| //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that AVR uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AVRISelLowering.h" |
| |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| #include "AVR.h" |
| #include "AVRMachineFunctionInfo.h" |
| #include "AVRTargetMachine.h" |
| #include "MCTargetDesc/AVRMCTargetDesc.h" |
| |
| namespace llvm { |
| |
| AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm) |
| : TargetLowering(tm) { |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, &AVR::GPR8RegClass); |
| addRegisterClass(MVT::i16, &AVR::DREGSRegClass); |
| |
| // Compute derived properties from the register classes. |
| computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo()); |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrOneBooleanContent); |
| setSchedulingPreference(Sched::RegPressure); |
| setStackPointerRegisterToSaveRestore(AVR::SP); |
| setSupportsUnalignedAtomics(true); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i16, Custom); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { |
| setLoadExtAction(N, VT, MVT::i1, Promote); |
| setLoadExtAction(N, VT, MVT::i8, Expand); |
| } |
| } |
| |
| setTruncStoreAction(MVT::i16, MVT::i8, Expand); |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::ADDC, VT, Legal); |
| setOperationAction(ISD::SUBC, VT, Legal); |
| setOperationAction(ISD::ADDE, VT, Legal); |
| setOperationAction(ISD::SUBE, VT, Legal); |
| } |
| |
| // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types |
| // revert into a sub since we don't have an add with immediate instruction. |
| setOperationAction(ISD::ADD, MVT::i32, Custom); |
| setOperationAction(ISD::ADD, MVT::i64, Custom); |
| |
| // our shift instructions are only able to shift 1 bit at a time, so handle |
| // this in a custom way. |
| setOperationAction(ISD::SRA, MVT::i8, Custom); |
| setOperationAction(ISD::SHL, MVT::i8, Custom); |
| setOperationAction(ISD::SRL, MVT::i8, Custom); |
| setOperationAction(ISD::SRA, MVT::i16, Custom); |
| setOperationAction(ISD::SHL, MVT::i16, Custom); |
| setOperationAction(ISD::SRL, MVT::i16, Custom); |
| setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); |
| |
| setOperationAction(ISD::ROTL, MVT::i8, Custom); |
| setOperationAction(ISD::ROTL, MVT::i16, Custom); |
| setOperationAction(ISD::ROTR, MVT::i8, Custom); |
| setOperationAction(ISD::ROTR, MVT::i16, Custom); |
| |
| setOperationAction(ISD::BR_CC, MVT::i8, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i16, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); |
| setOperationAction(ISD::SETCC, MVT::i8, Custom); |
| setOperationAction(ISD::SETCC, MVT::i16, Custom); |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| setOperationAction(ISD::SETCC, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::i8, Expand); |
| setOperationAction(ISD::SELECT, MVT::i16, Expand); |
| |
| setOperationAction(ISD::BSWAP, MVT::i16, Expand); |
| |
| // Add support for postincrement and predecrement load/stores. |
| setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); |
| setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); |
| setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal); |
| setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal); |
| setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal); |
| setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal); |
| setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal); |
| setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| |
| // Atomic operations which must be lowered to rtlib calls |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::ATOMIC_SWAP, VT, Expand); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); |
| } |
| |
| // Division/remainder |
| setOperationAction(ISD::UDIV, MVT::i8, Expand); |
| setOperationAction(ISD::UDIV, MVT::i16, Expand); |
| setOperationAction(ISD::UREM, MVT::i8, Expand); |
| setOperationAction(ISD::UREM, MVT::i16, Expand); |
| setOperationAction(ISD::SDIV, MVT::i8, Expand); |
| setOperationAction(ISD::SDIV, MVT::i16, Expand); |
| setOperationAction(ISD::SREM, MVT::i8, Expand); |
| setOperationAction(ISD::SREM, MVT::i16, Expand); |
| |
| // Make division and modulus custom |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::UDIVREM, VT, Custom); |
| setOperationAction(ISD::SDIVREM, VT, Custom); |
| } |
| |
| // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co. |
| setOperationAction(ISD::MUL, MVT::i8, Expand); |
| setOperationAction(ISD::MUL, MVT::i16, Expand); |
| |
| // Expand 16 bit multiplications. |
| setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| // TODO: The generated code is pretty poor. Investigate using the |
| // same "shift and subtract with carry" trick that we do for |
| // extending 8-bit to 16-bit. This may require infrastructure |
| // improvements in how we treat 16-bit "registers" to be feasible. |
| } |
| |
| // Division rtlib functions (not supported) |
| setLibcallName(RTLIB::SDIV_I8, nullptr); |
| setLibcallName(RTLIB::SDIV_I16, nullptr); |
| setLibcallName(RTLIB::SDIV_I32, nullptr); |
| setLibcallName(RTLIB::SDIV_I64, nullptr); |
| setLibcallName(RTLIB::SDIV_I128, nullptr); |
| setLibcallName(RTLIB::UDIV_I8, nullptr); |
| setLibcallName(RTLIB::UDIV_I16, nullptr); |
| setLibcallName(RTLIB::UDIV_I32, nullptr); |
| setLibcallName(RTLIB::UDIV_I64, nullptr); |
| setLibcallName(RTLIB::UDIV_I128, nullptr); |
| |
| // Modulus rtlib functions (not supported) |
| setLibcallName(RTLIB::SREM_I8, nullptr); |
| setLibcallName(RTLIB::SREM_I16, nullptr); |
| setLibcallName(RTLIB::SREM_I32, nullptr); |
| setLibcallName(RTLIB::SREM_I64, nullptr); |
| setLibcallName(RTLIB::SREM_I128, nullptr); |
| setLibcallName(RTLIB::UREM_I8, nullptr); |
| setLibcallName(RTLIB::UREM_I16, nullptr); |
| setLibcallName(RTLIB::UREM_I32, nullptr); |
| setLibcallName(RTLIB::UREM_I64, nullptr); |
| setLibcallName(RTLIB::UREM_I128, nullptr); |
| |
| // Division and modulus rtlib functions |
| setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4"); |
| setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4"); |
| setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); |
| setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4"); |
| setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4"); |
| setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4"); |
| setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4"); |
| setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); |
| setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4"); |
| setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4"); |
| |
| // Several of the runtime library functions use a special calling conv |
| setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN); |
| setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN); |
| setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN); |
| setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN); |
| |
| // Trigonometric rtlib functions |
| setLibcallName(RTLIB::SIN_F32, "sin"); |
| setLibcallName(RTLIB::COS_F32, "cos"); |
| |
| setMinFunctionAlignment(1); |
| setMinimumJumpTableEntries(INT_MAX); |
| } |
| |
| const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| #define NODE(name) \ |
| case AVRISD::name: \ |
| return #name |
| |
| switch (Opcode) { |
| default: |
| return nullptr; |
| NODE(RET_FLAG); |
| NODE(RETI_FLAG); |
| NODE(CALL); |
| NODE(WRAPPER); |
| NODE(LSL); |
| NODE(LSR); |
| NODE(ROL); |
| NODE(ROR); |
| NODE(ASR); |
| NODE(LSLLOOP); |
| NODE(LSRLOOP); |
| NODE(ASRLOOP); |
| NODE(BRCOND); |
| NODE(CMP); |
| NODE(CMPC); |
| NODE(TST); |
| NODE(SELECT_CC); |
| #undef NODE |
| } |
| } |
| |
| EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| EVT VT) const { |
| assert(!VT.isVector() && "No AVR SetCC type for vectors!"); |
| return MVT::i8; |
| } |
| |
| SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const { |
| //:TODO: this function has to be completely rewritten to produce optimal |
| // code, for now it's producing very long but correct code. |
| unsigned Opc8; |
| const SDNode *N = Op.getNode(); |
| EVT VT = Op.getValueType(); |
| SDLoc dl(N); |
| |
| // Expand non-constant shifts to loops. |
| if (!isa<ConstantSDNode>(N->getOperand(1))) { |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Invalid shift opcode!"); |
| case ISD::SHL: |
| return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0), |
| N->getOperand(1)); |
| case ISD::SRL: |
| return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0), |
| N->getOperand(1)); |
| case ISD::ROTL: |
| return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), |
| N->getOperand(1)); |
| case ISD::ROTR: |
| return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), |
| N->getOperand(1)); |
| case ISD::SRA: |
| return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0), |
| N->getOperand(1)); |
| } |
| } |
| |
| uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| SDValue Victim = N->getOperand(0); |
| |
| switch (Op.getOpcode()) { |
| case ISD::SRA: |
| Opc8 = AVRISD::ASR; |
| break; |
| case ISD::ROTL: |
| Opc8 = AVRISD::ROL; |
| break; |
| case ISD::ROTR: |
| Opc8 = AVRISD::ROR; |
| break; |
| case ISD::SRL: |
| Opc8 = AVRISD::LSR; |
| break; |
| case ISD::SHL: |
| Opc8 = AVRISD::LSL; |
| break; |
| default: |
| llvm_unreachable("Invalid shift opcode"); |
| } |
| |
| while (ShiftAmount--) { |
| Victim = DAG.getNode(Opc8, dl, VT, Victim); |
| } |
| |
| return Victim; |
| } |
| |
| SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { |
| unsigned Opcode = Op->getOpcode(); |
| assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && |
| "Invalid opcode for Div/Rem lowering"); |
| bool IsSigned = (Opcode == ISD::SDIVREM); |
| EVT VT = Op->getValueType(0); |
| Type *Ty = VT.getTypeForEVT(*DAG.getContext()); |
| |
| RTLIB::Libcall LC; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i8: |
| LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; |
| break; |
| case MVT::i16: |
| LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; |
| break; |
| case MVT::i32: |
| LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; |
| break; |
| case MVT::i64: |
| LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; |
| break; |
| case MVT::i128: |
| LC = IsSigned ? RTLIB::SDIVREM_I128 : RTLIB::UDIVREM_I128; |
| break; |
| } |
| |
| SDValue InChain = DAG.getEntryNode(); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (SDValue const &Value : Op->op_values()) { |
| Entry.Node = Value; |
| Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext()); |
| Entry.IsSExt = IsSigned; |
| Entry.IsZExt = !IsSigned; |
| Args.push_back(Entry); |
| } |
| |
| SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), |
| getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = (Type *)StructType::get(Ty, Ty); |
| |
| SDLoc dl(Op); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(InChain) |
| .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) |
| .setInRegister() |
| .setSExtResult(IsSigned) |
| .setZExtResult(!IsSigned); |
| |
| std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| return CallInfo.first; |
| } |
| |
| SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto DL = DAG.getDataLayout(); |
| |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); |
| |
| // Create the TargetGlobalAddress node, folding in the constant offset. |
| SDValue Result = |
| DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset); |
| return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); |
| } |
| |
| SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto DL = DAG.getDataLayout(); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| |
| SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL)); |
| |
| return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); |
| } |
| |
| /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC. |
| static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unknown condition code!"); |
| case ISD::SETEQ: |
| return AVRCC::COND_EQ; |
| case ISD::SETNE: |
| return AVRCC::COND_NE; |
| case ISD::SETGE: |
| return AVRCC::COND_GE; |
| case ISD::SETLT: |
| return AVRCC::COND_LT; |
| case ISD::SETUGE: |
| return AVRCC::COND_SH; |
| case ISD::SETULT: |
| return AVRCC::COND_LO; |
| } |
| } |
| |
| /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for |
| /// the given operands. |
| SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| SDValue &AVRcc, SelectionDAG &DAG, |
| SDLoc DL) const { |
| SDValue Cmp; |
| EVT VT = LHS.getValueType(); |
| bool UseTest = false; |
| |
| switch (CC) { |
| default: |
| break; |
| case ISD::SETLE: { |
| // Swap operands and reverse the branching condition. |
| std::swap(LHS, RHS); |
| CC = ISD::SETGE; |
| break; |
| } |
| case ISD::SETGT: { |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| switch (C->getSExtValue()) { |
| case -1: { |
| // When doing lhs > -1 use a tst instruction on the top part of lhs |
| // and use brpl instead of using a chain of cp/cpc. |
| UseTest = true; |
| AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8); |
| break; |
| } |
| case 0: { |
| // Turn lhs > 0 into 0 < lhs since 0 can be materialized with |
| // __zero_reg__ in lhs. |
| RHS = LHS; |
| LHS = DAG.getConstant(0, DL, VT); |
| CC = ISD::SETLT; |
| break; |
| } |
| default: { |
| // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows |
| // us to fold the constant into the cmp instruction. |
| RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); |
| CC = ISD::SETGE; |
| break; |
| } |
| } |
| break; |
| } |
| // Swap operands and reverse the branching condition. |
| std::swap(LHS, RHS); |
| CC = ISD::SETLT; |
| break; |
| } |
| case ISD::SETLT: { |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| switch (C->getSExtValue()) { |
| case 1: { |
| // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with |
| // __zero_reg__ in lhs. |
| RHS = LHS; |
| LHS = DAG.getConstant(0, DL, VT); |
| CC = ISD::SETGE; |
| break; |
| } |
| case 0: { |
| // When doing lhs < 0 use a tst instruction on the top part of lhs |
| // and use brmi instead of using a chain of cp/cpc. |
| UseTest = true; |
| AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8); |
| break; |
| } |
| } |
| } |
| break; |
| } |
| case ISD::SETULE: { |
| // Swap operands and reverse the branching condition. |
| std::swap(LHS, RHS); |
| CC = ISD::SETUGE; |
| break; |
| } |
| case ISD::SETUGT: { |
| // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to |
| // fold the constant into the cmp instruction. |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); |
| CC = ISD::SETUGE; |
| break; |
| } |
| // Swap operands and reverse the branching condition. |
| std::swap(LHS, RHS); |
| CC = ISD::SETULT; |
| break; |
| } |
| } |
| |
| // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of |
| // using the default and/or/xor expansion code which is much longer. |
| if (VT == MVT::i32) { |
| SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, |
| DAG.getIntPtrConstant(1, DL)); |
| SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| if (UseTest) { |
| // When using tst we only care about the highest part. |
| SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi, |
| DAG.getIntPtrConstant(1, DL)); |
| Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); |
| } else { |
| Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp); |
| } |
| } else if (VT == MVT::i64) { |
| SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, |
| DAG.getIntPtrConstant(1, DL)); |
| SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, |
| DAG.getIntPtrConstant(1, DL)); |
| SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| if (UseTest) { |
| // When using tst we only care about the highest part. |
| SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3, |
| DAG.getIntPtrConstant(1, DL)); |
| Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); |
| } else { |
| Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp); |
| Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp); |
| } |
| } else if (VT == MVT::i8 || VT == MVT::i16) { |
| if (UseTest) { |
| // When using tst we only care about the highest part. |
| Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, |
| (VT == MVT::i8) |
| ? LHS |
| : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, |
| LHS, DAG.getIntPtrConstant(1, DL))); |
| } else { |
| Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS); |
| } |
| } else { |
| llvm_unreachable("Invalid comparison size"); |
| } |
| |
| // When using a test instruction AVRcc is already set. |
| if (!UseTest) { |
| AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8); |
| } |
| |
| return Cmp; |
| } |
| |
| SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc dl(Op); |
| |
| SDValue TargetCC; |
| SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); |
| |
| return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC, |
| Cmp); |
| } |
| |
| SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue TrueV = Op.getOperand(2); |
| SDValue FalseV = Op.getOperand(3); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDLoc dl(Op); |
| |
| SDValue TargetCC; |
| SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); |
| |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; |
| |
| return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops); |
| } |
| |
| SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| SDLoc DL(Op); |
| |
| SDValue TargetCC; |
| SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL); |
| |
| SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType()); |
| SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType()); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; |
| |
| return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops); |
| } |
| |
| SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| auto DL = DAG.getDataLayout(); |
| SDLoc dl(Op); |
| |
| // Vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL)); |
| |
| return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), |
| MachinePointerInfo(SV), 0); |
| } |
| |
| SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Don't know how to custom lower this!"); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| return LowerShifts(Op, DAG); |
| case ISD::GlobalAddress: |
| return LowerGlobalAddress(Op, DAG); |
| case ISD::BlockAddress: |
| return LowerBlockAddress(Op, DAG); |
| case ISD::BR_CC: |
| return LowerBR_CC(Op, DAG); |
| case ISD::SELECT_CC: |
| return LowerSELECT_CC(Op, DAG); |
| case ISD::SETCC: |
| return LowerSETCC(Op, DAG); |
| case ISD::VASTART: |
| return LowerVASTART(Op, DAG); |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| return LowerDivRem(Op, DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Replace a node with an illegal result type |
| /// with a new node built out of custom code. |
| void AVRTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| SDLoc DL(N); |
| |
| switch (N->getOpcode()) { |
| case ISD::ADD: { |
| // Convert add (x, imm) into sub (x, -imm). |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| SDValue Sub = DAG.getNode( |
| ISD::SUB, DL, N->getValueType(0), N->getOperand(0), |
| DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0))); |
| Results.push_back(Sub); |
| } |
| break; |
| } |
| default: { |
| SDValue Res = LowerOperation(SDValue(N, 0), DAG); |
| |
| for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) |
| Results.push_back(Res.getValue(I)); |
| |
| break; |
| } |
| } |
| } |
| |
| /// Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| int64_t Offs = AM.BaseOffs; |
| |
| // Allow absolute addresses. |
| if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) { |
| return true; |
| } |
| |
| // Flash memory instructions only allow zero offsets. |
| if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) { |
| return false; |
| } |
| |
| // Allow reg+<6bit> offset. |
| if (Offs < 0) |
| Offs = -Offs; |
| if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| EVT VT; |
| const SDNode *Op; |
| SDLoc DL(N); |
| |
| if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| Op = LD->getBasePtr().getNode(); |
| if (LD->getExtensionType() != ISD::NON_EXTLOAD) |
| return false; |
| if (AVR::isProgramMemoryAccess(LD)) { |
| return false; |
| } |
| } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| Op = ST->getBasePtr().getNode(); |
| if (AVR::isProgramMemoryAccess(ST)) { |
| return false; |
| } |
| } else { |
| return false; |
| } |
| |
| if (VT != MVT::i8 && VT != MVT::i16) { |
| return false; |
| } |
| |
| if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { |
| return false; |
| } |
| |
| if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { |
| int RHSC = RHS->getSExtValue(); |
| if (Op->getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| |
| if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) { |
| return false; |
| } |
| |
| Base = Op->getOperand(0); |
| Offset = DAG.getConstant(RHSC, DL, MVT::i8); |
| AM = ISD::PRE_DEC; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| EVT VT; |
| SDLoc DL(N); |
| |
| if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| if (LD->getExtensionType() != ISD::NON_EXTLOAD) |
| return false; |
| } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| if (AVR::isProgramMemoryAccess(ST)) { |
| return false; |
| } |
| } else { |
| return false; |
| } |
| |
| if (VT != MVT::i8 && VT != MVT::i16) { |
| return false; |
| } |
| |
| if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { |
| return false; |
| } |
| |
| if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { |
| int RHSC = RHS->getSExtValue(); |
| if (Op->getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) { |
| return false; |
| } |
| |
| Base = Op->getOperand(0); |
| Offset = DAG.getConstant(RHSC, DL, MVT::i8); |
| AM = ISD::POST_INC; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool AVRTargetLowering::isOffsetFoldingLegal( |
| const GlobalAddressSDNode *GA) const { |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Formal Arguments Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "AVRGenCallingConv.inc" |
| |
| /// For each argument in a function store the number of pieces it is composed |
| /// of. |
| static void parseFunctionArgs(const SmallVectorImpl<ISD::InputArg> &Ins, |
| SmallVectorImpl<unsigned> &Out) { |
| for (const ISD::InputArg &Arg : Ins) { |
| if(Arg.PartOffset > 0) continue; |
| unsigned Bytes = ((Arg.ArgVT.getSizeInBits()) + 7) / 8; |
| |
| Out.push_back((Bytes + 1) / 2); |
| } |
| } |
| |
| /// For external symbols there is no function prototype information so we |
| /// have to rely directly on argument sizes. |
| static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In, |
| SmallVectorImpl<unsigned> &Out) { |
| for (unsigned i = 0, e = In.size(); i != e;) { |
| unsigned Size = 0; |
| unsigned Offset = 0; |
| while ((i != e) && (In[i].PartOffset == Offset)) { |
| Offset += In[i].VT.getStoreSize(); |
| ++i; |
| ++Size; |
| } |
| Out.push_back(Size); |
| } |
| } |
| |
| static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) { |
| SDValue Callee = CLI.Callee; |
| |
| if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| return G->getSymbol(); |
| } |
| |
| if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| return G->getGlobal()->getName(); |
| } |
| |
| llvm_unreachable("don't know how to get the name for this callee"); |
| } |
| |
| /// Analyze incoming and outgoing function arguments. We need custom C++ code |
| /// to handle special constraints in the ABI like reversing the order of the |
| /// pieces of splitted arguments. In addition, all pieces of a certain argument |
| /// have to be passed either using registers or the stack but never mixing both. |
| static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI, |
| const Function *F, const DataLayout *TD, |
| const SmallVectorImpl<ISD::OutputArg> *Outs, |
| const SmallVectorImpl<ISD::InputArg> *Ins, |
| CallingConv::ID CallConv, |
| SmallVectorImpl<CCValAssign> &ArgLocs, |
| CCState &CCInfo, bool IsCall, bool IsVarArg) { |
| static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20, |
| AVR::R18, AVR::R16, AVR::R14, |
| AVR::R12, AVR::R10, AVR::R8}; |
| static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20, |
| AVR::R19R18, AVR::R17R16, AVR::R15R14, |
| AVR::R13R12, AVR::R11R10, AVR::R9R8}; |
| if (IsVarArg) { |
| // Variadic functions do not need all the analisys below. |
| if (IsCall) { |
| CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg); |
| } else { |
| CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg); |
| } |
| return; |
| } |
| |
| // Fill in the Args array which will contain original argument sizes. |
| SmallVector<unsigned, 8> Args; |
| if (IsCall) { |
| parseExternFuncCallArgs(*Outs, Args); |
| } else { |
| assert(F != nullptr && "function should not be null"); |
| parseFunctionArgs(*Ins, Args); |
| } |
| |
| unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0; |
| // Variadic functions always use the stack. |
| bool UsesStack = false; |
| for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) { |
| unsigned Size = Args[i]; |
| |
| // If we have a zero-sized argument, don't attempt to lower it. |
| // AVR-GCC does not support zero-sized arguments and so we need not |
| // worry about ABI compatibility. |
| if (Size == 0) continue; |
| |
| MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT; |
| |
| // If we have plenty of regs to pass the whole argument do it. |
| if (!UsesStack && (Size <= RegsLeft)) { |
| const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8; |
| |
| for (unsigned j = 0; j != Size; ++j) { |
| unsigned Reg = CCInfo.AllocateReg( |
| ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8))); |
| CCInfo.addLoc( |
| CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full)); |
| --RegsLeft; |
| } |
| |
| // Reverse the order of the pieces to agree with the "big endian" format |
| // required in the calling convention ABI. |
| std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size); |
| } else { |
| // Pass the rest of arguments using the stack. |
| UsesStack = true; |
| for (unsigned j = 0; j != Size; ++j) { |
| unsigned Offset = CCInfo.AllocateStack( |
| TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())), |
| TD->getABITypeAlignment( |
| EVT(LocVT).getTypeForEVT(CCInfo.getContext()))); |
| CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT, |
| CCValAssign::Full)); |
| } |
| } |
| pos += Size; |
| } |
| } |
| |
| static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI, |
| const Function *F, const DataLayout *TD, |
| const SmallVectorImpl<ISD::OutputArg> *Outs, |
| const SmallVectorImpl<ISD::InputArg> *Ins, |
| CallingConv::ID CallConv, |
| SmallVectorImpl<CCValAssign> &ArgLocs, |
| CCState &CCInfo, bool IsCall, bool IsVarArg) { |
| StringRef FuncName = getFunctionName(CLI); |
| |
| if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) { |
| CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV); |
| } else { |
| analyzeStandardArguments(&CLI, F, TD, Outs, Ins, |
| CallConv, ArgLocs, CCInfo, |
| IsCall, IsVarArg); |
| } |
| } |
| |
| static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI, |
| const Function *F, const DataLayout *TD, |
| const SmallVectorImpl<ISD::OutputArg> *Outs, |
| const SmallVectorImpl<ISD::InputArg> *Ins, |
| CallingConv::ID CallConv, |
| SmallVectorImpl<CCValAssign> &ArgLocs, |
| CCState &CCInfo, bool IsCall, bool IsVarArg) { |
| switch (CallConv) { |
| case CallingConv::AVR_BUILTIN: { |
| analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins, |
| CallConv, ArgLocs, CCInfo, |
| IsCall, IsVarArg); |
| return; |
| } |
| default: { |
| analyzeStandardArguments(CLI, F, TD, Outs, Ins, |
| CallConv, ArgLocs, CCInfo, |
| IsCall, IsVarArg); |
| return; |
| } |
| } |
| } |
| |
| SDValue AVRTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| auto DL = DAG.getDataLayout(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| analyzeArguments(nullptr, &MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo, |
| false, isVarArg); |
| |
| SDValue ArgValue; |
| for (CCValAssign &VA : ArgLocs) { |
| |
| // Arguments stored on registers. |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| const TargetRegisterClass *RC; |
| if (RegVT == MVT::i8) { |
| RC = &AVR::GPR8RegClass; |
| } else if (RegVT == MVT::i16) { |
| RC = &AVR::DREGSRegClass; |
| } else { |
| llvm_unreachable("Unknown argument type!"); |
| } |
| |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| |
| // :NOTE: Clang should not promote any i8 into i16 but for safety the |
| // following code will handle zexts or sexts generated by other |
| // front ends. Otherwise: |
| // If this is an 8 bit value, it is really passed promoted |
| // to 16 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::SExt: |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::ZExt: |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| } |
| |
| InVals.push_back(ArgValue); |
| } else { |
| // Sanity check. |
| assert(VA.isMemLoc()); |
| |
| EVT LocVT = VA.getLocVT(); |
| |
| // Create the frame index object for this incoming parameter. |
| int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, |
| VA.getLocMemOffset(), true); |
| |
| // Create the SelectionDAG nodes corresponding to a load |
| // from this parameter. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL)); |
| InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI), |
| 0)); |
| } |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| unsigned StackSize = CCInfo.getNextStackOffset(); |
| AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| |
| AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true)); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Call Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &DL = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool isVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // AVR does not yet support tail call optimization. |
| isTailCall = false; |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| const Function *F = nullptr; |
| if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| |
| F = cast<Function>(GV); |
| Callee = |
| DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout())); |
| } else if (const ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| Callee = DAG.getTargetExternalSymbol(ES->getSymbol(), |
| getPointerTy(DAG.getDataLayout())); |
| } |
| |
| analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo, |
| true, isVarArg); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| |
| // First, walk the register assignments, inserting copies. |
| unsigned AI, AE; |
| bool HasStackArgs = false; |
| for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) { |
| CCValAssign &VA = ArgLocs[AI]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = OutVals[AI]; |
| |
| // Promote the value if needed. With Clang this should not happen. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg); |
| break; |
| } |
| |
| // Stop when we encounter a stack argument, we need to process them |
| // in reverse order in the loop below. |
| if (VA.isMemLoc()) { |
| HasStackArgs = true; |
| break; |
| } |
| |
| // Arguments that can be passed on registers must be kept in the RegsToPass |
| // vector. |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } |
| |
| // Second, stack arguments have to walked in reverse order by inserting |
| // chained stores, this ensures their order is not changed by the scheduler |
| // and that the push instruction sequence generated is correct, otherwise they |
| // can be freely intermixed. |
| if (HasStackArgs) { |
| for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) { |
| unsigned Loc = AI - 1; |
| CCValAssign &VA = ArgLocs[Loc]; |
| SDValue Arg = OutVals[Loc]; |
| |
| assert(VA.isMemLoc()); |
| |
| // SP points to one stack slot further so add one to adjust it. |
| SDValue PtrOff = DAG.getNode( |
| ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), |
| DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())), |
| DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL)); |
| |
| Chain = |
| DAG.getStore(Chain, DL, Arg, PtrOff, |
| MachinePointerInfo::getStack(MF, VA.getLocMemOffset()), |
| 0); |
| } |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain and |
| // flag operands which copy the outgoing args into registers. The InFlag in |
| // necessary since all emited instructions must be stuck together. |
| SDValue InFlag; |
| for (auto Reg : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (auto Reg : RegsToPass) { |
| Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); |
| } |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); |
| const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo(); |
| const uint32_t *Mask = |
| TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) { |
| Ops.push_back(InFlag); |
| } |
| |
| Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), |
| DAG.getIntPtrConstant(0, DL, true), InFlag, DL); |
| |
| if (!Ins.empty()) { |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG, |
| InVals); |
| } |
| |
| /// Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| /// |
| SDValue AVRTargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Handle runtime calling convs. |
| auto CCFunction = CCAssignFnForReturn(CallConv); |
| CCInfo.AnalyzeCallResult(Ins, CCFunction); |
| |
| if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) { |
| // Reverse splitted return values to get the "big endian" format required |
| // to agree with the calling convention ABI. |
| std::reverse(RVLocs.begin(), RVLocs.end()); |
| } |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (CCValAssign const &RVLoc : RVLocs) { |
| Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(), |
| InFlag) |
| .getValue(1); |
| InFlag = Chain.getValue(2); |
| InVals.push_back(Chain.getValue(0)); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { |
| switch (CC) { |
| case CallingConv::AVR_BUILTIN: |
| return RetCC_AVR_BUILTIN; |
| default: |
| return RetCC_AVR; |
| } |
| } |
| |
| bool |
| AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv, |
| MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const |
| { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| |
| auto CCFunction = CCAssignFnForReturn(CallConv); |
| return CCInfo.CheckReturn(Outs, CCFunction); |
| } |
| |
| SDValue |
| AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| // CCValAssign - represent the assignment of the return value to locations. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analyze return values. |
| auto CCFunction = CCAssignFnForReturn(CallConv); |
| CCInfo.AnalyzeReturn(Outs, CCFunction); |
| |
| // If this is the first return lowered for this function, add the regs to |
| // the liveout set for the function. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned e = RVLocs.size(); |
| |
| // Reverse splitted return values to get the "big endian" format required |
| // to agree with the calling convention ABI. |
| if (e > 1) { |
| std::reverse(RVLocs.begin(), RVLocs.end()); |
| } |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != e; ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); |
| |
| // Guarantee that all emitted copies are stuck together with flags. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| // Don't emit the ret/reti instruction when the naked attribute is present in |
| // the function being compiled. |
| if (MF.getFunction().getAttributes().hasAttribute( |
| AttributeList::FunctionIndex, Attribute::Naked)) { |
| return Chain; |
| } |
| |
| unsigned RetOpc = |
| (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL) |
| ? AVRISD::RETI_FLAG |
| : AVRISD::RET_FLAG; |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| if (Flag.getNode()) { |
| RetOps.push_back(Flag); |
| } |
| |
| return DAG.getNode(RetOpc, dl, MVT::Other, RetOps); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom Inserters |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| unsigned Opc; |
| const TargetRegisterClass *RC; |
| MachineFunction *F = BB->getParent(); |
| MachineRegisterInfo &RI = F->getRegInfo(); |
| const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); |
| const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Invalid shift opcode!"); |
| case AVR::Lsl8: |
| Opc = AVR::LSLRd; |
| RC = &AVR::GPR8RegClass; |
| break; |
| case AVR::Lsl16: |
| Opc = AVR::LSLWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| case AVR::Asr8: |
| Opc = AVR::ASRRd; |
| RC = &AVR::GPR8RegClass; |
| break; |
| case AVR::Asr16: |
| Opc = AVR::ASRWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| case AVR::Lsr8: |
| Opc = AVR::LSRRd; |
| RC = &AVR::GPR8RegClass; |
| break; |
| case AVR::Lsr16: |
| Opc = AVR::LSRWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| case AVR::Rol8: |
| Opc = AVR::ROLRd; |
| RC = &AVR::GPR8RegClass; |
| break; |
| case AVR::Rol16: |
| Opc = AVR::ROLWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| case AVR::Ror8: |
| Opc = AVR::RORRd; |
| RC = &AVR::GPR8RegClass; |
| break; |
| case AVR::Ror16: |
| Opc = AVR::RORWRd; |
| RC = &AVR::DREGSRegClass; |
| break; |
| } |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| |
| MachineFunction::iterator I; |
| for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I); |
| if (I != F->end()) ++I; |
| |
| // Create loop block. |
| MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); |
| |
| F->insert(I, LoopBB); |
| F->insert(I, RemBB); |
| |
| // Update machine-CFG edges by transferring all successors of the current |
| // block to the block containing instructions after shift. |
| RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| RemBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB. |
| BB->addSuccessor(LoopBB); |
| BB->addSuccessor(RemBB); |
| LoopBB->addSuccessor(RemBB); |
| LoopBB->addSuccessor(LoopBB); |
| |
| unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass); |
| unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass); |
| unsigned ShiftReg = RI.createVirtualRegister(RC); |
| unsigned ShiftReg2 = RI.createVirtualRegister(RC); |
| unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg(); |
| unsigned SrcReg = MI.getOperand(1).getReg(); |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| |
| // BB: |
| // cpi N, 0 |
| // breq RemBB |
| BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0); |
| BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB); |
| |
| // LoopBB: |
| // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] |
| // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] |
| // ShiftReg2 = shift ShiftReg |
| // ShiftAmt2 = ShiftAmt - 1; |
| BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg) |
| .addReg(SrcReg) |
| .addMBB(BB) |
| .addReg(ShiftReg2) |
| .addMBB(LoopBB); |
| BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg) |
| .addReg(ShiftAmtSrcReg) |
| .addMBB(BB) |
| .addReg(ShiftAmtReg2) |
| .addMBB(LoopBB); |
| BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg); |
| BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2) |
| .addReg(ShiftAmtReg) |
| .addImm(1); |
| BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB); |
| |
| // RemBB: |
| // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] |
| BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg) |
| .addReg(SrcReg) |
| .addMBB(BB) |
| .addReg(ShiftReg2) |
| .addMBB(LoopBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return RemBB; |
| } |
| |
| static bool isCopyMulResult(MachineBasicBlock::iterator const &I) { |
| if (I->getOpcode() == AVR::COPY) { |
| unsigned SrcReg = I->getOperand(1).getReg(); |
| return (SrcReg == AVR::R0 || SrcReg == AVR::R1); |
| } |
| |
| return false; |
| } |
| |
| // The mul instructions wreak havock on our zero_reg R1. We need to clear it |
| // after the result has been evacuated. This is probably not the best way to do |
| // it, but it works for now. |
| MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine(); |
| const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo(); |
| MachineBasicBlock::iterator I(MI); |
| ++I; // in any case insert *after* the mul instruction |
| if (isCopyMulResult(I)) |
| ++I; |
| if (isCopyMulResult(I)) |
| ++I; |
| BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1) |
| .addReg(AVR::R1) |
| .addReg(AVR::R1); |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| int Opc = MI.getOpcode(); |
| |
| // Pseudo shift instructions with a non constant shift amount are expanded |
| // into a loop. |
| switch (Opc) { |
| case AVR::Lsl8: |
| case AVR::Lsl16: |
| case AVR::Lsr8: |
| case AVR::Lsr16: |
| case AVR::Rol8: |
| case AVR::Rol16: |
| case AVR::Ror8: |
| case AVR::Ror16: |
| case AVR::Asr8: |
| case AVR::Asr16: |
| return insertShift(MI, MBB); |
| case AVR::MULRdRr: |
| case AVR::MULSRdRr: |
| return insertMul(MI, MBB); |
| } |
| |
| assert((Opc == AVR::Select16 || Opc == AVR::Select8) && |
| "Unexpected instr type to insert"); |
| |
| const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent() |
| ->getParent() |
| ->getSubtarget() |
| .getInstrInfo(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| // To "insert" a SELECT instruction, we insert the diamond |
| // control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch |
| // on, the true/false values to select between, and a branch opcode |
| // to use. |
| |
| MachineFunction *MF = MBB->getParent(); |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| |
| MachineFunction::iterator I; |
| for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I); |
| if (I != MF->end()) ++I; |
| MF->insert(I, trueMBB); |
| MF->insert(I, falseMBB); |
| |
| // Transfer remaining instructions and all successors of the current |
| // block to the block which will contain the Phi node for the |
| // select. |
| trueMBB->splice(trueMBB->begin(), MBB, |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| trueMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm(); |
| BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB); |
| BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB); |
| MBB->addSuccessor(falseMBB); |
| MBB->addSuccessor(trueMBB); |
| |
| // Unconditionally flow back to the true block |
| BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB); |
| falseMBB->addSuccessor(trueMBB); |
| |
| // Set up the Phi node to determine where we came from |
| BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg()) |
| .addReg(MI.getOperand(1).getReg()) |
| .addMBB(MBB) |
| .addReg(MI.getOperand(2).getReg()) |
| .addMBB(falseMBB) ; |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return trueMBB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline Asm Support |
| //===----------------------------------------------------------------------===// |
| |
| AVRTargetLowering::ConstraintType |
| AVRTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html |
| switch (Constraint[0]) { |
| case 'a': // Simple upper registers |
| case 'b': // Base pointer registers pairs |
| case 'd': // Upper register |
| case 'l': // Lower registers |
| case 'e': // Pointer register pairs |
| case 'q': // Stack pointer register |
| case 'r': // Any register |
| case 'w': // Special upper register pairs |
| return C_RegisterClass; |
| case 't': // Temporary register |
| case 'x': case 'X': // Pointer register pair X |
| case 'y': case 'Y': // Pointer register pair Y |
| case 'z': case 'Z': // Pointer register pair Z |
| return C_Register; |
| case 'Q': // A memory address based on Y or Z pointer with displacement. |
| return C_Memory; |
| case 'G': // Floating point constant |
| case 'I': // 6-bit positive integer constant |
| case 'J': // 6-bit negative integer constant |
| case 'K': // Integer constant (Range: 2) |
| case 'L': // Integer constant (Range: 0) |
| case 'M': // 8-bit integer constant |
| case 'N': // Integer constant (Range: -1) |
| case 'O': // Integer constant (Range: 8, 16, 24) |
| case 'P': // Integer constant (Range: 1) |
| case 'R': // Integer constant (Range: -6 to 5)x |
| return C_Other; |
| default: |
| break; |
| } |
| } |
| |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| unsigned |
| AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { |
| // Not sure if this is actually the right thing to do, but we got to do |
| // *something* [agnat] |
| switch (ConstraintCode[0]) { |
| case 'Q': |
| return InlineAsm::Constraint_Q; |
| } |
| return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); |
| } |
| |
| AVRTargetLowering::ConstraintWeight |
| AVRTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| // (this behaviour has been copied from the ARM backend) |
| if (!CallOperandVal) { |
| return CW_Default; |
| } |
| |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'd': |
| case 'r': |
| case 'l': |
| weight = CW_Register; |
| break; |
| case 'a': |
| case 'b': |
| case 'e': |
| case 'q': |
| case 't': |
| case 'w': |
| case 'x': case 'X': |
| case 'y': case 'Y': |
| case 'z': case 'Z': |
| weight = CW_SpecificReg; |
| break; |
| case 'G': |
| if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) { |
| if (C->isZero()) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'I': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (isUInt<6>(C->getZExtValue())) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'J': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'K': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() == 2) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'L': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() == 0) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'M': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (isUInt<8>(C->getZExtValue())) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'N': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getSExtValue() == -1) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'O': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) || |
| (C->getZExtValue() == 24)) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'P': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() == 1) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'R': |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) { |
| weight = CW_Constant; |
| } |
| } |
| break; |
| case 'Q': |
| weight = CW_Memory; |
| break; |
| } |
| |
| return weight; |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine()) |
| .getSubtargetImpl(); |
| |
| // We only support i8 and i16. |
| // |
| //:FIXME: remove this assert for now since it gets sometimes executed |
| // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type."); |
| |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'a': // Simple upper registers r16..r23. |
| return std::make_pair(0U, &AVR::LD8loRegClass); |
| case 'b': // Base pointer registers: y, z. |
| return std::make_pair(0U, &AVR::PTRDISPREGSRegClass); |
| case 'd': // Upper registers r16..r31. |
| return std::make_pair(0U, &AVR::LD8RegClass); |
| case 'l': // Lower registers r0..r15. |
| return std::make_pair(0U, &AVR::GPR8loRegClass); |
| case 'e': // Pointer register pairs: x, y, z. |
| return std::make_pair(0U, &AVR::PTRREGSRegClass); |
| case 'q': // Stack pointer register: SPH:SPL. |
| return std::make_pair(0U, &AVR::GPRSPRegClass); |
| case 'r': // Any register: r0..r31. |
| if (VT == MVT::i8) |
| return std::make_pair(0U, &AVR::GPR8RegClass); |
| |
| assert(VT == MVT::i16 && "inline asm constraint too large"); |
| return std::make_pair(0U, &AVR::DREGSRegClass); |
| case 't': // Temporary register: r0. |
| return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass); |
| case 'w': // Special upper register pairs: r24, r26, r28, r30. |
| return std::make_pair(0U, &AVR::IWREGSRegClass); |
| case 'x': // Pointer register pair X: r27:r26. |
| case 'X': |
| return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass); |
| case 'y': // Pointer register pair Y: r29:r28. |
| case 'Y': |
| return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass); |
| case 'z': // Pointer register pair Z: r31:r30. |
| case 'Z': |
| return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass); |
| default: |
| break; |
| } |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(), |
| Constraint, VT); |
| } |
| |
| void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(0, 0); |
| SDLoc DL(Op); |
| EVT Ty = Op.getValueType(); |
| |
| // Currently only support length 1 constraints. |
| if (Constraint.length() != 1) { |
| return; |
| } |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: |
| break; |
| // Deal with integers first: |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': |
| case 'R': { |
| const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) { |
| return; |
| } |
| |
| int64_t CVal64 = C->getSExtValue(); |
| uint64_t CUVal64 = C->getZExtValue(); |
| switch (ConstraintLetter) { |
| case 'I': // 0..63 |
| if (!isUInt<6>(CUVal64)) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'J': // -63..0 |
| if (CVal64 < -63 || CVal64 > 0) |
| return; |
| Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| break; |
| case 'K': // 2 |
| if (CUVal64 != 2) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'L': // 0 |
| if (CUVal64 != 0) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'M': // 0..255 |
| if (!isUInt<8>(CUVal64)) |
| return; |
| // i8 type may be printed as a negative number, |
| // e.g. 254 would be printed as -2, |
| // so we force it to i16 at least. |
| if (Ty.getSimpleVT() == MVT::i8) { |
| Ty = MVT::i16; |
| } |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'N': // -1 |
| if (CVal64 != -1) |
| return; |
| Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| break; |
| case 'O': // 8, 16, 24 |
| if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'P': // 1 |
| if (CUVal64 != 1) |
| return; |
| Result = DAG.getTargetConstant(CUVal64, DL, Ty); |
| break; |
| case 'R': // -6..5 |
| if (CVal64 < -6 || CVal64 > 5) |
| return; |
| Result = DAG.getTargetConstant(CVal64, DL, Ty); |
| break; |
| } |
| |
| break; |
| } |
| case 'G': |
| const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op); |
| if (!FC || !FC->isZero()) |
| return; |
| // Soften float to i8 0 |
| Result = DAG.getTargetConstant(0, DL, MVT::i8); |
| break; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| unsigned AVRTargetLowering::getRegisterByName(const char *RegName, |
| EVT VT, |
| SelectionDAG &DAG) const { |
| unsigned Reg; |
| |
| if (VT == MVT::i8) { |
| Reg = StringSwitch<unsigned>(RegName) |
| .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2) |
| .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5) |
| .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8) |
| .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11) |
| .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14) |
| .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17) |
| .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20) |
| .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23) |
| .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26) |
| .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29) |
| .Case("r30", AVR::R30).Case("r31", AVR::R31) |
| .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30) |
| .Default(0); |
| } else { |
| Reg = StringSwitch<unsigned>(RegName) |
| .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2) |
| .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6) |
| .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10) |
| .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14) |
| .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18) |
| .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22) |
| .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26) |
| .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30) |
| .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30) |
| .Default(0); |
| } |
| |
| if (Reg) |
| return Reg; |
| |
| report_fatal_error("Invalid register name global variable"); |
| } |
| |
| } // end of namespace llvm |