blob: 0e16d6bcfe2b27fc3df8ccde6bca7cd30e4c9249 [file] [log] [blame]
//===- ARMRegisterBankInfo.cpp -----------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for ARM.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "ARMRegisterBankInfo.h"
#include "ARMInstrInfo.h" // For the register classes
#include "ARMSubtarget.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#define GET_TARGET_REGBANK_IMPL
#include "ARMGenRegisterBank.inc"
using namespace llvm;
// FIXME: TableGen this.
// If it grows too much and TableGen still isn't ready to do the job, extract it
// into an ARMGenRegisterBankInfo.def (similar to AArch64).
namespace llvm {
namespace ARM {
enum PartialMappingIdx {
PMI_GPR,
PMI_SPR,
PMI_DPR,
PMI_Min = PMI_GPR,
};
RegisterBankInfo::PartialMapping PartMappings[]{
// GPR Partial Mapping
{0, 32, GPRRegBank},
// SPR Partial Mapping
{0, 32, FPRRegBank},
// DPR Partial Mapping
{0, 64, FPRRegBank},
};
#ifndef NDEBUG
static bool checkPartMapping(const RegisterBankInfo::PartialMapping &PM,
unsigned Start, unsigned Length,
unsigned RegBankID) {
return PM.StartIdx == Start && PM.Length == Length &&
PM.RegBank->getID() == RegBankID;
}
static void checkPartialMappings() {
assert(
checkPartMapping(PartMappings[PMI_GPR - PMI_Min], 0, 32, GPRRegBankID) &&
"Wrong mapping for GPR");
assert(
checkPartMapping(PartMappings[PMI_SPR - PMI_Min], 0, 32, FPRRegBankID) &&
"Wrong mapping for SPR");
assert(
checkPartMapping(PartMappings[PMI_DPR - PMI_Min], 0, 64, FPRRegBankID) &&
"Wrong mapping for DPR");
}
#endif
enum ValueMappingIdx {
InvalidIdx = 0,
GPR3OpsIdx = 1,
SPR3OpsIdx = 4,
DPR3OpsIdx = 7,
};
RegisterBankInfo::ValueMapping ValueMappings[] = {
// invalid
{nullptr, 0},
// 3 ops in GPRs
{&PartMappings[PMI_GPR - PMI_Min], 1},
{&PartMappings[PMI_GPR - PMI_Min], 1},
{&PartMappings[PMI_GPR - PMI_Min], 1},
// 3 ops in SPRs
{&PartMappings[PMI_SPR - PMI_Min], 1},
{&PartMappings[PMI_SPR - PMI_Min], 1},
{&PartMappings[PMI_SPR - PMI_Min], 1},
// 3 ops in DPRs
{&PartMappings[PMI_DPR - PMI_Min], 1},
{&PartMappings[PMI_DPR - PMI_Min], 1},
{&PartMappings[PMI_DPR - PMI_Min], 1}};
#ifndef NDEBUG
static bool checkValueMapping(const RegisterBankInfo::ValueMapping &VM,
RegisterBankInfo::PartialMapping *BreakDown) {
return VM.NumBreakDowns == 1 && VM.BreakDown == BreakDown;
}
static void checkValueMappings() {
assert(checkValueMapping(ValueMappings[GPR3OpsIdx],
&PartMappings[PMI_GPR - PMI_Min]) &&
"Wrong value mapping for 3 GPR ops instruction");
assert(checkValueMapping(ValueMappings[GPR3OpsIdx + 1],
&PartMappings[PMI_GPR - PMI_Min]) &&
"Wrong value mapping for 3 GPR ops instruction");
assert(checkValueMapping(ValueMappings[GPR3OpsIdx + 2],
&PartMappings[PMI_GPR - PMI_Min]) &&
"Wrong value mapping for 3 GPR ops instruction");
assert(checkValueMapping(ValueMappings[SPR3OpsIdx],
&PartMappings[PMI_SPR - PMI_Min]) &&
"Wrong value mapping for 3 SPR ops instruction");
assert(checkValueMapping(ValueMappings[SPR3OpsIdx + 1],
&PartMappings[PMI_SPR - PMI_Min]) &&
"Wrong value mapping for 3 SPR ops instruction");
assert(checkValueMapping(ValueMappings[SPR3OpsIdx + 2],
&PartMappings[PMI_SPR - PMI_Min]) &&
"Wrong value mapping for 3 SPR ops instruction");
assert(checkValueMapping(ValueMappings[DPR3OpsIdx],
&PartMappings[PMI_DPR - PMI_Min]) &&
"Wrong value mapping for 3 DPR ops instruction");
assert(checkValueMapping(ValueMappings[DPR3OpsIdx + 1],
&PartMappings[PMI_DPR - PMI_Min]) &&
"Wrong value mapping for 3 DPR ops instruction");
assert(checkValueMapping(ValueMappings[DPR3OpsIdx + 2],
&PartMappings[PMI_DPR - PMI_Min]) &&
"Wrong value mapping for 3 DPR ops instruction");
}
#endif
} // end namespace arm
} // end namespace llvm
ARMRegisterBankInfo::ARMRegisterBankInfo(const TargetRegisterInfo &TRI)
: ARMGenRegisterBankInfo() {
static bool AlreadyInit = false;
// We have only one set of register banks, whatever the subtarget
// is. Therefore, the initialization of the RegBanks table should be
// done only once. Indeed the table of all register banks
// (ARM::RegBanks) is unique in the compiler. At some point, it
// will get tablegen'ed and the whole constructor becomes empty.
if (AlreadyInit)
return;
AlreadyInit = true;
const RegisterBank &RBGPR = getRegBank(ARM::GPRRegBankID);
(void)RBGPR;
assert(&ARM::GPRRegBank == &RBGPR && "The order in RegBanks is messed up");
// Initialize the GPR bank.
assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRRegClassID)) &&
"Subclass not added?");
assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRwithAPSRRegClassID)) &&
"Subclass not added?");
assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRnopcRegClassID)) &&
"Subclass not added?");
assert(RBGPR.covers(*TRI.getRegClass(ARM::rGPRRegClassID)) &&
"Subclass not added?");
assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPRRegClassID)) &&
"Subclass not added?");
assert(RBGPR.covers(*TRI.getRegClass(ARM::tcGPRRegClassID)) &&
"Subclass not added?");
assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPR_and_tcGPRRegClassID)) &&
"Subclass not added?");
assert(RBGPR.getSize() == 32 && "GPRs should hold up to 32-bit");
#ifndef NDEBUG
ARM::checkPartialMappings();
ARM::checkValueMappings();
#endif
}
const RegisterBank &ARMRegisterBankInfo::getRegBankFromRegClass(
const TargetRegisterClass &RC) const {
using namespace ARM;
switch (RC.getID()) {
case GPRRegClassID:
case GPRwithAPSRRegClassID:
case GPRnopcRegClassID:
case rGPRRegClassID:
case GPRspRegClassID:
case tGPR_and_tcGPRRegClassID:
case tcGPRRegClassID:
case tGPRRegClassID:
return getRegBank(ARM::GPRRegBankID);
case HPRRegClassID:
case SPR_8RegClassID:
case SPRRegClassID:
case DPR_8RegClassID:
case DPRRegClassID:
case QPRRegClassID:
return getRegBank(ARM::FPRRegBankID);
default:
llvm_unreachable("Unsupported register kind");
}
llvm_unreachable("Switch should handle all register classes");
}
const RegisterBankInfo::InstructionMapping &
ARMRegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
auto Opc = MI.getOpcode();
// Try the default logic for non-generic instructions that are either copies
// or already have some operands assigned to banks.
if (!isPreISelGenericOpcode(Opc) || Opc == TargetOpcode::G_PHI) {
const InstructionMapping &Mapping = getInstrMappingImpl(MI);
if (Mapping.isValid())
return Mapping;
}
using namespace TargetOpcode;
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned NumOperands = MI.getNumOperands();
const ValueMapping *OperandsMapping = &ARM::ValueMappings[ARM::GPR3OpsIdx];
switch (Opc) {
case G_ADD:
case G_SUB:
case G_MUL:
case G_AND:
case G_OR:
case G_XOR:
case G_LSHR:
case G_ASHR:
case G_SHL:
case G_SDIV:
case G_UDIV:
case G_SEXT:
case G_ZEXT:
case G_ANYEXT:
case G_GEP:
case G_INTTOPTR:
case G_PTRTOINT:
// FIXME: We're abusing the fact that everything lives in a GPR for now; in
// the real world we would use different mappings.
OperandsMapping = &ARM::ValueMappings[ARM::GPR3OpsIdx];
break;
case G_TRUNC: {
// In some cases we may end up with a G_TRUNC from a 64-bit value to a
// 32-bit value. This isn't a real floating point trunc (that would be a
// G_FPTRUNC). Instead it is an integer trunc in disguise, which can appear
// because the legalizer doesn't distinguish between integer and floating
// point values so it may leave some 64-bit integers un-narrowed. Until we
// have a more principled solution that doesn't let such things sneak all
// the way to this point, just map the source to a DPR and the destination
// to a GPR.
LLT LargeTy = MRI.getType(MI.getOperand(1).getReg());
OperandsMapping =
LargeTy.getSizeInBits() <= 32
? &ARM::ValueMappings[ARM::GPR3OpsIdx]
: getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::DPR3OpsIdx]});
break;
}
case G_LOAD:
case G_STORE: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
OperandsMapping =
Ty.getSizeInBits() == 64
? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx]})
: &ARM::ValueMappings[ARM::GPR3OpsIdx];
break;
}
case G_FADD:
case G_FSUB:
case G_FMUL:
case G_FDIV:
case G_FNEG: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
OperandsMapping =Ty.getSizeInBits() == 64
? &ARM::ValueMappings[ARM::DPR3OpsIdx]
: &ARM::ValueMappings[ARM::SPR3OpsIdx];
break;
}
case G_FMA: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
OperandsMapping =
Ty.getSizeInBits() == 64
? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
&ARM::ValueMappings[ARM::DPR3OpsIdx],
&ARM::ValueMappings[ARM::DPR3OpsIdx],
&ARM::ValueMappings[ARM::DPR3OpsIdx]})
: getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
&ARM::ValueMappings[ARM::SPR3OpsIdx],
&ARM::ValueMappings[ARM::SPR3OpsIdx],
&ARM::ValueMappings[ARM::SPR3OpsIdx]});
break;
}
case G_FPEXT: {
LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
if (ToTy.getSizeInBits() == 64 && FromTy.getSizeInBits() == 32)
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
&ARM::ValueMappings[ARM::SPR3OpsIdx]});
break;
}
case G_FPTRUNC: {
LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
if (ToTy.getSizeInBits() == 32 && FromTy.getSizeInBits() == 64)
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
&ARM::ValueMappings[ARM::DPR3OpsIdx]});
break;
}
case G_FPTOSI:
case G_FPTOUI: {
LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
if ((FromTy.getSizeInBits() == 32 || FromTy.getSizeInBits() == 64) &&
ToTy.getSizeInBits() == 32)
OperandsMapping =
FromTy.getSizeInBits() == 64
? getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::DPR3OpsIdx]})
: getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::SPR3OpsIdx]});
break;
}
case G_SITOFP:
case G_UITOFP: {
LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
if (FromTy.getSizeInBits() == 32 &&
(ToTy.getSizeInBits() == 32 || ToTy.getSizeInBits() == 64))
OperandsMapping =
ToTy.getSizeInBits() == 64
? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx]})
: getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx]});
break;
}
case G_CONSTANT:
case G_FRAME_INDEX:
case G_GLOBAL_VALUE:
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr});
break;
case G_SELECT: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
(void)Ty;
LLT Ty2 = MRI.getType(MI.getOperand(1).getReg());
(void)Ty2;
assert(Ty.getSizeInBits() == 32 && "Unsupported size for G_SELECT");
assert(Ty2.getSizeInBits() == 1 && "Unsupported size for G_SELECT");
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx]});
break;
}
case G_ICMP: {
LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
(void)Ty2;
assert(Ty2.getSizeInBits() == 32 && "Unsupported size for G_ICMP");
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr,
&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx]});
break;
}
case G_FCMP: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
(void)Ty;
LLT Ty1 = MRI.getType(MI.getOperand(2).getReg());
LLT Ty2 = MRI.getType(MI.getOperand(3).getReg());
(void)Ty2;
assert(Ty.getSizeInBits() == 1 && "Unsupported size for G_FCMP");
assert(Ty1.getSizeInBits() == Ty2.getSizeInBits() &&
"Mismatched operand sizes for G_FCMP");
unsigned Size = Ty1.getSizeInBits();
assert((Size == 32 || Size == 64) && "Unsupported size for G_FCMP");
auto FPRValueMapping = Size == 32 ? &ARM::ValueMappings[ARM::SPR3OpsIdx]
: &ARM::ValueMappings[ARM::DPR3OpsIdx];
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr,
FPRValueMapping, FPRValueMapping});
break;
}
case G_MERGE_VALUES: {
// We only support G_MERGE_VALUES for creating a double precision floating
// point value out of two GPRs.
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
LLT Ty1 = MRI.getType(MI.getOperand(1).getReg());
LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
if (Ty.getSizeInBits() != 64 || Ty1.getSizeInBits() != 32 ||
Ty2.getSizeInBits() != 32)
return getInvalidInstructionMapping();
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx]});
break;
}
case G_UNMERGE_VALUES: {
// We only support G_UNMERGE_VALUES for splitting a double precision
// floating point value into two GPRs.
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
LLT Ty1 = MRI.getType(MI.getOperand(1).getReg());
LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
if (Ty.getSizeInBits() != 32 || Ty1.getSizeInBits() != 32 ||
Ty2.getSizeInBits() != 64)
return getInvalidInstructionMapping();
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::GPR3OpsIdx],
&ARM::ValueMappings[ARM::DPR3OpsIdx]});
break;
}
case G_BR:
OperandsMapping = getOperandsMapping({nullptr});
break;
case G_BRCOND:
OperandsMapping =
getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr});
break;
default:
return getInvalidInstructionMapping();
}
#ifndef NDEBUG
for (unsigned i = 0; i < NumOperands; i++) {
for (const auto &Mapping : OperandsMapping[i]) {
assert(
(Mapping.RegBank->getID() != ARM::FPRRegBankID ||
MF.getSubtarget<ARMSubtarget>().hasVFP2()) &&
"Trying to use floating point register bank on target without vfp");
}
}
#endif
return getInstructionMapping(DefaultMappingID, /*Cost=*/1, OperandsMapping,
NumOperands);
}