC == &Hexagon::DoubleRegsRegClass) { |
| if (isInt<8>(C)) { |
| BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg) |
| .addImm(C); |
| return Reg; |
| } |
| |
| unsigned Lo = Lo_32(C), Hi = Hi_32(C); |
| if (isInt<8>(Lo) || isInt<8>(Hi)) { |
| unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii |
| : Hexagon::A4_combineii; |
| BuildMI(B, At, DL, HII.get(Opc), Reg) |
| .addImm(int32_t(Hi)) |
| .addImm(int32_t(Lo)); |
| return Reg; |
| } |
| |
| BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg) |
| .addImm(C); |
| return Reg; |
| } |
| |
| if (RC == &Hexagon::PredRegsRegClass) { |
| unsigned Opc; |
| if (C == 0) |
| Opc = Hexagon::PS_false; |
| else if ((C & 0xFF) == 0xFF) |
| Opc = Hexagon::PS_true; |
| else |
| return 0; |
| BuildMI(B, At, DL, HII.get(Opc), Reg); |
| return Reg; |
| } |
| |
| return 0; |
| } |
| |
| bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) { |
| if (!BT.reached(&B)) |
| return false; |
| bool Changed = false; |
| RegisterSet Defs; |
| |
| for (auto I = B.begin(), E = B.end(); I != E; ++I) { |
| if (isTfrConst(*I)) |
| continue; |
| Defs.clear(); |
| HBS::getInstrDefs(*I, Defs); |
| if (Defs.count() != 1) |
| continue; |
| unsigned DR = Defs.find_first(); |
| if (!TargetRegisterInfo::isVirtualRegister(DR)) |
| continue; |
| uint64_t U; |
| const BitTracker::RegisterCell &DRC = BT.lookup(DR); |
| if (HBS::getConst(DRC, 0, DRC.width(), U)) { |
| int64_t C = U; |
| DebugLoc DL = I->getDebugLoc(); |
| auto At = I->isPHI() ? B.getFirstNonPHI() : I; |
| unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL); |
| if (ImmReg) { |
| HBS::replaceReg(DR, ImmReg, MRI); |
| BT.put(ImmReg, DRC); |
| Changed = true; |
| } |
| } |
| } |
| return Changed; |
| } |
| |
| namespace { |
| |
| // Identify pairs of available registers which hold identical values. |
| // In such cases, only one of them needs to be calculated, the other one |
| // will be defined as a copy of the first. |
| class CopyGeneration : public Transformation { |
| public: |
| CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii, |
| const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) |
| : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {} |
| |
| bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| |
| private: |
| bool findMatch(const BitTracker::RegisterRef &Inp, |
| BitTracker::RegisterRef &Out, const RegisterSet &AVs); |
| |
| const HexagonInstrInfo &HII; |
| const HexagonRegisterInfo &HRI; |
| MachineRegisterInfo &MRI; |
| BitTracker &BT; |
| RegisterSet Forbidden; |
| }; |
| |
| // Eliminate register copies RD = RS, by replacing the uses of RD with |
| // with uses of RS. |
| class CopyPropagation : public Transformation { |
| public: |
| CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) |
| : Transformation(false), HRI(hri), MRI(mri) {} |
| |
| bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| |
| static bool isCopyReg(unsigned Opc, bool NoConv); |
| |
| private: |
| bool propagateRegCopy(MachineInstr &MI); |
| |
| const HexagonRegisterInfo &HRI; |
| MachineRegisterInfo &MRI; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Check if there is a register in AVs that is identical to Inp. If so, |
| /// set Out to the found register. The output may be a pair Reg:Sub. |
| bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp, |
| BitTracker::RegisterRef &Out, const RegisterSet &AVs) { |
| if (!BT.has(Inp.Reg)) |
| return false; |
| const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg); |
| auto *FRC = HBS::getFinalVRegClass(Inp, MRI); |
| unsigned B, W; |
| if (!HBS::getSubregMask(Inp, B, W, MRI)) |
| return false; |
| |
| for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) { |
| if (!BT.has(R) || Forbidden[R]) |
| continue; |
| const BitTracker::RegisterCell &RC = BT.lookup(R); |
| unsigned RW = RC.width(); |
| if (W == RW) { |
| if (FRC != MRI.getRegClass(R)) |
| continue; |
| if (!HBS::isTransparentCopy(R, Inp, MRI)) |
| continue; |
| if (!HBS::isEqual(InpRC, B, RC, 0, W)) |
| continue; |
| Out.Reg = R; |
| Out.Sub = 0; |
| return true; |
| } |
| // Check if there is a super-register, whose part (with a subregister) |
| // is equal to the input. |
| // Only do double registers for now. |
| if (W*2 != RW) |
| continue; |
| if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass) |
| continue; |
| |
| if (HBS::isEqual(InpRC, B, RC, 0, W)) |
| Out.Sub = Hexagon::isub_lo; |
| else if (HBS::isEqual(InpRC, B, RC, W, W)) |
| Out.Sub = Hexagon::isub_hi; |
| else |
| continue; |
| Out.Reg = R; |
| if (HBS::isTransparentCopy(Out, Inp, MRI)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool CopyGeneration::processBlock(MachineBasicBlock &B, |
| const RegisterSet &AVs) { |
| if (!BT.reached(&B)) |
| return false; |
| RegisterSet AVB(AVs); |
| bool Changed = false; |
| RegisterSet Defs; |
| |
| for (auto I = B.begin(), E = B.end(), NextI = I; I != E; |
| ++I, AVB.insert(Defs)) { |
| NextI = std::next(I); |
| Defs.clear(); |
| HBS::getInstrDefs(*I, Defs); |
| |
| unsigned Opc = I->getOpcode(); |
| if (CopyPropagation::isCopyReg(Opc, false) || |
| ConstGeneration::isTfrConst(*I)) |
| continue; |
| |
| DebugLoc DL = I->getDebugLoc(); |
| auto At = I->isPHI() ? B.getFirstNonPHI() : I; |
| |
| for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) { |
| BitTracker::RegisterRef MR; |
| auto *FRC = HBS::getFinalVRegClass(R, MRI); |
| |
| if (findMatch(R, MR, AVB)) { |
| unsigned NewR = MRI.createVirtualRegister(FRC); |
| BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) |
| .addReg(MR.Reg, 0, MR.Sub); |
| BT.put(BitTracker::RegisterRef(NewR), BT.get(MR)); |
| HBS::replaceReg(R, NewR, MRI); |
| Forbidden.insert(R); |
| continue; |
| } |
| |
| if (FRC == &Hexagon::DoubleRegsRegClass || |
| FRC == &Hexagon::HvxWRRegClass) { |
| // Try to generate REG_SEQUENCE. |
| unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo); |
| unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi); |
| BitTracker::RegisterRef TL = { R, SubLo }; |
| BitTracker::RegisterRef TH = { R, SubHi }; |
| BitTracker::RegisterRef ML, MH; |
| if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) { |
| auto *FRC = HBS::getFinalVRegClass(R, MRI); |
| unsigned NewR = MRI.createVirtualRegister(FRC); |
| BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR) |
| .addReg(ML.Reg, 0, ML.Sub) |
| .addImm(SubLo) |
| .addReg(MH.Reg, 0, MH.Sub) |
| .addImm(SubHi); |
| BT.put(BitTracker::RegisterRef(NewR), BT.get(R)); |
| HBS::replaceReg(R, NewR, MRI); |
| Forbidden.insert(R); |
| } |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) { |
| switch (Opc) { |
| case TargetOpcode::COPY: |
| case TargetOpcode::REG_SEQUENCE: |
| case Hexagon::A4_combineir: |
| case Hexagon::A4_combineri: |
| return true; |
| case Hexagon::A2_tfr: |
| case Hexagon::A2_tfrp: |
| case Hexagon::A2_combinew: |
| case Hexagon::V6_vcombine: |
| return NoConv; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| bool CopyPropagation::propagateRegCopy(MachineInstr &MI) { |
| bool Changed = false; |
| unsigned Opc = MI.getOpcode(); |
| BitTracker::RegisterRef RD = MI.getOperand(0); |
| assert(MI.getOperand(0).getSubReg() == 0); |
| |
| switch (Opc) { |
| case TargetOpcode::COPY: |
| case Hexagon::A2_tfr: |
| case Hexagon::A2_tfrp: { |
| BitTracker::RegisterRef RS = MI.getOperand(1); |
| if (!HBS::isTransparentCopy(RD, RS, MRI)) |
| break; |
| if (RS.Sub != 0) |
| Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI); |
| else |
| Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI); |
| break; |
| } |
| case TargetOpcode::REG_SEQUENCE: { |
| BitTracker::RegisterRef SL, SH; |
| if (HBS::parseRegSequence(MI, SL, SH, MRI)) { |
| const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg); |
| unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo); |
| unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi); |
| Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI); |
| Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI); |
| } |
| break; |
| } |
| case Hexagon::A2_combinew: |
| case Hexagon::V6_vcombine: { |
| const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg); |
| unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo); |
| unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi); |
| BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2); |
| Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI); |
| Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI); |
| break; |
| } |
| case Hexagon::A4_combineir: |
| case Hexagon::A4_combineri: { |
| unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1; |
| unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo |
| : Hexagon::isub_hi; |
| BitTracker::RegisterRef RS = MI.getOperand(SrcX); |
| Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI); |
| break; |
| } |
| } |
| return Changed; |
| } |
| |
| bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) { |
| std::vector<MachineInstr*> Instrs; |
| for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) |
| Instrs.push_back(&*I); |
| |
| bool Changed = false; |
| for (auto I : Instrs) { |
| unsigned Opc = I->getOpcode(); |
| if (!CopyPropagation::isCopyReg(Opc, true)) |
| continue; |
| Changed |= propagateRegCopy(*I); |
| } |
| |
| return Changed; |
| } |
| |
| namespace { |
| |
| // Recognize patterns that can be simplified and replace them with the |
| // simpler forms. |
| // This is by no means complete |
| class BitSimplification : public Transformation { |
| public: |
| BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt, |
| const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri, |
| MachineRegisterInfo &mri, MachineFunction &mf) |
| : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri), |
| MF(mf), BT(bt) {} |
| |
| bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| |
| private: |
| struct RegHalf : public BitTracker::RegisterRef { |
| bool Low; // Low/High halfword. |
| }; |
| |
| bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC, |
| unsigned B, RegHalf &RH); |
| bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum); |
| |
| bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC, |
| BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt); |
| unsigned getCombineOpcode(bool HLow, bool LLow); |
| |
| bool genStoreUpperHalf(MachineInstr *MI); |
| bool genStoreImmediate(MachineInstr *MI); |
| bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD, |
| const BitTracker::RegisterCell &RC); |
| bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD, |
| const BitTracker::RegisterCell &RC); |
| bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD, |
| const BitTracker::RegisterCell &RC); |
| bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, |
| const BitTracker::RegisterCell &RC); |
| bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD, |
| const BitTracker::RegisterCell &RC, const RegisterSet &AVs); |
| bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD, |
| const BitTracker::RegisterCell &RC); |
| bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, |
| const BitTracker::RegisterCell &RC, const RegisterSet &AVs); |
| bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD); |
| |
| // Cache of created instructions to avoid creating duplicates. |
| // XXX Currently only used by genBitSplit. |
| std::vector<MachineInstr*> NewMIs; |
| |
| const MachineDominatorTree &MDT; |
| const HexagonInstrInfo &HII; |
| const HexagonRegisterInfo &HRI; |
| MachineRegisterInfo &MRI; |
| MachineFunction &MF; |
| BitTracker &BT; |
| }; |
| |
| } // end anonymous namespace |
| |
| // Check if the bits [B..B+16) in register cell RC form a valid halfword, |
| // i.e. [0..16), [16..32), etc. of some register. If so, return true and |
| // set the information about the found register in RH. |
| bool BitSimplification::matchHalf(unsigned SelfR, |
| const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) { |
| // XXX This could be searching in the set of available registers, in case |
| // the match is not exact. |
| |
| // Match 16-bit chunks, where the RC[B..B+15] references exactly one |
| // register and all the bits B..B+15 match between RC and the register. |
| // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... }, |
| // and RC = { [0]:0 [1-15]:v1[1-15]... }. |
| bool Low = false; |
| unsigned I = B; |
| while (I < B+16 && RC[I].num()) |
| I++; |
| if (I == B+16) |
| return false; |
| |
| unsigned Reg = RC[I].RefI.Reg; |
| unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B. |
| if (P < I-B) |
| return false; |
| unsigned Pos = P - (I-B); |
| |
| if (Reg == 0 || Reg == SelfR) // Don't match "self". |
| return false; |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| return false; |
| if (!BT.has(Reg)) |
| return false; |
| |
| const BitTracker::RegisterCell &SC = BT.lookup(Reg); |
| if (Pos+16 > SC.width()) |
| return false; |
| |
| for (unsigned i = 0; i < 16; ++i) { |
| const BitTracker::BitValue &RV = RC[i+B]; |
| if (RV.Type == BitTracker::BitValue::Ref) { |
| if (RV.RefI.Reg != Reg) |
| return false; |
| if (RV.RefI.Pos != i+Pos) |
| return false; |
| continue; |
| } |
| if (RC[i+B] != SC[i+Pos]) |
| return false; |
| } |
| |
| unsigned Sub = 0; |
| switch (Pos) { |
| case 0: |
| Sub = Hexagon::isub_lo; |
| Low = true; |
| break; |
| case 16: |
| Sub = Hexagon::isub_lo; |
| Low = false; |
| break; |
| case 32: |
| Sub = Hexagon::isub_hi; |
| Low = true; |
| break; |
| case 48: |
| Sub = Hexagon::isub_hi; |
| Low = false; |
| break; |
| default: |
| return false; |
| } |
| |
| RH.Reg = Reg; |
| RH.Sub = Sub; |
| RH.Low = Low; |
| // If the subregister is not valid with the register, set it to 0. |
| if (!HBS::getFinalVRegClass(RH, MRI)) |
| RH.Sub = 0; |
| |
| return true; |
| } |
| |
| bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc, |
| unsigned OpNum) { |
| auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF); |
| auto *RRC = HBS::getFinalVRegClass(R, MRI); |
| return OpRC->hasSubClassEq(RRC); |
| } |
| |
| // Check if RC matches the pattern of a S2_packhl. If so, return true and |
| // set the inputs Rs and Rt. |
| bool BitSimplification::matchPackhl(unsigned SelfR, |
| const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs, |
| BitTracker::RegisterRef &Rt) { |
| RegHalf L1, H1, L2, H2; |
| |
| if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1)) |
| return false; |
| if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1)) |
| return false; |
| |
| // Rs = H1.L1, Rt = H2.L2 |
| if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low) |
| return false; |
| if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low) |
| return false; |
| |
| Rs = H1; |
| Rt = H2; |
| return true; |
| } |
| |
| unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) { |
| return HLow ? LLow ? Hexagon::A2_combine_ll |
| : Hexagon::A2_combine_lh |
| : LLow ? Hexagon::A2_combine_hl |
| : Hexagon::A2_combine_hh; |
| } |
| |
| // If MI stores the upper halfword of a register (potentially obtained via |
| // shifts or extracts), replace it with a storerf instruction. This could |
| // cause the "extraction" code to become dead. |
| bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) { |
| unsigned Opc = MI->getOpcode(); |
| if (Opc != Hexagon::S2_storerh_io) |
| return false; |
| |
| MachineOperand &ValOp = MI->getOperand(2); |
| BitTracker::RegisterRef RS = ValOp; |
| if (!BT.has(RS.Reg)) |
| return false; |
| const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); |
| RegHalf H; |
| if (!matchHalf(0, RC, 0, H)) |
| return false; |
| if (H.Low) |
| return false; |
| MI->setDesc(HII.get(Hexagon::S2_storerf_io)); |
| ValOp.setReg(H.Reg); |
| ValOp.setSubReg(H.Sub); |
| return true; |
| } |
| |
| // If MI stores a value known at compile-time, and the value is within a range |
| // that avoids using constant-extenders, replace it with a store-immediate. |
| bool BitSimplification::genStoreImmediate(MachineInstr *MI) { |
| unsigned Opc = MI->getOpcode(); |
| unsigned Align = 0; |
| switch (Opc) { |
| case Hexagon::S2_storeri_io: |
| Align++; |
| LLVM_FALLTHROUGH; |
| case Hexagon::S2_storerh_io: |
| Align++; |
| LLVM_FALLTHROUGH; |
| case Hexagon::S2_storerb_io: |
| break; |
| default: |
| return false; |
| } |
| |
| // Avoid stores to frame-indices (due to an unknown offset). |
| if (!MI->getOperand(0).isReg()) |
| return false; |
| MachineOperand &OffOp = MI->getOperand(1); |
| if (!OffOp.isImm()) |
| return false; |
| |
| int64_t Off = OffOp.getImm(); |
| // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x). |
| if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1))) |
| return false; |
| // Source register: |
| BitTracker::RegisterRef RS = MI->getOperand(2); |
| if (!BT.has(RS.Reg)) |
| return false; |
| const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); |
| uint64_t U; |
| if (!HBS::getConst(RC, 0, RC.width(), U)) |
| return false; |
| |
| // Only consider 8-bit values to avoid constant-extenders. |
| int V; |
| switch (Opc) { |
| case Hexagon::S2_storerb_io: |
| V = int8_t(U); |
| break; |
| case Hexagon::S2_storerh_io: |
| V = int16_t(U); |
| break; |
| case Hexagon::S2_storeri_io: |
| V = int32_t(U); |
| break; |
| } |
| if (!isInt<8>(V)) |
| return false; |
| |
| MI->RemoveOperand(2); |
| switch (Opc) { |
| case Hexagon::S2_storerb_io: |
| MI->setDesc(HII.get(Hexagon::S4_storeirb_io)); |
| break; |
| case Hexagon::S2_storerh_io: |
| MI->setDesc(HII.get(Hexagon::S4_storeirh_io)); |
| break; |
| case Hexagon::S2_storeri_io: |
| MI->setDesc(HII.get(Hexagon::S4_storeiri_io)); |
| break; |
| } |
| MI->addOperand(MachineOperand::CreateImm(V)); |
| return true; |
| } |
| |
| // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the |
| // last instruction in a sequence that results in something equivalent to |
| // the pack-halfwords. The intent is to cause the entire sequence to become |
| // dead. |
| bool BitSimplification::genPackhl(MachineInstr *MI, |
| BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| unsigned Opc = MI->getOpcode(); |
| if (Opc == Hexagon::S2_packhl) |
| return false; |
| BitTracker::RegisterRef Rs, Rt; |
| if (!matchPackhl(RD.Reg, RC, Rs, Rt)) |
| return false; |
| if (!validateReg(Rs, Hexagon::S2_packhl, 1) || |
| !validateReg(Rt, Hexagon::S2_packhl, 2)) |
| return false; |
| |
| MachineBasicBlock &B = *MI->getParent(); |
| unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); |
| DebugLoc DL = MI->getDebugLoc(); |
| auto At = MI->isPHI() ? B.getFirstNonPHI() |
| : MachineBasicBlock::iterator(MI); |
| BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR) |
| .addReg(Rs.Reg, 0, Rs.Sub) |
| .addReg(Rt.Reg, 0, Rt.Sub); |
| HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| BT.put(BitTracker::RegisterRef(NewR), RC); |
| return true; |
| } |
| |
| // If MI produces halfword of the input in the low half of the output, |
| // replace it with zero-extend or extractu. |
| bool BitSimplification::genExtractHalf(MachineInstr *MI, |
| BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| RegHalf L; |
| // Check for halfword in low 16 bits, zeros elsewhere. |
| if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16)) |
| return false; |
| |
| unsigned Opc = MI->getOpcode(); |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| // Prefer zxth, since zxth can go in any slot, while extractu only in |
| // slots 2 and 3. |
| unsigned NewR = 0; |
| auto At = MI->isPHI() ? B.getFirstNonPHI() |
| : MachineBasicBlock::iterator(MI); |
| if (L.Low && Opc != Hexagon::A2_zxth) { |
| if (validateReg(L, Hexagon::A2_zxth, 1)) { |
| NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); |
| BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR) |
| .addReg(L.Reg, 0, L.Sub); |
| } |
| } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) { |
| if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) { |
| NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); |
| BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR) |
| .addReg(L.Reg, 0, L.Sub) |
| .addImm(16); |
| } |
| } |
| if (NewR == 0) |
| return false; |
| HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| BT.put(BitTracker::RegisterRef(NewR), RC); |
| return true; |
| } |
| |
| // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the |
| // combine. |
| bool BitSimplification::genCombineHalf(MachineInstr *MI, |
| BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| RegHalf L, H; |
| // Check for combine h/l |
| if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H)) |
| return false; |
| // Do nothing if this is just a reg copy. |
| if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low) |
| return false; |
| |
| unsigned Opc = MI->getOpcode(); |
| unsigned COpc = getCombineOpcode(H.Low, L.Low); |
| if (COpc == Opc) |
| return false; |
| if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2)) |
| return false; |
| |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); |
| auto At = MI->isPHI() ? B.getFirstNonPHI() |
| : MachineBasicBlock::iterator(MI); |
| BuildMI(B, At, DL, HII.get(COpc), NewR) |
| .addReg(H.Reg, 0, H.Sub) |
| .addReg(L.Reg, 0, L.Sub); |
| HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| BT.put(BitTracker::RegisterRef(NewR), RC); |
| return true; |
| } |
| |
| // If MI resets high bits of a register and keeps the lower ones, replace it |
| // with zero-extend byte/half, and-immediate, or extractu, as appropriate. |
| bool BitSimplification::genExtractLow(MachineInstr *MI, |
| BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case Hexagon::A2_zxtb: |
| case Hexagon::A2_zxth: |
| case Hexagon::S2_extractu: |
| return false; |
| } |
| if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) { |
| int32_t Imm = MI->getOperand(2).getImm(); |
| if (isInt<10>(Imm)) |
| return false; |
| } |
| |
| if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) |
| return false; |
| unsigned W = RC.width(); |
| while (W > 0 && RC[W-1].is(0)) |
| W--; |
| if (W == 0 || W == RC.width()) |
| return false; |
| unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb |
| : (W == 16) ? Hexagon::A2_zxth |
| : (W < 10) ? Hexagon::A2_andir |
| : Hexagon::S2_extractu; |
| MachineBasicBlock &B = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| for (auto &Op : MI->uses()) { |
| if (!Op.isReg()) |
| continue; |
| BitTracker::RegisterRef RS = Op; |
| if (!BT.has(RS.Reg)) |
| continue; |
| const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); |
| unsigned BN, BW; |
| if (!HBS::getSubregMask(RS, BN, BW, MRI)) |
| continue; |
| if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W)) |
| continue; |
| if (!validateReg(RS, NewOpc, 1)) |
| continue; |
| |
| unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); |
| auto At = MI->isPHI() ? B.getFirstNonPHI() |
| : MachineBasicBlock::iterator(MI); |
| auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR) |
| .addReg(RS.Reg, 0, RS.Sub); |
| if (NewOpc == Hexagon::A2_andir) |
| MIB.addImm((1 << W) - 1); |
| else if (NewOpc == Hexagon::S2_extractu) |
| MIB.addImm(W).addImm(0); |
| HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| BT.put(BitTracker::RegisterRef(NewR), RC); |
| return true; |
| } |
| return false; |
| } |
| |
| bool BitSimplification::genBitSplit(MachineInstr *MI, |
| BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC, |
| const RegisterSet &AVs) { |
| if (!GenBitSplit) |
| return false; |
| if (MaxBitSplit.getNumOccurrences()) { |
| if (CountBitSplit >= MaxBitSplit) |
| return false; |
| } |
| |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case Hexagon::A4_bitsplit: |
| case Hexagon::A4_bitspliti: |
| return false; |
| } |
| |
| unsigned W = RC.width(); |
| if (W != 32) |
| return false; |
| |
| auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned { |
| unsigned Z = C.width(); |
| while (Z > 0 && C[Z-1].is(0)) |
| --Z; |
| return C.width() - Z; |
| }; |
| |
| // Count the number of leading zeros in the target RC. |
| unsigned Z = ctlz(RC); |
| if (Z == 0 || Z == W) |
| return false; |
| |
| // A simplistic analysis: assume the source register (the one being split) |
| // is fully unknown, and that all its bits are self-references. |
| const BitTracker::BitValue &B0 = RC[0]; |
| if (B0.Type != BitTracker::BitValue::Ref) |
| return false; |
| |
| unsigned SrcR = B0.RefI.Reg; |
| unsigned SrcSR = 0; |
| unsigned Pos = B0.RefI.Pos; |
| |
| // All the non-zero bits should be consecutive bits from the same register. |
| for (unsigned i = 1; i < W-Z; ++i) { |
| const BitTracker::BitValue &V = RC[i]; |
| if (V.Type != BitTracker::BitValue::Ref) |
| return false; |
| if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i) |
| return false; |
| } |
| |
| // Now, find the other bitfield among AVs. |
| for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) { |
| // The number of leading zeros here should be the number of trailing |
| // non-zeros in RC. |
| if (!BT.has(S)) |
| continue; |
| const BitTracker::RegisterCell &SC = BT.lookup(S); |
| if (SC.width() != W || ctlz(SC) != W-Z) |
| continue; |
| // The Z lower bits should now match SrcR. |
| const BitTracker::BitValue &S0 = SC[0]; |
| if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR) |
| continue; |
| unsigned P = S0.RefI.Pos; |
| |
| if (Pos <= P && (Pos + W-Z) != P) |
| continue; |
| if (P < Pos && (P + Z) != Pos) |
| continue; |
| // The starting bitfield position must be at a subregister boundary. |
| if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32) |
| continue; |
| |
| unsigned I; |
| for (I = 1; I < Z; ++I) { |
| const BitTracker::BitValue &V = SC[I]; |
| if (V.Type != BitTracker::BitValue::Ref) |
| break; |
| if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I) |
| break; |
| } |
| if (I != Z) |
| continue; |
| |
| // Generate bitsplit where S is defined. |
| if (MaxBitSplit.getNumOccurrences()) |
| CountBitSplit++; |
| MachineInstr *DefS = MRI.getVRegDef(S); |
| assert(DefS != nullptr); |
| DebugLoc DL = DefS->getDebugLoc(); |
| MachineBasicBlock &B = *DefS->getParent(); |
| auto At = DefS->isPHI() ? B.getFirstNonPHI() |
| : MachineBasicBlock::iterator(DefS); |
| if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID) |
| SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo; |
| if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1)) |
| continue; |
| unsigned ImmOp = Pos <= P ? W-Z : Z; |
| |
| // Find an existing bitsplit instruction if one already exists. |
| unsigned NewR = 0; |
| for (MachineInstr *In : NewMIs) { |
| if (In->getOpcode() != Hexagon::A4_bitspliti) |
| continue; |
| MachineOperand &Op1 = In->getOperand(1); |
| if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR) |
| continue; |
| if (In->getOperand(2).getImm() != ImmOp) |
| continue; |
| // Check if the target register is available here. |
| MachineOperand &Op0 = In->getOperand(0); |
| MachineInstr *DefI = MRI.getVRegDef(Op0.getReg()); |
| assert(DefI != nullptr); |
| if (!MDT.dominates(DefI, &*At)) |
| continue; |
| |
| // Found one that can be reused. |
| assert(Op0.getSubReg() == 0); |
| NewR = Op0.getReg(); |
| break; |
| } |
| if (!NewR) { |
| NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); |
| auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR) |
| .addReg(SrcR, 0, SrcSR) |
| .addImm(ImmOp); |
| NewMIs.push_back(NewBS); |
| } |
| if (Pos <= P) { |
| HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI); |
| HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI); |
| } else { |
| HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI); |
| HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI); |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Check for tstbit simplification opportunity, where the bit being checked |
| // can be tracked back to another register. For example: |
| // %2 = S2_lsr_i_r %1, 5 |
| // %3 = S2_tstbit_i %2, 0 |
| // => |
| // %3 = S2_tstbit_i %1, 5 |
| bool BitSimplification::simplifyTstbit(MachineInstr *MI, |
| BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| unsigned Opc = MI->getOpcode(); |
| if (Opc != Hexagon::S2_tstbit_i) |
| return false; |
| |
| unsigned BN = MI->getOperand(2).getImm(); |
| BitTracker::RegisterRef RS = MI->getOperand(1); |
| unsigned F, W; |
| DebugLoc DL = MI->getDebugLoc(); |
| if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI)) |
| return false; |
| MachineBasicBlock &B = *MI->getParent(); |
| auto At = MI->isPHI() ? B.getFirstNonPHI() |
| : MachineBasicBlock::iterator(MI); |
| |
| const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); |
| const BitTracker::BitValue &V = SC[F+BN]; |
| if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) { |
| const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg); |
| // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is |
| // a double register, need to use a subregister and adjust bit |
| // number. |
| unsigned P = std::numeric_limits<unsigned>::max(); |
| BitTracker::RegisterRef RR(V.RefI.Reg, 0); |
| if (TC == &Hexagon::DoubleRegsRegClass) { |
| P = V.RefI.Pos; |
| RR.Sub = Hexagon::isub_lo; |
| if (P >= 32) { |
| P -= 32; |
| RR.Sub = Hexagon::isub_hi; |
| } |
| } else if (TC == &Hexagon::IntRegsRegClass) { |
| P = V.RefI.Pos; |
| } |
| if (P != std::numeric_limits<unsigned>::max()) { |
| unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); |
| BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR) |
| .addReg(RR.Reg, 0, RR.Sub) |
| .addImm(P); |
| HBS::replaceReg(RD.Reg, NewR, MRI); |
| BT.put(NewR, RC); |
| return true; |
| } |
| } else if (V.is(0) || V.is(1)) { |
| unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); |
| unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true; |
| BuildMI(B, At, DL, HII.get(NewOpc), NewR); |
| HBS::replaceReg(RD.Reg, NewR, MRI); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Detect whether RD is a bitfield extract (sign- or zero-extended) of |
| // some register from the AVs set. Create a new corresponding instruction |
| // at the location of MI. The intent is to recognize situations where |
| // a sequence of instructions performs an operation that is equivalent to |
| // an extract operation, such as a shift left followed by a shift right. |
| bool BitSimplification::simplifyExtractLow(MachineInstr *MI, |
| BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC, |
| const RegisterSet &AVs) { |
| if (!GenExtract) |
| return false; |
| if (MaxExtract.getNumOccurrences()) { |
| if (CountExtract >= MaxExtract) |
| return false; |
| CountExtract++; |
| } |
| |
| unsigned W = RC.width(); |
| unsigned RW = W; |
| unsigned Len; |
| bool Signed; |
| |
| // The code is mostly class-independent, except for the part that generates |
| // the extract instruction, and establishes the source register (in case it |
| // needs to use a subregister). |
| const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); |
| if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass) |
| return false; |
| assert(RD.Sub == 0); |
| |
| // Observation: |
| // If the cell has a form of 00..0xx..x with k zeros and n remaining |
| // bits, this could be an extractu of the n bits, but it could also be |
| // an extractu of a longer field which happens to have 0s in the top |
| // bit positions. |
| // The same logic applies to sign-extended fields. |
| // |
| // Do not check for the extended extracts, since it would expand the |
| // search space quite a bit. The search may be expensive as it is. |
| |
| const BitTracker::BitValue &TopV = RC[W-1]; |
| |
| // Eliminate candidates that have self-referential bits, since they |
| // cannot be extracts from other registers. Also, skip registers that |
| // have compile-time constant values. |
| bool IsConst = true; |
| for (unsigned I = 0; I != W; ++I) { |
| const BitTracker::BitValue &V = RC[I]; |
| if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg) |
| return false; |
| IsConst = IsConst && (V.is(0) || V.is(1)); |
| } |
| if (IsConst) |
| return false; |
| |
| if (TopV.is(0) || TopV.is(1)) { |
| bool S = TopV.is(1); |
| for (--W; W > 0 && RC[W-1].is(S); --W) |
| ; |
| Len = W; |
| Signed = S; |
| // The sign bit must be a part of the field being extended. |
| if (Signed) |
| ++Len; |
| } else { |
| // This could still be a sign-extended extract. |
| assert(TopV.Type == BitTracker::BitValue::Ref); |
| if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1) |
| return false; |
| for (--W; W > 0 && RC[W-1] == TopV; --W) |
| ; |
| // The top bits of RC are copies of TopV. One occurrence of TopV will |
| // be a part of the field. |
| Len = W + 1; |
| Signed = true; |
| } |
| |
| // This would be just a copy. It should be handled elsewhere. |
| if (Len == RW) |
| return false; |
| |
| LLVM_DEBUG({ |
| dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub) |
| << ", MI: " << *MI; |
| dbgs() << "Cell: " << RC << '\n'; |
| dbgs() << "Expected bitfield size: " << Len << " bits, " |
| << (Signed ? "sign" : "zero") << "-extended\n"; |
| }); |
| |
| bool Changed = false; |
| |
| for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) { |
| if (!BT.has(R)) |
| continue; |
| const BitTracker::RegisterCell &SC = BT.lookup(R); |
| unsigned SW = SC.width(); |
| |
| // The source can be longer than the destination, as long as its size is |
| // a multiple of the size of the destination. Also, we would need to be |
| // able to refer to the subregister in the source that would be of the |
| // same size as the destination, but only check the sizes here. |
| if (SW < RW || (SW % RW) != 0) |
| continue; |
| |
| // The field can start at any offset in SC as long as it contains Len |
| // bits and does not cross subregister boundary (if the source register |
| // is longer than the destination). |
| unsigned Off = 0; |
| while (Off <= SW-Len) { |
| unsigned OE = (Off+Len)/RW; |
| if (OE != Off/RW) { |
| // The assumption here is that if the source (R) is longer than the |
| // destination, then the destination is a sequence of words of |
| // size RW, and each such word in R can be accessed via a subregister. |
| // |
| // If the beginning and the end of the field cross the subregister |
| // boundary, advance to the next subregister. |
| Off = OE*RW; |
| continue; |
| } |
| if (HBS::isEqual(RC, 0, SC, Off, Len)) |
| break; |
| ++Off; |
| } |
| |
| if (Off > SW-Len) |
| continue; |
| |
| // Found match. |
| unsigned ExtOpc = 0; |
| if (Off == 0) { |
| if (Len == 8) |
| ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb; |
| else if (Len == 16) |
| ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth; |
| else if (Len < 10 && !Signed) |
| ExtOpc = Hexagon::A2_andir; |
| } |
| if (ExtOpc == 0) { |
| ExtOpc = |
| Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp) |
| : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup); |
| } |
| unsigned SR = 0; |
| // This only recognizes isub_lo and isub_hi. |
| if (RW != SW && RW*2 != SW) |
| continue; |
| if (RW != SW) |
| SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi; |
| Off = Off % RW; |
| |
| if (!validateReg({R,SR}, ExtOpc, 1)) |
| continue; |
| |
| // Don't generate the same instruction as the one being optimized. |
| if (MI->getOpcode() == ExtOpc) { |
| // All possible ExtOpc's have the source in operand(1). |
| const MachineOperand &SrcOp = MI->getOperand(1); |
| if (SrcOp.getReg() == R) |
| continue; |
| } |
| |
| DebugLoc DL = MI->getDebugLoc(); |
| MachineBasicBlock &B = *MI->getParent(); |
| unsigned NewR = MRI.createVirtualRegister(FRC); |
| auto At = MI->isPHI() ? B.getFirstNonPHI() |
| : MachineBasicBlock::iterator(MI); |
| auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR) |
| .addReg(R, 0, SR); |
| switch (ExtOpc) { |
| case Hexagon::A2_sxtb: |
| case Hexagon::A2_zxtb: |
| case Hexagon::A2_sxth: |
| case Hexagon::A2_zxth: |
| break; |
| case Hexagon::A2_andir: |
| MIB.addImm((1u << Len) - 1); |
| break; |
| case Hexagon::S4_extract: |
| case Hexagon::S2_extractu: |
| case Hexagon::S4_extractp: |
| case Hexagon::S2_extractup: |
| MIB.addImm(Len) |
| .addImm(Off); |
| break; |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| } |
| |
| HBS::replaceReg(RD.Reg, NewR, MRI); |
| BT.put(BitTracker::RegisterRef(NewR), RC); |
| Changed = true; |
| break; |
| } |
| |
| return Changed; |
| } |
| |
| bool BitSimplification::simplifyRCmp0(MachineInstr *MI, |
| BitTracker::RegisterRef RD) { |
| unsigned Opc = MI->getOpcode(); |
| if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi) |
| return false; |
| MachineOperand &CmpOp = MI->getOperand(2); |
| if (!CmpOp.isImm() || CmpOp.getImm() != 0) |
| return false; |
| |
| const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); |
| if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass) |
| return false; |
| assert(RD.Sub == 0); |
| |
| MachineBasicBlock &B = *MI->getParent(); |
| const DebugLoc &DL = MI->getDebugLoc(); |
| auto At = MI->isPHI() ? B.getFirstNonPHI() |
| : MachineBasicBlock::iterator(MI); |
| bool KnownZ = true; |
| bool KnownNZ = false; |
| |
| BitTracker::RegisterRef SR = MI->getOperand(1); |
| if (!BT.has(SR.Reg)) |
| return false; |
| const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg); |
| unsigned F, W; |
| if (!HBS::getSubregMask(SR, F, W, MRI)) |
| return false; |
| |
| for (uint16_t I = F; I != F+W; ++I) { |
| const BitTracker::BitValue &V = SC[I]; |
| if (!V.is(0)) |
| KnownZ = false; |
| if (V.is(1)) |
| KnownNZ = true; |
| } |
| |
| auto ReplaceWithConst = [&] (int C) { |
| unsigned NewR = MRI.createVirtualRegister(FRC); |
| BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR) |
| .addImm(C); |
| HBS::replaceReg(RD.Reg, NewR, MRI); |
| BitTracker::RegisterCell NewRC(W); |
| for (uint16_t I = 0; I != W; ++I) { |
| NewRC[I] = BitTracker::BitValue(C & 1); |
| C = unsigned(C) >> 1; |
| } |
| BT.put(BitTracker::RegisterRef(NewR), NewRC); |
| return true; |
| }; |
| |
| auto IsNonZero = [] (const MachineOperand &Op) { |
| if (Op.isGlobal() || Op.isBlockAddress()) |
| return true; |
| if (Op.isImm()) |
| return Op.getImm() != 0; |
| if (Op.isCImm()) |
| return !Op.getCImm()->isZero(); |
| if (Op.isFPImm()) |
| return !Op.getFPImm()->isZero(); |
| return false; |
| }; |
| |
| auto IsZero = [] (const MachineOperand &Op) { |
| if (Op.isGlobal() || Op.isBlockAddress()) |
| return false; |
| if (Op.isImm()) |
| return Op.getImm() == 0; |
| if (Op.isCImm()) |
| return Op.getCImm()->isZero(); |
| if (Op.isFPImm()) |
| return Op.getFPImm()->isZero(); |
| return false; |
| }; |
| |
| // If the source register is known to be 0 or non-0, the comparison can |
| // be folded to a load of a constant. |
| if (KnownZ || KnownNZ) { |
| assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0"); |
| return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi)); |
| } |
| |
| // Special case: if the compare comes from a C2_muxii, then we know the |
| // two possible constants that can be the source value. |
| MachineInstr *InpDef = MRI.getVRegDef(SR.Reg); |
| if (!InpDef) |
| return false; |
| if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) { |
| MachineOperand &Src1 = InpDef->getOperand(2); |
| MachineOperand &Src2 = InpDef->getOperand(3); |
| // Check if both are non-zero. |
| bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2); |
| if (KnownNZ1 && KnownNZ2) |
| return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi); |
| // Check if both are zero. |
| bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2); |
| if (KnownZ1 && KnownZ2) |
| return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi); |
| |
| // If for both operands we know that they are either 0 or non-0, |
| // replace the comparison with a C2_muxii, using the same predicate |
| // register, but with operands substituted with 0/1 accordingly. |
| if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) { |
| unsigned NewR = MRI.createVirtualRegister(FRC); |
| BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR) |
| .addReg(InpDef->getOperand(1).getReg()) |
| .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi)) |
| .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi)); |
| HBS::replaceReg(RD.Reg, NewR, MRI); |
| // Create a new cell with only the least significant bit unknown. |
| BitTracker::RegisterCell NewRC(W); |
| NewRC[0] = BitTracker::BitValue::self(); |
| NewRC.fill(1, W, BitTracker::BitValue::Zero); |
| BT.put(BitTracker::RegisterRef(NewR), NewRC); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool BitSimplification::processBlock(MachineBasicBlock &B, |
| const RegisterSet &AVs) { |
| if (!BT.reached(&B)) |
| return false; |
| bool Changed = false; |
| RegisterSet AVB = AVs; |
| RegisterSet Defs; |
| |
| for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) { |
| MachineInstr *MI = &*I; |
| Defs.clear(); |
| HBS::getInstrDefs(*MI, Defs); |
| |
| unsigned Opc = MI->getOpcode(); |
| if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE) |
| continue; |
| |
| if (MI->mayStore()) { |
| bool T = genStoreUpperHalf(MI); |
| T = T || genStoreImmediate(MI); |
| Changed |= T; |
| continue; |
| } |
| |
| if (Defs.count() != 1) |
| continue; |
| const MachineOperand &Op0 = MI->getOperand(0); |
| if (!Op0.isReg() || !Op0.isDef()) |
| continue; |
| BitTracker::RegisterRef RD = Op0; |
| if (!BT.has(RD.Reg)) |
| continue; |
| const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); |
| const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg); |
| |
| if (FRC->getID() == Hexagon::DoubleRegsRegClassID) { |
| bool T = genPackhl(MI, RD, RC); |
| T = T || simplifyExtractLow(MI, RD, RC, AVB); |
| Changed |= T; |
| continue; |
| } |
| |
| if (FRC->getID() == Hexagon::IntRegsRegClassID) { |
| bool T = genBitSplit(MI, RD, RC, AVB); |
| T = T || simplifyExtractLow(MI, RD, RC, AVB); |
| T = T || genExtractHalf(MI, RD, RC); |
| T = T || genCombineHalf(MI, RD, RC); |
| T = T || genExtractLow(MI, RD, RC); |
| T = T || simplifyRCmp0(MI, RD); |
| Changed |= T; |
| continue; |
| } |
| |
| if (FRC->getID() == Hexagon::PredRegsRegClassID) { |
| bool T = simplifyTstbit(MI, RD, RC); |
| Changed |= T; |
| continue; |
| } |
| } |
| return Changed; |
| } |
| |
| bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
| auto &HRI = *HST.getRegisterInfo(); |
| auto &HII = *HST.getInstrInfo(); |
| |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| bool Changed; |
| |
| Changed = DeadCodeElimination(MF, *MDT).run(); |
| |
| const HexagonEvaluator HE(HRI, MRI, HII, MF); |
| BitTracker BT(HE, MF); |
| LLVM_DEBUG(BT.trace(true)); |
| BT.run(); |
| |
| MachineBasicBlock &Entry = MF.front(); |
| |
| RegisterSet AIG; // Available registers for IG. |
| ConstGeneration ImmG(BT, HII, MRI); |
| Changed |= visitBlock(Entry, ImmG, AIG); |
| |
| RegisterSet ARE; // Available registers for RIE. |
| RedundantInstrElimination RIE(BT, HII, HRI, MRI); |
| bool Ried = visitBlock(Entry, RIE, ARE); |
| if (Ried) { |
| Changed = true; |
| BT.run(); |
| } |
| |
| RegisterSet ACG; // Available registers for CG. |
| CopyGeneration CopyG(BT, HII, HRI, MRI); |
| Changed |= visitBlock(Entry, CopyG, ACG); |
| |
| RegisterSet ACP; // Available registers for CP. |
| CopyPropagation CopyP(HRI, MRI); |
| Changed |= visitBlock(Entry, CopyP, ACP); |
| |
| Changed = DeadCodeElimination(MF, *MDT).run() || Changed; |
| |
| BT.run(); |
| RegisterSet ABS; // Available registers for BS. |
| BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF); |
| Changed |= visitBlock(Entry, BitS, ABS); |
| |
| Changed = DeadCodeElimination(MF, *MDT).run() || Changed; |
| |
| if (Changed) { |
| for (auto &B : MF) |
| for (auto &I : B) |
| I.clearKillInfo(); |
| DeadCodeElimination(MF, *MDT).run(); |
| } |
| return Changed; |
| } |
| |
| // Recognize loops where the code at the end of the loop matches the code |
| // before the entry of the loop, and the matching code is such that is can |
| // be simplified. This pass relies on the bit simplification above and only |
| // prepares code in a way that can be handled by the bit simplifcation. |
| // |
| // This is the motivating testcase (and explanation): |
| // |
| // { |
| // loop0(.LBB0_2, r1) // %for.body.preheader |
| // r5:4 = memd(r0++#8) |
| // } |
| // { |
| // r3 = lsr(r4, #16) |
| // r7:6 = combine(r5, r5) |
| // } |
| // { |
| // r3 = insert(r5, #16, #16) |
| // r7:6 = vlsrw(r7:6, #16) |
| // } |
| // .LBB0_2: |
| // { |
| // memh(r2+#4) = r5 |
| // memh(r2+#6) = r6 # R6 is really R5.H |
| // } |
| // { |
| // r2 = add(r2, #8) |
| // memh(r2+#0) = r4 |
| // memh(r2+#2) = r3 # R3 is really R4.H |
| // } |
| // { |
| // r5:4 = memd(r0++#8) |
| // } |
| // { # "Shuffling" code that sets up R3 and R6 |
| // r3 = lsr(r4, #16) # so that their halves can be stored in the |
| // r7:6 = combine(r5, r5) # next iteration. This could be folded into |
| // } # the stores if the code was at the beginning |
| // { # of the loop iteration. Since the same code |
| // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved |
| // r7:6 = vlsrw(r7:6, #16) # there. |
| // }:endloop0 |
| // |
| // |
| // The outcome: |
| // |
| // { |
| // loop0(.LBB0_2, r1) |
| // r5:4 = memd(r0++#8) |
| // } |
| // .LBB0_2: |
| // { |
| // memh(r2+#4) = r5 |
| // memh(r2+#6) = r5.h |
| // } |
| // { |
| // r2 = add(r2, #8) |
| // memh(r2+#0) = r4 |
| // memh(r2+#2) = r4.h |
| // } |
| // { |
| // r5:4 = memd(r0++#8) |
| // }:endloop0 |
| |
| namespace llvm { |
| |
| FunctionPass *createHexagonLoopRescheduling(); |
| void initializeHexagonLoopReschedulingPass(PassRegistry&); |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| class HexagonLoopRescheduling : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| HexagonLoopRescheduling() : MachineFunctionPass(ID) { |
| initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| private: |
| const HexagonInstrInfo *HII = nullptr; |
| const HexagonRegisterInfo *HRI = nullptr; |
| MachineRegisterInfo *MRI = nullptr; |
| BitTracker *BTP = nullptr; |
| |
| struct LoopCand { |
| LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb, |
| MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {} |
| |
| MachineBasicBlock *LB, *PB, *EB; |
| }; |
| using InstrList = std::vector<MachineInstr *>; |
| struct InstrGroup { |
| BitTracker::RegisterRef Inp, Out; |
| InstrList Ins; |
| }; |
| struct PhiInfo { |
| PhiInfo(MachineInstr &P, MachineBasicBlock &B); |
| |
| unsigned DefR; |
| BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register |
| MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block |
| }; |
| |
| static unsigned getDefReg(const MachineInstr *MI); |
| bool isConst(unsigned Reg) const; |
| bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const; |
| bool isStoreInput(const MachineInstr *MI, unsigned DefR) const; |
| bool isShuffleOf(unsigned OutR, unsigned InpR) const; |
| bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2, |
| unsigned &InpR2) const; |
| void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB, |
| MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR); |
| bool processLoop(LoopCand &C); |
| }; |
| |
| } // end anonymous namespace |
| |
| char HexagonLoopRescheduling::ID = 0; |
| |
| INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched", |
| "Hexagon Loop Rescheduling", false, false) |
| |
| HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P, |
| MachineBasicBlock &B) { |
| DefR = HexagonLoopRescheduling::getDefReg(&P); |
| LB = &B; |
| PB = nullptr; |
| for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) { |
| const MachineOperand &OpB = P.getOperand(i+1); |
| if (OpB.getMBB() == &B) { |
| LR = P.getOperand(i); |
| continue; |
| } |
| PB = OpB.getMBB(); |
| PR = P.getOperand(i); |
| } |
| } |
| |
| unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) { |
| RegisterSet Defs; |
| HBS::getInstrDefs(*MI, Defs); |
| if (Defs.count() != 1) |
| return 0; |
| return Defs.find_first(); |
| } |
| |
| bool HexagonLoopRescheduling::isConst(unsigned Reg) const { |
| if (!BTP->has(Reg)) |
| return false; |
| const BitTracker::RegisterCell &RC = BTP->lookup(Reg); |
| for (unsigned i = 0, w = RC.width(); i < w; ++i) { |
| const BitTracker::BitValue &V = RC[i]; |
| if (!V.is(0) && !V.is(1)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI, |
| unsigned DefR) const { |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case TargetOpcode::COPY: |
| case Hexagon::S2_lsr_i_r: |
| case Hexagon::S2_asr_i_r: |
| case Hexagon::S2_asl_i_r: |
| case Hexagon::S2_lsr_i_p: |
| case Hexagon::S2_asr_i_p: |
| case Hexagon::S2_asl_i_p: |
| case Hexagon::S2_insert: |
| case Hexagon::A2_or: |
| case Hexagon::A2_orp: |
| case Hexagon::A2_and: |
| case Hexagon::A2_andp: |
| case Hexagon::A2_combinew: |
| case Hexagon::A4_combineri: |
| case Hexagon::A4_combineir: |
| case Hexagon::A2_combineii: |
| case Hexagon::A4_combineii: |
| case Hexagon::A2_combine_ll: |
| case Hexagon::A2_combine_lh: |
| case Hexagon::A2_combine_hl: |
| case Hexagon::A2_combine_hh: |
| return true; |
| } |
| return false; |
| } |
| |
| bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI, |
| unsigned InpR) const { |
| for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { |
| const MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isReg()) |
| continue; |
| if (Op.getReg() == InpR) |
| return i == n-1; |
| } |
| return false; |
| } |
| |
| bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const { |
| if (!BTP->has(OutR) || !BTP->has(InpR)) |
| return false; |
| const BitTracker::RegisterCell &OutC = BTP->lookup(OutR); |
| for (unsigned i = 0, w = OutC.width(); i < w; ++i) { |
| const BitTracker::BitValue &V = OutC[i]; |
| if (V.Type != BitTracker::BitValue::Ref) |
| continue; |
| if (V.RefI.Reg != InpR) |
| return false; |
| } |
| return true; |
| } |
| |
| bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1, |
| unsigned OutR2, unsigned &InpR2) const { |
| if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2)) |
| return false; |
| const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1); |
| const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2); |
| unsigned W = OutC1.width(); |
| unsigned MatchR = 0; |
| if (W != OutC2.width()) |
| return false; |
| for (unsigned i = 0; i < W; ++i) { |
| const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i]; |
| if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One) |
| return false; |
| if (V1.Type != BitTracker::BitValue::Ref) |
| continue; |
| if (V1.RefI.Pos != V2.RefI.Pos) |
| return false; |
| if (V1.RefI.Reg != InpR1) |
| return false; |
| if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2) |
| return false; |
| if (!MatchR) |
| MatchR = V2.RefI.Reg; |
| else if (V2.RefI.Reg != MatchR) |
| return false; |
| } |
| InpR2 = MatchR; |
| return true; |
| } |
| |
| void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB, |
| MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR, |
| unsigned NewPredR) { |
| DenseMap<unsigned,unsigned> RegMap; |
| |
| const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR); |
| unsigned PhiR = MRI->createVirtualRegister(PhiRC); |
| BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR) |
| .addReg(NewPredR) |
| .addMBB(&PB) |
| .addReg(G.Inp.Reg) |
| .addMBB(&LB); |
| RegMap.insert(std::make_pair(G.Inp.Reg, PhiR)); |
| |
| for (unsigned i = G.Ins.size(); i > 0; --i) { |
| const MachineInstr *SI = G.Ins[i-1]; |
| unsigned DR = getDefReg(SI); |
| const TargetRegisterClass *RC = MRI->getRegClass(DR); |
| unsigned NewDR = MRI->createVirtualRegister(RC); |
| DebugLoc DL = SI->getDebugLoc(); |
| |
| auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR); |
| for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) { |
| const MachineOperand &Op = SI->getOperand(j); |
| if (!Op.isReg()) { |
| MIB.add(Op); |
| continue; |
| } |
| if (!Op.isUse()) |
| continue; |
| unsigned UseR = RegMap[Op.getReg()]; |
| MIB.addReg(UseR, 0, Op.getSubReg()); |
| } |
| RegMap.insert(std::make_pair(DR, NewDR)); |
| } |
| |
| HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI); |
| } |
| |
| bool HexagonLoopRescheduling::processLoop(LoopCand &C) { |
| LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB) |
| << "\n"); |
| std::vector<PhiInfo> Phis; |
| for (auto &I : *C.LB) { |
| if (!I.isPHI()) |
| break; |
| unsigned PR = getDefReg(&I); |
| if (isConst(PR)) |
| continue; |
| bool BadUse = false, GoodUse = false; |
| for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) { |
| MachineInstr *UseI = UI->getParent(); |
| if (UseI->getParent() != C.LB) { |
| BadUse = true; |
| break; |
| } |
| if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR)) |
| GoodUse = true; |
| } |
| if (BadUse || !GoodUse) |
| continue; |
| |
| Phis.push_back(PhiInfo(I, *C.LB)); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "Phis: {"; |
| for (auto &I : Phis) { |
| dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi(" |
| << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber() |
| << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b" |
| << I.LB->getNumber() << ')'; |
| } |
| dbgs() << " }\n"; |
| }); |
| |
| if (Phis.empty()) |
| return false; |
| |
| bool Changed = false; |
| InstrList ShufIns; |
| |
| // Go backwards in the block: for each bit shuffling instruction, check |
| // if that instruction could potentially be moved to the front of the loop: |
| // the output of the loop cannot be used in a non-shuffling instruction |
| // in this loop. |
| for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) { |
| if (I->isTerminator()) |
| continue; |
| if (I->isPHI()) |
| break; |
| |
| RegisterSet Defs; |
| HBS::getInstrDefs(*I, Defs); |
| if (Defs.count() != 1) |
| continue; |
| unsigned DefR = Defs.find_first(); |
| if (!TargetRegisterInfo::isVirtualRegister(DefR)) |
| continue; |
| if (!isBitShuffle(&*I, DefR)) |
| continue; |
| |
| bool BadUse = false; |
| for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) { |
| MachineInstr *UseI = UI->getParent(); |
| if (UseI->getParent() == C.LB) { |
| if (UseI->isPHI()) { |
| // If the use is in a phi node in this loop, then it should be |
| // the value corresponding to the back edge. |
| unsigned Idx = UI.getOperandNo(); |
| if (UseI->getOperand(Idx+1).getMBB() != C.LB) |
| BadUse = true; |
| } else { |
| auto F = find(ShufIns, UseI); |
| if (F == ShufIns.end()) |
| BadUse = true; |
| } |
| } else { |
| // There is a use outside of the loop, but there is no epilog block |
| // suitable for a copy-out. |
| if (C.EB == nullptr) |
| BadUse = true; |
| } |
| if (BadUse) |
| break; |
| } |
| |
| if (BadUse) |
| continue; |
| ShufIns.push_back(&*I); |
| } |
| |
| // Partition the list of shuffling instructions into instruction groups, |
| // where each group has to be moved as a whole (i.e. a group is a chain of |
| // dependent instructions). A group produces a single live output register, |
| // which is meant to be the input of the loop phi node (although this is |
| // not checked here yet). It also uses a single register as its input, |
| // which is some value produced in the loop body. After moving the group |
| // to the beginning of the loop, that input register would need to be |
| // the loop-carried register (through a phi node) instead of the (currently |
| // loop-carried) output register. |
| using InstrGroupList = std::vector<InstrGroup>; |
| InstrGroupList Groups; |
| |
| for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) { |
| MachineInstr *SI = ShufIns[i]; |
| if (SI == nullptr) |
| continue; |
| |
| InstrGroup G; |
| G.Ins.push_back(SI); |
| G.Out.Reg = getDefReg(SI); |
| RegisterSet Inputs; |
| HBS::getInstrUses(*SI, Inputs); |
| |
| for (unsigned j = i+1; j < n; ++j) { |
| MachineInstr *MI = ShufIns[j]; |
| if (MI == nullptr) |
| continue; |
| RegisterSet Defs; |
| HBS::getInstrDefs(*MI, Defs); |
| // If this instruction does not define any pending inputs, skip it. |
| if (!Defs.intersects(Inputs)) |
| continue; |
| // Otherwise, add it to the current group and remove the inputs that |
| // are defined by MI. |
| G.Ins.push_back(MI); |
| Inputs.remove(Defs); |
| // Then add all registers used by MI. |
| HBS::getInstrUses(*MI, Inputs); |
| ShufIns[j] = nullptr; |
| } |
| |
| // Only add a group if it requires at most one register. |
| if (Inputs.count() > 1) |
| continue; |
| auto LoopInpEq = [G] (const PhiInfo &P) -> bool { |
| return G.Out.Reg == P.LR.Reg; |
| }; |
| if (llvm::find_if(Phis, LoopInpEq) == Phis.end()) |
| continue; |
| |
| G.Inp.Reg = Inputs.find_first(); |
| Groups.push_back(G); |
| } |
| |
| LLVM_DEBUG({ |
| for (unsigned i = 0, n = Groups.size(); i < n; ++i) { |
| InstrGroup &G = Groups[i]; |
| dbgs() << "Group[" << i << "] inp: " |
| << printReg(G.Inp.Reg, HRI, G.Inp.Sub) |
| << " out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n"; |
| for (unsigned j = 0, m = G.Ins.size(); j < m; ++j) |
| dbgs() << " " << *G.Ins[j]; |
| } |
| }); |
| |
| for (unsigned i = 0, n = Groups.size(); i < n; ++i) { |
| InstrGroup &G = Groups[i]; |
| if (!isShuffleOf(G.Out.Reg, G.Inp.Reg)) |
| continue; |
| auto LoopInpEq = [G] (const PhiInfo &P) -> bool { |
| return G.Out.Reg == P.LR.Reg; |
| }; |
| auto F = llvm::find_if(Phis, LoopInpEq); |
| if (F == Phis.end()) |
| continue; |
| unsigned PrehR = 0; |
| if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) { |
| const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg); |
| unsigned Opc = DefPrehR->getOpcode(); |
| if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi) |
| continue; |
| if (!DefPrehR->getOperand(1).isImm()) |
| continue; |
| if (DefPrehR->getOperand(1).getImm() != 0) |
| continue; |
| const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg); |
| if (RC != MRI->getRegClass(F->PR.Reg)) { |
| PrehR = MRI->createVirtualRegister(RC); |
| unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi |
| : Hexagon::A2_tfrpi; |
| auto T = C.PB->getFirstTerminator(); |
| DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc(); |
| BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR) |
| .addImm(0); |
| } else { |
| PrehR = F->PR.Reg; |
| } |
| } |
| // isSameShuffle could match with PrehR being of a wider class than |
| // G.Inp.Reg, for example if G shuffles the low 32 bits of its input, |
| // it would match for the input being a 32-bit register, and PrehR |
| // being a 64-bit register (where the low 32 bits match). This could |
| // be handled, but for now skip these cases. |
| if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg)) |
| continue; |
| moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
| HII = HST.getInstrInfo(); |
| HRI = HST.getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); |
| BitTracker BT(HE, MF); |
| LLVM_DEBUG(BT.trace(true)); |
| BT.run(); |
| BTP = &BT; |
| |
| std::vector<LoopCand> Cand; |
| |
| for (auto &B : MF) { |
| if (B.pred_size() != 2 || B.succ_size() != 2) |
| continue; |
| MachineBasicBlock *PB = nullptr; |
| bool IsLoop = false; |
| for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) { |
| if (*PI != &B) |
| PB = *PI; |
| else |
| IsLoop = true; |
| } |
| if (!IsLoop) |
| continue; |
| |
| MachineBasicBlock *EB = nullptr; |
| for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) { |
| if (*SI == &B) |
| continue; |
| // Set EP to the epilog block, if it has only 1 predecessor (i.e. the |
| // edge from B to EP is non-critical. |
| if ((*SI)->pred_size() == 1) |
| EB = *SI; |
| break; |
| } |
| |
| Cand.push_back(LoopCand(&B, PB, EB)); |
| } |
| |
| bool Changed = false; |
| for (auto &C : Cand) |
| Changed |= processLoop(C); |
| |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Public Constructor Functions |
| //===----------------------------------------------------------------------===// |
| |
| FunctionPass *llvm::createHexagonLoopRescheduling() { |
| return new HexagonLoopRescheduling(); |
| } |
| |
| FunctionPass *llvm::createHexagonBitSimplify() { |
| return new HexagonBitSimplify(); |
| } |