| //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that ARM uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMISelLowering.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARMCallingConv.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMPerfectShuffle.h" |
| #include "ARMRegisterInfo.h" |
| #include "ARMSelectionDAGInfo.h" |
| #include "ARMSubtarget.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMBaseInfo.h" |
| #include "Utils/ARMBaseInfo.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSchedule.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <iterator> |
| #include <limits> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "arm-isel" |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); |
| STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); |
| STATISTIC(NumConstpoolPromoted, |
| "Number of constants with their storage promoted into constant pools"); |
| |
| static cl::opt<bool> |
| ARMInterworking("arm-interworking", cl::Hidden, |
| cl::desc("Enable / disable ARM interworking (for debugging only)"), |
| cl::init(true)); |
| |
| static cl::opt<bool> EnableConstpoolPromotion( |
| "arm-promote-constant", cl::Hidden, |
| cl::desc("Enable / disable promotion of unnamed_addr constants into " |
| "constant pools"), |
| cl::init(false)); // FIXME: set to true by default once PR32780 is fixed |
| static cl::opt<unsigned> ConstpoolPromotionMaxSize( |
| "arm-promote-constant-max-size", cl::Hidden, |
| cl::desc("Maximum size of constant to promote into a constant pool"), |
| cl::init(64)); |
| static cl::opt<unsigned> ConstpoolPromotionMaxTotal( |
| "arm-promote-constant-max-total", cl::Hidden, |
| cl::desc("Maximum size of ALL constants to promote into a constant pool"), |
| cl::init(128)); |
| |
| // The APCS parameter registers. |
| static const MCPhysReg GPRArgRegs[] = { |
| ARM::R0, ARM::R1, ARM::R2, ARM::R3 |
| }; |
| |
| void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, |
| MVT PromotedBitwiseVT) { |
| if (VT != PromotedLdStVT) { |
| setOperationAction(ISD::LOAD, VT, Promote); |
| AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); |
| |
| setOperationAction(ISD::STORE, VT, Promote); |
| AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); |
| } |
| |
| MVT ElemTy = VT.getVectorElementType(); |
| if (ElemTy != MVT::f64) |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| if (ElemTy == MVT::i32) { |
| setOperationAction(ISD::SINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::UINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::FP_TO_SINT, VT, Custom); |
| setOperationAction(ISD::FP_TO_UINT, VT, Custom); |
| } else { |
| setOperationAction(ISD::SINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::UINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::FP_TO_SINT, VT, Expand); |
| setOperationAction(ISD::FP_TO_UINT, VT, Expand); |
| } |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); |
| setOperationAction(ISD::SELECT, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| if (VT.isInteger()) { |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| setOperationAction(ISD::SRL, VT, Custom); |
| } |
| |
| // Promote all bit-wise operations. |
| if (VT.isInteger() && VT != PromotedBitwiseVT) { |
| setOperationAction(ISD::AND, VT, Promote); |
| AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); |
| setOperationAction(ISD::OR, VT, Promote); |
| AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); |
| setOperationAction(ISD::XOR, VT, Promote); |
| AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); |
| } |
| |
| // Neon does not support vector divide/remainder operations. |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::FDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| |
| if (!VT.isFloatingPoint() && |
| VT != MVT::v2i64 && VT != MVT::v1i64) |
| for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) |
| setOperationAction(Opcode, VT, Legal); |
| } |
| |
| void ARMTargetLowering::addDRTypeForNEON(MVT VT) { |
| addRegisterClass(VT, &ARM::DPRRegClass); |
| addTypeForNEON(VT, MVT::f64, MVT::v2i32); |
| } |
| |
| void ARMTargetLowering::addQRTypeForNEON(MVT VT) { |
| addRegisterClass(VT, &ARM::DPairRegClass); |
| addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); |
| } |
| |
| ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM, |
| const ARMSubtarget &STI) |
| : TargetLowering(TM), Subtarget(&STI) { |
| RegInfo = Subtarget->getRegisterInfo(); |
| Itins = Subtarget->getInstrItineraryData(); |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() && |
| !Subtarget->isTargetWatchOS()) { |
| bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard; |
| for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID) |
| setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID), |
| IsHFTarget ? CallingConv::ARM_AAPCS_VFP |
| : CallingConv::ARM_AAPCS); |
| } |
| |
| if (Subtarget->isTargetMachO()) { |
| // Uses VFP for Thumb libfuncs if available. |
| if (Subtarget->isThumb() && Subtarget->hasVFP2() && |
| Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) { |
| static const struct { |
| const RTLIB::Libcall Op; |
| const char * const Name; |
| const ISD::CondCode Cond; |
| } LibraryCalls[] = { |
| // Single-precision floating-point arithmetic. |
| { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID }, |
| { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID }, |
| { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID }, |
| { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID }, |
| |
| // Double-precision floating-point arithmetic. |
| { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID }, |
| { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID }, |
| { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID }, |
| { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID }, |
| |
| // Single-precision comparisons. |
| { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE }, |
| { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE }, |
| { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE }, |
| { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE }, |
| { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE }, |
| { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE }, |
| { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE }, |
| { RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ }, |
| |
| // Double-precision comparisons. |
| { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE }, |
| { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE }, |
| { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE }, |
| { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE }, |
| { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE }, |
| { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE }, |
| { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE }, |
| { RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ }, |
| |
| // Floating-point to integer conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID }, |
| { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID }, |
| { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID }, |
| { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID }, |
| |
| // Conversions between floating types. |
| { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID }, |
| { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID }, |
| |
| // Integer to floating-point conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| // FIXME: There appears to be some naming inconsistency in ARM libgcc: |
| // e.g., __floatunsidf vs. __floatunssidfvfp. |
| { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID }, |
| { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID }, |
| { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID }, |
| { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID }, |
| }; |
| |
| for (const auto &LC : LibraryCalls) { |
| setLibcallName(LC.Op, LC.Name); |
| if (LC.Cond != ISD::SETCC_INVALID) |
| setCmpLibcallCC(LC.Op, LC.Cond); |
| } |
| } |
| } |
| |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, nullptr); |
| setLibcallName(RTLIB::SRL_I128, nullptr); |
| setLibcallName(RTLIB::SRA_I128, nullptr); |
| |
| // RTLIB |
| if (Subtarget->isAAPCS_ABI() && |
| (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || |
| Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) { |
| static const struct { |
| const RTLIB::Libcall Op; |
| const char * const Name; |
| const CallingConv::ID CC; |
| const ISD::CondCode Cond; |
| } LibraryCalls[] = { |
| // Double-precision floating-point arithmetic helper functions |
| // RTABI chapter 4.1.2, Table 2 |
| { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| |
| // Double-precision floating-point comparison helper functions |
| // RTABI chapter 4.1.2, Table 3 |
| { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, |
| { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ }, |
| |
| // Single-precision floating-point arithmetic helper functions |
| // RTABI chapter 4.1.2, Table 4 |
| { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| |
| // Single-precision floating-point comparison helper functions |
| // RTABI chapter 4.1.2, Table 5 |
| { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, |
| { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, |
| { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ }, |
| |
| // Floating-point to integer conversions. |
| // RTABI chapter 4.1.2, Table 6 |
| { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| |
| // Conversions between floating types. |
| // RTABI chapter 4.1.2, Table 7 |
| { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| |
| // Integer to floating-point conversions. |
| // RTABI chapter 4.1.2, Table 8 |
| { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| |
| // Long long helper functions |
| // RTABI chapter 4.2, Table 9 |
| { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| |
| // Integer division functions |
| // RTABI chapter 4.3.1 |
| { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| }; |
| |
| for (const auto &LC : LibraryCalls) { |
| setLibcallName(LC.Op, LC.Name); |
| setLibcallCallingConv(LC.Op, LC.CC); |
| if (LC.Cond != ISD::SETCC_INVALID) |
| setCmpLibcallCC(LC.Op, LC.Cond); |
| } |
| |
| // EABI dependent RTLIB |
| if (TM.Options.EABIVersion == EABI::EABI4 || |
| TM.Options.EABIVersion == EABI::EABI5) { |
| static const struct { |
| const RTLIB::Libcall Op; |
| const char *const Name; |
| const CallingConv::ID CC; |
| const ISD::CondCode Cond; |
| } MemOpsLibraryCalls[] = { |
| // Memory operations |
| // RTABI chapter 4.3.4 |
| { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, |
| }; |
| |
| for (const auto &LC : MemOpsLibraryCalls) { |
| setLibcallName(LC.Op, LC.Name); |
| setLibcallCallingConv(LC.Op, LC.CC); |
| if (LC.Cond != ISD::SETCC_INVALID) |
| setCmpLibcallCC(LC.Op, LC.Cond); |
| } |
| } |
| } |
| |
| if (Subtarget->isTargetWindows()) { |
| static const struct { |
| const RTLIB::Libcall Op; |
| const char * const Name; |
| const CallingConv::ID CC; |
| } LibraryCalls[] = { |
| { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP }, |
| { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP }, |
| { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP }, |
| { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP }, |
| { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP }, |
| { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP }, |
| { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP }, |
| { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP }, |
| }; |
| |
| for (const auto &LC : LibraryCalls) { |
| setLibcallName(LC.Op, LC.Name); |
| setLibcallCallingConv(LC.Op, LC.CC); |
| } |
| } |
| |
| // Use divmod compiler-rt calls for iOS 5.0 and later. |
| if (Subtarget->isTargetMachO() && |
| !(Subtarget->isTargetIOS() && |
| Subtarget->getTargetTriple().isOSVersionLT(5, 0))) { |
| setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); |
| setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); |
| } |
| |
| // The half <-> float conversion functions are always soft-float on |
| // non-watchos platforms, but are needed for some targets which use a |
| // hard-float calling convention by default. |
| if (!Subtarget->isTargetWatchABI()) { |
| if (Subtarget->isAAPCS_ABI()) { |
| setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS); |
| } else { |
| setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS); |
| setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS); |
| setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS); |
| } |
| } |
| |
| // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have |
| // a __gnu_ prefix (which is the default). |
| if (Subtarget->isTargetAEABI()) { |
| static const struct { |
| const RTLIB::Libcall Op; |
| const char * const Name; |
| const CallingConv::ID CC; |
| } LibraryCalls[] = { |
| { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS }, |
| { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS }, |
| { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS }, |
| }; |
| |
| for (const auto &LC : LibraryCalls) { |
| setLibcallName(LC.Op, LC.Name); |
| setLibcallCallingConv(LC.Op, LC.CC); |
| } |
| } |
| |
| if (Subtarget->isThumb1Only()) |
| addRegisterClass(MVT::i32, &ARM::tGPRRegClass); |
| else |
| addRegisterClass(MVT::i32, &ARM::GPRRegClass); |
| |
| if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && |
| !Subtarget->isThumb1Only()) { |
| addRegisterClass(MVT::f32, &ARM::SPRRegClass); |
| addRegisterClass(MVT::f64, &ARM::DPRRegClass); |
| } |
| |
| if (Subtarget->hasFullFP16()) { |
| addRegisterClass(MVT::f16, &ARM::HPRRegClass); |
| setOperationAction(ISD::BITCAST, MVT::i16, Custom); |
| setOperationAction(ISD::BITCAST, MVT::i32, Custom); |
| setOperationAction(ISD::BITCAST, MVT::f16, Custom); |
| |
| setOperationAction(ISD::FMINNUM, MVT::f16, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); |
| } |
| |
| for (MVT VT : MVT::vector_valuetypes()) { |
| for (MVT InnerVT : MVT::vector_valuetypes()) { |
| setTruncStoreAction(VT, InnerVT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); |
| } |
| |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| } |
| |
| setOperationAction(ISD::ConstantFP, MVT::f32, Custom); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Custom); |
| |
| setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom); |
| setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom); |
| |
| if (Subtarget->hasNEON()) { |
| addDRTypeForNEON(MVT::v2f32); |
| addDRTypeForNEON(MVT::v8i8); |
| addDRTypeForNEON(MVT::v4i16); |
| addDRTypeForNEON(MVT::v2i32); |
| addDRTypeForNEON(MVT::v1i64); |
| |
| addQRTypeForNEON(MVT::v4f32); |
| addQRTypeForNEON(MVT::v2f64); |
| addQRTypeForNEON(MVT::v16i8); |
| addQRTypeForNEON(MVT::v8i16); |
| addQRTypeForNEON(MVT::v4i32); |
| addQRTypeForNEON(MVT::v2i64); |
| |
| if (Subtarget->hasFullFP16()) { |
| addQRTypeForNEON(MVT::v8f16); |
| addDRTypeForNEON(MVT::v4f16); |
| } |
| |
| // v2f64 is legal so that QR subregs can be extracted as f64 elements, but |
| // neither Neon nor VFP support any arithmetic operations on it. |
| // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively |
| // supported for v4f32. |
| setOperationAction(ISD::FADD, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSUB, MVT::v2f64, Expand); |
| setOperationAction(ISD::FMUL, MVT::v2f64, Expand); |
| // FIXME: Code duplication: FDIV and FREM are expanded always, see |
| // ARMTargetLowering::addTypeForNEON method for details. |
| setOperationAction(ISD::FDIV, MVT::v2f64, Expand); |
| setOperationAction(ISD::FREM, MVT::v2f64, Expand); |
| // FIXME: Create unittest. |
| // In another words, find a way when "copysign" appears in DAG with vector |
| // operands. |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); |
| // FIXME: Code duplication: SETCC has custom operation action, see |
| // ARMTargetLowering::addTypeForNEON method for details. |
| setOperationAction(ISD::SETCC, MVT::v2f64, Expand); |
| // FIXME: Create unittest for FNEG and for FABS. |
| setOperationAction(ISD::FNEG, MVT::v2f64, Expand); |
| setOperationAction(ISD::FABS, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::v2f64, Expand); |
| setOperationAction(ISD::FCOS, MVT::v2f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); |
| setOperationAction(ISD::FEXP, MVT::v2f64, Expand); |
| setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); |
| // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. |
| setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); |
| setOperationAction(ISD::FRINT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); |
| setOperationAction(ISD::FMA, MVT::v2f64, Expand); |
| |
| setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::v4f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::v4f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::v4f32, Expand); |
| setOperationAction(ISD::FLOG, MVT::v4f32, Expand); |
| setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); |
| setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); |
| setOperationAction(ISD::FEXP, MVT::v4f32, Expand); |
| setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); |
| setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); |
| setOperationAction(ISD::FRINT, MVT::v4f32, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); |
| |
| // Mark v2f32 intrinsics. |
| setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::v2f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::v2f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::v2f32, Expand); |
| setOperationAction(ISD::FLOG, MVT::v2f32, Expand); |
| setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); |
| setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); |
| setOperationAction(ISD::FEXP, MVT::v2f32, Expand); |
| setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); |
| setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); |
| setOperationAction(ISD::FRINT, MVT::v2f32, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); |
| |
| // Neon does not support some operations on v1i64 and v2i64 types. |
| setOperationAction(ISD::MUL, MVT::v1i64, Expand); |
| // Custom handling for some quad-vector types to detect VMULL. |
| setOperationAction(ISD::MUL, MVT::v8i16, Custom); |
| setOperationAction(ISD::MUL, MVT::v4i32, Custom); |
| setOperationAction(ISD::MUL, MVT::v2i64, Custom); |
| // Custom handling for some vector types to avoid expensive expansions |
| setOperationAction(ISD::SDIV, MVT::v4i16, Custom); |
| setOperationAction(ISD::SDIV, MVT::v8i8, Custom); |
| setOperationAction(ISD::UDIV, MVT::v4i16, Custom); |
| setOperationAction(ISD::UDIV, MVT::v8i8, Custom); |
| // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with |
| // a destination type that is wider than the source, and nor does |
| // it have a FP_TO_[SU]INT instruction with a narrower destination than |
| // source. |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); |
| |
| setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); |
| setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); |
| |
| // NEON does not have single instruction CTPOP for vectors with element |
| // types wider than 8-bits. However, custom lowering can leverage the |
| // v8i8/v16i8 vcnt instruction. |
| setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); |
| setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); |
| setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); |
| setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); |
| setOperationAction(ISD::CTPOP, MVT::v1i64, Expand); |
| setOperationAction(ISD::CTPOP, MVT::v2i64, Expand); |
| |
| setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); |
| setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); |
| |
| // NEON does not have single instruction CTTZ for vectors. |
| setOperationAction(ISD::CTTZ, MVT::v8i8, Custom); |
| setOperationAction(ISD::CTTZ, MVT::v4i16, Custom); |
| setOperationAction(ISD::CTTZ, MVT::v2i32, Custom); |
| setOperationAction(ISD::CTTZ, MVT::v1i64, Custom); |
| |
| setOperationAction(ISD::CTTZ, MVT::v16i8, Custom); |
| setOperationAction(ISD::CTTZ, MVT::v8i16, Custom); |
| setOperationAction(ISD::CTTZ, MVT::v4i32, Custom); |
| setOperationAction(ISD::CTTZ, MVT::v2i64, Custom); |
| |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom); |
| |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom); |
| |
| // NEON only has FMA instructions as of VFP4. |
| if (!Subtarget->hasVFP4()) { |
| setOperationAction(ISD::FMA, MVT::v2f32, Expand); |
| setOperationAction(ISD::FMA, MVT::v4f32, Expand); |
| } |
| |
| setTargetDAGCombine(ISD::INTRINSIC_VOID); |
| setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); |
| setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SIGN_EXTEND); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| setTargetDAGCombine(ISD::ANY_EXTEND); |
| setTargetDAGCombine(ISD::BUILD_VECTOR); |
| setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::FP_TO_SINT); |
| setTargetDAGCombine(ISD::FP_TO_UINT); |
| setTargetDAGCombine(ISD::FDIV); |
| setTargetDAGCombine(ISD::LOAD); |
| |
| // It is legal to extload from v4i8 to v4i16 or v4i32. |
| for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16, |
| MVT::v2i32}) { |
| for (MVT VT : MVT::integer_vector_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal); |
| setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal); |
| } |
| } |
| } |
| |
| if (Subtarget->isFPOnlySP()) { |
| // When targeting a floating-point unit with only single-precision |
| // operations, f64 is legal for the few double-precision instructions which |
| // are present However, no double-precision operations other than moves, |
| // loads and stores are provided by the hardware. |
| setOperationAction(ISD::FADD, MVT::f64, Expand); |
| setOperationAction(ISD::FSUB, MVT::f64, Expand); |
| setOperationAction(ISD::FMUL, MVT::f64, Expand); |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| setOperationAction(ISD::FDIV, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FGETSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FNEG, MVT::f64, Expand); |
| setOperationAction(ISD::FABS, MVT::f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| setOperationAction(ISD::FLOG, MVT::f64, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f64, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f64, Expand); |
| setOperationAction(ISD::FEXP, MVT::f64, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f64, Expand); |
| setOperationAction(ISD::FCEIL, MVT::f64, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::f64, Expand); |
| setOperationAction(ISD::FRINT, MVT::f64, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::f64, Expand); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); |
| setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom); |
| } |
| |
| computeRegisterProperties(Subtarget->getRegisterInfo()); |
| |
| // ARM does not have floating-point extending loads. |
| for (MVT VT : MVT::fp_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); |
| } |
| |
| // ... or truncating stores |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| |
| // ARM does not have i1 sign extending load. |
| for (MVT VT : MVT::integer_valuetypes()) |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| |
| // ARM supports all 4 flavors of integer indexed load / store. |
| if (!Subtarget->isThumb1Only()) { |
| for (unsigned im = (unsigned)ISD::PRE_INC; |
| im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| setIndexedLoadAction(im, MVT::i1, Legal); |
| setIndexedLoadAction(im, MVT::i8, Legal); |
| setIndexedLoadAction(im, MVT::i16, Legal); |
| setIndexedLoadAction(im, MVT::i32, Legal); |
| setIndexedStoreAction(im, MVT::i1, Legal); |
| setIndexedStoreAction(im, MVT::i8, Legal); |
| setIndexedStoreAction(im, MVT::i16, Legal); |
| setIndexedStoreAction(im, MVT::i32, Legal); |
| } |
| } else { |
| // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}. |
| setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal); |
| setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal); |
| } |
| |
| setOperationAction(ISD::SADDO, MVT::i32, Custom); |
| setOperationAction(ISD::UADDO, MVT::i32, Custom); |
| setOperationAction(ISD::SSUBO, MVT::i32, Custom); |
| setOperationAction(ISD::USUBO, MVT::i32, Custom); |
| |
| setOperationAction(ISD::ADDCARRY, MVT::i32, Custom); |
| setOperationAction(ISD::SUBCARRY, MVT::i32, Custom); |
| |
| // i64 operation support. |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| if (Subtarget->isThumb1Only()) { |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| } |
| if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() |
| || (Subtarget->isThumb2() && !Subtarget->hasDSP())) |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL, MVT::i64, Custom); |
| setOperationAction(ISD::SRA, MVT::i64, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); |
| |
| // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1. |
| if (Subtarget->isThumb1Only()) { |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); |
| } |
| |
| if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); |
| |
| // ARM does not have ROTL. |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| for (MVT VT : MVT::vector_valuetypes()) { |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| } |
| setOperationAction(ISD::CTTZ, MVT::i32, Custom); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) |
| setOperationAction(ISD::CTLZ, MVT::i32, Expand); |
| |
| // @llvm.readcyclecounter requires the Performance Monitors extension. |
| // Default to the 0 expansion on unsupported platforms. |
| // FIXME: Technically there are older ARM CPUs that have |
| // implementation-specific ways of obtaining this information. |
| if (Subtarget->hasPerfMon()) |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); |
| |
| // Only ARMv6 has BSWAP. |
| if (!Subtarget->hasV6Ops()) |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| |
| bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode() |
| : Subtarget->hasDivideInARMMode(); |
| if (!hasDivide) { |
| // These are expanded into libcalls if the cpu doesn't have HW divider. |
| setOperationAction(ISD::SDIV, MVT::i32, LibCall); |
| setOperationAction(ISD::UDIV, MVT::i32, LibCall); |
| } |
| |
| if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) { |
| setOperationAction(ISD::SDIV, MVT::i32, Custom); |
| setOperationAction(ISD::UDIV, MVT::i32, Custom); |
| |
| setOperationAction(ISD::SDIV, MVT::i64, Custom); |
| setOperationAction(ISD::UDIV, MVT::i64, Custom); |
| } |
| |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| |
| // Register based DivRem for AEABI (RTABI 4.2) |
| if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() || |
| Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() || |
| Subtarget->isTargetWindows()) { |
| setOperationAction(ISD::SREM, MVT::i64, Custom); |
| setOperationAction(ISD::UREM, MVT::i64, Custom); |
| HasStandaloneRem = false; |
| |
| if (Subtarget->isTargetWindows()) { |
| const struct { |
| const RTLIB::Libcall Op; |
| const char * const Name; |
| const CallingConv::ID CC; |
| } LibraryCalls[] = { |
| { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS }, |
| { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS }, |
| { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS }, |
| { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS }, |
| |
| { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS }, |
| { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS }, |
| { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS }, |
| { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS }, |
| }; |
| |
| for (const auto &LC : LibraryCalls) { |
| setLibcallName(LC.Op, LC.Name); |
| setLibcallCallingConv(LC.Op, LC.CC); |
| } |
| } else { |
| const struct { |
| const RTLIB::Libcall Op; |
| const char * const Name; |
| const CallingConv::ID CC; |
| } LibraryCalls[] = { |
| { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, |
| { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, |
| { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, |
| { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS }, |
| |
| { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, |
| { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, |
| { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, |
| { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS }, |
| }; |
| |
| for (const auto &LC : LibraryCalls) { |
| setLibcallName(LC.Op, LC.Name); |
| setLibcallCallingConv(LC.Op, LC.CC); |
| } |
| } |
| |
| setOperationAction(ISD::SDIVREM, MVT::i32, Custom); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Custom); |
| setOperationAction(ISD::SDIVREM, MVT::i64, Custom); |
| setOperationAction(ISD::UDIVREM, MVT::i64, Custom); |
| } else { |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| } |
| |
| if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT()) |
| for (auto &VT : {MVT::f32, MVT::f64}) |
| setOperationAction(ISD::FPOWI, VT, Custom); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| if (Subtarget->isTargetWindows()) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| else |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); |
| |
| // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use |
| // the default expansion. |
| InsertFencesForAtomic = false; |
| if (Subtarget->hasAnyDataBarrier() && |
| (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) { |
| // ATOMIC_FENCE needs custom lowering; the others should have been expanded |
| // to ldrex/strex loops already. |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); |
| if (!Subtarget->isThumb() || !Subtarget->isMClass()) |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); |
| |
| // On v8, we have particularly efficient implementations of atomic fences |
| // if they can be combined with nearby atomic loads and stores. |
| if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) { |
| // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc. |
| InsertFencesForAtomic = true; |
| } |
| } else { |
| // If there's anything we can use as a barrier, go through custom lowering |
| // for ATOMIC_FENCE. |
| // If target has DMB in thumb, Fences can be inserted. |
| if (Subtarget->hasDataBarrier()) |
| InsertFencesForAtomic = true; |
| |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, |
| Subtarget->hasAnyDataBarrier() ? Custom : Expand); |
| |
| // Set them all for expansion, which will force libcalls. |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); |
| // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the |
| // Unordered/Monotonic case. |
| if (!InsertFencesForAtomic) { |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); |
| } |
| } |
| |
| setOperationAction(ISD::PREFETCH, MVT::Other, Custom); |
| |
| // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. |
| if (!Subtarget->hasV6Ops()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| } |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && |
| !Subtarget->isThumb1Only()) { |
| // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR |
| // iff target supports vfp2. |
| setOperationAction(ISD::BITCAST, MVT::i64, Custom); |
| setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); |
| } |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); |
| setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); |
| setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); |
| if (Subtarget->useSjLjEH()) |
| setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); |
| |
| setOperationAction(ISD::SETCC, MVT::i32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| if (Subtarget->hasFullFP16()) { |
| setOperationAction(ISD::SETCC, MVT::f16, Expand); |
| setOperationAction(ISD::SELECT, MVT::f16, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); |
| } |
| |
| setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom); |
| |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| if (Subtarget->hasFullFP16()) |
| setOperationAction(ISD::BR_CC, MVT::f16, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| setOperationAction(ISD::BR_JT, MVT::Other, Custom); |
| |
| // We don't support sin/cos/fmod/copysign/pow |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FREM, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f32, Expand); |
| if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && |
| !Subtarget->isThumb1Only()) { |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| } |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| |
| if (!Subtarget->hasVFP4()) { |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| setOperationAction(ISD::FMA, MVT::f32, Expand); |
| } |
| |
| // Various VFP goodness |
| if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) { |
| // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded. |
| if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) { |
| setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); |
| } |
| |
| // fp16 is a special v7 extension that adds f16 <-> f32 conversions. |
| if (!Subtarget->hasFP16()) { |
| setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); |
| } |
| } |
| |
| // Use __sincos_stret if available. |
| if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && |
| getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { |
| setOperationAction(ISD::FSINCOS, MVT::f64, Custom); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Custom); |
| } |
| |
| // FP-ARMv8 implements a lot of rounding-like FP operations. |
| if (Subtarget->hasFPARMv8()) { |
| setOperationAction(ISD::FFLOOR, MVT::f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f32, Legal); |
| setOperationAction(ISD::FROUND, MVT::f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f32, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::f32, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); |
| |
| if (!Subtarget->isFPOnlySP()) { |
| setOperationAction(ISD::FFLOOR, MVT::f64, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f64, Legal); |
| setOperationAction(ISD::FROUND, MVT::f64, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f64, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); |
| setOperationAction(ISD::FRINT, MVT::f64, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::f64, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); |
| } |
| } |
| |
| if (Subtarget->hasNEON()) { |
| // vmin and vmax aren't available in a scalar form, so we use |
| // a NEON instruction with an undef lane instead. |
| setOperationAction(ISD::FMINNAN, MVT::f16, Legal); |
| setOperationAction(ISD::FMAXNAN, MVT::f16, Legal); |
| setOperationAction(ISD::FMINNAN, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXNAN, MVT::f32, Legal); |
| setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal); |
| setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal); |
| setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal); |
| } |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| // ARMISD::VMOVRRD - No need to call setTargetDAGCombine |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::MUL); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::XOR); |
| |
| if (Subtarget->hasV6Ops()) |
| setTargetDAGCombine(ISD::SRL); |
| |
| setStackPointerRegisterToSaveRestore(ARM::SP); |
| |
| if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() || |
| !Subtarget->hasVFP2()) |
| setSchedulingPreference(Sched::RegPressure); |
| else |
| setSchedulingPreference(Sched::Hybrid); |
| |
| //// temporary - rewrite interface to use type |
| MaxStoresPerMemset = 8; |
| MaxStoresPerMemsetOptSize = 4; |
| MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores |
| MaxStoresPerMemcpyOptSize = 2; |
| MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores |
| MaxStoresPerMemmoveOptSize = 2; |
| |
| // On ARM arguments smaller than 4 bytes are extended, so all arguments |
| // are at least 4 bytes aligned. |
| setMinStackArgumentAlignment(4); |
| |
| // Prefer likely predicted branches to selects on out-of-order cores. |
| PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder(); |
| |
| setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2); |
| } |
| |
| bool ARMTargetLowering::useSoftFloat() const { |
| return Subtarget->useSoftFloat(); |
| } |
| |
| // FIXME: It might make sense to define the representative register class as the |
| // nearest super-register that has a non-null superset. For example, DPR_VFP2 is |
| // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, |
| // SPR's representative would be DPR_VFP2. This should work well if register |
| // pressure tracking were modified such that a register use would increment the |
| // pressure of the register class's representative and all of it's super |
| // classes' representatives transitively. We have not implemented this because |
| // of the difficulty prior to coalescing of modeling operand register classes |
| // due to the common occurrence of cross class copies and subregister insertions |
| // and extractions. |
| std::pair<const TargetRegisterClass *, uint8_t> |
| ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, |
| MVT VT) const { |
| const TargetRegisterClass *RRC = nullptr; |
| uint8_t Cost = 1; |
| switch (VT.SimpleTy) { |
| default: |
| return TargetLowering::findRepresentativeClass(TRI, VT); |
| // Use DPR as representative register class for all floating point |
| // and vector types. Since there are 32 SPR registers and 32 DPR registers so |
| // the cost is 1 for both f32 and f64. |
| case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: |
| case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: |
| RRC = &ARM::DPRRegClass; |
| // When NEON is used for SP, only half of the register file is available |
| // because operations that define both SP and DP results will be constrained |
| // to the VFP2 class (D0-D15). We currently model this constraint prior to |
| // coalescing by double-counting the SP regs. See the FIXME above. |
| if (Subtarget->useNEONForSinglePrecisionFP()) |
| Cost = 2; |
| break; |
| case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: |
| case MVT::v4f32: case MVT::v2f64: |
| RRC = &ARM::DPRRegClass; |
| Cost = 2; |
| break; |
| case MVT::v4i64: |
| RRC = &ARM::DPRRegClass; |
| Cost = 4; |
| break; |
| case MVT::v8i64: |
| RRC = &ARM::DPRRegClass; |
| Cost = 8; |
| break; |
| } |
| return std::make_pair(RRC, Cost); |
| } |
| |
| const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((ARMISD::NodeType)Opcode) { |
| case ARMISD::FIRST_NUMBER: break; |
| case ARMISD::Wrapper: return "ARMISD::Wrapper"; |
| case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; |
| case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; |
| case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL"; |
| case ARMISD::CALL: return "ARMISD::CALL"; |
| case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; |
| case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; |
| case ARMISD::BRCOND: return "ARMISD::BRCOND"; |
| case ARMISD::BR_JT: return "ARMISD::BR_JT"; |
| case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; |
| case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; |
| case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG"; |
| case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; |
| case ARMISD::CMP: return "ARMISD::CMP"; |
| case ARMISD::CMN: return "ARMISD::CMN"; |
| case ARMISD::CMPZ: return "ARMISD::CMPZ"; |
| case ARMISD::CMPFP: return "ARMISD::CMPFP"; |
| case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; |
| case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; |
| case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; |
| |
| case ARMISD::CMOV: return "ARMISD::CMOV"; |
| |
| case ARMISD::SSAT: return "ARMISD::SSAT"; |
| case ARMISD::USAT: return "ARMISD::USAT"; |
| |
| case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; |
| case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; |
| case ARMISD::RRX: return "ARMISD::RRX"; |
| |
| case ARMISD::ADDC: return "ARMISD::ADDC"; |
| case ARMISD::ADDE: return "ARMISD::ADDE"; |
| case ARMISD::SUBC: return "ARMISD::SUBC"; |
| case ARMISD::SUBE: return "ARMISD::SUBE"; |
| |
| case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; |
| case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; |
| case ARMISD::VMOVhr: return "ARMISD::VMOVhr"; |
| case ARMISD::VMOVrh: return "ARMISD::VMOVrh"; |
| case ARMISD::VMOVSR: return "ARMISD::VMOVSR"; |
| |
| case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; |
| case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP"; |
| case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH"; |
| |
| case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; |
| |
| case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; |
| |
| case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; |
| |
| case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; |
| |
| case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; |
| |
| case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK"; |
| case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK"; |
| |
| case ARMISD::VCEQ: return "ARMISD::VCEQ"; |
| case ARMISD::VCEQZ: return "ARMISD::VCEQZ"; |
| case ARMISD::VCGE: return "ARMISD::VCGE"; |
| case ARMISD::VCGEZ: return "ARMISD::VCGEZ"; |
| case ARMISD::VCLEZ: return "ARMISD::VCLEZ"; |
| case ARMISD::VCGEU: return "ARMISD::VCGEU"; |
| case ARMISD::VCGT: return "ARMISD::VCGT"; |
| case ARMISD::VCGTZ: return "ARMISD::VCGTZ"; |
| case ARMISD::VCLTZ: return "ARMISD::VCLTZ"; |
| case ARMISD::VCGTU: return "ARMISD::VCGTU"; |
| case ARMISD::VTST: return "ARMISD::VTST"; |
| |
| case ARMISD::VSHL: return "ARMISD::VSHL"; |
| case ARMISD::VSHRs: return "ARMISD::VSHRs"; |
| case ARMISD::VSHRu: return "ARMISD::VSHRu"; |
| case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; |
| case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; |
| case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; |
| case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; |
| case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; |
| case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; |
| case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; |
| case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; |
| case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; |
| case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; |
| case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; |
| case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; |
| case ARMISD::VSLI: return "ARMISD::VSLI"; |
| case ARMISD::VSRI: return "ARMISD::VSRI"; |
| case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; |
| case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; |
| case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; |
| case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; |
| case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM"; |
| case ARMISD::VDUP: return "ARMISD::VDUP"; |
| case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; |
| case ARMISD::VEXT: return "ARMISD::VEXT"; |
| case ARMISD::VREV64: return "ARMISD::VREV64"; |
| case ARMISD::VREV32: return "ARMISD::VREV32"; |
| case ARMISD::VREV16: return "ARMISD::VREV16"; |
| case ARMISD::VZIP: return "ARMISD::VZIP"; |
| case ARMISD::VUZP: return "ARMISD::VUZP"; |
| case ARMISD::VTRN: return "ARMISD::VTRN"; |
| case ARMISD::VTBL1: return "ARMISD::VTBL1"; |
| case ARMISD::VTBL2: return "ARMISD::VTBL2"; |
| case ARMISD::VMULLs: return "ARMISD::VMULLs"; |
| case ARMISD::VMULLu: return "ARMISD::VMULLu"; |
| case ARMISD::UMAAL: return "ARMISD::UMAAL"; |
| case ARMISD::UMLAL: return "ARMISD::UMLAL"; |
| case ARMISD::SMLAL: return "ARMISD::SMLAL"; |
| case ARMISD::SMLALBB: return "ARMISD::SMLALBB"; |
| case ARMISD::SMLALBT: return "ARMISD::SMLALBT"; |
| case ARMISD::SMLALTB: return "ARMISD::SMLALTB"; |
| case ARMISD::SMLALTT: return "ARMISD::SMLALTT"; |
| case ARMISD::SMULWB: return "ARMISD::SMULWB"; |
| case ARMISD::SMULWT: return "ARMISD::SMULWT"; |
| case ARMISD::SMLALD: return "ARMISD::SMLALD"; |
| case ARMISD::SMLALDX: return "ARMISD::SMLALDX"; |
| case ARMISD::SMLSLD: return "ARMISD::SMLSLD"; |
| case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX"; |
| case ARMISD::SMMLAR: return "ARMISD::SMMLAR"; |
| case ARMISD::SMMLSR: return "ARMISD::SMMLSR"; |
| case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; |
| case ARMISD::BFI: return "ARMISD::BFI"; |
| case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; |
| case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; |
| case ARMISD::VBSL: return "ARMISD::VBSL"; |
| case ARMISD::MEMCPY: return "ARMISD::MEMCPY"; |
| case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP"; |
| case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; |
| case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; |
| case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; |
| case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; |
| case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; |
| case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; |
| case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; |
| case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; |
| case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; |
| case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; |
| case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD"; |
| case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; |
| case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; |
| case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; |
| case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; |
| case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; |
| case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; |
| case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; |
| case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; |
| case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; |
| case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; |
| } |
| return nullptr; |
| } |
| |
| EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return getPointerTy(DL); |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| /// getRegClassFor - Return the register class that should be used for the |
| /// specified value type. |
| const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const { |
| // Map v4i64 to QQ registers but do not make the type legal. Similarly map |
| // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to |
| // load / store 4 to 8 consecutive D registers. |
| if (Subtarget->hasNEON()) { |
| if (VT == MVT::v4i64) |
| return &ARM::QQPRRegClass; |
| if (VT == MVT::v8i64) |
| return &ARM::QQQQPRRegClass; |
| } |
| return TargetLowering::getRegClassFor(VT); |
| } |
| |
| // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the |
| // source/dest is aligned and the copy size is large enough. We therefore want |
| // to align such objects passed to memory intrinsics. |
| bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, |
| unsigned &PrefAlign) const { |
| if (!isa<MemIntrinsic>(CI)) |
| return false; |
| MinSize = 8; |
| // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1 |
| // cycle faster than 4-byte aligned LDM. |
| PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4); |
| return true; |
| } |
| |
| // Create a fast isel object. |
| FastISel * |
| ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) const { |
| return ARM::createFastISel(funcInfo, libInfo); |
| } |
| |
| Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { |
| unsigned NumVals = N->getNumValues(); |
| if (!NumVals) |
| return Sched::RegPressure; |
| |
| for (unsigned i = 0; i != NumVals; ++i) { |
| EVT VT = N->getValueType(i); |
| if (VT == MVT::Glue || VT == MVT::Other) |
| continue; |
| if (VT.isFloatingPoint() || VT.isVector()) |
| return Sched::ILP; |
| } |
| |
| if (!N->isMachineOpcode()) |
| return Sched::RegPressure; |
| |
| // Load are scheduled for latency even if there instruction itinerary |
| // is not available. |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); |
| |
| if (MCID.getNumDefs() == 0) |
| return Sched::RegPressure; |
| if (!Itins->isEmpty() && |
| Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) |
| return Sched::ILP; |
| |
| return Sched::RegPressure; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| static bool isSRL16(const SDValue &Op) { |
| if (Op.getOpcode() != ISD::SRL) |
| return false; |
| if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| return Const->getZExtValue() == 16; |
| return false; |
| } |
| |
| static bool isSRA16(const SDValue &Op) { |
| if (Op.getOpcode() != ISD::SRA) |
| return false; |
| if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| return Const->getZExtValue() == 16; |
| return false; |
| } |
| |
| static bool isSHL16(const SDValue &Op) { |
| if (Op.getOpcode() != ISD::SHL) |
| return false; |
| if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| return Const->getZExtValue() == 16; |
| return false; |
| } |
| |
| // Check for a signed 16-bit value. We special case SRA because it makes it |
| // more simple when also looking for SRAs that aren't sign extending a |
| // smaller value. Without the check, we'd need to take extra care with |
| // checking order for some operations. |
| static bool isS16(const SDValue &Op, SelectionDAG &DAG) { |
| if (isSRA16(Op)) |
| return isSHL16(Op.getOperand(0)); |
| return DAG.ComputeNumSignBits(Op) == 17; |
| } |
| |
| /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC |
| static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Unknown condition code!"); |
| case ISD::SETNE: return ARMCC::NE; |
| case ISD::SETEQ: return ARMCC::EQ; |
| case ISD::SETGT: return ARMCC::GT; |
| case ISD::SETGE: return ARMCC::GE; |
| case ISD::SETLT: return ARMCC::LT; |
| case ISD::SETLE: return ARMCC::LE; |
| case ISD::SETUGT: return ARMCC::HI; |
| case ISD::SETUGE: return ARMCC::HS; |
| case ISD::SETULT: return ARMCC::LO; |
| case ISD::SETULE: return ARMCC::LS; |
| } |
| } |
| |
| /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. |
| static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, |
| ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) { |
| CondCode2 = ARMCC::AL; |
| InvalidOnQNaN = true; |
| switch (CC) { |
| default: llvm_unreachable("Unknown FP condition!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: |
| CondCode = ARMCC::EQ; |
| InvalidOnQNaN = false; |
| break; |
| case ISD::SETGT: |
| case ISD::SETOGT: CondCode = ARMCC::GT; break; |
| case ISD::SETGE: |
| case ISD::SETOGE: CondCode = ARMCC::GE; break; |
| case ISD::SETOLT: CondCode = ARMCC::MI; break; |
| case ISD::SETOLE: CondCode = ARMCC::LS; break; |
| case ISD::SETONE: |
| CondCode = ARMCC::MI; |
| CondCode2 = ARMCC::GT; |
| InvalidOnQNaN = false; |
| break; |
| case ISD::SETO: CondCode = ARMCC::VC; break; |
| case ISD::SETUO: CondCode = ARMCC::VS; break; |
| case ISD::SETUEQ: |
| CondCode = ARMCC::EQ; |
| CondCode2 = ARMCC::VS; |
| InvalidOnQNaN = false; |
| break; |
| case ISD::SETUGT: CondCode = ARMCC::HI; break; |
| case ISD::SETUGE: CondCode = ARMCC::PL; break; |
| case ISD::SETLT: |
| case ISD::SETULT: CondCode = ARMCC::LT; break; |
| case ISD::SETLE: |
| case ISD::SETULE: CondCode = ARMCC::LE; break; |
| case ISD::SETNE: |
| case ISD::SETUNE: |
| CondCode = ARMCC::NE; |
| InvalidOnQNaN = false; |
| break; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMGenCallingConv.inc" |
| |
| /// getEffectiveCallingConv - Get the effective calling convention, taking into |
| /// account presence of floating point hardware and calling convention |
| /// limitations, such as support for variadic functions. |
| CallingConv::ID |
| ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC, |
| bool isVarArg) const { |
| switch (CC) { |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| case CallingConv::ARM_AAPCS: |
| case CallingConv::ARM_APCS: |
| case CallingConv::GHC: |
| return CC; |
| case CallingConv::PreserveMost: |
| return CallingConv::PreserveMost; |
| case CallingConv::ARM_AAPCS_VFP: |
| case CallingConv::Swift: |
| return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP; |
| case CallingConv::C: |
| if (!Subtarget->isAAPCS_ABI()) |
| return CallingConv::ARM_APCS; |
| else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && |
| getTargetMachine().Options.FloatABIType == FloatABI::Hard && |
| !isVarArg) |
| return CallingConv::ARM_AAPCS_VFP; |
| else |
| return CallingConv::ARM_AAPCS; |
| case CallingConv::Fast: |
| case CallingConv::CXX_FAST_TLS: |
| if (!Subtarget->isAAPCS_ABI()) { |
| if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg) |
| return CallingConv::Fast; |
| return CallingConv::ARM_APCS; |
| } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg) |
| return CallingConv::ARM_AAPCS_VFP; |
| else |
| return CallingConv::ARM_AAPCS; |
| } |
| } |
| |
| CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
| bool isVarArg) const { |
| return CCAssignFnForNode(CC, false, isVarArg); |
| } |
| |
| CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| bool isVarArg) const { |
| return CCAssignFnForNode(CC, true, isVarArg); |
| } |
| |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for the given |
| /// CallingConvention. |
| CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, |
| bool Return, |
| bool isVarArg) const { |
| switch (getEffectiveCallingConv(CC, isVarArg)) { |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| case CallingConv::ARM_APCS: |
| return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); |
| case CallingConv::ARM_AAPCS: |
| return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); |
| case CallingConv::ARM_AAPCS_VFP: |
| return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); |
| case CallingConv::Fast: |
| return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); |
| case CallingConv::GHC: |
| return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); |
| case CallingConv::PreserveMost: |
| return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); |
| } |
| } |
| |
| /// LowerCallResult - Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| SDValue ARMTargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, |
| SDValue ThisVal) const { |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg)); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign VA = RVLocs[i]; |
| |
| // Pass 'this' value directly from the argument to return value, to avoid |
| // reg unit interference |
| if (i == 0 && isThisReturn) { |
| assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 && |
| "unexpected return calling convention register assignment"); |
| InVals.push_back(ThisVal); |
| continue; |
| } |
| |
| SDValue Val; |
| if (VA.needsCustom()) { |
| // Handle f64 or half of a v2f64. |
| SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| if (!Subtarget->isLittle()) |
| std::swap (Lo, Hi); |
| Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); |
| |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, |
| DAG.getConstant(0, dl, MVT::i32)); |
| |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| if (!Subtarget->isLittle()) |
| std::swap (Lo, Hi); |
| Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, |
| DAG.getConstant(1, dl, MVT::i32)); |
| } |
| } else { |
| Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), |
| InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); |
| break; |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| /// LowerMemOpCallTo - Store the argument to the stack. |
| SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, |
| SDValue Arg, const SDLoc &dl, |
| SelectionDAG &DAG, |
| const CCValAssign &VA, |
| ISD::ArgFlagsTy Flags) const { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), |
| StackPtr, PtrOff); |
| return DAG.getStore( |
| Chain, dl, Arg, PtrOff, |
| MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset)); |
| } |
| |
| void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG, |
| SDValue Chain, SDValue &Arg, |
| RegsToPassVector &RegsToPass, |
| CCValAssign &VA, CCValAssign &NextVA, |
| SDValue &StackPtr, |
| SmallVectorImpl<SDValue> &MemOpChains, |
| ISD::ArgFlagsTy Flags) const { |
| SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), Arg); |
| unsigned id = Subtarget->isLittle() ? 0 : 1; |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id))); |
| |
| if (NextVA.isRegLoc()) |
| RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id))); |
| else { |
| assert(NextVA.isMemLoc()); |
| if (!StackPtr.getNode()) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, |
| getPointerTy(DAG.getDataLayout())); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id), |
| dl, DAG, NextVA, |
| Flags)); |
| } |
| } |
| |
| /// LowerCall - Lowering a call into a callseq_start <- |
| /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter |
| /// nodes. |
| SDValue |
| ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &dl = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool doesNotRet = CLI.DoesNotReturn; |
| bool isVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); |
| bool isThisReturn = false; |
| bool isSibCall = false; |
| auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); |
| |
| // Disable tail calls if they're not supported. |
| if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true") |
| isTailCall = false; |
| |
| if (isTailCall) { |
| // Check if it's really possible to do a tail call. |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(), |
| Outs, OutVals, Ins, DAG); |
| if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall()) |
| report_fatal_error("failed to perform tail call elimination on a call " |
| "site marked musttail"); |
| // We don't support GuaranteedTailCallOpt for ARM, only automatically |
| // detected sibcalls. |
| if (isTailCall) { |
| ++NumTailCalls; |
| isSibCall = true; |
| } |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg)); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| // For tail calls, memory operands are available in our caller's stack. |
| if (isSibCall) |
| NumBytes = 0; |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| if (!isSibCall) |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); |
| |
| SDValue StackPtr = |
| DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout())); |
| |
| RegsToPassVector RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. In the case |
| // of tail call optimization, arguments are handled later. |
| for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[realArgIdx]; |
| ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| bool isByVal = Flags.isByVal(); |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| // f64 and v2f64 might be passed in i32 pairs and must be split into pieces |
| if (VA.needsCustom()) { |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(0, dl, MVT::i32)); |
| SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(1, dl, MVT::i32)); |
| |
| PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, |
| VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); |
| |
| VA = ArgLocs[++i]; // skip ahead to next loc |
| if (VA.isRegLoc()) { |
| PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, |
| VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, |
| dl, DAG, VA, Flags)); |
| } |
| } else { |
| PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], |
| StackPtr, MemOpChains, Flags); |
| } |
| } else if (VA.isRegLoc()) { |
| if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && |
| Outs[0].VT == MVT::i32) { |
| assert(VA.getLocVT() == MVT::i32 && |
| "unexpected calling convention register assignment"); |
| assert(!Ins.empty() && Ins[0].VT == MVT::i32 && |
| "unexpected use of 'returned'"); |
| isThisReturn = true; |
| } |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else if (isByVal) { |
| assert(VA.isMemLoc()); |
| unsigned offset = 0; |
| |
| // True if this byval aggregate will be split between registers |
| // and memory. |
| unsigned ByValArgsCount = CCInfo.getInRegsParamsCount(); |
| unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed(); |
| |
| if (CurByValIdx < ByValArgsCount) { |
| |
| unsigned RegBegin, RegEnd; |
| CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd); |
| |
| EVT PtrVT = |
| DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); |
| unsigned int i, j; |
| for (i = 0, j = RegBegin; j < RegEnd; i++, j++) { |
| SDValue Const = DAG.getConstant(4*i, dl, MVT::i32); |
| SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); |
| SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, |
| MachinePointerInfo(), |
| DAG.InferPtrAlignment(AddArg)); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(j, Load)); |
| } |
| |
| // If parameter size outsides register area, "offset" value |
| // helps us to calculate stack slot for remained part properly. |
| offset = RegEnd - RegBegin; |
| |
| CCInfo.nextInRegsParam(); |
| } |
| |
| if (Flags.getByValSize() > 4*offset) { |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); |
| SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff); |
| SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl); |
| SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset); |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl, |
| MVT::i32); |
| SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl, |
| MVT::i32); |
| |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; |
| MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, |
| Ops)); |
| } |
| } else if (!isSibCall) { |
| assert(VA.isMemLoc()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, |
| dl, DAG, VA, Flags)); |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| // Tail call byval lowering might overwrite argument registers so in case of |
| // tail call optimization the copies to registers are lowered later. |
| if (!isTailCall) |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // For tail calls lower the arguments to the 'real' stack slot. |
| if (isTailCall) { |
| // Force all the incoming stack arguments to be loaded from the stack |
| // before any new outgoing arguments are stored to the stack, because the |
| // outgoing stack slots may alias the incoming argument stack slots, and |
| // the alias isn't otherwise explicit. This is slightly more conservative |
| // than necessary, because it means that each store effectively depends |
| // on every argument instead of just those arguments it would clobber. |
| |
| // Do not flag preceding copytoreg stuff together with the following stuff. |
| InFlag = SDValue(); |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| InFlag = SDValue(); |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| bool isDirect = false; |
| |
| const TargetMachine &TM = getTargetMachine(); |
| const Module *Mod = MF.getFunction().getParent(); |
| const GlobalValue *GV = nullptr; |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| GV = G->getGlobal(); |
| bool isStub = |
| !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO(); |
| |
| bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); |
| bool isLocalARMFunc = false; |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| auto PtrVt = getPointerTy(DAG.getDataLayout()); |
| |
| if (Subtarget->genLongCalls()) { |
| assert((!isPositionIndependent() || Subtarget->isTargetWindows()) && |
| "long-calls codegen is not position independent!"); |
| // Handle a global address or an external symbol. If it's not one of |
| // those, the target's already in a register, so we don't need to do |
| // anything extra. |
| if (isa<GlobalAddressSDNode>(Callee)) { |
| // Create a constant pool entry for the callee address |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0); |
| |
| // Get the address of the callee into a register |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad( |
| PtrVt, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| const char *Sym = S->getSymbol(); |
| |
| // Create a constant pool entry for the callee address |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, |
| ARMPCLabelIndex, 0); |
| // Get the address of the callee into a register |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad( |
| PtrVt, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| } |
| } else if (isa<GlobalAddressSDNode>(Callee)) { |
| // If we're optimizing for minimum size and the function is called three or |
| // more times in this block, we can improve codesize by calling indirectly |
| // as BLXr has a 16-bit encoding. |
| auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); |
| auto *BB = CLI.CS.getParent(); |
| bool PreferIndirect = |
| Subtarget->isThumb() && MF.getFunction().optForMinSize() && |
| count_if(GV->users(), [&BB](const User *U) { |
| return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB; |
| }) > 2; |
| |
| if (!PreferIndirect) { |
| isDirect = true; |
| bool isDef = GV->isStrongDefinitionForLinker(); |
| |
| // ARM call to a local ARM function is predicable. |
| isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking); |
| // tBX takes a register source operand. |
| if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { |
| assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?"); |
| Callee = DAG.getNode( |
| ARMISD::WrapperPIC, dl, PtrVt, |
| DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY)); |
| Callee = DAG.getLoad( |
| PtrVt, dl, DAG.getEntryNode(), Callee, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction()), |
| /* Alignment = */ 0, MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| } else if (Subtarget->isTargetCOFF()) { |
| assert(Subtarget->isTargetWindows() && |
| "Windows is the only supported COFF target"); |
| unsigned TargetFlags = GV->hasDLLImportStorageClass() |
| ? ARMII::MO_DLLIMPORT |
| : ARMII::MO_NO_FLAG; |
| Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, |
| TargetFlags); |
| if (GV->hasDLLImportStorageClass()) |
| Callee = |
| DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), |
| DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee), |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| } else { |
| Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0); |
| } |
| } |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| isDirect = true; |
| // tBX takes a register source operand. |
| const char *Sym = S->getSymbol(); |
| if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, |
| ARMPCLabelIndex, 4); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad( |
| PtrVt, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel); |
| } else { |
| Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0); |
| } |
| } |
| |
| // FIXME: handle tail calls differently. |
| unsigned CallOpc; |
| if (Subtarget->isThumb()) { |
| if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) |
| CallOpc = ARMISD::CALL_NOLINK; |
| else |
| CallOpc = ARMISD::CALL; |
| } else { |
| if (!isDirect && !Subtarget->hasV5TOps()) |
| CallOpc = ARMISD::CALL_NOLINK; |
| else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() && |
| // Emit regular call when code size is the priority |
| !MF.getFunction().optForMinSize()) |
| // "mov lr, pc; b _foo" to avoid confusing the RSP |
| CallOpc = ARMISD::CALL_NOLINK; |
| else |
| CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; |
| } |
| |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| if (!isTailCall) { |
| const uint32_t *Mask; |
| const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo(); |
| if (isThisReturn) { |
| // For 'this' returns, use the R0-preserving mask if applicable |
| Mask = ARI->getThisReturnPreservedMask(MF, CallConv); |
| if (!Mask) { |
| // Set isThisReturn to false if the calling convention is not one that |
| // allows 'returned' to be modeled in this way, so LowerCallResult does |
| // not try to pass 'this' straight through |
| isThisReturn = false; |
| Mask = ARI->getCallPreservedMask(MF, CallConv); |
| } |
| } else |
| Mask = ARI->getCallPreservedMask(MF, CallConv); |
| |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| } |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| if (isTailCall) { |
| MF.getFrameInfo().setHasTailCall(); |
| return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops); |
| } |
| |
| // Returns a chain and a flag for retval copy to use. |
| Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), |
| DAG.getIntPtrConstant(0, dl, true), InFlag, dl); |
| if (!Ins.empty()) |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, |
| InVals, isThisReturn, |
| isThisReturn ? OutVals[0] : SDValue()); |
| } |
| |
| /// HandleByVal - Every parameter *after* a byval parameter is passed |
| /// on the stack. Remember the next parameter register to allocate, |
| /// and then confiscate the rest of the parameter registers to insure |
| /// this. |
| void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size, |
| unsigned Align) const { |
| // Byval (as with any stack) slots are always at least 4 byte aligned. |
| Align = std::max(Align, 4U); |
| |
| unsigned Reg = State->AllocateReg(GPRArgRegs); |
| if (!Reg) |
| return; |
| |
| unsigned AlignInRegs = Align / 4; |
| unsigned Waste = (ARM::R4 - Reg) % AlignInRegs; |
| for (unsigned i = 0; i < Waste; ++i) |
| Reg = State->AllocateReg(GPRArgRegs); |
| |
| if (!Reg) |
| return; |
| |
| unsigned Excess = 4 * (ARM::R4 - Reg); |
| |
| // Special case when NSAA != SP and parameter size greater than size of |
| // all remained GPR regs. In that case we can't split parameter, we must |
| // send it to stack. We also must set NCRN to R4, so waste all |
| // remained registers. |
| const unsigned NSAAOffset = State->getNextStackOffset(); |
| if (NSAAOffset != 0 && Size > Excess) { |
| while (State->AllocateReg(GPRArgRegs)) |
| ; |
| return; |
| } |
| |
| // First register for byval parameter is the first register that wasn't |
| // allocated before this method call, so it would be "reg". |
| // If parameter is small enough to be saved in range [reg, r4), then |
| // the end (first after last) register would be reg + param-size-in-regs, |
| // else parameter would be splitted between registers and stack, |
| // end register would be r4 in this case. |
| unsigned ByValRegBegin = Reg; |
| unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4); |
| State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd); |
| // Note, first register is allocated in the beginning of function already, |
| // allocate remained amount of registers we need. |
| for (unsigned i = Reg + 1; i != ByValRegEnd; ++i) |
| State->AllocateReg(GPRArgRegs); |
| // A byval parameter that is split between registers and memory needs its |
| // size truncated here. |
| // In the case where the entire structure fits in registers, we set the |
| // size in memory to zero. |
| Size = std::max<int>(Size - Excess, 0); |
| } |
| |
| /// MatchingStackOffset - Return true if the given stack call argument is |
| /// already available in the same position (relatively) of the caller's |
| /// incoming argument stack. |
| static |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, |
| MachineFrameInfo &MFI, const MachineRegisterInfo *MRI, |
| const TargetInstrInfo *TII) { |
| unsigned Bytes = Arg.getValueSizeInBits() / 8; |
| int FI = std::numeric_limits<int>::max(); |
| if (Arg.getOpcode() == ISD::CopyFromReg) { |
| unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(VR)) |
| return false; |
| MachineInstr *Def = MRI->getVRegDef(VR); |
| if (!Def) |
| return false; |
| if (!Flags.isByVal()) { |
| if (!TII->isLoadFromStackSlot(*Def, FI)) |
| return false; |
| } else { |
| return false; |
| } |
| } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { |
| if (Flags.isByVal()) |
| // ByVal argument is passed in as a pointer but it's now being |
| // dereferenced. e.g. |
| // define @foo(%struct.X* %A) { |
| // tail call @bar(%struct.X* byval %A) |
| // } |
| return false; |
| SDValue Ptr = Ld->getBasePtr(); |
| FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); |
| if (!FINode) |
| return false; |
| FI = FINode->getIndex(); |
| } else |
| return false; |
| |
| assert(FI != std::numeric_limits<int>::max()); |
| if (!MFI.isFixedObjectIndex(FI)) |
| return false; |
| return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI); |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool |
| ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| bool isCalleeStructRet, |
| bool isCallerStructRet, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &CallerF = MF.getFunction(); |
| CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| |
| assert(Subtarget->supportsTailCall()); |
| |
| // Tail calls to function pointers cannot be optimized for Thumb1 if the args |
| // to the call take up r0-r3. The reason is that there are no legal registers |
| // left to hold the pointer to the function to be called. |
| if (Subtarget->isThumb1Only() && Outs.size() >= 4 && |
| !isa<GlobalAddressSDNode>(Callee.getNode())) |
| return false; |
| |
| // Look for obvious safe cases to perform tail call optimization that do not |
| // require ABI changes. This is what gcc calls sibcall. |
| |
| // Exception-handling functions need a special set of instructions to indicate |
| // a return to the hardware. Tail-calling another function would probably |
| // break this. |
| if (CallerF.hasFnAttribute("interrupt")) |
| return false; |
| |
| // Also avoid sibcall optimization if either caller or callee uses struct |
| // return semantics. |
| if (isCalleeStructRet || isCallerStructRet) |
| return false; |
| |
| // Externally-defined functions with weak linkage should not be |
| // tail-called on ARM when the OS does not support dynamic |
| // pre-emption of symbols, as the AAELF spec requires normal calls |
| // to undefined weak functions to be replaced with a NOP or jump to the |
| // next instruction. The behaviour of branch instructions in this |
| // situation (as used for tail calls) is implementation-defined, so we |
| // cannot rely on the linker replacing the tail call with a return. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| const Triple &TT = getTargetMachine().getTargetTriple(); |
| if (GV->hasExternalWeakLinkage() && |
| (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) |
| return false; |
| } |
| |
| // Check that the call results are passed in the same way. |
| LLVMContext &C = *DAG.getContext(); |
| if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, |
| CCAssignFnForReturn(CalleeCC, isVarArg), |
| CCAssignFnForReturn(CallerCC, isVarArg))) |
| return false; |
| // The callee has to preserve all registers the caller needs to preserve. |
| const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| if (CalleeCC != CallerCC) { |
| const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) |
| return false; |
| } |
| |
| // If Caller's vararg or byval argument has been split between registers and |
| // stack, do not perform tail call, since part of the argument is in caller's |
| // local frame. |
| const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>(); |
| if (AFI_Caller->getArgRegsSaveSize()) |
| return false; |
| |
| // If the callee takes no arguments then go on to check the results of the |
| // call. |
| if (!Outs.empty()) { |
| // Check if stack adjustment is needed. For now, do not do this if any |
| // argument is passed on the stack. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); |
| if (CCInfo.getNextStackOffset()) { |
| // Check if the arguments are already laid out in the right way as |
| // the caller's fixed stack objects. |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = OutVals[realArgIdx]; |
| ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| if (VA.needsCustom()) { |
| // f64 and vector types are split into multiple registers or |
| // register/stack-slot combinations. The types will not match |
| // the registers; give up on memory f64 refs until we figure |
| // out what to do about this. |
| if (!VA.isRegLoc()) |
| return false; |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| if (RegVT == MVT::v2f64) { |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| } |
| } else if (!VA.isRegLoc()) { |
| if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, |
| MFI, MRI, TII)) |
| return false; |
| } |
| } |
| } |
| |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, |
| MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); |
| } |
| |
| static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, |
| const SDLoc &DL, SelectionDAG &DAG) { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &F = MF.getFunction(); |
| |
| StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString(); |
| |
| // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset |
| // version of the "preferred return address". These offsets affect the return |
| // instruction if this is a return from PL1 without hypervisor extensions. |
| // IRQ/FIQ: +4 "subs pc, lr, #4" |
| // SWI: 0 "subs pc, lr, #0" |
| // ABORT: +4 "subs pc, lr, #4" |
| // UNDEF: +4/+2 "subs pc, lr, #0" |
| // UNDEF varies depending on where the exception came from ARM or Thumb |
| // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0. |
| |
| int64_t LROffset; |
| if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" || |
| IntKind == "ABORT") |
| LROffset = 4; |
| else if (IntKind == "SWI" || IntKind == "UNDEF") |
| LROffset = 0; |
| else |
| report_fatal_error("Unsupported interrupt attribute. If present, value " |
| "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF"); |
| |
| RetOps.insert(RetOps.begin() + 1, |
| DAG.getConstant(LROffset, DL, MVT::i32, false)); |
| |
| return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| // CCValAssign - represent the assignment of the return value to a location. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slots. |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analyze outgoing return values. |
| CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps; |
| RetOps.push_back(Chain); // Operand #0 = Chain (updated below) |
| bool isLittleEndian = Subtarget->isLittle(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| AFI->setReturnRegsCount(RVLocs.size()); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, realRVLocIdx = 0; |
| i != RVLocs.size(); |
| ++i, ++realRVLocIdx) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Arg = OutVals[realRVLocIdx]; |
| bool ReturnF16 = false; |
| |
| if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) { |
| // Half-precision return values can be returned like this: |
| // |
| // t11 f16 = fadd ... |
| // t12: i16 = bitcast t11 |
| // t13: i32 = zero_extend t12 |
| // t14: f32 = bitcast t13 <~~~~~~~ Arg |
| // |
| // to avoid code generation for bitcasts, we simply set Arg to the node |
| // that produces the f16 value, t11 in this case. |
| // |
| if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) { |
| SDValue ZE = Arg.getOperand(0); |
| if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) { |
| SDValue BC = ZE.getOperand(0); |
| if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) { |
| Arg = BC.getOperand(0); |
| ReturnF16 = true; |
| } |
| } |
| } |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| if (!ReturnF16) |
| Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.needsCustom()) { |
| if (VA.getLocVT() == MVT::v2f64) { |
| // Extract the first half and return it in two registers. |
| SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(0, dl, MVT::i32)); |
| SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), Half); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), |
| HalfGPRs.getValue(isLittleEndian ? 0 : 1), |
| Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), |
| HalfGPRs.getValue(isLittleEndian ? 1 : 0), |
| Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| |
| // Extract the 2nd half and fall through to handle it as an f64 value. |
| Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(1, dl, MVT::i32)); |
| } |
| // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is |
| // available. |
| SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), Arg); |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), |
| fmrrd.getValue(isLittleEndian ? 0 : 1), |
| Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), |
| fmrrd.getValue(isLittleEndian ? 1 : 0), |
| Flag); |
| } else |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); |
| |
| // Guarantee that all emitted copies are |
| // stuck together, avoiding something bad. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), |
| ReturnF16 ? MVT::f16 : VA.getLocVT())); |
| } |
| const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const MCPhysReg *I = |
| TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); |
| if (I) { |
| for (; *I; ++I) { |
| if (ARM::GPRRegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::i32)); |
| else if (ARM::DPRRegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| } |
| } |
| |
| // Update chain and glue. |
| RetOps[0] = Chain; |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| // CPUs which aren't M-class use a special sequence to return from |
| // exceptions (roughly, any instruction setting pc and cpsr simultaneously, |
| // though we use "subs pc, lr, #N"). |
| // |
| // M-class CPUs actually use a normal return sequence with a special |
| // (hardware-provided) value in LR, so the normal code path works. |
| if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") && |
| !Subtarget->isMClass()) { |
| if (Subtarget->isThumb1Only()) |
| report_fatal_error("interrupt attribute is not supported in Thumb1"); |
| return LowerInterruptReturn(RetOps, dl, DAG); |
| } |
| |
| return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps); |
| } |
| |
| bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { |
| if (N->getNumValues() != 1) |
| return false; |
| if (!N->hasNUsesOfValue(1, 0)) |
| return false; |
| |
| SDValue TCChain = Chain; |
| SDNode *Copy = *N->use_begin(); |
| if (Copy->getOpcode() == ISD::CopyToReg) { |
| // If the copy has a glue operand, we conservatively assume it isn't safe to |
| // perform a tail call. |
| if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) |
| return false; |
| TCChain = Copy->getOperand(0); |
| } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { |
| SDNode *VMov = Copy; |
| // f64 returned in a pair of GPRs. |
| SmallPtrSet<SDNode*, 2> Copies; |
| for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); |
| UI != UE; ++UI) { |
| if (UI->getOpcode() != ISD::CopyToReg) |
| return false; |
| Copies.insert(*UI); |
| } |
| if (Copies.size() > 2) |
| return false; |
| |
| for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); |
| UI != UE; ++UI) { |
| SDValue UseChain = UI->getOperand(0); |
| if (Copies.count(UseChain.getNode())) |
| // Second CopyToReg |
| Copy = *UI; |
| else { |
| // We are at the top of this chain. |
| // If the copy has a glue operand, we conservatively assume it |
| // isn't safe to perform a tail call. |
| if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue) |
| return false; |
| // First CopyToReg |
| TCChain = UseChain; |
| } |
| } |
| } else if (Copy->getOpcode() == ISD::BITCAST) { |
| // f32 returned in a single GPR. |
| if (!Copy->hasOneUse()) |
| return false; |
| Copy = *Copy->use_begin(); |
| if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) |
| return false; |
| // If the copy has a glue operand, we conservatively assume it isn't safe to |
| // perform a tail call. |
| if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) |
| return false; |
| TCChain = Copy->getOperand(0); |
| } else { |
| return false; |
| } |
| |
| bool HasRet = false; |
| for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); |
| UI != UE; ++UI) { |
| if (UI->getOpcode() != ARMISD::RET_FLAG && |
| UI->getOpcode() != ARMISD::INTRET_FLAG) |
| return false; |
| HasRet = true; |
| } |
| |
| if (!HasRet) |
| return false; |
| |
| Chain = TCChain; |
| return true; |
| } |
| |
| bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| if (!Subtarget->supportsTailCall()) |
| return false; |
| |
| auto Attr = |
| CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); |
| if (!CI->isTailCall() || Attr.getValueAsString() == "true") |
| return false; |
| |
| return true; |
| } |
| |
| // Trying to write a 64 bit value so need to split into two 32 bit values first, |
| // and pass the lower and high parts through. |
| static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| SDValue WriteValue = Op->getOperand(2); |
| |
| // This function is only supposed to be called for i64 type argument. |
| assert(WriteValue.getValueType() == MVT::i64 |
| && "LowerWRITE_REGISTER called for non-i64 type argument."); |
| |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue, |
| DAG.getConstant(0, DL, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue, |
| DAG.getConstant(1, DL, MVT::i32)); |
| SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi }; |
| return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops); |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOVi. |
| SDValue ARMTargetLowering::LowerConstantPool(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| // FIXME there is no actual debug info here |
| SDLoc dl(Op); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDValue Res; |
| |
| // When generating execute-only code Constant Pools must be promoted to the |
| // global data section. It's a bit ugly that we can't share them across basic |
| // blocks, but this way we guarantee that execute-only behaves correct with |
| // position-independent addressing modes. |
| if (Subtarget->genExecuteOnly()) { |
| auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); |
| auto T = const_cast<Type*>(CP->getType()); |
| auto C = const_cast<Constant*>(CP->getConstVal()); |
| auto M = const_cast<Module*>(DAG.getMachineFunction(). |
| getFunction().getParent()); |
| auto GV = new GlobalVariable( |
| *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C, |
| Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" + |
| Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" + |
| Twine(AFI->createPICLabelUId()) |
| ); |
| SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV), |
| dl, PtrVT); |
| return LowerGlobalAddress(GA, DAG); |
| } |
| |
| if (CP->isMachineConstantPoolEntry()) |
| Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, |
| CP->getAlignment()); |
| else |
| Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, |
| CP->getAlignment()); |
| return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); |
| } |
| |
| unsigned ARMTargetLowering::getJumpTableEncoding() const { |
| return MachineJumpTableInfo::EK_Inline; |
| } |
| |
| SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = 0; |
| SDLoc DL(Op); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| SDValue CPAddr; |
| bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI(); |
| if (!IsPositionIndependent) { |
| CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); |
| } else { |
| unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, |
| ARMCP::CPBlockAddress, PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| } |
| CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); |
| SDValue Result = DAG.getLoad( |
| PtrVT, DL, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| if (!IsPositionIndependent) |
| return Result; |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32); |
| return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); |
| } |
| |
| /// Convert a TLS address reference into the correct sequence of loads |
| /// and calls to compute the variable's address for Darwin, and return an |
| /// SDValue containing the final node. |
| |
| /// Darwin only has one TLS scheme which must be capable of dealing with the |
| /// fully general situation, in the worst case. This means: |
| /// + "extern __thread" declaration. |
| /// + Defined in a possibly unknown dynamic library. |
| /// |
| /// The general system is that each __thread variable has a [3 x i32] descriptor |
| /// which contains information used by the runtime to calculate the address. The |
| /// only part of this the compiler needs to know about is the first word, which |
| /// contains a function pointer that must be called with the address of the |
| /// entire descriptor in "r0". |
| /// |
| /// Since this descriptor may be in a different unit, in general access must |
| /// proceed along the usual ARM rules. A common sequence to produce is: |
| /// |
| /// movw rT1, :lower16:_var$non_lazy_ptr |
| /// movt rT1, :upper16:_var$non_lazy_ptr |
| /// ldr r0, [rT1] |
| /// ldr rT2, [r0] |
| /// blx rT2 |
| /// [...address now in r0...] |
| SDValue |
| ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetDarwin() && |
| "This function expects a Darwin target"); |
| SDLoc DL(Op); |
| |
| // First step is to get the address of the actua global symbol. This is where |
| // the TLS descriptor lives. |
| SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG); |
| |
| // The first entry in the descriptor is a function pointer that we must call |
| // to obtain the address of the variable. |
| SDValue Chain = DAG.getEntryNode(); |
| SDValue FuncTLVGet = DAG.getLoad( |
| MVT::i32, DL, Chain, DescAddr, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction()), |
| /* Alignment = */ 4, |
| MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| Chain = FuncTLVGet.getValue(1); |
| |
| MachineFunction &F = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = F.getFrameInfo(); |
| MFI.setAdjustsStack(true); |
| |
| // TLS calls preserve all registers except those that absolutely must be |
| // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be |
| // silly). |
| auto TRI = |
| getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo(); |
| auto ARI = static_cast<const ARMRegisterInfo *>(TRI); |
| const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction()); |
| |
| // Finally, we can make the call. This is just a degenerate version of a |
| // normal AArch64 call node: r0 takes the address of the descriptor, and |
| // returns the address of the variable in this thread. |
| Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue()); |
| Chain = |
| DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), |
| Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32), |
| DAG.getRegisterMask(Mask), Chain.getValue(1)); |
| return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1)); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); |
| |
| SDValue Chain = DAG.getEntryNode(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDLoc DL(Op); |
| |
| // Load the current TEB (thread environment block) |
| SDValue Ops[] = {Chain, |
| DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32), |
| DAG.getConstant(15, DL, MVT::i32), |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getConstant(13, DL, MVT::i32), |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getConstant(2, DL, MVT::i32)}; |
| SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, |
| DAG.getVTList(MVT::i32, MVT::Other), Ops); |
| |
| SDValue TEB = CurrentTEB.getValue(0); |
| Chain = CurrentTEB.getValue(1); |
| |
| // Load the ThreadLocalStoragePointer from the TEB |
| // A pointer to the TLS array is located at offset 0x2c from the TEB. |
| SDValue TLSArray = |
| DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL)); |
| TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); |
| |
| // The pointer to the thread's TLS data area is at the TLS Index scaled by 4 |
| // offset into the TLSArray. |
| |
| // Load the TLS index from the C runtime |
| SDValue TLSIndex = |
| DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG); |
| TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex); |
| TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo()); |
| |
| SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, |
| DAG.getConstant(2, DL, MVT::i32)); |
| SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, |
| DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), |
| MachinePointerInfo()); |
| |
| // Get the offset of the start of the .tls section (section base) |
| const auto *GA = cast<GlobalAddressSDNode>(Op); |
| auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL); |
| SDValue Offset = DAG.getLoad( |
| PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32, |
| DAG.getTargetConstantPool(CPV, PtrVT, 4)), |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| |
| return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model |
| SDValue |
| ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) const { |
| SDLoc dl(GA); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, |
| ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); |
| SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); |
| Argument = DAG.getLoad( |
| PtrVT, dl, DAG.getEntryNode(), Argument, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| SDValue Chain = Argument.getValue(1); |
| |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); |
| Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); |
| |
| // call __tls_get_addr. |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Argument; |
| Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); |
| Args.push_back(Entry); |
| |
| // FIXME: is there useful debug info available here? |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( |
| CallingConv::C, Type::getInt32Ty(*DAG.getContext()), |
| DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| return CallResult.first; |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or |
| // "local exec" model. |
| SDValue |
| ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG, |
| TLSModel::Model model) const { |
| const GlobalValue *GV = GA->getGlobal(); |
| SDLoc dl(GA); |
| SDValue Offset; |
| SDValue Chain = DAG.getEntryNode(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| // Get the Thread Pointer |
| SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); |
| |
| if (model == TLSModel::InitialExec) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| // Initial exec model. |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, |
| ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, |
| true); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); |
| Offset = DAG.getLoad( |
| PtrVT, dl, Chain, Offset, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| Chain = Offset.getValue(1); |
| |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); |
| Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); |
| |
| Offset = DAG.getLoad( |
| PtrVT, dl, Chain, Offset, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| } else { |
| // local exec model |
| assert(model == TLSModel::LocalExec); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); |
| Offset = DAG.getLoad( |
| PtrVT, dl, Chain, Offset, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| } |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| if (DAG.getTarget().useEmulatedTLS()) |
| return LowerToTLSEmulatedModel(GA, DAG); |
| |
| if (Subtarget->isTargetDarwin()) |
| return LowerGlobalTLSAddressDarwin(Op, DAG); |
| |
| if (Subtarget->isTargetWindows()) |
| return LowerGlobalTLSAddressWindows(Op, DAG); |
| |
| // TODO: implement the "local dynamic" model |
| assert(Subtarget->isTargetELF() && "Only ELF implemented here"); |
| TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); |
| |
| switch (model) { |
| case TLSModel::GeneralDynamic: |
| case TLSModel::LocalDynamic: |
| return LowerToTLSGeneralDynamicModel(GA, DAG); |
| case TLSModel::InitialExec: |
| case TLSModel::LocalExec: |
| return LowerToTLSExecModels(GA, DAG, model); |
| } |
| llvm_unreachable("bogus TLS model"); |
| } |
| |
| /// Return true if all users of V are within function F, looking through |
| /// ConstantExprs. |
| static bool allUsersAreInFunction(const Value *V, const Function *F) { |
| SmallVector<const User*,4> Worklist; |
| for (auto *U : V->users()) |
| Worklist.push_back(U); |
| while (!Worklist.empty()) { |
| auto *U = Worklist.pop_back_val(); |
| if (isa<ConstantExpr>(U)) { |
| for (auto *UU : U->users()) |
| Worklist.push_back(UU); |
| continue; |
| } |
| |
| auto *I = dyn_cast<Instruction>(U); |
| if (!I || I->getParent()->getParent() != F) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Return true if all users of V are within some (any) function, looking through |
| /// ConstantExprs. In other words, are there any global constant users? |
| static bool allUsersAreInFunctions(const Value *V) { |
| SmallVector<const User*,4> Worklist; |
| for (auto *U : V->users()) |
| Worklist.push_back(U); |
| while (!Worklist.empty()) { |
| auto *U = Worklist.pop_back_val(); |
| if (isa<ConstantExpr>(U)) { |
| for (auto *UU : U->users()) |
| Worklist.push_back(UU); |
| continue; |
| } |
| |
| if (!isa<Instruction>(U)) |
| return false; |
| } |
| return true; |
| } |
| |
| // Return true if T is an integer, float or an array/vector of either. |
| static bool isSimpleType(Type *T) { |
| if (T->isIntegerTy() || T->isFloatingPointTy()) |
| return true; |
| Type *SubT = nullptr; |
| if (T->isArrayTy()) |
| SubT = T->getArrayElementType(); |
| else if (T->isVectorTy()) |
| SubT = T->getVectorElementType(); |
| else |
| return false; |
| return SubT->isIntegerTy() || SubT->isFloatingPointTy(); |
| } |
| |
| static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG, |
| EVT PtrVT, const SDLoc &dl) { |
| // If we're creating a pool entry for a constant global with unnamed address, |
| // and the global is small enough, we can emit it inline into the constant pool |
| // to save ourselves an indirection. |
| // |
| // This is a win if the constant is only used in one function (so it doesn't |
| // need to be duplicated) or duplicating the constant wouldn't increase code |
| // size (implying the constant is no larger than 4 bytes). |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| |
| // We rely on this decision to inline being idemopotent and unrelated to the |
| // use-site. We know that if we inline a variable at one use site, we'll |
| // inline it elsewhere too (and reuse the constant pool entry). Fast-isel |
| // doesn't know about this optimization, so bail out if it's enabled else |
| // we could decide to inline here (and thus never emit the GV) but require |
| // the GV from fast-isel generated code. |
| if (!EnableConstpoolPromotion || |
| DAG.getMachineFunction().getTarget().Options.EnableFastISel) |
| return SDValue(); |
| |
| auto *GVar = dyn_cast<GlobalVariable>(GV); |
| if (!GVar || !GVar->hasInitializer() || |
| !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() || |
| !GVar->hasLocalLinkage()) |
| return SDValue(); |
| |
| // Ensure that we don't try and inline any type that contains pointers. If |
| // we inline a value that contains relocations, we move the relocations from |
| // .data to .text which is not ideal. |
| auto *Init = GVar->getInitializer(); |
| if (!isSimpleType(Init->getType())) |
| return SDValue(); |
| |
| // The constant islands pass can only really deal with alignment requests |
| // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote |
| // any type wanting greater alignment requirements than 4 bytes. We also |
| // can only promote constants that are multiples of 4 bytes in size or |
| // are paddable to a multiple of 4. Currently we only try and pad constants |
| // that are strings for simplicity. |
| auto *CDAInit = dyn_cast<ConstantDataArray>(Init); |
| unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType()); |
| unsigned Align = GVar->getAlignment(); |
| unsigned RequiredPadding = 4 - (Size % 4); |
| bool PaddingPossible = |
| RequiredPadding == 4 || (CDAInit && CDAInit->isString()); |
| if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize || |
| Size == 0) |
| return SDValue(); |
| |
| unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| // We can't bloat the constant pool too much, else the ConstantIslands pass |
| // may fail to converge. If we haven't promoted this global yet (it may have |
| // multiple uses), and promoting it would increase the constant pool size (Sz |
| // > 4), ensure we have space to do so up to MaxTotal. |
| if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4) |
| if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >= |
| ConstpoolPromotionMaxTotal) |
| return SDValue(); |
| |
| // This is only valid if all users are in a single function OR it has users |
| // in multiple functions but it no larger than a pointer. We also check if |
| // GVar has constant (non-ConstantExpr) users. If so, it essentially has its |
| // address taken. |
| if (!allUsersAreInFunction(GVar, &F) && |
| !(Size <= 4 && allUsersAreInFunctions(GVar))) |
| return SDValue(); |
| |
| // We're going to inline this global. Pad it out if needed. |
| if (RequiredPadding != 4) { |
| StringRef S = CDAInit->getAsString(); |
| |
| SmallVector<uint8_t,16> V(S.size()); |
| std::copy(S.bytes_begin(), S.bytes_end(), V.begin()); |
| while (RequiredPadding--) |
| V.push_back(0); |
| Init = ConstantDataArray::get(*DAG.getContext(), V); |
| } |
| |
| auto CPVal = ARMConstantPoolConstant::Create(GVar, Init); |
| SDValue CPAddr = |
| DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4); |
| if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) { |
| AFI->markGlobalAsPromotedToConstantPool(GVar); |
| AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() + |
| PaddedSize - 4); |
| } |
| ++NumConstpoolPromoted; |
| return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| } |
| |
| bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const { |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) |
| GV = GA->getBaseObject(); |
| return (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) || |
| isa<Function>(GV); |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| switch (Subtarget->getTargetTriple().getObjectFormat()) { |
| default: llvm_unreachable("unknown object format"); |
| case Triple::COFF: |
| return LowerGlobalAddressWindows(Op, DAG); |
| case Triple::ELF: |
| return LowerGlobalAddressELF(Op, DAG); |
| case Triple::MachO: |
| return LowerGlobalAddressDarwin(Op, DAG); |
| } |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDLoc dl(Op); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| const TargetMachine &TM = getTargetMachine(); |
| bool IsRO = isReadOnly(GV); |
| |
| // promoteToConstantPool only if not generating XO text section |
| if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly()) |
| if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl)) |
| return V; |
| |
| if (isPositionIndependent()) { |
| bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); |
| SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| UseGOT_PREL ? ARMII::MO_GOT : 0); |
| SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G); |
| if (UseGOT_PREL) |
| Result = |
| DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| return Result; |
| } else if (Subtarget->isROPI() && IsRO) { |
| // PC-relative. |
| SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT); |
| SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G); |
| return Result; |
| } else if (Subtarget->isRWPI() && !IsRO) { |
| // SB-relative. |
| SDValue RelAddr; |
| if (Subtarget->useMovt(DAG.getMachineFunction())) { |
| ++NumMovwMovt; |
| SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL); |
| RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G); |
| } else { // use literal pool for address constant |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GV, ARMCP::SBREL); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| RelAddr = DAG.getLoad( |
| PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| } |
| SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT); |
| SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr); |
| return Result; |
| } |
| |
| // If we have T2 ops, we can materialize the address directly via movt/movw |
| // pair. This is always cheaper. |
| if (Subtarget->useMovt(DAG.getMachineFunction())) { |
| ++NumMovwMovt; |
| // FIXME: Once remat is capable of dealing with instructions with register |
| // operands, expand this into two nodes. |
| return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT)); |
| } else { |
| SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| return DAG.getLoad( |
| PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| } |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && |
| "ROPI/RWPI not currently supported for Darwin"); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDLoc dl(Op); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| |
| if (Subtarget->useMovt(DAG.getMachineFunction())) |
| ++NumMovwMovt; |
| |
| // FIXME: Once remat is capable of dealing with instructions with register |
| // operands, expand this into multiple nodes |
| unsigned Wrapper = |
| isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper; |
| |
| SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY); |
| SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G); |
| |
| if (Subtarget->isGVIndirectSymbol(GV)) |
| Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| return Result; |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported"); |
| assert(Subtarget->useMovt(DAG.getMachineFunction()) && |
| "Windows on ARM expects to use movw/movt"); |
| assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && |
| "ROPI/RWPI not currently supported for Windows"); |
| |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| const ARMII::TOF TargetFlags = |
| (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Result; |
| SDLoc DL(Op); |
| |
| ++NumMovwMovt; |
| |
| // FIXME: Once remat is capable of dealing with instructions with register |
| // operands, expand this into two nodes. |
| Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0, |
| TargetFlags)); |
| if (GV->hasDLLImportStorageClass()) |
| Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| return Result; |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue Val = DAG.getConstant(0, dl, MVT::i32); |
| return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, |
| DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), |
| Op.getOperand(1), Val); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), |
| Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); |
| } |
| |
| SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other, |
| Op.getOperand(0)); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) const { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| SDLoc dl(Op); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| case Intrinsic::thread_pointer: { |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); |
| } |
| case Intrinsic::eh_sjlj_lsda: { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue CPAddr; |
| bool IsPositionIndependent = isPositionIndependent(); |
| unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex, |
| ARMCP::CPLSDA, PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = DAG.getLoad( |
| PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| |
| if (IsPositionIndependent) { |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); |
| Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| return Result; |
| } |
| case Intrinsic::arm_neon_vabs: |
| return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1)); |
| case Intrinsic::arm_neon_vmulls: |
| case Intrinsic::arm_neon_vmullu: { |
| unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) |
| ? ARMISD::VMULLs : ARMISD::VMULLu; |
| return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| case Intrinsic::arm_neon_vminnm: |
| case Intrinsic::arm_neon_vmaxnm: { |
| unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm) |
| ? ISD::FMINNUM : ISD::FMAXNUM; |
| return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| case Intrinsic::arm_neon_vminu: |
| case Intrinsic::arm_neon_vmaxu: { |
| if (Op.getValueType().isFloatingPoint()) |
| return SDValue(); |
| unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu) |
| ? ISD::UMIN : ISD::UMAX; |
| return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| case Intrinsic::arm_neon_vmins: |
| case Intrinsic::arm_neon_vmaxs: { |
| // v{min,max}s is overloaded between signed integers and floats. |
| if (!Op.getValueType().isFloatingPoint()) { |
| unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) |
| ? ISD::SMIN : ISD::SMAX; |
| return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) |
| ? ISD::FMINNAN : ISD::FMAXNAN; |
| return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| case Intrinsic::arm_neon_vtbl1: |
| return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::arm_neon_vtbl2: |
| return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| } |
| } |
| |
| static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| SDLoc dl(Op); |
| ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2)); |
| auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue()); |
| if (SSID == SyncScope::SingleThread) |
| return Op; |
| |
| if (!Subtarget->hasDataBarrier()) { |
| // Some ARMv6 cpus can support data barriers with an mcr instruction. |
| // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get |
| // here. |
| assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && |
| "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"); |
| return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(0, dl, MVT::i32)); |
| } |
| |
| ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1)); |
| AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue()); |
| ARM_MB::MemBOpt Domain = ARM_MB::ISH; |
| if (Subtarget->isMClass()) { |
| // Only a full system barrier exists in the M-class architectures. |
| Domain = ARM_MB::SY; |
| } else if (Subtarget->preferISHSTBarriers() && |
| Ord == AtomicOrdering::Release) { |
| // Swift happens to implement ISHST barriers in a way that's compatible with |
| // Release semantics but weaker than ISH so we'd be fools not to use |
| // it. Beware: other processors probably don't! |
| Domain = ARM_MB::ISHST; |
| } |
| |
| return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32), |
| DAG.getConstant(Domain, dl, MVT::i32)); |
| } |
| |
| static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| // ARM pre v5TE and Thumb1 does not have preload instructions. |
| if (!(Subtarget->isThumb2() || |
| (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) |
| // Just preserve the chain. |
| return Op.getOperand(0); |
| |
| SDLoc dl(Op); |
| unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1; |
| if (!isRead && |
| (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) |
| // ARMv7 with MP extension has PLDW. |
| return Op.getOperand(0); |
| |
| unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); |
| if (Subtarget->isThumb()) { |
| // Invert the bits. |
| isRead = ~isRead & 1; |
| isData = ~isData & 1; |
| } |
| |
| return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), |
| Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32), |
| DAG.getConstant(isData, dl, MVT::i32)); |
| } |
| |
| static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDLoc dl(Op); |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, |
| CCValAssign &NextVA, |
| SDValue &Root, |
| SelectionDAG &DAG, |
| const SDLoc &dl) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| const TargetRegisterClass *RC; |
| if (AFI->isThumb1OnlyFunction()) |
| RC = &ARM::tGPRRegClass; |
| else |
| RC = &ARM::GPRRegClass; |
| |
| // Transform the arguments stored in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); |
| |
| SDValue ArgValue2; |
| if (NextVA.isMemLoc()) { |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true); |
| |
| // Create load node to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| ArgValue2 = DAG.getLoad( |
| MVT::i32, dl, Root, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); |
| } else { |
| Reg = MF.addLiveIn(NextVA.getLocReg(), RC); |
| ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); |
| } |
| if (!Subtarget->isLittle()) |
| std::swap (ArgValue, ArgValue2); |
| return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); |
| } |
| |
| // The remaining GPRs hold either the beginning of variable-argument |
| // data, or the beginning of an aggregate passed by value (usually |
| // byval). Either way, we allocate stack slots adjacent to the data |
| // provided by our caller, and store the unallocated registers there. |
| // If this is a variadic function, the va_list pointer will begin with |
| // these values; otherwise, this reassembles a (byval) structure that |
| // was split between registers and memory. |
| // Return: The frame index registers were stored into. |
| int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, |
| const SDLoc &dl, SDValue &Chain, |
| const Value *OrigArg, |
| unsigned InRegsParamRecordIdx, |
| int ArgOffset, unsigned ArgSize) const { |
| // Currently, two use-cases possible: |
| // Case #1. Non-var-args function, and we meet first byval parameter. |
| // Setup first unallocated register as first byval register; |
| // eat all remained registers |
| // (these two actions are performed by HandleByVal method). |
| // Then, here, we initialize stack frame with |
| // "store-reg" instructions. |
| // Case #2. Var-args function, that doesn't contain byval parameters. |
| // The same: eat all remained unallocated registers, |
| // initialize stack frame. |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned RBegin, REnd; |
| if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { |
| CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); |
| } else { |
| unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs); |
| RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx]; |
| REnd = ARM::R4; |
| } |
| |
| if (REnd != RBegin) |
| ArgOffset = -4 * (ARM::R4 - RBegin); |
| |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false); |
| SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT); |
| |
| SmallVector<SDValue, 4> MemOps; |
| const TargetRegisterClass *RC = |
| AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass; |
| |
| for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) { |
| unsigned VReg = MF.addLiveIn(Reg, RC); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); |
| SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(OrigArg, 4 * i)); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT)); |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); |
| return FrameIndex; |
| } |
| |
| // Setup stack frame, the va_list pointer will start from. |
| void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, |
| const SDLoc &dl, SDValue &Chain, |
| unsigned ArgOffset, |
| unsigned TotalArgRegsSaveSize, |
| bool ForceMutable) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| // Try to store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by dereferencing |
| // the result of va_next. |
| // If there is no regs to be stored, just point address after last |
| // argument passed via stack. |
| int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr, |
| CCInfo.getInRegsParamsCount(), |
| CCInfo.getNextStackOffset(), 4); |
| AFI->setVarArgsFrameIndex(FrameIndex); |
| } |
| |
| SDValue ARMTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg)); |
| |
| SmallVector<SDValue, 16> ArgValues; |
| SDValue ArgValue; |
| Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin(); |
| unsigned CurArgIdx = 0; |
| |
| // Initially ArgRegsSaveSize is zero. |
| // Then we increase this value each time we meet byval parameter. |
| // We also increase this value in case of varargs function. |
| AFI->setArgRegsSaveSize(0); |
| |
| // Calculate the amount of stack space that we need to allocate to store |
| // byval and variadic arguments that are passed in registers. |
| // We need to know this before we allocate the first byval or variadic |
| // argument, as they will be allocated a stack slot below the CFA (Canonical |
| // Frame Address, the stack pointer at entry to the function). |
| unsigned ArgRegBegin = ARM::R4; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount()) |
| break; |
| |
| CCValAssign &VA = ArgLocs[i]; |
| unsigned Index = VA.getValNo(); |
| ISD::ArgFlagsTy Flags = Ins[Index].Flags; |
| if (!Flags.isByVal()) |
| continue; |
| |
| assert(VA.isMemLoc() && "unexpected byval pointer in reg"); |
| unsigned RBegin, REnd; |
| CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd); |
| ArgRegBegin = std::min(ArgRegBegin, RBegin); |
| |
| CCInfo.nextInRegsParam(); |
| } |
| CCInfo.rewindByValRegsInfo(); |
| |
| int lastInsIndex = -1; |
| if (isVarArg && MFI.hasVAStart()) { |
| unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs); |
| if (RegIdx != array_lengthof(GPRArgRegs)) |
| ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]); |
| } |
| |
| unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin); |
| AFI->setArgRegsSaveSize(TotalArgRegsSaveSize); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (Ins[VA.getValNo()].isOrigArg()) { |
| std::advance(CurOrigArg, |
| Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx); |
| CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex(); |
| } |
| // Arguments stored in registers. |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| |
| if (VA.needsCustom()) { |
| // f64 and vector types are split up into multiple registers or |
| // combinations of registers and stack slots. |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], |
| Chain, DAG, dl); |
| VA = ArgLocs[++i]; // skip ahead to next loc |
| SDValue ArgValue2; |
| if (VA.isMemLoc()) { |
| int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), FI)); |
| } else { |
| ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], |
| Chain, DAG, dl); |
| } |
| ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); |
| ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, |
| ArgValue, ArgValue1, |
| DAG.getIntPtrConstant(0, dl)); |
| ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, |
| ArgValue, ArgValue2, |
| DAG.getIntPtrConstant(1, dl)); |
| } else |
| ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); |
| } else { |
| const TargetRegisterClass *RC; |
| |
| |
| if (RegVT == MVT::f16) |
| RC = &ARM::HPRRegClass; |
| else if (RegVT == MVT::f32) |
| RC = &ARM::SPRRegClass; |
| else if (RegVT == MVT::f64 || RegVT == MVT::v4f16) |
| RC = &ARM::DPRRegClass; |
| else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16) |
| RC = &ARM::QPRRegClass; |
| else if (RegVT == MVT::i32) |
| RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass |
| : &ARM::GPRRegClass; |
| else |
| llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); |
| |
| // Transform the arguments in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| } |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted |
| // to 32 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::SExt: |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::ZExt: |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| } |
| |
| InVals.push_back(ArgValue); |
| } else { // VA.isRegLoc() |
| // sanity check |
| assert(VA.isMemLoc()); |
| assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); |
| |
| int index = VA.getValNo(); |
| |
| // Some Ins[] entries become multiple ArgLoc[] entries. |
| // Process them only once. |
| if (index != lastInsIndex) |
| { |
| ISD::ArgFlagsTy Flags = Ins[index].Flags; |
| // FIXME: For now, all byval parameter objects are marked mutable. |
| // This can be changed with more analysis. |
| // In case of tail call optimization mark all arguments mutable. |
| // Since they could be overwritten by lowering of arguments in case of |
| // a tail call. |
| if (Flags.isByVal()) { |
| assert(Ins[index].isOrigArg() && |
| "Byval arguments cannot be implicit"); |
| unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed(); |
| |
| int FrameIndex = StoreByValRegs( |
| CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex, |
| VA.getLocMemOffset(), Flags.getByValSize()); |
| InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT)); |
| CCInfo.nextInRegsParam(); |
| } else { |
| unsigned FIOffset = VA.getLocMemOffset(); |
| int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8, |
| FIOffset, true); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), FI))); |
| } |
| lastInsIndex = index; |
| } |
| } |
| } |
| |
| // varargs |
| if (isVarArg && MFI.hasVAStart()) |
| VarArgStyleRegisters(CCInfo, DAG, dl, Chain, |
| CCInfo.getNextStackOffset(), |
| TotalArgRegsSaveSize); |
| |
| AFI->setArgumentStackSize(CCInfo.getNextStackOffset()); |
| |
| return Chain; |
| } |
| |
| /// isFloatingPointZero - Return true if this is +0.0. |
| static bool isFloatingPointZero(SDValue Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->getValueAPF().isPosZero(); |
| else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { |
| // Maybe this has already been legalized into the constant pool? |
| if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { |
| SDValue WrapperOp = Op.getOperand(1).getOperand(0); |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) |
| return CFP->getValueAPF().isPosZero(); |
| } |
| } else if (Op->getOpcode() == ISD::BITCAST && |
| Op->getValueType(0) == MVT::f64) { |
| // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64) |
| // created by LowerConstantFP(). |
| SDValue BitcastOp = Op->getOperand(0); |
| if (BitcastOp->getOpcode() == ARMISD::VMOVIMM && |
| isNullConstant(BitcastOp->getOperand(0))) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Returns appropriate ARM CMP (cmp) and corresponding condition code for |
| /// the given operands. |
| SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| SDValue &ARMcc, SelectionDAG &DAG, |
| const SDLoc &dl) const { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { |
| unsigned C = RHSC->getZExtValue(); |
| if (!isLegalICmpImmediate((int32_t)C)) { |
| // Constant does not fit, try adjusting it by one. |
| switch (CC) { |
| default: break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { |
| CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| RHS = DAG.getConstant(C - 1, dl, MVT::i32); |
| } |
| break; |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| if (C != 0 && isLegalICmpImmediate(C-1)) { |
| CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| RHS = DAG.getConstant(C - 1, dl, MVT::i32); |
| } |
| break; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { |
| CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| RHS = DAG.getConstant(C + 1, dl, MVT::i32); |
| } |
| break; |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { |
| CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| RHS = DAG.getConstant(C + 1, dl, MVT::i32); |
| } |
| break; |
| } |
| } |
| } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) && |
| (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) { |
| // In ARM and Thumb-2, the compare instructions can shift their second |
| // operand. |
| CC = ISD::getSetCCSwappedOperands(CC); |
| std::swap(LHS, RHS); |
| } |
| |
| ARMCC::CondCodes CondCode = IntCCToARMCC(CC); |
| ARMISD::NodeType CompareType; |
| switch (CondCode) { |
| default: |
| CompareType = ARMISD::CMP; |
| break; |
| case ARMCC::EQ: |
| case ARMCC::NE: |
| // Uses only Z Flag |
| CompareType = ARMISD::CMPZ; |
| break; |
| } |
| ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); |
| return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); |
| } |
| |
| /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. |
| SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, |
| SelectionDAG &DAG, const SDLoc &dl, |
| bool InvalidOnQNaN) const { |
| assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64); |
| SDValue Cmp; |
| SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32); |
| if (!isFloatingPointZero(RHS)) |
| Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C); |
| else |
| Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C); |
| return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); |
| } |
| |
| /// duplicateCmp - Glue values can have only one use, so this function |
| /// duplicates a comparison node. |
| SDValue |
| ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { |
| unsigned Opc = Cmp.getOpcode(); |
| SDLoc DL(Cmp); |
| if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) |
| return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); |
| |
| assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); |
| Cmp = Cmp.getOperand(0); |
| Opc = Cmp.getOpcode(); |
| if (Opc == ARMISD::CMPFP) |
| Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0), |
| Cmp.getOperand(1), Cmp.getOperand(2)); |
| else { |
| assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); |
| Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0), |
| Cmp.getOperand(1)); |
| } |
| return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); |
| } |
| |
| // This function returns three things: the arithmetic computation itself |
| // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The |
| // comparison and the condition code define the case in which the arithmetic |
| // computation *does not* overflow. |
| std::pair<SDValue, SDValue> |
| ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG, |
| SDValue &ARMcc) const { |
| assert(Op.getValueType() == MVT::i32 && "Unsupported value type"); |
| |
| SDValue Value, OverflowCmp; |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDLoc dl(Op); |
| |
| // FIXME: We are currently always generating CMPs because we don't support |
| // generating CMN through the backend. This is not as good as the natural |
| // CMP case because it causes a register dependency and cannot be folded |
| // later. |
| |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Unknown overflow instruction!"); |
| case ISD::SADDO: |
| ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); |
| Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS); |
| OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); |
| break; |
| case ISD::UADDO: |
| ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); |
| // We use ADDC here to correspond to its use in LowerUnsignedALUO. |
| // We do not use it in the USUBO case as Value may not be used. |
| Value = DAG.getNode(ARMISD::ADDC, dl, |
| DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS) |
| .getValue(0); |
| OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); |
| break; |
| case ISD::SSUBO: |
| ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); |
| Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); |
| OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); |
| break; |
| case ISD::USUBO: |
| ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); |
| Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); |
| OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); |
| break; |
| case ISD::UMULO: |
| // We generate a UMUL_LOHI and then check if the high word is 0. |
| ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32); |
| Value = DAG.getNode(ISD::UMUL_LOHI, dl, |
| DAG.getVTList(Op.getValueType(), Op.getValueType()), |
| LHS, RHS); |
| OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1), |
| DAG.getConstant(0, dl, MVT::i32)); |
| Value = Value.getValue(0); // We only want the low 32 bits for the result. |
| break; |
| case ISD::SMULO: |
| // We generate a SMUL_LOHI and then check if all the bits of the high word |
| // are the same as the sign bit of the low word. |
| ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32); |
| Value = DAG.getNode(ISD::SMUL_LOHI, dl, |
| DAG.getVTList(Op.getValueType(), Op.getValueType()), |
| LHS, RHS); |
| OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1), |
| DAG.getNode(ISD::SRA, dl, Op.getValueType(), |
| Value.getValue(0), |
| DAG.getConstant(31, dl, MVT::i32))); |
| Value = Value.getValue(0); // We only want the low 32 bits for the result. |
| break; |
| } // switch (...) |
| |
| return std::make_pair(Value, OverflowCmp); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const { |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) |
| return SDValue(); |
| |
| SDValue Value, OverflowCmp; |
| SDValue ARMcc; |
| std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDLoc dl(Op); |
| // We use 0 and 1 as false and true values. |
| SDValue TVal = DAG.getConstant(1, dl, MVT::i32); |
| SDValue FVal = DAG.getConstant(0, dl, MVT::i32); |
| EVT VT = Op.getValueType(); |
| |
| SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal, |
| ARMcc, CCR, OverflowCmp); |
| |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); |
| } |
| |
| static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry, |
| SelectionDAG &DAG) { |
| SDLoc DL(BoolCarry); |
| EVT CarryVT = BoolCarry.getValueType(); |
| |
| // This converts the boolean value carry into the carry flag by doing |
| // ARMISD::SUBC Carry, 1 |
| SDValue Carry = DAG.getNode(ARMISD::SUBC, DL, |
| DAG.getVTList(CarryVT, MVT::i32), |
| BoolCarry, DAG.getConstant(1, DL, CarryVT)); |
| return Carry.getValue(1); |
| } |
| |
| static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT, |
| SelectionDAG &DAG) { |
| SDLoc DL(Flags); |
| |
| // Now convert the carry flag into a boolean carry. We do this |
| // using ARMISD:ADDE 0, 0, Carry |
| return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32), |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getConstant(0, DL, MVT::i32), Flags); |
| } |
| |
| SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) |
| return SDValue(); |
| |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDLoc dl(Op); |
| |
| EVT VT = Op.getValueType(); |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| SDValue Value; |
| SDValue Overflow; |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Unknown overflow instruction!"); |
| case ISD::UADDO: |
| Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS); |
| // Convert the carry flag into a boolean value. |
| Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG); |
| break; |
| case ISD::USUBO: { |
| Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS); |
| // Convert the carry flag into a boolean value. |
| Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG); |
| // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow |
| // value. So compute 1 - C. |
| Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(1, dl, MVT::i32), Overflow); |
| break; |
| } |
| } |
| |
| return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); |
| } |
| |
| SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Cond = Op.getOperand(0); |
| SDValue SelectTrue = Op.getOperand(1); |
| SDValue SelectFalse = Op.getOperand(2); |
| SDLoc dl(Op); |
| unsigned Opc = Cond.getOpcode(); |
| |
| if (Cond.getResNo() == 1 && |
| (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || |
| Opc == ISD::USUBO)) { |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) |
| return SDValue(); |
| |
| SDValue Value, OverflowCmp; |
| SDValue ARMcc; |
| std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| EVT VT = Op.getValueType(); |
| |
| return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR, |
| OverflowCmp, DAG); |
| } |
| |
| // Convert: |
| // |
| // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) |
| // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) |
| // |
| if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { |
| const ConstantSDNode *CMOVTrue = |
| dyn_cast<ConstantSDNode>(Cond.getOperand(0)); |
| const ConstantSDNode *CMOVFalse = |
| dyn_cast<ConstantSDNode>(Cond.getOperand(1)); |
| |
| if (CMOVTrue && CMOVFalse) { |
| unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); |
| unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); |
| |
| SDValue True; |
| SDValue False; |
| if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { |
| True = SelectTrue; |
| False = SelectFalse; |
| } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { |
| True = SelectFalse; |
| False = SelectTrue; |
| } |
| |
| if (True.getNode() && False.getNode()) { |
| EVT VT = Op.getValueType(); |
| SDValue ARMcc = Cond.getOperand(2); |
| SDValue CCR = Cond.getOperand(3); |
| SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); |
| assert(True.getValueType() == VT); |
| return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG); |
| } |
| } |
| } |
| |
| // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the |
| // undefined bits before doing a full-word comparison with zero. |
| Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, |
| DAG.getConstant(1, dl, Cond.getValueType())); |
| |
| return DAG.getSelectCC(dl, Cond, |
| DAG.getConstant(0, dl, Cond.getValueType()), |
| SelectTrue, SelectFalse, ISD::SETNE); |
| } |
| |
| static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode, |
| bool &swpCmpOps, bool &swpVselOps) { |
| // Start by selecting the GE condition code for opcodes that return true for |
| // 'equality' |
| if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE || |
| CC == ISD::SETULE) |
| CondCode = ARMCC::GE; |
| |
| // and GT for opcodes that return false for 'equality'. |
| else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT || |
| CC == ISD::SETULT) |
| CondCode = ARMCC::GT; |
| |
| // Since we are constrained to GE/GT, if the opcode contains 'less', we need |
| // to swap the compare operands. |
| if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT || |
| CC == ISD::SETULT) |
| swpCmpOps = true; |
| |
| // Both GT and GE are ordered comparisons, and return false for 'unordered'. |
| // If we have an unordered opcode, we need to swap the operands to the VSEL |
| // instruction (effectively negating the condition). |
| // |
| // This also has the effect of swapping which one of 'less' or 'greater' |
| // returns true, so we also swap the compare operands. It also switches |
| // whether we return true for 'equality', so we compensate by picking the |
| // opposite condition code to our original choice. |
| if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE || |
| CC == ISD::SETUGT) { |
| swpCmpOps = !swpCmpOps; |
| swpVselOps = !swpVselOps; |
| CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT; |
| } |
| |
| // 'ordered' is 'anything but unordered', so use the VS condition code and |
| // swap the VSEL operands. |
| if (CC == ISD::SETO) { |
| CondCode = ARMCC::VS; |
| swpVselOps = true; |
| } |
| |
| // 'unordered or not equal' is 'anything but equal', so use the EQ condition |
| // code and swap the VSEL operands. |
| if (CC == ISD::SETUNE) { |
| CondCode = ARMCC::EQ; |
| swpVselOps = true; |
| } |
| } |
| |
| SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal, |
| SDValue TrueVal, SDValue ARMcc, SDValue CCR, |
| SDValue Cmp, SelectionDAG &DAG) const { |
| if (Subtarget->isFPOnlySP() && VT == MVT::f64) { |
| FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), FalseVal); |
| TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), TrueVal); |
| |
| SDValue TrueLow = TrueVal.getValue(0); |
| SDValue TrueHigh = TrueVal.getValue(1); |
| SDValue FalseLow = FalseVal.getValue(0); |
| SDValue FalseHigh = FalseVal.getValue(1); |
| |
| SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow, |
| ARMcc, CCR, Cmp); |
| SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh, |
| ARMcc, CCR, duplicateCmp(Cmp, DAG)); |
| |
| return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High); |
| } else { |
| return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, |
| Cmp); |
| } |
| } |
| |
| static bool isGTorGE(ISD::CondCode CC) { |
| return CC == ISD::SETGT || CC == ISD::SETGE; |
| } |
| |
| static bool isLTorLE(ISD::CondCode CC) { |
| return CC == ISD::SETLT || CC == ISD::SETLE; |
| } |
| |
| // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating. |
| // All of these conditions (and their <= and >= counterparts) will do: |
| // x < k ? k : x |
| // x > k ? x : k |
| // k < x ? x : k |
| // k > x ? k : x |
| static bool isLowerSaturate(const SDValue LHS, const SDValue RHS, |
| const SDValue TrueVal, const SDValue FalseVal, |
| const ISD::CondCode CC, const SDValue K) { |
| return (isGTorGE(CC) && |
| ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) || |
| (isLTorLE(CC) && |
| ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))); |
| } |
| |
| // Similar to isLowerSaturate(), but checks for upper-saturating conditions. |
| static bool isUpperSaturate(const SDValue LHS, const SDValue RHS, |
| const SDValue TrueVal, const SDValue FalseVal, |
| const ISD::CondCode CC, const SDValue K) { |
| return (isGTorGE(CC) && |
| ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) || |
| (isLTorLE(CC) && |
| ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))); |
| } |
| |
| // Check if two chained conditionals could be converted into SSAT or USAT. |
| // |
| // SSAT can replace a set of two conditional selectors that bound a number to an |
| // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples: |
| // |
| // x < -k ? -k : (x > k ? k : x) |
| // x < -k ? -k : (x < k ? x : k) |
| // x > -k ? (x > k ? k : x) : -k |
| // x < k ? (x < -k ? -k : x) : k |
| // etc. |
| // |
| // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is |
| // a power of 2. |
| // |
| // It returns true if the conversion can be done, false otherwise. |
| // Additionally, the variable is returned in parameter V, the constant in K and |
| // usat is set to true if the conditional represents an unsigned saturation |
| static bool isSaturatingConditional(const SDValue &Op, SDValue &V, |
| uint64_t &K, bool &usat) { |
| SDValue LHS1 = Op.getOperand(0); |
| SDValue RHS1 = Op.getOperand(1); |
| SDValue TrueVal1 = Op.getOperand(2); |
| SDValue FalseVal1 = Op.getOperand(3); |
| ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| |
| const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1; |
| if (Op2.getOpcode() != ISD::SELECT_CC) |
| return false; |
| |
| SDValue LHS2 = Op2.getOperand(0); |
| SDValue RHS2 = Op2.getOperand(1); |
| SDValue TrueVal2 = Op2.getOperand(2); |
| SDValue FalseVal2 = Op2.getOperand(3); |
| ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get(); |
| |
| // Find out which are the constants and which are the variables |
| // in each conditional |
| SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1) |
| ? &RHS1 |
| : nullptr; |
| SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2) |
| ? &RHS2 |
| : nullptr; |
| SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2; |
| SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1; |
| SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2; |
| SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2; |
| |
| // We must detect cases where the original operations worked with 16- or |
| // 8-bit values. In such case, V2Tmp != V2 because the comparison operations |
| // must work with sign-extended values but the select operations return |
| // the original non-extended value. |
| SDValue V2TmpReg = V2Tmp; |
| if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG) |
| V2TmpReg = V2Tmp->getOperand(0); |
| |
| // Check that the registers and the constants have the correct values |
| // in both conditionals |
| if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp || |
| V2TmpReg != V2) |
| return false; |
| |
| // Figure out which conditional is saturating the lower/upper bound. |
| const SDValue *LowerCheckOp = |
| isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1) |
| ? &Op |
| : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) |
| ? &Op2 |
| : nullptr; |
| const SDValue *UpperCheckOp = |
| isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1) |
| ? &Op |
| : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) |
| ? &Op2 |
| : nullptr; |
| |
| if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp) |
| return false; |
| |
| // Check that the constant in the lower-bound check is |
| // the opposite of the constant in the upper-bound check |
| // in 1's complement. |
| int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue(); |
| int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue(); |
| int64_t PosVal = std::max(Val1, Val2); |
| int64_t NegVal = std::min(Val1, Val2); |
| |
| if (((Val1 > Val2 && UpperCheckOp == &Op) || |
| (Val1 < Val2 && UpperCheckOp == &Op2)) && |
| isPowerOf2_64(PosVal + 1)) { |
| |
| // Handle the difference between USAT (unsigned) and SSAT (signed) saturation |
| if (Val1 == ~Val2) |
| usat = false; |
| else if (NegVal == 0) |
| usat = true; |
| else |
| return false; |
| |
| V = V2; |
| K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Check if a condition of the type x < k ? k : x can be converted into a |
| // bit operation instead of conditional moves. |
| // Currently this is allowed given: |
| // - The conditions and values match up |
| // - k is 0 or -1 (all ones) |
| // This function will not check the last condition, thats up to the caller |
| // It returns true if the transformation can be made, and in such case |
| // returns x in V, and k in SatK. |
| static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V, |
| SDValue &SatK) |
| { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDValue TrueVal = Op.getOperand(2); |
| SDValue FalseVal = Op.getOperand(3); |
| |
| SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS) |
| ? &RHS |
| : nullptr; |
| |
| // No constant operation in comparison, early out |
| if (!K) |
| return false; |
| |
| SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal; |
| V = (KTmp == TrueVal) ? FalseVal : TrueVal; |
| SDValue VTmp = (K && *K == LHS) ? RHS : LHS; |
| |
| // If the constant on left and right side, or variable on left and right, |
| // does not match, early out |
| if (*K != KTmp || V != VTmp) |
| return false; |
| |
| if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) { |
| SatK = *K; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| |
| // Try to convert two saturating conditional selects into a single SSAT |
| SDValue SatValue; |
| uint64_t SatConstant; |
| bool SatUSat; |
| if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) && |
| isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) { |
| if (SatUSat) |
| return DAG.getNode(ARMISD::USAT, dl, VT, SatValue, |
| DAG.getConstant(countTrailingOnes(SatConstant), dl, VT)); |
| else |
| return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue, |
| DAG.getConstant(countTrailingOnes(SatConstant), dl, VT)); |
| } |
| |
| // Try to convert expressions of the form x < k ? k : x (and similar forms) |
| // into more efficient bit operations, which is possible when k is 0 or -1 |
| // On ARM and Thumb-2 which have flexible operand 2 this will result in |
| // single instructions. On Thumb the shift and the bit operation will be two |
| // instructions. |
| // Only allow this transformation on full-width (32-bit) operations |
| SDValue LowerSatConstant; |
| if (VT == MVT::i32 && |
| isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) { |
| SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue, |
| DAG.getConstant(31, dl, VT)); |
| if (isNullConstant(LowerSatConstant)) { |
| SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV, |
| DAG.getAllOnesConstant(dl, VT)); |
| return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV); |
| } else if (isAllOnesConstant(LowerSatConstant)) |
| return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV); |
| } |
| |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDValue TrueVal = Op.getOperand(2); |
| SDValue FalseVal = Op.getOperand(3); |
| |
| if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) { |
| DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC, |
| dl); |
| |
| // If softenSetCCOperands only returned one value, we should compare it to |
| // zero. |
| if (!RHS.getNode()) { |
| RHS = DAG.getConstant(0, dl, LHS.getValueType()); |
| CC = ISD::SETNE; |
| } |
| } |
| |
| if (LHS.getValueType() == MVT::i32) { |
| // Try to generate VSEL on ARMv8. |
| // The VSEL instruction can't use all the usual ARM condition |
| // codes: it only has two bits to select the condition code, so it's |
| // constrained to use only GE, GT, VS and EQ. |
| // |
| // To implement all the various ISD::SETXXX opcodes, we sometimes need to |
| // swap the operands of the previous compare instruction (effectively |
| // inverting the compare condition, swapping 'less' and 'greater') and |
| // sometimes need to swap the operands to the VSEL (which inverts the |
| // condition in the sense of firing whenever the previous condition didn't) |
| if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 || |
| TrueVal.getValueType() == MVT::f64)) { |
| ARMCC::CondCodes CondCode = IntCCToARMCC(CC); |
| if (CondCode == ARMCC::LT || CondCode == ARMCC::LE || |
| CondCode == ARMCC::VC || CondCode == ARMCC::NE) { |
| CC = ISD::getSetCCInverse(CC, true); |
| std::swap(TrueVal, FalseVal); |
| } |
| } |
| |
| SDValue ARMcc; |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); |
| return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); |
| } |
| |
| ARMCC::CondCodes CondCode, CondCode2; |
| bool InvalidOnQNaN; |
| FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN); |
| |
| // Normalize the fp compare. If RHS is zero we keep it there so we match |
| // CMPFPw0 instead of CMPFP. |
| if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) && |
| (TrueVal.getValueType() == MVT::f16 || |
| TrueVal.getValueType() == MVT::f32 || |
| TrueVal.getValueType() == MVT::f64)) { |
| bool swpCmpOps = false; |
| bool swpVselOps = false; |
| checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps); |
| |
| if (CondCode == ARMCC::GT || CondCode == ARMCC::GE || |
| CondCode == ARMCC::VS || CondCode == ARMCC::EQ) { |
| if (swpCmpOps) |
| std::swap(LHS, RHS); |
| if (swpVselOps) |
| std::swap(TrueVal, FalseVal); |
| } |
| } |
| |
| SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); |
| SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); |
| if (CondCode2 != ARMCC::AL) { |
| SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32); |
| // FIXME: Needs another CMP because flag can have but one use. |
| SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN); |
| Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG); |
| } |
| return Result; |
| } |
| |
| /// canChangeToInt - Given the fp compare operand, return true if it is suitable |
| /// to morph to an integer compare sequence. |
| static bool canChangeToInt(SDValue Op, bool &SeenZero, |
| const ARMSubtarget *Subtarget) { |
| SDNode *N = Op.getNode(); |
| if (!N->hasOneUse()) |
| // Otherwise it requires moving the value from fp to integer registers. |
| return false; |
| if (!N->getNumValues()) |
| return false; |
| EVT VT = Op.getValueType(); |
| if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) |
| // f32 case is generally profitable. f64 case only makes sense when vcmpe + |
| // vmrs are very slow, e.g. cortex-a8. |
| return false; |
| |
| if (isFloatingPointZero(Op)) { |
| SeenZero = true; |
| return true; |
| } |
| return ISD::isNormalLoad(N); |
| } |
| |
| static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { |
| if (isFloatingPointZero(Op)) |
| return DAG.getConstant(0, SDLoc(Op), MVT::i32); |
| |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) |
| return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(), |
| Ld->getPointerInfo(), Ld->getAlignment(), |
| Ld->getMemOperand()->getFlags()); |
| |
| llvm_unreachable("Unknown VFP cmp argument!"); |
| } |
| |
| static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, |
| SDValue &RetVal1, SDValue &RetVal2) { |
| SDLoc dl(Op); |
| |
| if (isFloatingPointZero(Op)) { |
| RetVal1 = DAG.getConstant(0, dl, MVT::i32); |
| RetVal2 = DAG.getConstant(0, dl, MVT::i32); |
| return; |
| } |
| |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) { |
| SDValue Ptr = Ld->getBasePtr(); |
| RetVal1 = |
| DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), |
| Ld->getAlignment(), Ld->getMemOperand()->getFlags()); |
| |
| EVT PtrType = Ptr.getValueType(); |
| unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); |
| SDValue NewPtr = DAG.getNode(ISD::ADD, dl, |
| PtrType, Ptr, DAG.getConstant(4, dl, PtrType)); |
| RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr, |
| Ld->getPointerInfo().getWithOffset(4), NewAlign, |
| Ld->getMemOperand()->getFlags()); |
| return; |
| } |
| |
| llvm_unreachable("Unknown VFP cmp argument!"); |
| } |
| |
| /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some |
| /// f32 and even f64 comparisons to integer ones. |
| SDValue |
| ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc dl(Op); |
| |
| bool LHSSeenZero = false; |
| bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); |
| bool RHSSeenZero = false; |
| bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); |
| if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { |
| // If unsafe fp math optimization is enabled and there are no other uses of |
| // the CMP operands, and the condition code is EQ or NE, we can optimize it |
| // to an integer comparison. |
| if (CC == ISD::SETOEQ) |
| CC = ISD::SETEQ; |
| else if (CC == ISD::SETUNE) |
| CC = ISD::SETNE; |
| |
| SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32); |
| SDValue ARMcc; |
| if (LHS.getValueType() == MVT::f32) { |
| LHS = DAG.getNode(ISD::AND, dl, MVT::i32, |
| bitcastf32Toi32(LHS, DAG), Mask); |
| RHS = DAG.getNode(ISD::AND, dl, MVT::i32, |
| bitcastf32Toi32(RHS, DAG), Mask); |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, |
| Chain, Dest, ARMcc, CCR, Cmp); |
| } |
| |
| SDValue LHS1, LHS2; |
| SDValue RHS1, RHS2; |
| expandf64Toi32(LHS, DAG, LHS1, LHS2); |
| expandf64Toi32(RHS, DAG, RHS1, RHS2); |
| LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); |
| RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); |
| ARMCC::CondCodes CondCode = IntCCToARMCC(CC); |
| ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); |
| SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; |
| return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Cond = Op.getOperand(1); |
| SDValue Dest = Op.getOperand(2); |
| SDLoc dl(Op); |
| |
| // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch |
| // instruction. |
| unsigned Opc = Cond.getOpcode(); |
| bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) && |
| !Subtarget->isThumb1Only(); |
| if (Cond.getResNo() == 1 && |
| (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || |
| Opc == ISD::USUBO || OptimizeMul)) { |
| // Only lower legal XALUO ops. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) |
| return SDValue(); |
| |
| // The actual operation with overflow check. |
| SDValue Value, OverflowCmp; |
| SDValue ARMcc; |
| std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); |
| |
| // Reverse the condition code. |
| ARMCC::CondCodes CondCode = |
| (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue(); |
| CondCode = ARMCC::getOppositeCondition(CondCode); |
| ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| |
| return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, |
| OverflowCmp); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc dl(Op); |
| |
| if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) { |
| DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC, |
| dl); |
| |
| // If softenSetCCOperands only returned one value, we should compare it to |
| // zero. |
| if (!RHS.getNode()) { |
| RHS = DAG.getConstant(0, dl, LHS.getValueType()); |
| CC = ISD::SETNE; |
| } |
| } |
| |
| // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch |
| // instruction. |
| unsigned Opc = LHS.getOpcode(); |
| bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) && |
| !Subtarget->isThumb1Only(); |
| if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) && |
| (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || |
| Opc == ISD::USUBO || OptimizeMul) && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| // Only lower legal XALUO ops. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) |
| return SDValue(); |
| |
| // The actual operation with overflow check. |
| SDValue Value, OverflowCmp; |
| SDValue ARMcc; |
| std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc); |
| |
| if ((CC == ISD::SETNE) != isOneConstant(RHS)) { |
| // Reverse the condition code. |
| ARMCC::CondCodes CondCode = |
| (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue(); |
| CondCode = ARMCC::getOppositeCondition(CondCode); |
| ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32); |
| } |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| |
| return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, |
| OverflowCmp); |
| } |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDValue ARMcc; |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, |
| Chain, Dest, ARMcc, CCR, Cmp); |
| } |
| |
| if (getTargetMachine().Options.UnsafeFPMath && |
| (CC == ISD::SETEQ || CC == ISD::SETOEQ || |
| CC == ISD::SETNE || CC == ISD::SETUNE)) { |
| if (SDValue Result = OptimizeVFPBrcond(Op, DAG)) |
| return Result; |
| } |
| |
| ARMCC::CondCodes CondCode, CondCode2; |
| bool InvalidOnQNaN; |
| FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN); |
| |
| SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); |
| SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; |
| SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); |
| if (CondCode2 != ARMCC::AL) { |
| ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32); |
| SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; |
| Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); |
| } |
| return Res; |
| } |
| |
| SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Table = Op.getOperand(1); |
| SDValue Index = Op.getOperand(2); |
| SDLoc dl(Op); |
| |
| EVT PTy = getPointerTy(DAG.getDataLayout()); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); |
| SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); |
| Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI); |
| Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy)); |
| SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index); |
| if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) { |
| // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table |
| // which does another jump to the destination. This also makes it easier |
| // to translate it to TBB / TBH later (Thumb2 only). |
| // FIXME: This might not work if the function is extremely large. |
| return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, |
| Addr, Op.getOperand(2), JTI); |
| } |
| if (isPositionIndependent() || Subtarget->isROPI()) { |
| Addr = |
| DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, |
| MachinePointerInfo::getJumpTable(DAG.getMachineFunction())); |
| Chain = Addr.getValue(1); |
| Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr); |
| return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); |
| } else { |
| Addr = |
| DAG.getLoad(PTy, dl, Chain, Addr, |
| MachinePointerInfo::getJumpTable(DAG.getMachineFunction())); |
| Chain = Addr.getValue(1); |
| return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); |
| } |
| } |
| |
| static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| |
| if (Op.getValueType().getVectorElementType() == MVT::i32) { |
| if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) |
| return Op; |
| return DAG.UnrollVectorOp(Op.getNode()); |
| } |
| |
| assert(Op.getOperand(0).getValueType() == MVT::v4f32 && |
| "Invalid type for custom lowering!"); |
| if (VT != MVT::v4i16) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); |
| } |
| |
| SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| if (VT.isVector()) |
| return LowerVectorFP_TO_INT(Op, DAG); |
| if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) { |
| RTLIB::Libcall LC; |
| if (Op.getOpcode() == ISD::FP_TO_SINT) |
| LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), |
| Op.getValueType()); |
| else |
| LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), |
| Op.getValueType()); |
| return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0), |
| /*isSigned*/ false, SDLoc(Op)).first; |
| } |
| |
| return Op; |
| } |
| |
| static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| |
| if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { |
| if (VT.getVectorElementType() == MVT::f32) |
| return Op; |
| return DAG.UnrollVectorOp(Op.getNode()); |
| } |
| |
| assert(Op.getOperand(0).getValueType() == MVT::v4i16 && |
| "Invalid type for custom lowering!"); |
| if (VT != MVT::v4f32) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| unsigned CastOpc; |
| unsigned Opc; |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Invalid opcode!"); |
| case ISD::SINT_TO_FP: |
| CastOpc = ISD::SIGN_EXTEND; |
| Opc = ISD::SINT_TO_FP; |
| break; |
| case ISD::UINT_TO_FP: |
| CastOpc = ISD::ZERO_EXTEND; |
| Opc = ISD::UINT_TO_FP; |
| break; |
| } |
| |
| Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0)); |
| return DAG.getNode(Opc, dl, VT, Op); |
| } |
| |
| SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| if (VT.isVector()) |
| return LowerVectorINT_TO_FP(Op, DAG); |
| if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) { |
| RTLIB::Libcall LC; |
| if (Op.getOpcode() == ISD::SINT_TO_FP) |
| LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), |
| Op.getValueType()); |
| else |
| LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), |
| Op.getValueType()); |
| return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0), |
| /*isSigned*/ false, SDLoc(Op)).first; |
| } |
| |
| return Op; |
| } |
| |
| SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { |
| // Implement fcopysign with a fabs and a conditional fneg. |
| SDValue Tmp0 = Op.getOperand(0); |
| SDValue Tmp1 = Op.getOperand(1); |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| EVT SrcVT = Tmp1.getValueType(); |
| bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || |
| Tmp0.getOpcode() == ARMISD::VMOVDRR; |
| bool UseNEON = !InGPR && Subtarget->hasNEON(); |
| |
| if (UseNEON) { |
| // Use VBSL to copy the sign bit. |
| unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80); |
| SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, |
| DAG.getTargetConstant(EncodedVal, dl, MVT::i32)); |
| EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; |
| if (VT == MVT::f64) |
| Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT, |
| DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), |
| DAG.getConstant(32, dl, MVT::i32)); |
| else /*if (VT == MVT::f32)*/ |
| Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); |
| if (SrcVT == MVT::f32) { |
| Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); |
| if (VT == MVT::f64) |
| Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT, |
| DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), |
| DAG.getConstant(32, dl, MVT::i32)); |
| } else if (VT == MVT::f32) |
| Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), |
| DAG.getConstant(32, dl, MVT::i32)); |
| Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); |
| Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); |
| |
| SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff), |
| dl, MVT::i32); |
| AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); |
| SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, |
| DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); |
| |
| SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, |
| DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), |
| DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); |
| if (VT == MVT::f32) { |
| Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); |
| Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, |
| DAG.getConstant(0, dl, MVT::i32)); |
| } else { |
| Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); |
| } |
| |
| return Res; |
| } |
| |
| // Bitcast operand 1 to i32. |
| if (SrcVT == MVT::f64) |
| Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), |
| Tmp1).getValue(1); |
| Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); |
| |
| // Or in the signbit with integer operations. |
| SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32); |
| SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32); |
| Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); |
| if (VT == MVT::f32) { |
| Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, |
| DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, |
| DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); |
| } |
| |
| // f64: Or the high part with signbit and then combine two parts. |
| Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), |
| Tmp0); |
| SDValue Lo = Tmp0.getValue(0); |
| SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); |
| Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); |
| return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); |
| } |
| |
| SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = DAG.getConstant(4, dl, MVT::i32); |
| return DAG.getLoad(VT, dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), |
| MachinePointerInfo()); |
| } |
| |
| // Return LR, which contains the return address. Mark it an implicit live-in. |
| unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); |
| } |
| |
| SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| const ARMBaseRegisterInfo &ARI = |
| *static_cast<const ARMBaseRegisterInfo*>(RegInfo); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); // FIXME probably not meaningful |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned FrameReg = ARI.getFrameRegister(MF); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, |
| MachinePointerInfo()); |
| return FrameAddr; |
| } |
| |
| // FIXME? Maybe this could be a TableGen attribute on some registers and |
| // this table could be generated automatically from RegInfo. |
| unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT, |
| SelectionDAG &DAG) const { |
| unsigned Reg = StringSwitch<unsigned>(RegName) |
| .Case("sp", ARM::SP) |
| .Default(0); |
| if (Reg) |
| return Reg; |
| report_fatal_error(Twine("Invalid register name \"" |
| + StringRef(RegName) + "\".")); |
| } |
| |
| // Result is 64 bit value so split into two 32 bit values and return as a |
| // pair of values. |
| static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) { |
| SDLoc DL(N); |
| |
| // This function is only supposed to be called for i64 type destination. |
| assert(N->getValueType(0) == MVT::i64 |
| && "ExpandREAD_REGISTER called for non-i64 type result."); |
| |
| SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL, |
| DAG.getVTList(MVT::i32, MVT::i32, MVT::Other), |
| N->getOperand(0), |
| N->getOperand(1)); |
| |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0), |
| Read.getValue(1))); |
| Results.push_back(Read.getOperand(0)); |
| } |
| |
| /// \p BC is a bitcast that is about to be turned into a VMOVDRR. |
| /// When \p DstVT, the destination type of \p BC, is on the vector |
| /// register bank and the source of bitcast, \p Op, operates on the same bank, |
| /// it might be possible to combine them, such that everything stays on the |
| /// vector register bank. |
| /// \p return The node that would replace \p BT, if the combine |
| /// is possible. |
| static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC, |
| SelectionDAG &DAG) { |
| SDValue Op = BC->getOperand(0); |
| EVT DstVT = BC->getValueType(0); |
| |
| // The only vector instruction that can produce a scalar (remember, |
| // since the bitcast was about to be turned into VMOVDRR, the source |
| // type is i64) from a vector is EXTRACT_VECTOR_ELT. |
| // Moreover, we can do this combine only if there is one use. |
| // Finally, if the destination type is not a vector, there is not |
| // much point on forcing everything on the vector bank. |
| if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !Op.hasOneUse()) |
| return SDValue(); |
| |
| // If the index is not constant, we will introduce an additional |
| // multiply that will stick. |
| // Give up in that case. |
| ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (!Index) |
| return SDValue(); |
| unsigned DstNumElt = DstVT.getVectorNumElements(); |
| |
| // Compute the new index. |
| const APInt &APIntIndex = Index->getAPIntValue(); |
| APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt); |
| NewIndex *= APIntIndex; |
| // Check if the new constant index fits into i32. |
| if (NewIndex.getBitWidth() > 32) |
| return SDValue(); |
| |
| // vMTy bitcast(i64 extractelt vNi64 src, i32 index) -> |
| // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M) |
| SDLoc dl(Op); |
| SDValue ExtractSrc = Op.getOperand(0); |
| EVT VecVT = EVT::getVectorVT( |
| *DAG.getContext(), DstVT.getScalarType(), |
| ExtractSrc.getValueType().getVectorNumElements() * DstNumElt); |
| SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast, |
| DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32)); |
| } |
| |
| /// ExpandBITCAST - If the target supports VFP, this function is called to |
| /// expand a bit convert where either the source or destination type is i64 to |
| /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 |
| /// operand type is illegal (e.g., v2f32 for a target that doesn't support |
| /// vectors), since the legalizer won't know what to do with that. |
| static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDLoc dl(N); |
| SDValue Op = N->getOperand(0); |
| |
| // This function is only supposed to be called for i64 types, either as the |
| // source or destination of the bit convert. |
| EVT SrcVT = Op.getValueType(); |
| EVT DstVT = N->getValueType(0); |
| const bool HasFullFP16 = Subtarget->hasFullFP16(); |
| |
| if (SrcVT == MVT::f32 && DstVT == MVT::i32) { |
| // FullFP16: half values are passed in S-registers, and we don't |
| // need any of the bitcast and moves: |
| // |
| // t2: f32,ch = CopyFromReg t0, Register:f32 %0 |
| // t5: i32 = bitcast t2 |
| // t18: f16 = ARMISD::VMOVhr t5 |
| if (Op.getOpcode() != ISD::CopyFromReg || |
| Op.getValueType() != MVT::f32) |
| return SDValue(); |
| |
| auto Move = N->use_begin(); |
| if (Move->getOpcode() != ARMISD::VMOVhr) |
| return SDValue(); |
| |
| SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; |
| SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops); |
| DAG.ReplaceAllUsesWith(*Move, &Copy); |
| return Copy; |
| } |
| |
| if (SrcVT == MVT::i16 && DstVT == MVT::f16) { |
| if (!HasFullFP16) |
| return SDValue(); |
| // SoftFP: read half-precision arguments: |
| // |
| // t2: i32,ch = ... |
| // t7: i16 = truncate t2 <~~~~ Op |
| // t8: f16 = bitcast t7 <~~~~ N |
| // |
| if (Op.getOperand(0).getValueType() == MVT::i32) |
| return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op), |
| MVT::f16, Op.getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| // Half-precision return values |
| if (SrcVT == MVT::f16 && DstVT == MVT::i16) { |
| if (!HasFullFP16) |
| return SDValue(); |
| // |
| // t11: f16 = fadd t8, t10 |
| // t12: i16 = bitcast t11 <~~~ SDNode N |
| // t13: i32 = zero_extend t12 |
| // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13 |
| // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1 |
| // |
| // transform this into: |
| // |
| // t20: i32 = ARMISD::VMOVrh t11 |
| // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20 |
| // |
| auto ZeroExtend = N->use_begin(); |
| if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND || |
| ZeroExtend->getValueType(0) != MVT::i32) |
| return SDValue(); |
| |
| auto Copy = ZeroExtend->use_begin(); |
| if (Copy->getOpcode() == ISD::CopyToReg && |
| Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) { |
| SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op); |
| DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt); |
| return Cvt; |
| } |
| return SDValue(); |
| } |
| |
| if (!(SrcVT == MVT::i64 || DstVT == MVT::i64)) |
| return SDValue(); |
| |
| // Turn i64->f64 into VMOVDRR. |
| if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { |
| // Do not force values to GPRs (this is what VMOVDRR does for the inputs) |
| // if we can combine the bitcast with its source. |
| if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG)) |
| return Val; |
| |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, |
| DAG.getConstant(0, dl, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, |
| DAG.getConstant(1, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, DstVT, |
| DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); |
| } |
| |
| // Turn f64->i64 into VMOVRRD. |
| if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { |
| SDValue Cvt; |
| if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() && |
| SrcVT.getVectorNumElements() > 1) |
| Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), |
| DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op)); |
| else |
| Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), Op); |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// getZeroVector - Returns a vector of specified type with all zero elements. |
| /// Zero vectors are used to represent vector negation and in those cases |
| /// will be implemented with the NEON VNEG instruction. However, VNEG does |
| /// not support i64 elements, so sometimes the zero vectors will need to be |
| /// explicitly constructed. Regardless, use a canonical VMOV to create the |
| /// zero vector. |
| static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) { |
| assert(VT.isVector() && "Expected a vector type"); |
| // The canonical modified immediate encoding of a zero vector is....0! |
| SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32); |
| EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; |
| SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); |
| } |
| |
| /// LowerShiftRightParts - Lower SRA_PARTS, which returns two |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount. |
| SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| SDValue ARMcc; |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| |
| assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); |
| SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); |
| SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), |
| ISD::SETGE, ARMcc, DAG, dl); |
| SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift, |
| ARMcc, CCR, CmpLo); |
| |
| SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue HiBigShift = Opc == ISD::SRA |
| ? DAG.getNode(Opc, dl, VT, ShOpHi, |
| DAG.getConstant(VTBits - 1, dl, VT)) |
| : DAG.getConstant(0, dl, VT); |
| SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), |
| ISD::SETGE, ARMcc, DAG, dl); |
| SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift, |
| ARMcc, CCR, CmpHi); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount. |
| SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| SDValue ARMcc; |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| |
| assert(Op.getOpcode() == ISD::SHL_PARTS); |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), |
| ISD::SETGE, ARMcc, DAG, dl); |
| SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift, |
| ARMcc, CCR, CmpHi); |
| |
| SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), |
| ISD::SETGE, ARMcc, DAG, dl); |
| SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, |
| DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, |
| SelectionDAG &DAG) const { |
| // The rounding mode is in bits 23:22 of the FPSCR. |
| // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 |
| // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) |
| // so that the shift + and get folded into a bitfield extract. |
| SDLoc dl(Op); |
| SDValue Ops[] = { DAG.getEntryNode(), |
| DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) }; |
| |
| SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops); |
| SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, |
| DAG.getConstant(1U << 22, dl, MVT::i32)); |
| SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, |
| DAG.getConstant(22, dl, MVT::i32)); |
| return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, |
| DAG.getConstant(3, dl, MVT::i32)); |
| } |
| |
| static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| if (VT.isVector()) { |
| assert(ST->hasNEON()); |
| |
| // Compute the least significant set bit: LSB = X & -X |
| SDValue X = N->getOperand(0); |
| SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X); |
| SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX); |
| |
| EVT ElemTy = VT.getVectorElementType(); |
| |
| if (ElemTy == MVT::i8) { |
| // Compute with: cttz(x) = ctpop(lsb - 1) |
| SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, |
| DAG.getTargetConstant(1, dl, ElemTy)); |
| SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); |
| return DAG.getNode(ISD::CTPOP, dl, VT, Bits); |
| } |
| |
| if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) && |
| (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) { |
| // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0 |
| unsigned NumBits = ElemTy.getSizeInBits(); |
| SDValue WidthMinus1 = |
| DAG.getNode(ARMISD::VMOVIMM, dl, VT, |
| DAG.getTargetConstant(NumBits - 1, dl, ElemTy)); |
| SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB); |
| return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ); |
| } |
| |
| // Compute with: cttz(x) = ctpop(lsb - 1) |
| |
| // Since we can only compute the number of bits in a byte with vcnt.8, we |
| // have to gather the result with pairwise addition (vpaddl) for i16, i32, |
| // and i64. |
| |
| // Compute LSB - 1. |
| SDValue Bits; |
| if (ElemTy == MVT::i64) { |
| // Load constant 0xffff'ffff'ffff'ffff to register. |
| SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT, |
| DAG.getTargetConstant(0x1eff, dl, MVT::i32)); |
| Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF); |
| } else { |
| SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, |
| DAG.getTargetConstant(1, dl, ElemTy)); |
| Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); |
| } |
| |
| // Count #bits with vcnt.8. |
| EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; |
| SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits); |
| SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8); |
| |
| // Gather the #bits with vpaddl (pairwise add.) |
| EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; |
| SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit, |
| DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), |
| Cnt8); |
| if (ElemTy == MVT::i16) |
| return Cnt16; |
| |
| EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32; |
| SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit, |
| DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), |
| Cnt16); |
| if (ElemTy == MVT::i32) |
| return Cnt32; |
| |
| assert(ElemTy == MVT::i64); |
| SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), |
| Cnt32); |
| return Cnt64; |
| } |
| |
| if (!ST->hasV6T2Ops()) |
| return SDValue(); |
| |
| SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0)); |
| return DAG.getNode(ISD::CTLZ, dl, VT, rbit); |
| } |
| |
| /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count |
| /// for each 16-bit element from operand, repeated. The basic idea is to |
| /// leverage vcnt to get the 8-bit counts, gather and add the results. |
| /// |
| /// Trace for v4i16: |
| /// input = [v0 v1 v2 v3 ] (vi 16-bit element) |
| /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element) |
| /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi) |
| /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6] |
| /// [b0 b1 b2 b3 b4 b5 b6 b7] |
| /// +[b1 b0 b3 b2 b5 b4 b7 b6] |
| /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0, |
| /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits) |
| static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; |
| SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0)); |
| SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0); |
| SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1); |
| SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2); |
| return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3); |
| } |
| |
| /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the |
| /// bit-count for each 16-bit element from the operand. We need slightly |
| /// different sequencing for v4i16 and v8i16 to stay within NEON's available |
| /// 64/128-bit registers. |
| /// |
| /// Trace for v4i16: |
| /// input = [v0 v1 v2 v3 ] (vi 16-bit element) |
| /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi) |
| /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ] |
| /// v4i16:Extracted = [k0 k1 k2 k3 ] |
| static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| SDValue BitCounts = getCTPOP16BitCounts(N, DAG); |
| if (VT.is64BitVector()) { |
| SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended, |
| DAG.getIntPtrConstant(0, DL)); |
| } else { |
| SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, |
| BitCounts, DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted); |
| } |
| } |
| |
| /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the |
| /// bit-count for each 32-bit element from the operand. The idea here is |
| /// to split the vector into 16-bit elements, leverage the 16-bit count |
| /// routine, and then combine the results. |
| /// |
| /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged): |
| /// input = [v0 v1 ] (vi: 32-bit elements) |
| /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1]) |
| /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi) |
| /// vrev: N0 = [k1 k0 k3 k2 ] |
| /// [k0 k1 k2 k3 ] |
| /// N1 =+[k1 k0 k3 k2 ] |
| /// [k0 k2 k1 k3 ] |
| /// N2 =+[k1 k3 k0 k2 ] |
| /// [k0 k2 k1 k3 ] |
| /// Extended =+[k1 k3 k0 k2 ] |
| /// [k0 k2 ] |
| /// Extracted=+[k1 k3 ] |
| /// |
| static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; |
| |
| SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0)); |
| SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG); |
| SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16); |
| SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0); |
| SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1); |
| |
| if (VT.is64BitVector()) { |
| SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended, |
| DAG.getIntPtrConstant(0, DL)); |
| } else { |
| SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2, |
| DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted); |
| } |
| } |
| |
| static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| |
| assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); |
| assert((VT == MVT::v2i32 || VT == MVT::v4i32 || |
| VT == MVT::v4i16 || VT == MVT::v8i16) && |
| "Unexpected type for custom ctpop lowering"); |
| |
| if (VT.getVectorElementType() == MVT::i32) |
| return lowerCTPOP32BitElements(N, DAG); |
| else |
| return lowerCTPOP16BitElements(N, DAG); |
| } |
| |
| static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| // Lower vector shifts on NEON to use VSHL. |
| assert(ST->hasNEON() && "unexpected vector shift"); |
| |
| // Left shifts translate directly to the vshiftu intrinsic. |
| if (N->getOpcode() == ISD::SHL) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl, |
| MVT::i32), |
| N->getOperand(0), N->getOperand(1)); |
| |
| assert((N->getOpcode() == ISD::SRA || |
| N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); |
| |
| // NEON uses the same intrinsics for both left and right shifts. For |
| // right shifts, the shift amounts are negative, so negate the vector of |
| // shift amounts. |
| EVT ShiftVT = N->getOperand(1).getValueType(); |
| SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, |
| getZeroVector(ShiftVT, DAG, dl), |
| N->getOperand(1)); |
| Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? |
| Intrinsic::arm_neon_vshifts : |
| Intrinsic::arm_neon_vshiftu); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(vshiftInt, dl, MVT::i32), |
| N->getOperand(0), NegatedCount); |
| } |
| |
| static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| |
| // We can get here for a node like i32 = ISD::SHL i32, i64 |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && |
| "Unknown shift to lower!"); |
| |
| // We only lower SRA, SRL of 1 here, all others use generic lowering. |
| if (!isOneConstant(N->getOperand(1))) |
| return SDValue(); |
| |
| // If we are in thumb mode, we don't have RRX. |
| if (ST->isThumb1Only()) return SDValue(); |
| |
| // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), |
| DAG.getConstant(0, dl, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), |
| DAG.getConstant(1, dl, MVT::i32)); |
| |
| // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and |
| // captures the result into a carry flag. |
| unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; |
| Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi); |
| |
| // The low part is an ARMISD::RRX operand, which shifts the carry in. |
| Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); |
| |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); |
| } |
| |
| static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { |
| SDValue TmpOp0, TmpOp1; |
| bool Invert = false; |
| bool Swap = false; |
| unsigned Opc = 0; |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue CC = Op.getOperand(2); |
| EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger(); |
| EVT VT = Op.getValueType(); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| SDLoc dl(Op); |
| |
| if (Op0.getValueType().getVectorElementType() == MVT::i64 && |
| (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) { |
| // Special-case integer 64-bit equality comparisons. They aren't legal, |
| // but they can be lowered with a few vector instructions. |
| unsigned CmpElements = CmpVT.getVectorNumElements() * 2; |
| EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements); |
| SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0); |
| SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1); |
| SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1, |
| DAG.getCondCode(ISD::SETEQ)); |
| SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp); |
| SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed); |
| Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged); |
| if (SetCCOpcode == ISD::SETNE) |
| Merged = DAG.getNOT(dl, Merged, CmpVT); |
| Merged = DAG.getSExtOrTrunc(Merged, dl, VT); |
| return Merged; |
| } |
| |
| if (CmpVT.getVectorElementType() == MVT::i64) |
| // 64-bit comparisons are not legal in general. |
| return SDValue(); |
| |
| if (Op1.getValueType().isFloatingPoint()) { |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Illegal FP comparison"); |
| case ISD::SETUNE: |
| case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH; |
| case ISD::SETOEQ: |
| case ISD::SETEQ: Opc = ARMISD::VCEQ; break; |
| case ISD::SETOLT: |
| case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETOGT: |
| case ISD::SETGT: Opc = ARMISD::VCGT; break; |
| case ISD::SETOLE: |
| case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETOGE: |
| case ISD::SETGE: Opc = ARMISD::VCGE; break; |
| case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; |
| case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; |
| case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH; |
| case ISD::SETONE: |
| // Expand this to (OLT | OGT). |
| TmpOp0 = Op0; |
| TmpOp1 = Op1; |
| Opc = ISD::OR; |
| Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0); |
| Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1); |
| break; |
| case ISD::SETUO: |
| Invert = true; |
| LLVM_FALLTHROUGH; |
| case ISD::SETO: |
| // Expand this to (OLT | OGE). |
| TmpOp0 = Op0; |
| TmpOp1 = Op1; |
| Opc = ISD::OR; |
| Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0); |
| Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1); |
| break; |
| } |
| } else { |
| // Integer comparisons. |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Illegal integer comparison"); |
| case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH; |
| case ISD::SETEQ: Opc = ARMISD::VCEQ; break; |
| case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETGT: Opc = ARMISD::VCGT; break; |
| case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETGE: Opc = ARMISD::VCGE; break; |
| case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETUGT: Opc = ARMISD::VCGTU; break; |
| case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH; |
| case ISD::SETUGE: Opc = ARMISD::VCGEU; break; |
| } |
| |
| // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). |
| if (Opc == ARMISD::VCEQ) { |
| SDValue AndOp; |
| if (ISD::isBuildVectorAllZeros(Op1.getNode())) |
| AndOp = Op0; |
| else if (ISD::isBuildVectorAllZeros(Op0.getNode())) |
| AndOp = Op1; |
| |
| // Ignore bitconvert. |
| if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) |
| AndOp = AndOp.getOperand(0); |
| |
| if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { |
| Opc = ARMISD::VTST; |
| Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0)); |
| Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1)); |
| Invert = !Invert; |
| } |
| } |
| } |
| |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| // If one of the operands is a constant vector zero, attempt to fold the |
| // comparison to a specialized compare-against-zero form. |
| SDValue SingleOp; |
| if (ISD::isBuildVectorAllZeros(Op1.getNode())) |
| SingleOp = Op0; |
| else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { |
| if (Opc == ARMISD::VCGE) |
| Opc = ARMISD::VCLEZ; |
| else if (Opc == ARMISD::VCGT) |
| Opc = ARMISD::VCLTZ; |
| SingleOp = Op1; |
| } |
| |
| SDValue Result; |
| if (SingleOp.getNode()) { |
| switch (Opc) { |
| case ARMISD::VCEQ: |
| Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break; |
| case ARMISD::VCGE: |
| Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break; |
| case ARMISD::VCLEZ: |
| Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break; |
| case ARMISD::VCGT: |
| Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break; |
| case ARMISD::VCLTZ: |
| Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break; |
| default: |
| Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1); |
| } |
| } else { |
| Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1); |
| } |
| |
| Result = DAG.getSExtOrTrunc(Result, dl, VT); |
| |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, VT); |
| |
| return Result; |
| } |
| |
| static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue Carry = Op.getOperand(2); |
| SDValue Cond = Op.getOperand(3); |
| SDLoc DL(Op); |
| |
| assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only."); |
| |
| // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we |
| // have to invert the carry first. |
| Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, |
| DAG.getConstant(1, DL, MVT::i32), Carry); |
| // This converts the boolean value carry into the carry flag. |
| Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); |
| |
| SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); |
| SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry); |
| |
| SDValue FVal = DAG.getConstant(0, DL, MVT::i32); |
| SDValue TVal = DAG.getConstant(1, DL, MVT::i32); |
| SDValue ARMcc = DAG.getConstant( |
| IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR, |
| Cmp.getValue(1), SDValue()); |
| return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc, |
| CCR, Chain.getValue(1)); |
| } |
| |
| /// isNEONModifiedImm - Check if the specified splat value corresponds to a |
| /// valid vector constant for a NEON instruction with a "modified immediate" |
| /// operand (e.g., VMOV). If so, return the encoded value. |
| static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, |
| unsigned SplatBitSize, SelectionDAG &DAG, |
| const SDLoc &dl, EVT &VT, bool is128Bits, |
| NEONModImmType type) { |
| unsigned OpCmode, Imm; |
| |
| // SplatBitSize is set to the smallest size that splats the vector, so a |
| // zero vector will always have SplatBitSize == 8. However, NEON modified |
| // immediate instructions others than VMOV do not support the 8-bit encoding |
| // of a zero vector, and the default encoding of zero is supposed to be the |
| // 32-bit version. |
| if (SplatBits == 0) |
| SplatBitSize = 32; |
| |
| switch (SplatBitSize) { |
| case 8: |
| if (type != VMOVModImm) |
| return SDValue(); |
| // Any 1-byte value is OK. Op=0, Cmode=1110. |
| assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); |
| OpCmode = 0xe; |
| Imm = SplatBits; |
| VT = is128Bits ? MVT::v16i8 : MVT::v8i8; |
| break; |
| |
| case 16: |
| // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. |
| VT = is128Bits ? MVT::v8i16 : MVT::v4i16; |
| if ((SplatBits & ~0xff) == 0) { |
| // Value = 0x00nn: Op=x, Cmode=100x. |
| OpCmode = 0x8; |
| Imm = SplatBits; |
| break; |
| } |
| if ((SplatBits & ~0xff00) == 0) { |
| // Value = 0xnn00: Op=x, Cmode=101x. |
| OpCmode = 0xa; |
| Imm = SplatBits >> 8; |
| break; |
| } |
| return SDValue(); |
| |
| case 32: |
| // NEON's 32-bit VMOV supports splat values where: |
| // * only one byte is nonzero, or |
| // * the least significant byte is 0xff and the second byte is nonzero, or |
| // * the least significant 2 bytes are 0xff and the third is nonzero. |
| VT = is128Bits ? MVT::v4i32 : MVT::v2i32; |
| if ((SplatBits & ~0xff) == 0) { |
| // Value = 0x000000nn: Op=x, Cmode=000x. |
| OpCmode = 0; |
| Imm = SplatBits; |
| break; |
| } |
| if ((SplatBits & ~0xff00) == 0) { |
| // Value = 0x0000nn00: Op=x, Cmode=001x. |
| OpCmode = 0x2; |
| Imm = SplatBits >> 8; |
| break; |
| } |
| if ((SplatBits & ~0xff0000) == 0) { |
| // Value = 0x00nn0000: Op=x, Cmode=010x. |
| OpCmode = 0x4; |
| Imm = SplatBits >> 16; |
| break; |
| } |
| if ((SplatBits & ~0xff000000) == 0) { |
| // Value = 0xnn000000: Op=x, Cmode=011x. |
| OpCmode = 0x6; |
| Imm = SplatBits >> 24; |
| break; |
| } |
| |
| // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC |
| if (type == OtherModImm) return SDValue(); |
| |
| if ((SplatBits & ~0xffff) == 0 && |
| ((SplatBits | SplatUndef) & 0xff) == 0xff) { |
| // Value = 0x0000nnff: Op=x, Cmode=1100. |
| OpCmode = 0xc; |
| Imm = SplatBits >> 8; |
| break; |
| } |
| |
| if ((SplatBits & ~0xffffff) == 0 && |
| ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { |
| // Value = 0x00nnffff: Op=x, Cmode=1101. |
| OpCmode = 0xd; |
| Imm = SplatBits >> 16; |
| break; |
| } |
| |
| // Note: there are a few 32-bit splat values (specifically: 00ffff00, |
| // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not |
| // VMOV.I32. A (very) minor optimization would be to replicate the value |
| // and fall through here to test for a valid 64-bit splat. But, then the |
| // caller would also need to check and handle the change in size. |
| return SDValue(); |
| |
| case 64: { |
| if (type != VMOVModImm) |
| return SDValue(); |
| // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. |
| uint64_t BitMask = 0xff; |
| uint64_t Val = 0; |
| unsigned ImmMask = 1; |
| Imm = 0; |
| for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { |
| if (((SplatBits | SplatUndef) & BitMask) == BitMask) { |
| Val |= BitMask; |
| Imm |= ImmMask; |
| } else if ((SplatBits & BitMask) != 0) { |
| return SDValue(); |
| } |
| BitMask <<= 8; |
| ImmMask <<= 1; |
| } |
| |
| if (DAG.getDataLayout().isBigEndian()) |
| // swap higher and lower 32 bit word |
| Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4); |
| |
| // Op=1, Cmode=1110. |
| OpCmode = 0x1e; |
| VT = is128Bits ? MVT::v2i64 : MVT::v1i64; |
| break; |
| } |
| |
| default: |
| llvm_unreachable("unexpected size for isNEONModifiedImm"); |
| } |
| |
| unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm); |
| return DAG.getTargetConstant(EncodedVal, dl, MVT::i32); |
| } |
| |
| SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) const { |
| EVT VT = Op.getValueType(); |
| bool IsDouble = (VT == MVT::f64); |
| ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op); |
| const APFloat &FPVal = CFP->getValueAPF(); |
| |
| // Prevent floating-point constants from using literal loads |
| // when execute-only is enabled. |
| if (ST->genExecuteOnly()) { |
| // If we can represent the constant as an immediate, don't lower it |
| if (isFPImmLegal(FPVal, VT)) |
| return Op; |
| // Otherwise, construct as integer, and move to float register |
| APInt INTVal = FPVal.bitcastToAPInt(); |
| SDLoc DL(CFP); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| llvm_unreachable("Unknown floating point type!"); |
| break; |
| case MVT::f64: { |
| SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32); |
| SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32); |
| if (!ST->isLittle()) |
| std::swap(Lo, Hi); |
| return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi); |
| } |
| case MVT::f32: |
| return DAG.getNode(ARMISD::VMOVSR, DL, VT, |
| DAG.getConstant(INTVal, DL, MVT::i32)); |
| } |
| } |
| |
| if (!ST->hasVFP3()) |
| return SDValue(); |
| |
| // Use the default (constant pool) lowering for double constants when we have |
| // an SP-only FPU |
| if (IsDouble && Subtarget->isFPOnlySP()) |
| return SDValue(); |
| |
| // Try splatting with a VMOV.f32... |
| int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal); |
| |
| if (ImmVal != -1) { |
| if (IsDouble || !ST->useNEONForSinglePrecisionFP()) { |
| // We have code in place to select a valid ConstantFP already, no need to |
| // do any mangling. |
| return Op; |
| } |
| |
| // It's a float and we are trying to use NEON operations where |
| // possible. Lower it to a splat followed by an extract. |
| SDLoc DL(Op); |
| SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32); |
| SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, |
| NewVal); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, |
| DAG.getConstant(0, DL, MVT::i32)); |
| } |
| |
| // The rest of our options are NEON only, make sure that's allowed before |
| // proceeding.. |
| if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP())) |
| return SDValue(); |
| |
| EVT VMovVT; |
| uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue(); |
| |
| // It wouldn't really be worth bothering for doubles except for one very |
| // important value, which does happen to match: 0.0. So make sure we don't do |
| // anything stupid. |
| if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32)) |
| return SDValue(); |
| |
| // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too). |
| SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), |
| VMovVT, false, VMOVModImm); |
| if (NewVal != SDValue()) { |
| SDLoc DL(Op); |
| SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, |
| NewVal); |
| if (IsDouble) |
| return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); |
| |
| // It's a float: cast and extract a vector element. |
| SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, |
| VecConstant); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, |
| DAG.getConstant(0, DL, MVT::i32)); |
| } |
| |
| // Finally, try a VMVN.i32 |
| NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT, |
| false, VMVNModImm); |
| if (NewVal != SDValue()) { |
| SDLoc DL(Op); |
| SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); |
| |
| if (IsDouble) |
| return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); |
| |
| // It's a float: cast and extract a vector element. |
| SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, |
| VecConstant); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, |
| DAG.getConstant(0, DL, MVT::i32)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // check if an VEXT instruction can handle the shuffle mask when the |
| // vector sources of the shuffle are the same. |
| static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // Assume that the first shuffle index is not UNDEF. Fail if it is. |
| if (M[0] < 0) |
| return false; |
| |
| Imm = M[0]; |
| |
| // If this is a VEXT shuffle, the immediate value is the index of the first |
| // element. The other shuffle indices must be the successive elements after |
| // the first one. |
| unsigned ExpectedElt = Imm; |
| for (unsigned i = 1; i < NumElts; ++i) { |
| // Increment the expected index. If it wraps around, just follow it |
| // back to index zero and keep going. |
| ++ExpectedElt; |
| if (ExpectedElt == NumElts) |
| ExpectedElt = 0; |
| |
| if (M[i] < 0) continue; // ignore UNDEF indices |
| if (ExpectedElt != static_cast<unsigned>(M[i])) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isVEXTMask(ArrayRef<int> M, EVT VT, |
| bool &ReverseVEXT, unsigned &Imm) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| ReverseVEXT = false; |
| |
| // Assume that the first shuffle index is not UNDEF. Fail if it is. |
| if (M[0] < 0) |
| return false; |
| |
| Imm = M[0]; |
| |
| // If this is a VEXT shuffle, the immediate value is the index of the first |
| // element. The other shuffle indices must be the successive elements after |
| // the first one. |
| unsigned ExpectedElt = Imm; |
| for (unsigned i = 1; i < NumElts; ++i) { |
| // Increment the expected index. If it wraps around, it may still be |
| // a VEXT but the source vectors must be swapped. |
| ExpectedElt += 1; |
| if (ExpectedElt == NumElts * 2) { |
| ExpectedElt = 0; |
| ReverseVEXT = true; |
| } |
| |
| if (M[i] < 0) continue; // ignore UNDEF indices |
| if (ExpectedElt != static_cast<unsigned>(M[i])) |
| return false; |
| } |
| |
| // Adjust the index value if the source operands will be swapped. |
| if (ReverseVEXT) |
| Imm -= NumElts; |
| |
| return true; |
| } |
| |
| /// isVREVMask - Check if a vector shuffle corresponds to a VREV |
| /// instruction with the specified blocksize. (The order of the elements |
| /// within each block of the vector is reversed.) |
| static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { |
| assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && |
| "Only possible block sizes for VREV are: 16, 32, 64"); |
| |
| unsigned EltSz = VT.getScalarSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned BlockElts = M[0] + 1; |
| // If the first shuffle index is UNDEF, be optimistic. |
| if (M[0] < 0) |
| BlockElts = BlockSize / EltSz; |
| |
| if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) |
| return false; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if (M[i] < 0) continue; // ignore UNDEF indices |
| if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isVTBLMask(ArrayRef<int> M, EVT VT) { |
| // We can handle <8 x i8> vector shuffles. If the index in the mask is out of |
| // range, then 0 is placed into the resulting vector. So pretty much any mask |
| // of 8 elements can work here. |
| return VT == MVT::v8i8 && M.size() == 8; |
| } |
| |
| static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask, |
| unsigned Index) { |
| if (Mask.size() == Elements * 2) |
| return Index / Elements; |
| return Mask[Index] == 0 ? 0 : 1; |
| } |
| |
| // Checks whether the shuffle mask represents a vector transpose (VTRN) by |
| // checking that pairs of elements in the shuffle mask represent the same index |
| // in each vector, incrementing the expected index by 2 at each step. |
| // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6] |
| // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g} |
| // v2={e,f,g,h} |
| // WhichResult gives the offset for each element in the mask based on which |
| // of the two results it belongs to. |
| // |
| // The transpose can be represented either as: |
| // result1 = shufflevector v1, v2, result1_shuffle_mask |
| // result2 = shufflevector v1, v2, result2_shuffle_mask |
| // where v1/v2 and the shuffle masks have the same number of elements |
| // (here WhichResult (see below) indicates which result is being checked) |
| // |
| // or as: |
| // results = shufflevector v1, v2, shuffle_mask |
| // where both results are returned in one vector and the shuffle mask has twice |
| // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we |
| // want to check the low half and high half of the shuffle mask as if it were |
| // the other case |
| static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned EltSz = VT.getScalarSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (M.size() != NumElts && M.size() != NumElts*2) |
| return false; |
| |
| // If the mask is twice as long as the input vector then we need to check the |
| // upper and lower parts of the mask with a matching value for WhichResult |
| // FIXME: A mask with only even values will be rejected in case the first |
| // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only |
| // M[0] is used to determine WhichResult |
| for (unsigned i = 0; i < M.size(); i += NumElts) { |
| WhichResult = SelectPairHalf(NumElts, M, i); |
| for (unsigned j = 0; j < NumElts; j += 2) { |
| if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || |
| (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult)) |
| return false; |
| } |
| } |
| |
| if (M.size() == NumElts*2) |
| WhichResult = 0; |
| |
| return true; |
| } |
| |
| /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. |
| static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ |
| unsigned EltSz = VT.getScalarSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (M.size() != NumElts && M.size() != NumElts*2) |
| return false; |
| |
| for (unsigned i = 0; i < M.size(); i += NumElts) { |
| WhichResult = SelectPairHalf(NumElts, M, i); |
| for (unsigned j = 0; j < NumElts; j += 2) { |
| if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || |
| (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult)) |
| return false; |
| } |
| } |
| |
| if (M.size() == NumElts*2) |
| WhichResult = 0; |
| |
| return true; |
| } |
| |
| // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking |
| // that the mask elements are either all even and in steps of size 2 or all odd |
| // and in steps of size 2. |
| // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6] |
| // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g} |
| // v2={e,f,g,h} |
| // Requires similar checks to that of isVTRNMask with |
| // respect the how results are returned. |
| static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned EltSz = VT.getScalarSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (M.size() != NumElts && M.size() != NumElts*2) |
| return false; |
| |
| for (unsigned i = 0; i < M.size(); i += NumElts) { |
| WhichResult = SelectPairHalf(NumElts, M, i); |
| for (unsigned j = 0; j < NumElts; ++j) { |
| if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult) |
| return false; |
| } |
| } |
| |
| if (M.size() == NumElts*2) |
| WhichResult = 0; |
| |
| // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, |
| static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ |
| unsigned EltSz = VT.getScalarSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (M.size() != NumElts && M.size() != NumElts*2) |
| return false; |
| |
| unsigned Half = NumElts / 2; |
| for (unsigned i = 0; i < M.size(); i += NumElts) { |
| WhichResult = SelectPairHalf(NumElts, M, i); |
| for (unsigned j = 0; j < NumElts; j += Half) { |
| unsigned Idx = WhichResult; |
| for (unsigned k = 0; k < Half; ++k) { |
| int MIdx = M[i + j + k]; |
| if (MIdx >= 0 && (unsigned) MIdx != Idx) |
| return false; |
| Idx += 2; |
| } |
| } |
| } |
| |
| if (M.size() == NumElts*2) |
| WhichResult = 0; |
| |
| // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| // Checks whether the shuffle mask represents a vector zip (VZIP) by checking |
| // that pairs of elements of the shufflemask represent the same index in each |
| // vector incrementing sequentially through the vectors. |
| // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5] |
| // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f} |
| // v2={e,f,g,h} |
| // Requires similar checks to that of isVTRNMask with respect the how results |
| // are returned. |
| static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned EltSz = VT.getScalarSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (M.size() != NumElts && M.size() != NumElts*2) |
| return false; |
| |
| for (unsigned i = 0; i < M.size(); i += NumElts) { |
| WhichResult = SelectPairHalf(NumElts, M, i); |
| unsigned Idx = WhichResult * NumElts / 2; |
| for (unsigned j = 0; j < NumElts; j += 2) { |
| if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || |
| (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts)) |
| return false; |
| Idx += 1; |
| } |
| } |
| |
| if (M.size() == NumElts*2) |
| WhichResult = 0; |
| |
| // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. |
| static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ |
| unsigned EltSz = VT.getScalarSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (M.size() != NumElts && M.size() != NumElts*2) |
| return false; |
| |
| for (unsigned i = 0; i < M.size(); i += NumElts) { |
| WhichResult = SelectPairHalf(NumElts, M, i); |
| unsigned Idx = WhichResult * NumElts / 2; |
| for (unsigned j = 0; j < NumElts; j += 2) { |
| if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || |
| (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx)) |
| return false; |
| Idx += 1; |
| } |
| } |
| |
| if (M.size() == NumElts*2) |
| WhichResult = 0; |
| |
| // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN), |
| /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't. |
| static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT, |
| unsigned &WhichResult, |
| bool &isV_UNDEF) { |
| isV_UNDEF = false; |
| if (isVTRNMask(ShuffleMask, VT, WhichResult)) |
| return ARMISD::VTRN; |
| if (isVUZPMask(ShuffleMask, VT, WhichResult)) |
| return ARMISD::VUZP; |
| if (isVZIPMask(ShuffleMask, VT, WhichResult)) |
| return ARMISD::VZIP; |
| |
| isV_UNDEF = true; |
| if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return ARMISD::VTRN; |
| if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return ARMISD::VUZP; |
| if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return ARMISD::VZIP; |
| |
| return 0; |
| } |
| |
| /// \return true if this is a reverse operation on an vector. |
| static bool isReverseMask(ArrayRef<int> M, EVT VT) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| // Make sure the mask has the right size. |
| if (NumElts != M.size()) |
| return false; |
| |
| // Look for <15, ..., 3, -1, 1, 0>. |
| for (unsigned i = 0; i != NumElts; ++i) |
| if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) |
| return false; |
| |
| return true; |
| } |
| |
| // If N is an integer constant that can be moved into a register in one |
| // instruction, return an SDValue of such a constant (will become a MOV |
| // instruction). Otherwise return null. |
| static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, |
| const ARMSubtarget *ST, const SDLoc &dl) { |
| uint64_t Val; |
| if (!isa<ConstantSDNode>(N)) |
| return SDValue(); |
| Val = cast<ConstantSDNode>(N)->getZExtValue(); |
| |
| if (ST->isThumb1Only()) { |
| if (Val <= 255 || ~Val <= 255) |
| return DAG.getConstant(Val, dl, MVT::i32); |
| } else { |
| if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) |
| return DAG.getConstant(Val, dl, MVT::i32); |
| } |
| return SDValue(); |
| } |
| |
| // If this is a case we can't handle, return null and let the default |
| // expansion code take care of it. |
| SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) const { |
| BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| if (SplatUndef.isAllOnesValue()) |
| return DAG.getUNDEF(VT); |
| |
| if (SplatBitSize <= 64) { |
| // Check if an immediate VMOV works. |
| EVT VmovVT; |
| SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), |
| SplatUndef.getZExtValue(), SplatBitSize, |
| DAG, dl, VmovVT, VT.is128BitVector(), |
| VMOVModImm); |
| if (Val.getNode()) { |
| SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); |
| } |
| |
| // Try an immediate VMVN. |
| uint64_t NegatedImm = (~SplatBits).getZExtValue(); |
| Val = isNEONModifiedImm(NegatedImm, |
| SplatUndef.getZExtValue(), SplatBitSize, |
| DAG, dl, VmovVT, VT.is128BitVector(), |
| VMVNModImm); |
| if (Val.getNode()) { |
| SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); |
| } |
| |
| // Use vmov.f32 to materialize other v2f32 and v4f32 splats. |
| if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { |
| int ImmVal = ARM_AM::getFP32Imm(SplatBits); |
| if (ImmVal != -1) { |
| SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32); |
| return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); |
| } |
| } |
| } |
| } |
| |
| // Scan through the operands to see if only one value is used. |
| // |
| // As an optimisation, even if more than one value is used it may be more |
| // profitable to splat with one value then change some lanes. |
| // |
| // Heuristically we decide to do this if the vector has a "dominant" value, |
| // defined as splatted to more than half of the lanes. |
| unsigned NumElts = VT.getVectorNumElements(); |
| bool isOnlyLowElement = true; |
| bool usesOnlyOneValue = true; |
| bool hasDominantValue = false; |
| bool isConstant = true; |
| |
| // Map of the number of times a particular SDValue appears in the |
| // element list. |
| DenseMap<SDValue, unsigned> ValueCounts; |
| SDValue Value; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.isUndef()) |
| continue; |
| if (i > 0) |
| isOnlyLowElement = false; |
| if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) |
| isConstant = false; |
| |
| ValueCounts.insert(std::make_pair(V, 0)); |
| unsigned &Count = ValueCounts[V]; |
| |
| // Is this value dominant? (takes up more than half of the lanes) |
| if (++Count > (NumElts / 2)) { |
| hasDominantValue = true; |
| Value = V; |
| } |
| } |
| if (ValueCounts.size() != 1) |
| usesOnlyOneValue = false; |
| if (!Value.getNode() && !ValueCounts.empty()) |
| Value = ValueCounts.begin()->first; |
| |
| if (ValueCounts.empty()) |
| return DAG.getUNDEF(VT); |
| |
| // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR. |
| // Keep going if we are hitting this case. |
| if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode())) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); |
| |
| unsigned EltSize = VT.getScalarSizeInBits(); |
| |
| // Use VDUP for non-constant splats. For f32 constant splats, reduce to |
| // i32 and try again. |
| if (hasDominantValue && EltSize <= 32) { |
| if (!isConstant) { |
| SDValue N; |
| |
| // If we are VDUPing a value that comes directly from a vector, that will |
| // cause an unnecessary move to and from a GPR, where instead we could |
| // just use VDUPLANE. We can only do this if the lane being extracted |
| // is at a constant index, as the VDUP from lane instructions only have |
| // constant-index forms. |
| ConstantSDNode *constIndex; |
| if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) { |
| // We need to create a new undef vector to use for the VDUPLANE if the |
| // size of the vector from which we get the value is different than the |
| // size of the vector that we need to create. We will insert the element |
| // such that the register coalescer will remove unnecessary copies. |
| if (VT != Value->getOperand(0).getValueType()) { |
| unsigned index = constIndex->getAPIntValue().getLimitedValue() % |
| VT.getVectorNumElements(); |
| N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, |
| DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), |
| Value, DAG.getConstant(index, dl, MVT::i32)), |
| DAG.getConstant(index, dl, MVT::i32)); |
| } else |
| N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, |
| Value->getOperand(0), Value->getOperand(1)); |
| } else |
| N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); |
| |
| if (!usesOnlyOneValue) { |
| // The dominant value was splatted as 'N', but we now have to insert |
| // all differing elements. |
| for (unsigned I = 0; I < NumElts; ++I) { |
| if (Op.getOperand(I) == Value) |
| continue; |
| SmallVector<SDValue, 3> Ops; |
| Ops.push_back(N); |
| Ops.push_back(Op.getOperand(I)); |
| Ops.push_back(DAG.getConstant(I, dl, MVT::i32)); |
| N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops); |
| } |
| } |
| return N; |
| } |
| if (VT.getVectorElementType().isFloatingPoint()) { |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumElts; ++i) |
| Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32, |
| Op.getOperand(i))); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); |
| SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); |
| Val = LowerBUILD_VECTOR(Val, DAG, ST); |
| if (Val.getNode()) |
| return DAG.getNode(ISD::BITCAST, dl, VT, Val); |
| } |
| if (usesOnlyOneValue) { |
| SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); |
| if (isConstant && Val.getNode()) |
| return DAG.getNode(ARMISD::VDUP, dl, VT, Val); |
| } |
| } |
| |
| // If all elements are constants and the case above didn't get hit, fall back |
| // to the default expansion, which will generate a load from the constant |
| // pool. |
| if (isConstant) |
| return SDValue(); |
| |
| // Empirical tests suggest this is rarely worth it for vectors of length <= 2. |
| if (NumElts >= 4) { |
| SDValue shuffle = ReconstructShuffle(Op, DAG); |
| if (shuffle != SDValue()) |
| return shuffle; |
| } |
| |
| if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) { |
| // If we haven't found an efficient lowering, try splitting a 128-bit vector |
| // into two 64-bit vectors; we might discover a better way to lower it. |
| SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts); |
| EVT ExtVT = VT.getVectorElementType(); |
| EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2); |
| SDValue Lower = |
| DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2)); |
| if (Lower.getOpcode() == ISD::BUILD_VECTOR) |
| Lower = LowerBUILD_VECTOR(Lower, DAG, ST); |
| SDValue Upper = DAG.getBuildVector( |
| HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2)); |
| if (Upper.getOpcode() == ISD::BUILD_VECTOR) |
| Upper = LowerBUILD_VECTOR(Upper, DAG, ST); |
| if (Lower && Upper) |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper); |
| } |
| |
| // Vectors with 32- or 64-bit elements can be built by directly assigning |
| // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands |
| // will be legalized. |
| if (EltSize >= 32) { |
| // Do the expansion with floating-point types, since that is what the VFP |
| // registers are defined to use, and since i64 is not legal. |
| EVT EltVT = EVT::getFloatingPointVT(EltSize); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumElts; ++i) |
| Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); |
| SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Val); |
| } |
| |
| // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we |
| // know the default expansion would otherwise fall back on something even |
| // worse. For a vector with one or two non-undef values, that's |
| // scalar_to_vector for the elements followed by a shuffle (provided the |
| // shuffle is valid for the target) and materialization element by element |
| // on the stack followed by a load for everything else. |
| if (!isConstant && !usesOnlyOneValue) { |
| SDValue Vec = DAG.getUNDEF(VT); |
| for (unsigned i = 0 ; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.isUndef()) |
| continue; |
| SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); |
| } |
| return Vec; |
| } |
| |
| return SDValue(); |
| } |
| |
| // Gather data to see if the operation can be modelled as a |
| // shuffle in combination with VEXTs. |
| SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| struct ShuffleSourceInfo { |
| SDValue Vec; |
| unsigned MinElt = std::numeric_limits<unsigned>::max(); |
| unsigned MaxElt = 0; |
| |
| // We may insert some combination of BITCASTs and VEXT nodes to force Vec to |
| // be compatible with the shuffle we intend to construct. As a result |
| // ShuffleVec will be some sliding window into the original Vec. |
| SDValue ShuffleVec; |
| |
| // Code should guarantee that element i in Vec starts at element "WindowBase |
| // + i * WindowScale in ShuffleVec". |
| int WindowBase = 0; |
| int WindowScale = 1; |
| |
| ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {} |
| |
| bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } |
| }; |
| |
| // First gather all vectors used as an immediate source for this BUILD_VECTOR |
| // node. |
| SmallVector<ShuffleSourceInfo, 2> Sources; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.isUndef()) |
| continue; |
| else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { |
| // A shuffle can only come from building a vector from various |
| // elements of other vectors. |
| return SDValue(); |
| } else if (!isa<ConstantSDNode>(V.getOperand(1))) { |
| // Furthermore, shuffles require a constant mask, whereas extractelts |
| // accept variable indices. |
| return SDValue(); |
| } |
| |
| // Add this element source to the list if it's not already there. |
| SDValue SourceVec = V.getOperand(0); |
| auto Source = llvm::find(Sources, SourceVec); |
| if (Source == Sources.end()) |
| Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); |
| |
| // Update the minimum and maximum lane number seen. |
| unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); |
| Source->MinElt = std::min(Source->MinElt, EltNo); |
| Source->MaxElt = std::max(Source->MaxElt, EltNo); |
| } |
| |
| // Currently only do something sane when at most two source vectors |
| // are involved. |
| if (Sources.size() > 2) |
| return SDValue(); |
| |
| // Find out the smallest element size among result and two sources, and use |
| // it as element size to build the shuffle_vector. |
| EVT SmallestEltTy = VT.getVectorElementType(); |
| for (auto &Source : Sources) { |
| EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); |
| if (SrcEltTy.bitsLT(SmallestEltTy)) |
| SmallestEltTy = SrcEltTy; |
| } |
| unsigned ResMultiplier = |
| VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits(); |
| NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); |
| EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); |
| |
| // If the source vector is too wide or too narrow, we may nevertheless be able |
| // to construct a compatible shuffle either by concatenating it with UNDEF or |
| // extracting a suitable range of elements. |
| for (auto &Src : Sources) { |
| EVT SrcVT = Src.ShuffleVec.getValueType(); |
| |
| if (SrcVT.getSizeInBits() == VT.getSizeInBits()) |
| continue; |
| |
| // This stage of the search produces a source with the same element type as |
| // the original, but with a total width matching the BUILD_VECTOR output. |
| EVT EltVT = SrcVT.getVectorElementType(); |
| unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); |
| EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); |
| |
| if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { |
| if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits()) |
| return SDValue(); |
| // We can pad out the smaller vector for free, so if it's part of a |
| // shuffle... |
| Src.ShuffleVec = |
| DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, |
| DAG.getUNDEF(Src.ShuffleVec.getValueType())); |
| continue; |
| } |
| |
| if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits()) |
| return SDValue(); |
| |
| if (Src.MaxElt - Src.MinElt >= NumSrcElts) { |
| // Span too large for a VEXT to cope |
| return SDValue(); |
| } |
| |
| if (Src.MinElt >= NumSrcElts) { |
| // The extraction can just take the second half |
| Src.ShuffleVec = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, |
| DAG.getConstant(NumSrcElts, dl, MVT::i32)); |
| Src.WindowBase = -NumSrcElts; |
| } else if (Src.MaxElt < NumSrcElts) { |
| // The extraction can just take the first half |
| Src.ShuffleVec = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, |
| DAG.getConstant(0, dl, MVT::i32)); |
| } else { |
| // An actual VEXT is needed |
| SDValue VEXTSrc1 = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, |
| DAG.getConstant(0, dl, MVT::i32)); |
| SDValue VEXTSrc2 = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, |
| DAG.getConstant(NumSrcElts, dl, MVT::i32)); |
| |
| Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1, |
| VEXTSrc2, |
| DAG.getConstant(Src.MinElt, dl, MVT::i32)); |
| Src.WindowBase = -Src.MinElt; |
| } |
| } |
| |
| // Another possible incompatibility occurs from the vector element types. We |
| // can fix this by bitcasting the source vectors to the same type we intend |
| // for the shuffle. |
| for (auto &Src : Sources) { |
| EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); |
| if (SrcEltTy == SmallestEltTy) |
| continue; |
| assert(ShuffleVT.getVectorElementType() == SmallestEltTy); |
| Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); |
| Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); |
| Src.WindowBase *= Src.WindowScale; |
| } |
| |
| // Final sanity check before we try to actually produce a shuffle. |
| LLVM_DEBUG(for (auto Src |
| : Sources) |
| assert(Src.ShuffleVec.getValueType() == ShuffleVT);); |
| |
| // The stars all align, our next step is to produce the mask for the shuffle. |
| SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); |
| int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); |
| for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { |
| SDValue Entry = Op.getOperand(i); |
| if (Entry.isUndef()) |
| continue; |
| |
| auto Src = llvm::find(Sources, Entry.getOperand(0)); |
| int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); |
| |
| // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit |
| // trunc. So only std::min(SrcBits, DestBits) actually get defined in this |
| // segment. |
| EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); |
| int BitsDefined = std::min(OrigEltTy.getSizeInBits(), |
| VT.getScalarSizeInBits()); |
| int LanesDefined = BitsDefined / BitsPerShuffleLane; |
| |
| // This source is expected to fill ResMultiplier lanes of the final shuffle, |
| // starting at the appropriate offset. |
| int *LaneMask = &Mask[i * ResMultiplier]; |
| |
| int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; |
| ExtractBase += NumElts * (Src - Sources.begin()); |
| for (int j = 0; j < LanesDefined; ++j) |
| LaneMask[j] = ExtractBase + j; |
| } |
| |
| // Final check before we try to produce nonsense... |
| if (!isShuffleMaskLegal(Mask, ShuffleVT)) |
| return SDValue(); |
| |
| // We can't handle more than two sources. This should have already |
| // been checked before this point. |
| assert(Sources.size() <= 2 && "Too many sources!"); |
| |
| SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; |
| for (unsigned i = 0; i < Sources.size(); ++i) |
| ShuffleOps[i] = Sources[i].ShuffleVec; |
| |
| SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], |
| ShuffleOps[1], Mask); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { |
| if (VT.getVectorNumElements() == 4 && |
| (VT.is128BitVector() || VT.is64BitVector())) { |
| unsigned PFIndexes[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (M[i] < 0) |
| PFIndexes[i] = 8; |
| else |
| PFIndexes[i] = M[i]; |
| } |
| |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = |
| PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| if (Cost <= 4) |
| return true; |
| } |
| |
| bool ReverseVEXT, isV_UNDEF; |
| unsigned Imm, WhichResult; |
| |
| unsigned EltSize = VT.getScalarSizeInBits(); |
| return (EltSize >= 32 || |
| ShuffleVectorSDNode::isSplatMask(&M[0], VT) || |
| isVREVMask(M, VT, 64) || |
| isVREVMask(M, VT, 32) || |
| isVREVMask(M, VT, 16) || |
| isVEXTMask(M, VT, ReverseVEXT, Imm) || |
| isVTBLMask(M, VT) || |
| isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) || |
| ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT))); |
| } |
| |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit |
| /// the specified operations to build the shuffle. |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, |
| SDValue RHS, SelectionDAG &DAG, |
| const SDLoc &dl) { |
| unsigned OpNum = (PFEntry >> 26) & 0x0F; |
| unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); |
| unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); |
| |
| enum { |
| OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| OP_VREV, |
| OP_VDUP0, |
| OP_VDUP1, |
| OP_VDUP2, |
| OP_VDUP3, |
| OP_VEXT1, |
| OP_VEXT2, |
| OP_VEXT3, |
| OP_VUZPL, // VUZP, left result |
| OP_VUZPR, // VUZP, right result |
| OP_VZIPL, // VZIP, left result |
| OP_VZIPR, // VZIP, right result |
| OP_VTRNL, // VTRN, left result |
| OP_VTRNR // VTRN, right result |
| }; |
| |
| if (OpNum == OP_COPY) { |
| if (LHSID == (1*9+2)*9+3) return LHS; |
| assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); |
| return RHS; |
| } |
| |
| SDValue OpLHS, OpRHS; |
| OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); |
| OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); |
| EVT VT = OpLHS.getValueType(); |
| |
| switch (OpNum) { |
| default: llvm_unreachable("Unknown shuffle opcode!"); |
| case OP_VREV: |
| // VREV divides the vector in half and swaps within the half. |
| if (VT.getVectorElementType() == MVT::i32 || |
| VT.getVectorElementType() == MVT::f32) |
| return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); |
| // vrev <4 x i16> -> VREV32 |
| if (VT.getVectorElementType() == MVT::i16) |
| return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); |
| // vrev <4 x i8> -> VREV16 |
| assert(VT.getVectorElementType() == MVT::i8); |
| return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); |
| case OP_VDUP0: |
| case OP_VDUP1: |
| case OP_VDUP2: |
| case OP_VDUP3: |
| return DAG.getNode(ARMISD::VDUPLANE, dl, VT, |
| OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32)); |
| case OP_VEXT1: |
| case OP_VEXT2: |
| case OP_VEXT3: |
| return DAG.getNode(ARMISD::VEXT, dl, VT, |
| OpLHS, OpRHS, |
| DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32)); |
| case OP_VUZPL: |
| case OP_VUZPR: |
| return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); |
| case OP_VZIPL: |
| case OP_VZIPR: |
| return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); |
| case OP_VTRNL: |
| case OP_VTRNR: |
| return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); |
| } |
| } |
| |
| static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, |
| ArrayRef<int> ShuffleMask, |
| SelectionDAG &DAG) { |
| // Check to see if we can use the VTBL instruction. |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| SDLoc DL(Op); |
| |
| SmallVector<SDValue, 8> VTBLMask; |
| for (ArrayRef<int>::iterator |
| I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) |
| VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32)); |
| |
| if (V2.getNode()->isUndef()) |
| return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, |
| DAG.getBuildVector(MVT::v8i8, DL, VTBLMask)); |
| |
| return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, |
| DAG.getBuildVector(MVT::v8i8, DL, VTBLMask)); |
| } |
| |
| static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, |
| SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| SDValue OpLHS = Op.getOperand(0); |
| EVT VT = OpLHS.getValueType(); |
| |
| assert((VT == MVT::v8i16 || VT == MVT::v16i8) && |
| "Expect an v8i16/v16i8 type"); |
| OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS); |
| // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now, |
| // extract the first 8 bytes into the top double word and the last 8 bytes |
| // into the bottom double word. The v8i16 case is similar. |
| unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4; |
| return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS, |
| DAG.getConstant(ExtractNum, DL, MVT::i32)); |
| } |
| |
| static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| |
| // Convert shuffles that are directly supported on NEON to target-specific |
| // DAG nodes, instead of keeping them as shuffles and matching them again |
| // during code selection. This is more efficient and avoids the possibility |
| // of inconsistencies between legalization and selection. |
| // FIXME: floating-point vectors should be canonicalized to integer vectors |
| // of the same time so that they get CSEd properly. |
| ArrayRef<int> ShuffleMask = SVN->getMask(); |
| |
| unsigned EltSize = VT.getScalarSizeInBits(); |
| if (EltSize <= 32) { |
| if (SVN->isSplat()) { |
| int Lane = SVN->getSplatIndex(); |
| // If this is undef splat, generate it via "just" vdup, if possible. |
| if (Lane == -1) Lane = 0; |
| |
| // Test if V1 is a SCALAR_TO_VECTOR. |
| if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); |
| } |
| // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR |
| // (and probably will turn into a SCALAR_TO_VECTOR once legalization |
| // reaches it). |
| if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && |
| !isa<ConstantSDNode>(V1.getOperand(0))) { |
| bool IsScalarToVector = true; |
| for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) |
| if (!V1.getOperand(i).isUndef()) { |
| IsScalarToVector = false; |
| break; |
| } |
| if (IsScalarToVector) |
| return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); |
| } |
| return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, |
| DAG.getConstant(Lane, dl, MVT::i32)); |
| } |
| |
| bool ReverseVEXT; |
| unsigned Imm; |
| if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { |
| if (ReverseVEXT) |
| std::swap(V1, V2); |
| return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, |
| DAG.getConstant(Imm, dl, MVT::i32)); |
| } |
| |
| if (isVREVMask(ShuffleMask, VT, 64)) |
| return DAG.getNode(ARMISD::VREV64, dl, VT, V1); |
| if (isVREVMask(ShuffleMask, VT, 32)) |
| return DAG.getNode(ARMISD::VREV32, dl, VT, V1); |
| if (isVREVMask(ShuffleMask, VT, 16)) |
| return DAG.getNode(ARMISD::VREV16, dl, VT, V1); |
| |
| if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) { |
| return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, |
| DAG.getConstant(Imm, dl, MVT::i32)); |
| } |
| |
| // Check for Neon shuffles that modify both input vectors in place. |
| // If both results are used, i.e., if there are two shuffles with the same |
| // source operands and with masks corresponding to both results of one of |
| // these operations, DAG memoization will ensure that a single node is |
| // used for both shuffles. |
| unsigned WhichResult; |
| bool isV_UNDEF; |
| if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( |
| ShuffleMask, VT, WhichResult, isV_UNDEF)) { |
| if (isV_UNDEF) |
| V2 = V1; |
| return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2) |
| .getValue(WhichResult); |
| } |
| |
| // Also check for these shuffles through CONCAT_VECTORS: we canonicalize |
| // shuffles that produce a result larger than their operands with: |
| // shuffle(concat(v1, undef), concat(v2, undef)) |
| // -> |
| // shuffle(concat(v1, v2), undef) |
| // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine). |
| // |
| // This is useful in the general case, but there are special cases where |
| // native shuffles produce larger results: the two-result ops. |
| // |
| // Look through the concat when lowering them: |
| // shuffle(concat(v1, v2), undef) |
| // -> |
| // concat(VZIP(v1, v2):0, :1) |
| // |
| if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) { |
| SDValue SubV1 = V1->getOperand(0); |
| SDValue SubV2 = V1->getOperand(1); |
| EVT SubVT = SubV1.getValueType(); |
| |
| // We expect these to have been canonicalized to -1. |
| assert(llvm::all_of(ShuffleMask, [&](int i) { |
| return i < (int)VT.getVectorNumElements(); |
| }) && "Unexpected shuffle index into UNDEF operand!"); |
| |
| if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( |
| ShuffleMask, SubVT, WhichResult, isV_UNDEF)) { |
| if (isV_UNDEF) |
| SubV2 = SubV1; |
| assert((WhichResult == 0) && |
| "In-place shuffle of concat can only have one result!"); |
| SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT), |
| SubV1, SubV2); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0), |
| Res.getValue(1)); |
| } |
| } |
| } |
| |
| // If the shuffle is not directly supported and it has 4 elements, use |
| // the PerfectShuffle-generated table to synthesize it from other shuffles. |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (NumElts == 4) { |
| unsigned PFIndexes[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (ShuffleMask[i] < 0) |
| PFIndexes[i] = 8; |
| else |
| PFIndexes[i] = ShuffleMask[i]; |
| } |
| |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = |
| PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| if (Cost <= 4) |
| return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); |
| } |
| |
| // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. |
| if (EltSize >= 32) { |
| // Do the expansion with floating-point types, since that is what the VFP |
| // registers are defined to use, and since i64 is not legal. |
| EVT EltVT = EVT::getFloatingPointVT(EltSize); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); |
| V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); |
| V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if (ShuffleMask[i] < 0) |
| Ops.push_back(DAG.getUNDEF(EltVT)); |
| else |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, |
| ShuffleMask[i] < (int)NumElts ? V1 : V2, |
| DAG.getConstant(ShuffleMask[i] & (NumElts-1), |
| dl, MVT::i32))); |
| } |
| SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Val); |
| } |
| |
| if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT)) |
| return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG); |
| |
| if (VT == MVT::v8i8) |
| if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG)) |
| return NewOp; |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { |
| // INSERT_VECTOR_ELT is legal only for immediate indexes. |
| SDValue Lane = Op.getOperand(2); |
| if (!isa<ConstantSDNode>(Lane)) |
| return SDValue(); |
| |
| return Op; |
| } |
| |
| static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { |
| // EXTRACT_VECTOR_ELT is legal only for immediate indexes. |
| SDValue Lane = Op.getOperand(1); |
| if (!isa<ConstantSDNode>(Lane)) |
| return SDValue(); |
| |
| SDValue Vec = Op.getOperand(0); |
| if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) { |
| SDLoc dl(Op); |
| return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); |
| } |
| |
| return Op; |
| } |
| |
| static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { |
| // The only time a CONCAT_VECTORS operation can have legal types is when |
| // two 64-bit vectors are concatenated to a 128-bit vector. |
| assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && |
| "unexpected CONCAT_VECTORS"); |
| SDLoc dl(Op); |
| SDValue Val = DAG.getUNDEF(MVT::v2f64); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| if (!Op0.isUndef()) |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, |
| DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), |
| DAG.getIntPtrConstant(0, dl)); |
| if (!Op1.isUndef()) |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, |
| DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), |
| DAG.getIntPtrConstant(1, dl)); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); |
| } |
| |
| /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each |
| /// element has been zero/sign-extended, depending on the isSigned parameter, |
| /// from an integer type half its size. |
| static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, |
| bool isSigned) { |
| // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { |
| SDNode *BVN = N->getOperand(0).getNode(); |
| if (BVN->getValueType(0) != MVT::v4i32 || |
| BVN->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; |
| unsigned HiElt = 1 - LoElt; |
| ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt)); |
| ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt)); |
| ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2)); |
| ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2)); |
| if (!Lo0 || !Hi0 || !Lo1 || !Hi1) |
| return false; |
| if (isSigned) { |
| if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && |
| Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) |
| return true; |
| } else { |
| if (Hi0->isNullValue() && Hi1->isNullValue()) |
| return true; |
| } |
| return false; |
| } |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDNode *Elt = N->getOperand(i).getNode(); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { |
| unsigned EltSize = VT.getScalarSizeInBits(); |
| unsigned HalfSize = EltSize / 2; |
| if (isSigned) { |
| if (!isIntN(HalfSize, C->getSExtValue())) |
| return false; |
| } else { |
| if (!isUIntN(HalfSize, C->getZExtValue())) |
| return false; |
| } |
| continue; |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isSignExtended - Check if a node is a vector value that is sign-extended |
| /// or a constant BUILD_VECTOR with sign-extended elements. |
| static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { |
| if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) |
| return true; |
| if (isExtendedBUILD_VECTOR(N, DAG, true)) |
| return true; |
| return false; |
| } |
| |
| /// isZeroExtended - Check if a node is a vector value that is zero-extended |
| /// or a constant BUILD_VECTOR with zero-extended elements. |
| static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { |
| if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) |
| return true; |
| if (isExtendedBUILD_VECTOR(N, DAG, false)) |
| return true; |
| return false; |
| } |
| |
| static EVT getExtensionTo64Bits(const EVT &OrigVT) { |
| if (OrigVT.getSizeInBits() >= 64) |
| return OrigVT; |
| |
| assert(OrigVT.isSimple() && "Expecting a simple value type"); |
| |
| MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; |
| switch (OrigSimpleTy) { |
| default: llvm_unreachable("Unexpected Vector Type"); |
| case MVT::v2i8: |
| case MVT::v2i16: |
| return MVT::v2i32; |
| case MVT::v4i8: |
| return MVT::v4i16; |
| } |
| } |
| |
| /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total |
| /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. |
| /// We insert the required extension here to get the vector to fill a D register. |
| static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, |
| const EVT &OrigTy, |
| const EVT &ExtTy, |
| unsigned ExtOpcode) { |
| // The vector originally had a size of OrigTy. It was then extended to ExtTy. |
| // We expect the ExtTy to be 128-bits total. If the OrigTy is less than |
| // 64-bits we need to insert a new extension so that it will be 64-bits. |
| assert(ExtTy.is128BitVector() && "Unexpected extension size"); |
| if (OrigTy.getSizeInBits() >= 64) |
| return N; |
| |
| // Must extend size to at least 64 bits to be used as an operand for VMULL. |
| EVT NewVT = getExtensionTo64Bits(OrigTy); |
| |
| return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); |
| } |
| |
| /// SkipLoadExtensionForVMULL - return a load of the original vector size that |
| /// does not do any sign/zero extension. If the original vector is less |
| /// than 64 bits, an appropriate extension will be added after the load to |
| /// reach a total size of 64 bits. We have to add the extension separately |
| /// because ARM does not have a sign/zero extending load for vectors. |
| static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { |
| EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT()); |
| |
| // The load already has the right type. |
| if (ExtendedTy == LD->getMemoryVT()) |
| return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(), |
| LD->getBasePtr(), LD->getPointerInfo(), |
| LD->getAlignment(), LD->getMemOperand()->getFlags()); |
| |
| // We need to create a zextload/sextload. We cannot just create a load |
| // followed by a zext/zext node because LowerMUL is also run during normal |
| // operation legalization where we can't create illegal types. |
| return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy, |
| LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), |
| LD->getMemoryVT(), LD->getAlignment(), |
| LD->getMemOperand()->getFlags()); |
| } |
| |
| /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, |
| /// extending load, or BUILD_VECTOR with extended elements, return the |
| /// unextended value. The unextended vector should be 64 bits so that it can |
| /// be used as an operand to a VMULL instruction. If the original vector size |
| /// before extension is less than 64 bits we add a an extension to resize |
| /// the vector to 64 bits. |
| static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { |
| if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) |
| return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, |
| N->getOperand(0)->getValueType(0), |
| N->getValueType(0), |
| N->getOpcode()); |
| |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) && |
| "Expected extending load"); |
| |
| SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1)); |
| unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| SDValue extLoad = |
| DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad); |
| |
| return newLoad; |
| } |
| |
| // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will |
| // have been legalized as a BITCAST from v4i32. |
| if (N->getOpcode() == ISD::BITCAST) { |
| SDNode *BVN = N->getOperand(0).getNode(); |
| assert(BVN->getOpcode() == ISD::BUILD_VECTOR && |
| BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); |
| unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; |
| return DAG.getBuildVector( |
| MVT::v2i32, SDLoc(N), |
| {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)}); |
| } |
| // Construct a new BUILD_VECTOR with elements truncated to half the size. |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); |
| EVT VT = N->getValueType(0); |
| unsigned EltSize = VT.getScalarSizeInBits() / 2; |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT TruncVT = MVT::getIntegerVT(EltSize); |
| SmallVector<SDValue, 8> Ops; |
| SDLoc dl(N); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); |
| const APInt &CInt = C->getAPIntValue(); |
| // Element types smaller than 32 bits are not legal, so use i32 elements. |
| // The values are implicitly truncated so sext vs. zext doesn't matter. |
| Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); |
| } |
| return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); |
| } |
| |
| static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { |
| unsigned Opcode = N->getOpcode(); |
| if (Opcode == ISD::ADD || Opcode == ISD::SUB) { |
| SDNode *N0 = N->getOperand(0).getNode(); |
| SDNode *N1 = N->getOperand(1).getNode(); |
| return N0->hasOneUse() && N1->hasOneUse() && |
| isSignExtended(N0, DAG) && isSignExtended(N1, DAG); |
| } |
| return false; |
| } |
| |
| static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { |
| unsigned Opcode = N->getOpcode(); |
| if (Opcode == ISD::ADD || Opcode == ISD::SUB) { |
| SDNode *N0 = N->getOperand(0).getNode(); |
| SDNode *N1 = N->getOperand(1).getNode(); |
| return N0->hasOneUse() && N1->hasOneUse() && |
| isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); |
| } |
| return false; |
| } |
| |
| static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { |
| // Multiplications are only custom-lowered for 128-bit vectors so that |
| // VMULL can be detected. Otherwise v2i64 multiplications are not legal. |
| EVT VT = Op.getValueType(); |
| assert(VT.is128BitVector() && VT.isInteger() && |
| "unexpected type for custom-lowering ISD::MUL"); |
| SDNode *N0 = Op.getOperand(0).getNode(); |
| SDNode *N1 = Op.getOperand(1).getNode(); |
| unsigned NewOpc = 0; |
| bool isMLA = false; |
| bool isN0SExt = isSignExtended(N0, DAG); |
| bool isN1SExt = isSignExtended(N1, DAG); |
| if (isN0SExt && isN1SExt) |
| NewOpc = ARMISD::VMULLs; |
| else { |
| bool isN0ZExt = isZeroExtended(N0, DAG); |
| bool isN1ZExt = isZeroExtended(N1, DAG); |
| if (isN0ZExt && isN1ZExt) |
| NewOpc = ARMISD::VMULLu; |
| else if (isN1SExt || isN1ZExt) { |
| // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these |
| // into (s/zext A * s/zext C) + (s/zext B * s/zext C) |
| if (isN1SExt && isAddSubSExt(N0, DAG)) { |
| NewOpc = ARMISD::VMULLs; |
| isMLA = true; |
| } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { |
| NewOpc = ARMISD::VMULLu; |
| isMLA = true; |
| } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { |
| std::swap(N0, N1); |
| NewOpc = ARMISD::VMULLu; |
| isMLA = true; |
| } |
| } |
| |
| if (!NewOpc) { |
| if (VT == MVT::v2i64) |
| // Fall through to expand this. It is not legal. |
| return SDValue(); |
| else |
| // Other vector multiplications are legal. |
| return Op; |
| } |
| } |
| |
| // Legalize to a VMULL instruction. |
| SDLoc DL(Op); |
| SDValue Op0; |
| SDValue Op1 = SkipExtensionForVMULL(N1, DAG); |
| if (!isMLA) { |
| Op0 = SkipExtensionForVMULL(N0, DAG); |
| assert(Op0.getValueType().is64BitVector() && |
| Op1.getValueType().is64BitVector() && |
| "unexpected types for extended operands to VMULL"); |
| return DAG.getNode(NewOpc, DL, VT, Op0, Op1); |
| } |
| |
| // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during |
| // isel lowering to take advantage of no-stall back to back vmul + vmla. |
| // vmull q0, d4, d6 |
| // vmlal q0, d5, d6 |
| // is faster than |
| // vaddl q0, d4, d5 |
| // vmovl q1, d6 |
| // vmul q0, q0, q1 |
| SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); |
| SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); |
| EVT Op1VT = Op1.getValueType(); |
| return DAG.getNode(N0->getOpcode(), DL, VT, |
| DAG.getNode(NewOpc, DL, VT, |
| DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), |
| DAG.getNode(NewOpc, DL, VT, |
| DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); |
| } |
| |
| static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl, |
| SelectionDAG &DAG) { |
| // TODO: Should this propagate fast-math-flags? |
| |
| // Convert to float |
| // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); |
| // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); |
| X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); |
| Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); |
| X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); |
| Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); |
| // Get reciprocal estimate. |
| // float4 recip = vrecpeq_f32(yf); |
| Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), |
| Y); |
| // Because char has a smaller range than uchar, we can actually get away |
| // without any newton steps. This requires that we use a weird bias |
| // of 0xb000, however (again, this has been exhaustively tested). |
| // float4 result = as_float4(as_int4(xf*recip) + 0xb000); |
| X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); |
| X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); |
| Y = DAG.getConstant(0xb000, dl, MVT::v4i32); |
| X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); |
| X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); |
| // Convert back to short. |
| X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); |
| X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); |
| return X; |
| } |
| |
| static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl, |
| SelectionDAG &DAG) { |
| // TODO: Should this propagate fast-math-flags? |
| |
| SDValue N2; |
| // Convert to float. |
| // float4 yf = vcvt_f32_s32(vmovl_s16(y)); |
| // float4 xf = vcvt_f32_s32(vmovl_s16(x)); |
| N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); |
| N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); |
| N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); |
| N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); |
| |
| // Use reciprocal estimate and one refinement step. |
| // float4 recip = vrecpeq_f32(yf); |
| // recip *= vrecpsq_f32(yf, recip); |
| N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), |
| N1); |
| N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), |
| N1, N2); |
| N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); |
| // Because short has a smaller range than ushort, we can actually get away |
| // with only a single newton step. This requires that we use a weird bias |
| // of 89, however (again, this has been exhaustively tested). |
| // float4 result = as_float4(as_int4(xf*recip) + 0x89); |
| N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); |
| N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); |
| N1 = DAG.getConstant(0x89, dl, MVT::v4i32); |
| N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); |
| N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); |
| // Convert back to integer and return. |
| // return vmovn_s32(vcvt_s32_f32(result)); |
| N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); |
| N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); |
| return N0; |
| } |
| |
| static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| assert((VT == MVT::v4i16 || VT == MVT::v8i8) && |
| "unexpected type for custom-lowering ISD::SDIV"); |
| |
| SDLoc dl(Op); |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2, N3; |
| |
| if (VT == MVT::v8i8) { |
| N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); |
| N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); |
| |
| N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, |
| DAG.getIntPtrConstant(4, dl)); |
| N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, |
| DAG.getIntPtrConstant(4, dl)); |
| N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, |
| DAG.getIntPtrConstant(0, dl)); |
| N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, |
| DAG.getIntPtrConstant(0, dl)); |
| |
| N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 |
| N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 |
| |
| N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); |
| N0 = LowerCONCAT_VECTORS(N0, DAG); |
| |
| N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); |
| return N0; |
| } |
| return LowerSDIV_v4i16(N0, N1, dl, DAG); |
| } |
| |
| static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) { |
| // TODO: Should this propagate fast-math-flags? |
| EVT VT = Op.getValueType(); |
| assert((VT == MVT::v4i16 || VT == MVT::v8i8) && |
| "unexpected type for custom-lowering ISD::UDIV"); |
| |
| SDLoc dl(Op); |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2, N3; |
| |
| if (VT == MVT::v8i8) { |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); |
| |
| N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, |
| DAG.getIntPtrConstant(4, dl)); |
| N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, |
| DAG.getIntPtrConstant(4, dl)); |
| N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, |
| DAG.getIntPtrConstant(0, dl)); |
| N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, |
| DAG.getIntPtrConstant(0, dl)); |
| |
| N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 |
| N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 |
| |
| N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); |
| N0 = LowerCONCAT_VECTORS(N0, DAG); |
| |
| N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, |
| DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl, |
| MVT::i32), |
| N0); |
| return N0; |
| } |
| |
| // v4i16 sdiv ... Convert to float. |
| // float4 yf = vcvt_f32_s32(vmovl_u16(y)); |
| // float4 xf = vcvt_f32_s32(vmovl_u16(x)); |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); |
| N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); |
| SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); |
| |
| // Use reciprocal estimate and two refinement steps. |
| // float4 recip = vrecpeq_f32(yf); |
| // recip *= vrecpsq_f32(yf, recip); |
| // recip *= vrecpsq_f32(yf, recip); |
| N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), |
| BN1); |
| N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), |
| BN1, N2); |
| N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); |
| N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), |
| BN1, N2); |
| N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); |
| // Simply multiplying by the reciprocal estimate can leave us a few ulps |
| // too low, so we add 2 ulps (exhaustive testing shows that this is enough, |
| // and that it will never cause us to return an answer too large). |
| // float4 result = as_float4(as_int4(xf*recip) + 2); |
| N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); |
| N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); |
| N1 = DAG.getConstant(2, dl, MVT::v4i32); |
| N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); |
| N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); |
| // Convert back to integer and return. |
| // return vmovn_u32(vcvt_s32_f32(result)); |
| N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); |
| N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); |
| return N0; |
| } |
| |
| static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) { |
| SDNode *N = Op.getNode(); |
| EVT VT = N->getValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| |
| SDValue Carry = Op.getOperand(2); |
| |
| SDLoc DL(Op); |
| |
| SDValue Result; |
| if (Op.getOpcode() == ISD::ADDCARRY) { |
| // This converts the boolean value carry into the carry flag. |
| Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); |
| |
| // Do the addition proper using the carry flag we wanted. |
| Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0), |
| Op.getOperand(1), Carry); |
| |
| // Now convert the carry flag into a boolean value. |
| Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG); |
| } else { |
| // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we |
| // have to invert the carry first. |
| Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, |
| DAG.getConstant(1, DL, MVT::i32), Carry); |
| // This converts the boolean value carry into the carry flag. |
| Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); |
| |
| // Do the subtraction proper using the carry flag we wanted. |
| Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0), |
| Op.getOperand(1), Carry); |
| |
| // Now convert the carry flag into a boolean value. |
| Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG); |
| // But the carry returned by ARMISD::SUBE is not a borrow as expected |
| // by ISD::SUBCARRY, so compute 1 - C. |
| Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, |
| DAG.getConstant(1, DL, MVT::i32), Carry); |
| } |
| |
| // Return both values. |
| return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry); |
| } |
| |
| SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetDarwin()); |
| |
| // For iOS, we want to call an alternative entry point: __sincos_stret, |
| // return values are passed via sret. |
| SDLoc dl(Op); |
| SDValue Arg = Op.getOperand(0); |
| EVT ArgVT = Arg.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Pair of floats / doubles used to pass the result. |
| Type *RetTy = StructType::get(ArgTy, ArgTy); |
| auto &DL = DAG.getDataLayout(); |
| |
| ArgListTy Args; |
| bool ShouldUseSRet = Subtarget->isAPCS_ABI(); |
| SDValue SRet; |
| if (ShouldUseSRet) { |
| // Create stack object for sret. |
| const uint64_t ByteSize = DL.getTypeAllocSize(RetTy); |
| const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy); |
| int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); |
| SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL)); |
| |
| ArgListEntry Entry; |
| Entry.Node = SRet; |
| Entry.Ty = RetTy->getPointerTo(); |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Entry.IsSRet = true; |
| Args.push_back(Entry); |
| RetTy = Type::getVoidTy(*DAG.getContext()); |
| } |
| |
| ArgListEntry Entry; |
| Entry.Node = Arg; |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| RTLIB::Libcall LC = |
| (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32; |
| const char *LibcallName = getLibcallName(LC); |
| CallingConv::ID CC = getLibcallCallingConv(LC); |
| SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL)); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(DAG.getEntryNode()) |
| .setCallee(CC, RetTy, Callee, std::move(Args)) |
| .setDiscardResult(ShouldUseSRet); |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| |
| if (!ShouldUseSRet) |
| return CallResult.first; |
| |
| SDValue LoadSin = |
| DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo()); |
| |
| // Address of cos field. |
| SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet, |
| DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl)); |
| SDValue LoadCos = |
| DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo()); |
| |
| SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); |
| return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, |
| LoadSin.getValue(0), LoadCos.getValue(0)); |
| } |
| |
| SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG, |
| bool Signed, |
| SDValue &Chain) const { |
| EVT VT = Op.getValueType(); |
| assert((VT == MVT::i32 || VT == MVT::i64) && |
| "unexpected type for custom lowering DIV"); |
| SDLoc dl(Op); |
| |
| const auto &DL = DAG.getDataLayout(); |
| const auto &TLI = DAG.getTargetLoweringInfo(); |
| |
| const char *Name = nullptr; |
| if (Signed) |
| Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64"; |
| else |
| Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64"; |
| |
| SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL)); |
| |
| ARMTargetLowering::ArgListTy Args; |
| |
| for (auto AI : {1, 0}) { |
| ArgListEntry Arg; |
| Arg.Node = Op.getOperand(AI); |
| Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext()); |
| Args.push_back(Arg); |
| } |
| |
| CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(Chain) |
| .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()), |
| ES, std::move(Args)); |
| |
| return LowerCallTo(CLI).first; |
| } |
| |
| SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG, |
| bool Signed) const { |
| assert(Op.getValueType() == MVT::i32 && |
| "unexpected type for custom lowering DIV"); |
| SDLoc dl(Op); |
| |
| SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, |
| DAG.getEntryNode(), Op.getOperand(1)); |
| |
| return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); |
| } |
| |
| static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) { |
| SDLoc DL(N); |
| SDValue Op = N->getOperand(1); |
| if (N->getValueType(0) == MVT::i32) |
| return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op, |
| DAG.getConstant(0, DL, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op, |
| DAG.getConstant(1, DL, MVT::i32)); |
| return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, |
| DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi)); |
| } |
| |
| void ARMTargetLowering::ExpandDIV_Windows( |
| SDValue Op, SelectionDAG &DAG, bool Signed, |
| SmallVectorImpl<SDValue> &Results) const { |
| const auto &DL = DAG.getDataLayout(); |
| const auto &TLI = DAG.getTargetLoweringInfo(); |
| |
| assert(Op.getValueType() == MVT::i64 && |
| "unexpected type for custom lowering DIV"); |
| SDLoc dl(Op); |
| |
| SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode()); |
| |
| SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); |
| |
| SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result); |
| SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result, |
| DAG.getConstant(32, dl, TLI.getPointerTy(DL))); |
| Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper); |
| |
| Results.push_back(Lower); |
| Results.push_back(Upper); |
| } |
| |
| static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { |
| if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering())) |
| // Acquire/Release load/store is not legal for targets without a dmb or |
| // equivalent available. |
| return SDValue(); |
| |
| // Monotonic load/store is legal for all targets. |
| return Op; |
| } |
| |
| static void ReplaceREADCYCLECOUNTER(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| SDLoc DL(N); |
| // Under Power Management extensions, the cycle-count is: |
| // mrc p15, #0, <Rt>, c9, c13, #0 |
| SDValue Ops[] = { N->getOperand(0), // Chain |
| DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32), |
| DAG.getConstant(15, DL, MVT::i32), |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getConstant(9, DL, MVT::i32), |
| DAG.getConstant(13, DL, MVT::i32), |
| DAG.getConstant(0, DL, MVT::i32) |
| }; |
| |
| SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, |
| DAG.getVTList(MVT::i32, MVT::Other), Ops); |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32, |
| DAG.getConstant(0, DL, MVT::i32))); |
| Results.push_back(Cycles32.getValue(1)); |
| } |
| |
| static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { |
| SDLoc dl(V.getNode()); |
| SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32); |
| SDValue VHi = DAG.getAnyExtOrTrunc( |
| DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)), |
| dl, MVT::i32); |
| bool isBigEndian = DAG.getDataLayout().isBigEndian(); |
| if (isBigEndian) |
| std::swap (VLo, VHi); |
| SDValue RegClass = |
| DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32); |
| SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32); |
| SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; |
| return SDValue( |
| DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); |
| } |
| |
| static void ReplaceCMP_SWAP_64Results(SDNode *N, |
| SmallVectorImpl<SDValue> & Results, |
| SelectionDAG &DAG) { |
| assert(N->getValueType(0) == MVT::i64 && |
| "AtomicCmpSwap on types less than 64 should be legal"); |
| SDValue Ops[] = {N->getOperand(1), |
| createGPRPairNode(DAG, N->getOperand(2)), |
| createGPRPairNode(DAG, N->getOperand(3)), |
| N->getOperand(0)}; |
| SDNode *CmpSwap = DAG.getMachineNode( |
| ARM::CMP_SWAP_64, SDLoc(N), |
| DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1); |
| MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1); |
| |
| bool isBigEndian = DAG.getDataLayout().isBigEndian(); |
| |
| Results.push_back( |
| DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0, |
| SDLoc(N), MVT::i32, SDValue(CmpSwap, 0))); |
| Results.push_back( |
| DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1, |
| SDLoc(N), MVT::i32, SDValue(CmpSwap, 0))); |
| Results.push_back(SDValue(CmpSwap, 2)); |
| } |
| |
| static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget, |
| SelectionDAG &DAG) { |
| const auto &TLI = DAG.getTargetLoweringInfo(); |
| |
| assert(Subtarget.getTargetTriple().isOSMSVCRT() && |
| "Custom lowering is MSVCRT specific!"); |
| |
| SDLoc dl(Op); |
| SDValue Val = Op.getOperand(0); |
| MVT Ty = Val->getSimpleValueType(0); |
| SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1)); |
| SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow", |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| |
| Entry.Node = Val; |
| Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext()); |
| Entry.IsZExt = true; |
| Args.push_back(Entry); |
| |
| Entry.Node = Exponent; |
| Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext()); |
| Entry.IsZExt = true; |
| Args.push_back(Entry); |
| |
| Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext()); |
| |
| // In the in-chain to the call is the entry node If we are emitting a |
| // tailcall, the chain will be mutated if the node has a non-entry input |
| // chain. |
| SDValue InChain = DAG.getEntryNode(); |
| SDValue TCChain = InChain; |
| |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && |
| F.getReturnType() == LCRTy; |
| if (IsTC) |
| InChain = TCChain; |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(InChain) |
| .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args)) |
| .setTailCall(IsTC); |
| std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI); |
| |
| // Return the chain (the DAG root) if it is a tail call |
| return !CI.second.getNode() ? DAG.getRoot() : CI.first; |
| } |
| |
| SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump()); |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Don't know how to custom lower this!"); |
| case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::BR_CC: return LowerBR_CC(Op, DAG); |
| case ISD::BR_JT: return LowerBR_JT(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); |
| case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); |
| case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); |
| case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, |
| Subtarget); |
| case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget); |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); |
| case ISD::SREM: return LowerREM(Op.getNode(), DAG); |
| case ISD::UREM: return LowerREM(Op.getNode(), DAG); |
| case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); |
| case ISD::SRL_PARTS: |
| case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget); |
| case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); |
| case ISD::SETCC: return LowerVSETCC(Op, DAG); |
| case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG); |
| case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); |
| case ISD::MUL: return LowerMUL(Op, DAG); |
| case ISD::SDIV: |
| if (Subtarget->isTargetWindows() && !Op.getValueType().isVector()) |
| return LowerDIV_Windows(Op, DAG, /* Signed */ true); |
| return LowerSDIV(Op, DAG); |
| case ISD::UDIV: |
| if (Subtarget->isTargetWindows() && !Op.getValueType().isVector()) |
| return LowerDIV_Windows(Op, DAG, /* Signed */ false); |
| return LowerUDIV(Op, DAG); |
| case ISD::ADDCARRY: |
| case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG); |
| case ISD::SADDO: |
| case ISD::SSUBO: |
| return LowerSignedALUO(Op, DAG); |
| case ISD::UADDO: |
| case ISD::USUBO: |
| return LowerUnsignedALUO(Op, DAG); |
| case ISD::ATOMIC_LOAD: |
| case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); |
| case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: return LowerDivRem(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: |
| if (Subtarget->isTargetWindows()) |
| return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| llvm_unreachable("Don't know how to custom lower this!"); |
| case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); |
| case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); |
| case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG); |
| case ARMISD::WIN__DBZCHK: return SDValue(); |
| } |
| } |
| |
| static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| unsigned Opc = 0; |
| if (IntNo == Intrinsic::arm_smlald) |
| Opc = ARMISD::SMLALD; |
| else if (IntNo == Intrinsic::arm_smlaldx) |
| Opc = ARMISD::SMLALDX; |
| else if (IntNo == Intrinsic::arm_smlsld) |
| Opc = ARMISD::SMLSLD; |
| else if (IntNo == Intrinsic::arm_smlsldx) |
| Opc = ARMISD::SMLSLDX; |
| else |
| return; |
| |
| SDLoc dl(N); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| N->getOperand(3), |
| DAG.getConstant(0, dl, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| N->getOperand(3), |
| DAG.getConstant(1, dl, MVT::i32)); |
| |
| SDValue LongMul = DAG.getNode(Opc, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), |
| N->getOperand(1), N->getOperand(2), |
| Lo, Hi); |
| Results.push_back(LongMul.getValue(0)); |
| Results.push_back(LongMul.getValue(1)); |
| } |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| void ARMTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| SDValue Res; |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Don't know how to custom expand this!"); |
| case ISD::READ_REGISTER: |
| ExpandREAD_REGISTER(N, Results, DAG); |
| break; |
| case ISD::BITCAST: |
| Res = ExpandBITCAST(N, DAG, Subtarget); |
| break; |
| case ISD::SRL: |
| case ISD::SRA: |
| Res = Expand64BitShift(N, DAG, Subtarget); |
| break; |
| case ISD::SREM: |
| case ISD::UREM: |
| Res = LowerREM(N, DAG); |
| break; |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| Res = LowerDivRem(SDValue(N, 0), DAG); |
| assert(Res.getNumOperands() == 2 && "DivRem needs two values"); |
| Results.push_back(Res.getValue(0)); |
| Results.push_back(Res.getValue(1)); |
| return; |
| case ISD::READCYCLECOUNTER: |
| ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget); |
| return; |
| case ISD::UDIV: |
| case ISD::SDIV: |
| assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows"); |
| return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV, |
| Results); |
| case ISD::ATOMIC_CMP_SWAP: |
| ReplaceCMP_SWAP_64Results(N, Results, DAG); |
| return; |
| case ISD::INTRINSIC_WO_CHAIN: |
| return ReplaceLongIntrinsic(N, Results, DAG); |
| } |
| if (Res.getNode()) |
| Results.push_back(Res); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and |
| /// registers the function context. |
| void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock *DispatchBB, |
| int FI) const { |
| assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && |
| "ROPI/RWPI not currently supported with SjLj"); |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| DebugLoc dl = MI.getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| MachineConstantPool *MCP = MF->getConstantPool(); |
| ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); |
| const Function &F = MF->getFunction(); |
| |
| bool isThumb = Subtarget->isThumb(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| |
| unsigned PCLabelId = AFI->createPICLabelUId(); |
| unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj); |
| unsigned CPI = MCP->getConstantPoolIndex(CPV, 4); |
| |
| const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass |
| : &ARM::GPRRegClass; |
| |
| // Grab constant pool and fixed stack memory operands. |
| MachineMemOperand *CPMMO = |
| MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), |
| MachineMemOperand::MOLoad, 4, 4); |
| |
| MachineMemOperand *FIMMOSt = |
| MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), |
| MachineMemOperand::MOStore, 4, 4); |
| |
| // Load the address of the dispatch MBB into the jump buffer. |
| if (isThumb2) { |
| // Incoming value: jbuf |
| // ldr.n r5, LCPI1_1 |
| // orr r5, r5, #1 |
| // add r5, pc |
| // str r5, [$jbuf, #+4] ; &jbuf[1] |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) |
| .addConstantPoolIndex(CPI) |
| .addMemOperand(CPMMO) |
| .add(predOps(ARMCC::AL)); |
| // Set the low bit because of thumb mode. |
| unsigned NewVReg2 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) |
| .addReg(NewVReg1, RegState::Kill) |
| .addImm(0x01) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) |
| .addReg(NewVReg2, RegState::Kill) |
| .addImm(PCLabelId); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) |
| .addReg(NewVReg3, RegState::Kill) |
| .addFrameIndex(FI) |
| .addImm(36) // &jbuf[1] :: pc |
| .addMemOperand(FIMMOSt) |
| .add(predOps(ARMCC::AL)); |
| } else if (isThumb) { |
| // Incoming value: jbuf |
| // ldr.n r1, LCPI1_4 |
| // add r1, pc |
| // mov r2, #1 |
| // orrs r1, r2 |
| // add r2, $jbuf, #+4 ; &jbuf[1] |
| // str r1, [r2] |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) |
| .addConstantPoolIndex(CPI) |
| .addMemOperand(CPMMO) |
| .add(predOps(ARMCC::AL)); |
| unsigned NewVReg2 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) |
| .addReg(NewVReg1, RegState::Kill) |
| .addImm(PCLabelId); |
| // Set the low bit because of thumb mode. |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addImm(1) |
| .add(predOps(ARMCC::AL)); |
| unsigned NewVReg4 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addReg(NewVReg2, RegState::Kill) |
| .addReg(NewVReg3, RegState::Kill) |
| .add(predOps(ARMCC::AL)); |
| unsigned NewVReg5 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5) |
| .addFrameIndex(FI) |
| .addImm(36); // &jbuf[1] :: pc |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) |
| .addReg(NewVReg4, RegState::Kill) |
| .addReg(NewVReg5, RegState::Kill) |
| .addImm(0) |
| .addMemOperand(FIMMOSt) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| // Incoming value: jbuf |
| // ldr r1, LCPI1_1 |
| // add r1, pc, r1 |
| // str r1, [$jbuf, #+4] ; &jbuf[1] |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) |
| .addConstantPoolIndex(CPI) |
| .addImm(0) |
| .addMemOperand(CPMMO) |
| .add(predOps(ARMCC::AL)); |
| unsigned NewVReg2 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) |
| .addReg(NewVReg1, RegState::Kill) |
| .addImm(PCLabelId) |
| .add(predOps(ARMCC::AL)); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) |
| .addReg(NewVReg2, RegState::Kill) |
| .addFrameIndex(FI) |
| .addImm(36) // &jbuf[1] :: pc |
| .addMemOperand(FIMMOSt) |
| .add(predOps(ARMCC::AL)); |
| } |
| } |
| |
| void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| DebugLoc dl = MI.getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| int FI = MFI.getFunctionContextIndex(); |
| |
| const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass |
| : &ARM::GPRnopcRegClass; |
| |
| // Get a mapping of the call site numbers to all of the landing pads they're |
| // associated with. |
| DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad; |
| unsigned MaxCSNum = 0; |
| for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; |
| ++BB) { |
| if (!BB->isEHPad()) continue; |
| |
| // FIXME: We should assert that the EH_LABEL is the first MI in the landing |
| // pad. |
| for (MachineBasicBlock::iterator |
| II = BB->begin(), IE = BB->end(); II != IE; ++II) { |
| if (!II->isEHLabel()) continue; |
| |
| MCSymbol *Sym = II->getOperand(0).getMCSymbol(); |
| if (!MF->hasCallSiteLandingPad(Sym)) continue; |
| |
| SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym); |
| for (SmallVectorImpl<unsigned>::iterator |
| CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end(); |
| CSI != CSE; ++CSI) { |
| CallSiteNumToLPad[*CSI].push_back(&*BB); |
| MaxCSNum = std::max(MaxCSNum, *CSI); |
| } |
| break; |
| } |
| } |
| |
| // Get an ordered list of the machine basic blocks for the jump table. |
| std::vector<MachineBasicBlock*> LPadList; |
| SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs; |
| LPadList.reserve(CallSiteNumToLPad.size()); |
| for (unsigned I = 1; I <= MaxCSNum; ++I) { |
| SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I]; |
| for (SmallVectorImpl<MachineBasicBlock*>::iterator |
| II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) { |
| LPadList.push_back(*II); |
| InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end()); |
| } |
| } |
| |
| assert(!LPadList.empty() && |
| "No landing pad destinations for the dispatch jump table!"); |
| |
| // Create the jump table and associated information. |
| MachineJumpTableInfo *JTI = |
| MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); |
| unsigned MJTI = JTI->createJumpTableIndex(LPadList); |
| |
| // Create the MBBs for the dispatch code. |
| |
| // Shove the dispatch's address into the return slot in the function context. |
| MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); |
| DispatchBB->setIsEHPad(); |
| |
| MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); |
| unsigned trap_opcode; |
| if (Subtarget->isThumb()) |
| trap_opcode = ARM::tTRAP; |
| else |
| trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; |
| |
| BuildMI(TrapBB, dl, TII->get(trap_opcode)); |
| DispatchBB->addSuccessor(TrapBB); |
| |
| MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); |
| DispatchBB->addSuccessor(DispContBB); |
| |
| // Insert and MBBs. |
| MF->insert(MF->end(), DispatchBB); |
| MF->insert(MF->end(), DispContBB); |
| MF->insert(MF->end(), TrapBB); |
| |
| // Insert code into the entry block that creates and registers the function |
| // context. |
| SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); |
| |
| MachineMemOperand *FIMMOLd = MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*MF, FI), |
| MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4); |
| |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); |
| |
| const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII); |
| const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); |
| |
| // Add a register mask with no preserved registers. This results in all |
| // registers being marked as clobbered. This can't work if the dispatch block |
| // is in a Thumb1 function and is linked with ARM code which uses the FP |
| // registers, as there is no way to preserve the FP registers in Thumb1 mode. |
| MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF)); |
| |
| bool IsPositionIndependent = isPositionIndependent(); |
| unsigned NumLPads = LPadList.size(); |
| if (Subtarget->isThumb2()) { |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) |
| .addFrameIndex(FI) |
| .addImm(4) |
| .addMemOperand(FIMMOLd) |
| .add(predOps(ARMCC::AL)); |
| |
| if (NumLPads < 256) { |
| BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) |
| .addReg(NewVReg1) |
| .addImm(LPadList.size()) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| unsigned VReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) |
| .addImm(NumLPads & 0xFFFF) |
| .add(predOps(ARMCC::AL)); |
| |
| unsigned VReg2 = VReg1; |
| if ((NumLPads & 0xFFFF0000) != 0) { |
| VReg2 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) |
| .addReg(VReg1) |
| .addImm(NumLPads >> 16) |
| .add(predOps(ARMCC::AL)); |
| } |
| |
| BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) |
| .addReg(NewVReg1) |
| .addReg(VReg2) |
| .add(predOps(ARMCC::AL)); |
| } |
| |
| BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) |
| .addMBB(TrapBB) |
| .addImm(ARMCC::HI) |
| .addReg(ARM::CPSR); |
| |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3) |
| .addJumpTableIndex(MJTI) |
| .add(predOps(ARMCC::AL)); |
| |
| unsigned NewVReg4 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) |
| .addReg(NewVReg3, RegState::Kill) |
| .addReg(NewVReg1) |
| .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| |
| BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) |
| .addReg(NewVReg4, RegState::Kill) |
| .addReg(NewVReg1) |
| .addJumpTableIndex(MJTI); |
| } else if (Subtarget->isThumb()) { |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) |
| .addFrameIndex(FI) |
| .addImm(1) |
| .addMemOperand(FIMMOLd) |
| .add(predOps(ARMCC::AL)); |
| |
| if (NumLPads < 256) { |
| BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) |
| .addReg(NewVReg1) |
| .addImm(NumLPads) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| MachineConstantPool *ConstantPool = MF->getConstantPool(); |
| Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); |
| const Constant *C = ConstantInt::get(Int32Ty, NumLPads); |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); |
| if (Align == 0) |
| Align = MF->getDataLayout().getTypeAllocSize(C->getType()); |
| unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); |
| |
| unsigned VReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) |
| .addReg(VReg1, RegState::Define) |
| .addConstantPoolIndex(Idx) |
| .add(predOps(ARMCC::AL)); |
| BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) |
| .addReg(NewVReg1) |
| .addReg(VReg1) |
| .add(predOps(ARMCC::AL)); |
| } |
| |
| BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) |
| .addMBB(TrapBB) |
| .addImm(ARMCC::HI) |
| .addReg(ARM::CPSR); |
| |
| unsigned NewVReg2 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addReg(NewVReg1) |
| .addImm(2) |
| .add(predOps(ARMCC::AL)); |
| |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) |
| .addJumpTableIndex(MJTI) |
| .add(predOps(ARMCC::AL)); |
| |
| unsigned NewVReg4 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addReg(NewVReg2, RegState::Kill) |
| .addReg(NewVReg3) |
| .add(predOps(ARMCC::AL)); |
| |
| MachineMemOperand *JTMMOLd = MF->getMachineMemOperand( |
| MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4); |
| |
| unsigned NewVReg5 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) |
| .addReg(NewVReg4, RegState::Kill) |
| .addImm(0) |
| .addMemOperand(JTMMOLd) |
| .add(predOps(ARMCC::AL)); |
| |
| unsigned NewVReg6 = NewVReg5; |
| if (IsPositionIndependent) { |
| NewVReg6 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addReg(NewVReg5, RegState::Kill) |
| .addReg(NewVReg3) |
| .add(predOps(ARMCC::AL)); |
| } |
| |
| BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) |
| .addReg(NewVReg6, RegState::Kill) |
| .addJumpTableIndex(MJTI); |
| } else { |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) |
| .addFrameIndex(FI) |
| .addImm(4) |
| .addMemOperand(FIMMOLd) |
| .add(predOps(ARMCC::AL)); |
| |
| if (NumLPads < 256) { |
| BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) |
| .addReg(NewVReg1) |
| .addImm(NumLPads) |
| .add(predOps(ARMCC::AL)); |
| } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { |
| unsigned VReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) |
| .addImm(NumLPads & 0xFFFF) |
| .add(predOps(ARMCC::AL)); |
| |
| unsigned VReg2 = VReg1; |
| if ((NumLPads & 0xFFFF0000) != 0) { |
| VReg2 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) |
| .addReg(VReg1) |
| .addImm(NumLPads >> 16) |
| .add(predOps(ARMCC::AL)); |
| } |
| |
| BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) |
| .addReg(NewVReg1) |
| .addReg(VReg2) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| MachineConstantPool *ConstantPool = MF->getConstantPool(); |
| Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); |
| const Constant *C = ConstantInt::get(Int32Ty, NumLPads); |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); |
| if (Align == 0) |
| Align = MF->getDataLayout().getTypeAllocSize(C->getType()); |
| unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); |
| |
| unsigned VReg1 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) |
| .addReg(VReg1, RegState::Define) |
| .addConstantPoolIndex(Idx) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)); |
| BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) |
| .addReg(NewVReg1) |
| .addReg(VReg1, RegState::Kill) |
| .add(predOps(ARMCC::AL)); |
| } |
| |
| BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) |
| .addMBB(TrapBB) |
| .addImm(ARMCC::HI) |
| .addReg(ARM::CPSR); |
| |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) |
| .addReg(NewVReg1) |
| .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| unsigned NewVReg4 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) |
| .addJumpTableIndex(MJTI) |
| .add(predOps(ARMCC::AL)); |
| |
| MachineMemOperand *JTMMOLd = MF->getMachineMemOperand( |
| MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4); |
| unsigned NewVReg5 = MRI->createVirtualRegister(TRC); |
| BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) |
| .addReg(NewVReg3, RegState::Kill) |
| .addReg(NewVReg4) |
| .addImm(0) |
| .addMemOperand(JTMMOLd) |
| .add(predOps(ARMCC::AL)); |
| |
| if (IsPositionIndependent) { |
| BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) |
| .addReg(NewVReg5, RegState::Kill) |
| .addReg(NewVReg4) |
| .addJumpTableIndex(MJTI); |
| } else { |
| BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) |
| .addReg(NewVReg5, RegState::Kill) |
| .addJumpTableIndex(MJTI); |
| } |
| } |
| |
| // Add the jump table entries as successors to the MBB. |
| SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs; |
| for (std::vector<MachineBasicBlock*>::iterator |
| I = LPadList.begin(), E = LPadList.end(); I != E; ++I) { |
| MachineBasicBlock *CurMBB = *I; |
| if (SeenMBBs.insert(CurMBB).second) |
| DispContBB->addSuccessor(CurMBB); |
| } |
| |
| // N.B. the order the invoke BBs are processed in doesn't matter here. |
| const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF); |
| SmallVector<MachineBasicBlock*, 64> MBBLPads; |
| for (MachineBasicBlock *BB : InvokeBBs) { |
| |
| // Remove the landing pad successor from the invoke block and replace it |
| // with the new dispatch block. |
| SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(), |
| BB->succ_end()); |
| while (!Successors.empty()) { |
| MachineBasicBlock *SMBB = Successors.pop_back_val(); |
| if (SMBB->isEHPad()) { |
| BB->removeSuccessor(SMBB); |
| MBBLPads.push_back(SMBB); |
| } |
| } |
| |
| BB->addSuccessor(DispatchBB, BranchProbability::getZero()); |
| BB->normalizeSuccProbs(); |
| |
| // Find the invoke call and mark all of the callee-saved registers as |
| // 'implicit defined' so that they're spilled. This prevents code from |
| // moving instructions to before the EH block, where they will never be |
| // executed. |
| for (MachineBasicBlock::reverse_iterator |
| II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { |
| if (!II->isCall()) continue; |
| |
| DenseMap<unsigned, bool> DefRegs; |
| for (MachineInstr::mop_iterator |
| OI = II->operands_begin(), OE = II->operands_end(); |
| OI != OE; ++OI) { |
| if (!OI->isReg()) continue; |
| DefRegs[OI->getReg()] = true; |
| } |
| |
| MachineInstrBuilder MIB(*MF, &*II); |
| |
| for (unsigned i = 0; SavedRegs[i] != 0; ++i) { |
| unsigned Reg = SavedRegs[i]; |
| if (Subtarget->isThumb2() && |
| !ARM::tGPRRegClass.contains(Reg) && |
| !ARM::hGPRRegClass.contains(Reg)) |
| continue; |
| if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) |
| continue; |
| if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) |
| continue; |
| if (!DefRegs[Reg]) |
| MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); |
| } |
| |
| break; |
| } |
| } |
| |
| // Mark all former landing pads as non-landing pads. The dispatch is the only |
| // landing pad now. |
| for (SmallVectorImpl<MachineBasicBlock*>::iterator |
| I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I) |
| (*I)->setIsEHPad(false); |
| |
| // The instruction is gone now. |
| MI.eraseFromParent(); |
| } |
| |
| static |
| MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { |
| for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), |
| E = MBB->succ_end(); I != E; ++I) |
| if (*I != Succ) |
| return *I; |
| llvm_unreachable("Expecting a BB with two successors!"); |
| } |
| |
| /// Return the load opcode for a given load size. If load size >= 8, |
| /// neon opcode will be returned. |
| static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) { |
| if (LdSize >= 8) |
| return LdSize == 16 ? ARM::VLD1q32wb_fixed |
| : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0; |
| if (IsThumb1) |
| return LdSize == 4 ? ARM::tLDRi |
| : LdSize == 2 ? ARM::tLDRHi |
| : LdSize == 1 ? ARM::tLDRBi : 0; |
| if (IsThumb2) |
| return LdSize == 4 ? ARM::t2LDR_POST |
| : LdSize == 2 ? ARM::t2LDRH_POST |
| : LdSize == 1 ? ARM::t2LDRB_POST : 0; |
| return LdSize == 4 ? ARM::LDR_POST_IMM |
| : LdSize == 2 ? ARM::LDRH_POST |
| : LdSize == 1 ? ARM::LDRB_POST_IMM : 0; |
| } |
| |
| /// Return the store opcode for a given store size. If store size >= 8, |
| /// neon opcode will be returned. |
| static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) { |
| if (StSize >= 8) |
| return StSize == 16 ? ARM::VST1q32wb_fixed |
| : StSize == 8 ? ARM::VST1d32wb_fixed : 0; |
| if (IsThumb1) |
| return StSize == 4 ? ARM::tSTRi |
| : StSize == 2 ? ARM::tSTRHi |
| : StSize == 1 ? ARM::tSTRBi : 0; |
| if (IsThumb2) |
| return StSize == 4 ? ARM::t2STR_POST |
| : StSize == 2 ? ARM::t2STRH_POST |
| : StSize == 1 ? ARM::t2STRB_POST : 0; |
| return StSize == 4 ? ARM::STR_POST_IMM |
| : StSize == 2 ? ARM::STRH_POST |
| : StSize == 1 ? ARM::STRB_POST_IMM : 0; |
| } |
| |
| /// Emit a post-increment load operation with given size. The instructions |
| /// will be added to BB at Pos. |
| static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos, |
| const TargetInstrInfo *TII, const DebugLoc &dl, |
| unsigned LdSize, unsigned Data, unsigned AddrIn, |
| unsigned AddrOut, bool IsThumb1, bool IsThumb2) { |
| unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2); |
| assert(LdOpc != 0 && "Should have a load opcode"); |
| if (LdSize >= 8) { |
| BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) |
| .addReg(AddrOut, RegState::Define) |
| .addReg(AddrIn) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)); |
| } else if (IsThumb1) { |
| // load + update AddrIn |
| BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) |
| .addReg(AddrIn) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)); |
| BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut) |
| .add(t1CondCodeOp()) |
| .addReg(AddrIn) |
| .addImm(LdSize) |
| .add(predOps(ARMCC::AL)); |
| } else if (IsThumb2) { |
| BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) |
| .addReg(AddrOut, RegState::Define) |
| .addReg(AddrIn) |
| .addImm(LdSize) |
| .add(predOps(ARMCC::AL)); |
| } else { // arm |
| BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) |
| .addReg(AddrOut, RegState::Define) |
| .addReg(AddrIn) |
| .addReg(0) |
| .addImm(LdSize) |
| .add(predOps(ARMCC::AL)); |
| } |
| } |
| |
| /// Emit a post-increment store operation with given size. The instructions |
| /// will be added to BB at Pos. |
| static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos, |
| const TargetInstrInfo *TII, const DebugLoc &dl, |
| unsigned StSize, unsigned Data, unsigned AddrIn, |
| unsigned AddrOut, bool IsThumb1, bool IsThumb2) { |
| unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2); |
| assert(StOpc != 0 && "Should have a store opcode"); |
| if (StSize >= 8) { |
| BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) |
| .addReg(AddrIn) |
| .addImm(0) |
| .addReg(Data) |
| .add(predOps(ARMCC::AL)); |
| } else if (IsThumb1) { |
| // store + update AddrIn |
| BuildMI(*BB, Pos, dl, TII->get(StOpc)) |
| .addReg(Data) |
| .addReg(AddrIn) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)); |
| BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut) |
| .add(t1CondCodeOp()) |
| .addReg(AddrIn) |
| .addImm(StSize) |
| .add(predOps(ARMCC::AL)); |
| } else if (IsThumb2) { |
| BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) |
| .addReg(Data) |
| .addReg(AddrIn) |
| .addImm(StSize) |
| .add(predOps(ARMCC::AL)); |
| } else { // arm |
| BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) |
| .addReg(Data) |
| .addReg(AddrIn) |
| .addReg(0) |
| .addImm(StSize) |
| .add(predOps(ARMCC::AL)); |
| } |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitStructByval(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| // This pseudo instruction has 3 operands: dst, src, size |
| // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). |
| // Otherwise, we will generate unrolled scalar copies. |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| unsigned dest = MI.getOperand(0).getReg(); |
| unsigned src = MI.getOperand(1).getReg(); |
| unsigned SizeVal = MI.getOperand(2).getImm(); |
| unsigned Align = MI.getOperand(3).getImm(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| unsigned UnitSize = 0; |
| const TargetRegisterClass *TRC = nullptr; |
| const TargetRegisterClass *VecTRC = nullptr; |
| |
| bool IsThumb1 = Subtarget->isThumb1Only(); |
| bool IsThumb2 = Subtarget->isThumb2(); |
| bool IsThumb = Subtarget->isThumb(); |
| |
| if (Align & 1) { |
| UnitSize = 1; |
| } else if (Align & 2) { |
| UnitSize = 2; |
| } else { |
| // Check whether we can use NEON instructions. |
| if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) && |
| Subtarget->hasNEON()) { |
| if ((Align % 16 == 0) && SizeVal >= 16) |
| UnitSize = 16; |
| else if ((Align % 8 == 0) && SizeVal >= 8) |
| UnitSize = 8; |
| } |
| // Can't use NEON instructions. |
| if (UnitSize == 0) |
| UnitSize = 4; |
| } |
| |
| // Select the correct opcode and register class for unit size load/store |
| bool IsNeon = UnitSize >= 8; |
| TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass; |
| if (IsNeon) |
| VecTRC = UnitSize == 16 ? &ARM::DPairRegClass |
| : UnitSize == 8 ? &ARM::DPRRegClass |
| : nullptr; |
| |
| unsigned BytesLeft = SizeVal % UnitSize; |
| unsigned LoopSize = SizeVal - BytesLeft; |
| |
| if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { |
| // Use LDR and STR to copy. |
| // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) |
| // [destOut] = STR_POST(scratch, destIn, UnitSize) |
| unsigned srcIn = src; |
| unsigned destIn = dest; |
| for (unsigned i = 0; i < LoopSize; i+=UnitSize) { |
| unsigned srcOut = MRI.createVirtualRegister(TRC); |
| unsigned destOut = MRI.createVirtualRegister(TRC); |
| unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); |
| emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut, |
| IsThumb1, IsThumb2); |
| emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut, |
| IsThumb1, IsThumb2); |
| srcIn = srcOut; |
| destIn = destOut; |
| } |
| |
| // Handle the leftover bytes with LDRB and STRB. |
| // [scratch, srcOut] = LDRB_POST(srcIn, 1) |
| // [destOut] = STRB_POST(scratch, destIn, 1) |
| for (unsigned i = 0; i < BytesLeft; i++) { |
| unsigned srcOut = MRI.createVirtualRegister(TRC); |
| unsigned destOut = MRI.createVirtualRegister(TRC); |
| unsigned scratch = MRI.createVirtualRegister(TRC); |
| emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut, |
| IsThumb1, IsThumb2); |
| emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut, |
| IsThumb1, IsThumb2); |
| srcIn = srcOut; |
| destIn = destOut; |
| } |
| MI.eraseFromParent(); // The instruction is gone now. |
| return BB; |
| } |
| |
| // Expand the pseudo op to a loop. |
| // thisMBB: |
| // ... |
| // movw varEnd, # --> with thumb2 |
| // movt varEnd, # |
| // ldrcp varEnd, idx --> without thumb2 |
| // fallthrough --> loopMBB |
| // loopMBB: |
| // PHI varPhi, varEnd, varLoop |
| // PHI srcPhi, src, srcLoop |
| // PHI destPhi, dst, destLoop |
| // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) |
| // [destLoop] = STR_POST(scratch, destPhi, UnitSize) |
| // subs varLoop, varPhi, #UnitSize |
| // bne loopMBB |
| // fallthrough --> exitMBB |
| // exitMBB: |
| // epilogue to handle left-over bytes |
| // [scratch, srcOut] = LDRB_POST(srcLoop, 1) |
| // [destOut] = STRB_POST(scratch, destLoop, 1) |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loopMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Load an immediate to varEnd. |
| unsigned varEnd = MRI.createVirtualRegister(TRC); |
| if (Subtarget->useMovt(*MF)) { |
| unsigned Vtmp = varEnd; |
| if ((LoopSize & 0xFFFF0000) != 0) |
| Vtmp = MRI.createVirtualRegister(TRC); |
| BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp) |
| .addImm(LoopSize & 0xFFFF) |
| .add(predOps(ARMCC::AL)); |
| |
| if ((LoopSize & 0xFFFF0000) != 0) |
| BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd) |
| .addReg(Vtmp) |
| .addImm(LoopSize >> 16) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| MachineConstantPool *ConstantPool = MF->getConstantPool(); |
| Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); |
| const Constant *C = ConstantInt::get(Int32Ty, LoopSize); |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); |
| if (Align == 0) |
| Align = MF->getDataLayout().getTypeAllocSize(C->getType()); |
| unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); |
| |
| if (IsThumb) |
| BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)) |
| .addReg(varEnd, RegState::Define) |
| .addConstantPoolIndex(Idx) |
| .add(predOps(ARMCC::AL)); |
| else |
| BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)) |
| .addReg(varEnd, RegState::Define) |
| .addConstantPoolIndex(Idx) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)); |
| } |
| BB->addSuccessor(loopMBB); |
| |
| // Generate the loop body: |
| // varPhi = PHI(varLoop, varEnd) |
| // srcPhi = PHI(srcLoop, src) |
| // destPhi = PHI(destLoop, dst) |
| MachineBasicBlock *entryBB = BB; |
| BB = loopMBB; |
| unsigned varLoop = MRI.createVirtualRegister(TRC); |
| unsigned varPhi = MRI.createVirtualRegister(TRC); |
| unsigned srcLoop = MRI.createVirtualRegister(TRC); |
| unsigned srcPhi = MRI.createVirtualRegister(TRC); |
| unsigned destLoop = MRI.createVirtualRegister(TRC); |
| unsigned destPhi = MRI.createVirtualRegister(TRC); |
| |
| BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) |
| .addReg(varLoop).addMBB(loopMBB) |
| .addReg(varEnd).addMBB(entryBB); |
| BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) |
| .addReg(srcLoop).addMBB(loopMBB) |
| .addReg(src).addMBB(entryBB); |
| BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) |
| .addReg(destLoop).addMBB(loopMBB) |
| .addReg(dest).addMBB(entryBB); |
| |
| // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) |
| // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) |
| unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); |
| emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop, |
| IsThumb1, IsThumb2); |
| emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop, |
| IsThumb1, IsThumb2); |
| |
| // Decrement loop variable by UnitSize. |
| if (IsThumb1) { |
| BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop) |
| .add(t1CondCodeOp()) |
| .addReg(varPhi) |
| .addImm(UnitSize) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| MachineInstrBuilder MIB = |
| BuildMI(*BB, BB->end(), dl, |
| TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); |
| MIB.addReg(varPhi) |
| .addImm(UnitSize) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| MIB->getOperand(5).setReg(ARM::CPSR); |
| MIB->getOperand(5).setIsDef(true); |
| } |
| BuildMI(*BB, BB->end(), dl, |
| TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| |
| // loopMBB can loop back to loopMBB or fall through to exitMBB. |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // Add epilogue to handle BytesLeft. |
| BB = exitMBB; |
| auto StartOfExit = exitMBB->begin(); |
| |
| // [scratch, srcOut] = LDRB_POST(srcLoop, 1) |
| // [destOut] = STRB_POST(scratch, destLoop, 1) |
| unsigned srcIn = srcLoop; |
| unsigned destIn = destLoop; |
| for (unsigned i = 0; i < BytesLeft; i++) { |
| unsigned srcOut = MRI.createVirtualRegister(TRC); |
| unsigned destOut = MRI.createVirtualRegister(TRC); |
| unsigned scratch = MRI.createVirtualRegister(TRC); |
| emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut, |
| IsThumb1, IsThumb2); |
| emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut, |
| IsThumb1, IsThumb2); |
| srcIn = srcOut; |
| destIn = destOut; |
| } |
| |
| MI.eraseFromParent(); // The instruction is gone now. |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| const TargetMachine &TM = getTargetMachine(); |
| const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| assert(Subtarget->isTargetWindows() && |
| "__chkstk is only supported on Windows"); |
| assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode"); |
| |
| // __chkstk takes the number of words to allocate on the stack in R4, and |
| // returns the stack adjustment in number of bytes in R4. This will not |
| // clober any other registers (other than the obvious lr). |
| // |
| // Although, technically, IP should be considered a register which may be |
| // clobbered, the call itself will not touch it. Windows on ARM is a pure |
| // thumb-2 environment, so there is no interworking required. As a result, we |
| // do not expect a veneer to be emitted by the linker, clobbering IP. |
| // |
| // Each module receives its own copy of __chkstk, so no import thunk is |
| // required, again, ensuring that IP is not clobbered. |
| // |
| // Finally, although some linkers may theoretically provide a trampoline for |
| // out of range calls (which is quite common due to a 32M range limitation of |
| // branches for Thumb), we can generate the long-call version via |
| // -mcmodel=large, alleviating the need for the trampoline which may clobber |
| // IP. |
| |
| switch (TM.getCodeModel()) { |
| case CodeModel::Small: |
| case CodeModel::Medium: |
| case CodeModel::Kernel: |
| BuildMI(*MBB, MI, DL, TII.get(ARM::tBL)) |
| .add(predOps(ARMCC::AL)) |
| .addExternalSymbol("__chkstk") |
| .addReg(ARM::R4, RegState::Implicit | RegState::Kill) |
| .addReg(ARM::R4, RegState::Implicit | RegState::Define) |
| .addReg(ARM::R12, |
| RegState::Implicit | RegState::Define | RegState::Dead) |
| .addReg(ARM::CPSR, |
| RegState::Implicit | RegState::Define | RegState::Dead); |
| break; |
| case CodeModel::Large: { |
| MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
| unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass); |
| |
| BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg) |
| .addExternalSymbol("__chkstk"); |
| BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr)) |
| .add(predOps(ARMCC::AL)) |
| .addReg(Reg, RegState::Kill) |
| .addReg(ARM::R4, RegState::Implicit | RegState::Kill) |
| .addReg(ARM::R4, RegState::Implicit | RegState::Define) |
| .addReg(ARM::R12, |
| RegState::Implicit | RegState::Define | RegState::Dead) |
| .addReg(ARM::CPSR, |
| RegState::Implicit | RegState::Define | RegState::Dead); |
| break; |
| } |
| } |
| |
| BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP) |
| .addReg(ARM::SP, RegState::Kill) |
| .addReg(ARM::R4, RegState::Kill) |
| .setMIFlags(MachineInstr::FrameSetup) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| |
| MI.eraseFromParent(); |
| return MBB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| |
| MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock(); |
| MF->insert(++MBB->getIterator(), ContBB); |
| ContBB->splice(ContBB->begin(), MBB, |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| ContBB->transferSuccessorsAndUpdatePHIs(MBB); |
| MBB->addSuccessor(ContBB); |
| |
| MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); |
| BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0)); |
| MF->push_back(TrapBB); |
| MBB->addSuccessor(TrapBB); |
| |
| BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8)) |
| .addReg(MI.getOperand(0).getReg()) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)); |
| BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc)) |
| .addMBB(TrapBB) |
| .addImm(ARMCC::EQ) |
| .addReg(ARM::CPSR); |
| |
| MI.eraseFromParent(); |
| return ContBB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| DebugLoc dl = MI.getDebugLoc(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| switch (MI.getOpcode()) { |
| default: { |
| MI.print(errs()); |
| llvm_unreachable("Unexpected instr type to insert"); |
| } |
| |
| // Thumb1 post-indexed loads are really just single-register LDMs. |
| case ARM::tLDR_postidx: { |
| MachineOperand Def(MI.getOperand(1)); |
| BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD)) |
| .add(Def) // Rn_wb |
| .add(MI.getOperand(2)) // Rn |
| .add(MI.getOperand(3)) // PredImm |
| .add(MI.getOperand(4)) // PredReg |
| .add(MI.getOperand(0)); // Rt |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| // The Thumb2 pre-indexed stores have the same MI operands, they just |
| // define them differently in the .td files from the isel patterns, so |
| // they need pseudos. |
| case ARM::t2STR_preidx: |
| MI.setDesc(TII->get(ARM::t2STR_PRE)); |
| return BB; |
| case ARM::t2STRB_preidx: |
| MI.setDesc(TII->get(ARM::t2STRB_PRE)); |
| return BB; |
| case ARM::t2STRH_preidx: |
| MI.setDesc(TII->get(ARM::t2STRH_PRE)); |
| return BB; |
| |
| case ARM::STRi_preidx: |
| case ARM::STRBi_preidx: { |
| unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM |
| : ARM::STRB_PRE_IMM; |
| // Decode the offset. |
| unsigned Offset = MI.getOperand(4).getImm(); |
| bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; |
| Offset = ARM_AM::getAM2Offset(Offset); |
| if (isSub) |
| Offset = -Offset; |
| |
| MachineMemOperand *MMO = *MI.memoperands_begin(); |
| BuildMI(*BB, MI, dl, TII->get(NewOpc)) |
| .add(MI.getOperand(0)) // Rn_wb |
| .add(MI.getOperand(1)) // Rt |
| .add(MI.getOperand(2)) // Rn |
| .addImm(Offset) // offset (skip GPR==zero_reg) |
| .add(MI.getOperand(5)) // pred |
| .add(MI.getOperand(6)) |
| .addMemOperand(MMO); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case ARM::STRr_preidx: |
| case ARM::STRBr_preidx: |
| case ARM::STRH_preidx: { |
| unsigned NewOpc; |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; |
| case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; |
| case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; |
| } |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); |
| for (unsigned i = 0; i < MI.getNumOperands(); ++i) |
| MIB.add(MI.getOperand(i)); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| case ARM::tMOVCCr_pseudo: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| BuildMI(BB, dl, TII->get(ARM::tBcc)) |
| .addMBB(sinkMBB) |
| .addImm(MI.getOperand(3).getImm()) |
| .addReg(MI.getOperand(4).getReg()); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg()) |
| .addReg(MI.getOperand(1).getReg()) |
| .addMBB(copy0MBB) |
| .addReg(MI.getOperand(2).getReg()) |
| .addMBB(thisMBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case ARM::BCCi64: |
| case ARM::BCCZi64: { |
| // If there is an unconditional branch to the other successor, remove it. |
| BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| |
| // Compare both parts that make up the double comparison separately for |
| // equality. |
| bool RHSisZero = MI.getOpcode() == ARM::BCCZi64; |
| |
| unsigned LHS1 = MI.getOperand(1).getReg(); |
| unsigned LHS2 = MI.getOperand(2).getReg(); |
| if (RHSisZero) { |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(LHS1) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(LHS2).addImm(0) |
| .addImm(ARMCC::EQ).addReg(ARM::CPSR); |
| } else { |
| unsigned RHS1 = MI.getOperand(3).getReg(); |
| unsigned RHS2 = MI.getOperand(4).getReg(); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) |
| .addReg(LHS1) |
| .addReg(RHS1) |
| .add(predOps(ARMCC::AL)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) |
| .addReg(LHS2).addReg(RHS2) |
| .addImm(ARMCC::EQ).addReg(ARM::CPSR); |
| } |
| |
| MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB(); |
| MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); |
| if (MI.getOperand(0).getImm() == ARMCC::NE) |
| std::swap(destMBB, exitMBB); |
| |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); |
| if (isThumb2) |
| BuildMI(BB, dl, TII->get(ARM::t2B)) |
| .addMBB(exitMBB) |
| .add(predOps(ARMCC::AL)); |
| else |
| BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case ARM::Int_eh_sjlj_setjmp: |
| case ARM::Int_eh_sjlj_setjmp_nofp: |
| case ARM::tInt_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp_nofp: |
| return BB; |
| |
| case ARM::Int_eh_sjlj_setup_dispatch: |
| EmitSjLjDispatchBlock(MI, BB); |
| return BB; |
| |
| case ARM::ABS: |
| case ARM::t2ABS: { |
| // To insert an ABS instruction, we have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // source vreg to test against 0, the destination vreg to set, |
| // the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| // It transforms |
| // V1 = ABS V0 |
| // into |
| // V2 = MOVS V0 |
| // BCC (branch to SinkBB if V0 >= 0) |
| // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) |
| // SinkBB: V1 = PHI(V2, V3) |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator BBI = ++BB->getIterator(); |
| MachineFunction *Fn = BB->getParent(); |
| MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); |
| Fn->insert(BBI, RSBBB); |
| Fn->insert(BBI, SinkBB); |
| |
| unsigned int ABSSrcReg = MI.getOperand(1).getReg(); |
| unsigned int ABSDstReg = MI.getOperand(0).getReg(); |
| bool ABSSrcKIll = MI.getOperand(1).isKill(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| MachineRegisterInfo &MRI = Fn->getRegInfo(); |
| // In Thumb mode S must not be specified if source register is the SP or |
| // PC and if destination register is the SP, so restrict register class |
| unsigned NewRsbDstReg = |
| MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| SinkBB->splice(SinkBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| SinkBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(RSBBB); |
| BB->addSuccessor(SinkBB); |
| |
| // fall through to SinkMBB |
| RSBBB->addSuccessor(SinkBB); |
| |
| // insert a cmp at the end of BB |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(ABSSrcReg) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)); |
| |
| // insert a bcc with opposite CC to ARMCC::MI at the end of BB |
| BuildMI(BB, dl, |
| TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) |
| .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); |
| |
| // insert rsbri in RSBBB |
| // Note: BCC and rsbri will be converted into predicated rsbmi |
| // by if-conversion pass |
| BuildMI(*RSBBB, RSBBB->begin(), dl, |
| TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) |
| .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0) |
| .addImm(0) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| |
| // insert PHI in SinkBB, |
| // reuse ABSDstReg to not change uses of ABS instruction |
| BuildMI(*SinkBB, SinkBB->begin(), dl, |
| TII->get(ARM::PHI), ABSDstReg) |
| .addReg(NewRsbDstReg).addMBB(RSBBB) |
| .addReg(ABSSrcReg).addMBB(BB); |
| |
| // remove ABS instruction |
| MI.eraseFromParent(); |
| |
| // return last added BB |
| return SinkBB; |
| } |
| case ARM::COPY_STRUCT_BYVAL_I32: |
| ++NumLoopByVals; |
| return EmitStructByval(MI, BB); |
| case ARM::WIN__CHKSTK: |
| return EmitLowered__chkstk(MI, BB); |
| case ARM::WIN__DBZCHK: |
| return EmitLowered__dbzchk(MI, BB); |
| } |
| } |
| |
| /// Attaches vregs to MEMCPY that it will use as scratch registers |
| /// when it is expanded into LDM/STM. This is done as a post-isel lowering |
| /// instead of as a custom inserter because we need the use list from the SDNode. |
| static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget, |
| MachineInstr &MI, const SDNode *Node) { |
| bool isThumb1 = Subtarget->isThumb1Only(); |
| |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| MachineInstrBuilder MIB(*MF, MI); |
| |
| // If the new dst/src is unused mark it as dead. |
| if (!Node->hasAnyUseOfValue(0)) { |
| MI.getOperand(0).setIsDead(true); |
| } |
| if (!Node->hasAnyUseOfValue(1)) { |
| MI.getOperand(1).setIsDead(true); |
| } |
| |
| // The MEMCPY both defines and kills the scratch registers. |
| for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) { |
| unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass |
| : &ARM::GPRRegClass); |
| MIB.addReg(TmpReg, RegState::Define|RegState::Dead); |
| } |
| } |
| |
| void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
| SDNode *Node) const { |
| if (MI.getOpcode() == ARM::MEMCPY) { |
| attachMEMCPYScratchRegs(Subtarget, MI, Node); |
| return; |
| } |
| |
| const MCInstrDesc *MCID = &MI.getDesc(); |
| // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, |
| // RSC. Coming out of isel, they have an implicit CPSR def, but the optional |
| // operand is still set to noreg. If needed, set the optional operand's |
| // register to CPSR, and remove the redundant implicit def. |
| // |
| // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR). |
| |
| // Rename pseudo opcodes. |
| unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode()); |
| unsigned ccOutIdx; |
| if (NewOpc) { |
| const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo(); |
| MCID = &TII->get(NewOpc); |
| |
| assert(MCID->getNumOperands() == |
| MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize() |
| && "converted opcode should be the same except for cc_out" |
| " (and, on Thumb1, pred)"); |
| |
| MI.setDesc(*MCID); |
| |
| // Add the optional cc_out operand |
| MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); |
| |
| // On Thumb1, move all input operands to the end, then add the predicate |
| if (Subtarget->isThumb1Only()) { |
| for (unsigned c = MCID->getNumOperands() - 4; c--;) { |
| MI.addOperand(MI.getOperand(1)); |
| MI.RemoveOperand(1); |
| } |
| |
| // Restore the ties |
| for (unsigned i = MI.getNumOperands(); i--;) { |
| const MachineOperand& op = MI.getOperand(i); |
| if (op.isReg() && op.isUse()) { |
| int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO); |
| if (DefIdx != -1) |
| MI.tieOperands(DefIdx, i); |
| } |
| } |
| |
| MI.addOperand(MachineOperand::CreateImm(ARMCC::AL)); |
| MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false)); |
| ccOutIdx = 1; |
| } else |
| ccOutIdx = MCID->getNumOperands() - 1; |
| } else |
| ccOutIdx = MCID->getNumOperands() - 1; |
| |
| // Any ARM instruction that sets the 's' bit should specify an optional |
| // "cc_out" operand in the last operand position. |
| if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) { |
| assert(!NewOpc && "Optional cc_out operand required"); |
| return; |
| } |
| // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it |
| // since we already have an optional CPSR def. |
| bool definesCPSR = false; |
| bool deadCPSR = false; |
| for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e; |
| ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { |
| definesCPSR = true; |
| if (MO.isDead()) |
| deadCPSR = true; |
| MI.RemoveOperand(i); |
| break; |
| } |
| } |
| if (!definesCPSR) { |
| assert(!NewOpc && "Optional cc_out operand required"); |
| return; |
| } |
| assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); |
| if (deadCPSR) { |
| assert(!MI.getOperand(ccOutIdx).getReg() && |
| "expect uninitialized optional cc_out operand"); |
| // Thumb1 instructions must have the S bit even if the CPSR is dead. |
| if (!Subtarget->isThumb1Only()) |
| return; |
| } |
| |
| // If this instruction was defined with an optional CPSR def and its dag node |
| // had a live implicit CPSR def, then activate the optional CPSR def. |
| MachineOperand &MO = MI.getOperand(ccOutIdx); |
| MO.setReg(ARM::CPSR); |
| MO.setIsDef(true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| // Helper function that checks if N is a null or all ones constant. |
| static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { |
| return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); |
| } |
| |
| // Return true if N is conditionally 0 or all ones. |
| // Detects these expressions where cc is an i1 value: |
| // |
| // (select cc 0, y) [AllOnes=0] |
| // (select cc y, 0) [AllOnes=0] |
| // (zext cc) [AllOnes=0] |
| // (sext cc) [AllOnes=0/1] |
| // (select cc -1, y) [AllOnes=1] |
| // (select cc y, -1) [AllOnes=1] |
| // |
| // Invert is set when N is the null/all ones constant when CC is false. |
| // OtherOp is set to the alternative value of N. |
| static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, |
| SDValue &CC, bool &Invert, |
| SDValue &OtherOp, |
| SelectionDAG &DAG) { |
| switch (N->getOpcode()) { |
| default: return false; |
| case ISD::SELECT: { |
| CC = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| if (isZeroOrAllOnes(N1, AllOnes)) { |
| Invert = false; |
| OtherOp = N2; |
| return true; |
| } |
| if (isZeroOrAllOnes(N2, AllOnes)) { |
| Invert = true; |
| OtherOp = N1; |
| return true; |
| } |
| return false; |
| } |
| case ISD::ZERO_EXTEND: |
| // (zext cc) can never be the all ones value. |
| if (AllOnes) |
| return false; |
| LLVM_FALLTHROUGH; |
| case ISD::SIGN_EXTEND: { |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| CC = N->getOperand(0); |
| if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC) |
| return false; |
| Invert = !AllOnes; |
| if (AllOnes) |
| // When looking for an AllOnes constant, N is an sext, and the 'other' |
| // value is 0. |
| OtherOp = DAG.getConstant(0, dl, VT); |
| else if (N->getOpcode() == ISD::ZERO_EXTEND) |
| // When looking for a 0 constant, N can be zext or sext. |
| OtherOp = DAG.getConstant(1, dl, VT); |
| else |
| OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, |
| VT); |
| return true; |
| } |
| } |
| } |
| |
| // Combine a constant select operand into its use: |
| // |
| // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) |
| // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] |
| // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) |
| // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) |
| // |
| // The transform is rejected if the select doesn't have a constant operand that |
| // is null, or all ones when AllOnes is set. |
| // |
| // Also recognize sext/zext from i1: |
| // |
| // (add (zext cc), x) -> (select cc (add x, 1), x) |
| // (add (sext cc), x) -> (select cc (add x, -1), x) |
| // |
| // These transformations eventually create predicated instructions. |
| // |
| // @param N The node to transform. |
| // @param Slct The N operand that is a select. |
| // @param OtherOp The other N operand (x above). |
| // @param DCI Context. |
| // @param AllOnes Require the select constant to be all ones instead of null. |
| // @returns The new node, or SDValue() on failure. |
| static |
| SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, |
| TargetLowering::DAGCombinerInfo &DCI, |
| bool AllOnes = false) { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDValue NonConstantVal; |
| SDValue CCOp; |
| bool SwapSelectOps; |
| if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, |
| NonConstantVal, DAG)) |
| return SDValue(); |
| |
| // Slct is now know to be the desired identity constant when CC is true. |
| SDValue TrueVal = OtherOp; |
| SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, |
| OtherOp, NonConstantVal); |
| // Unless SwapSelectOps says CC should be false. |
| if (SwapSelectOps) |
| std::swap(TrueVal, FalseVal); |
| |
| return DAG.getNode(ISD::SELECT, SDLoc(N), VT, |
| CCOp, TrueVal, FalseVal); |
| } |
| |
| // Attempt combineSelectAndUse on each operand of a commutative operator N. |
| static |
| SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (N0.getNode()->hasOneUse()) |
| if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) |
| return Result; |
| if (N1.getNode()->hasOneUse()) |
| if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) |
| return Result; |
| return SDValue(); |
| } |
| |
| static bool IsVUZPShuffleNode(SDNode *N) { |
| // VUZP shuffle node. |
| if (N->getOpcode() == ARMISD::VUZP) |
| return true; |
| |
| // "VUZP" on i32 is an alias for VTRN. |
| if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32) |
| return true; |
| |
| return false; |
| } |
| |
| static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Look for ADD(VUZP.0, VUZP.1). |
| if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() || |
| N0 == N1) |
| return SDValue(); |
| |
| // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD. |
| if (!N->getValueType(0).is64BitVector()) |
| return SDValue(); |
| |
| // Generate vpadd. |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDLoc dl(N); |
| SDNode *Unzip = N0.getNode(); |
| EVT VT = N->getValueType(0); |
| |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl, |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| Ops.push_back(Unzip->getOperand(0)); |
| Ops.push_back(Unzip->getOperand(1)); |
| |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops); |
| } |
| |
| static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Check for two extended operands. |
| if (!(N0.getOpcode() == ISD::SIGN_EXTEND && |
| N1.getOpcode() == ISD::SIGN_EXTEND) && |
| !(N0.getOpcode() == ISD::ZERO_EXTEND && |
| N1.getOpcode() == ISD::ZERO_EXTEND)) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| SDValue N10 = N1.getOperand(0); |
| |
| // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1)) |
| if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() || |
| N00 == N10) |
| return SDValue(); |
| |
| // We only recognize Q register paddl here; this can't be reached until |
| // after type legalization. |
| if (!N00.getValueType().is64BitVector() || |
| !N0.getValueType().is128BitVector()) |
| return SDValue(); |
| |
| // Generate vpaddl. |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| |
| SmallVector<SDValue, 8> Ops; |
| // Form vpaddl.sN or vpaddl.uN depending on the kind of extension. |
| unsigned Opcode; |
| if (N0.getOpcode() == ISD::SIGN_EXTEND) |
| Opcode = Intrinsic::arm_neon_vpaddls; |
| else |
| Opcode = Intrinsic::arm_neon_vpaddlu; |
| Ops.push_back(DAG.getConstant(Opcode, dl, |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| EVT ElemTy = N00.getValueType().getVectorElementType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2); |
| SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT, |
| N00.getOperand(0), N00.getOperand(1)); |
| Ops.push_back(Concat); |
| |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops); |
| } |
| |
| // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in |
| // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is |
| // much easier to match. |
| static SDValue |
| AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Only perform optimization if after legalize, and if NEON is available. We |
| // also expected both operands to be BUILD_VECTORs. |
| if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() |
| || N0.getOpcode() != ISD::BUILD_VECTOR |
| || N1.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| // Check output type since VPADDL operand elements can only be 8, 16, or 32. |
| EVT VT = N->getValueType(0); |
| if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) |
| return SDValue(); |
| |
| // Check that the vector operands are of the right form. |
| // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR |
| // operands, where N is the size of the formed vector. |
| // Each EXTRACT_VECTOR should have the same input vector and odd or even |
| // index such that we have a pair wise add pattern. |
| |
| // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. |
| if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| SDValue Vec = N0->getOperand(0)->getOperand(0); |
| SDNode *V = Vec.getNode(); |
| unsigned nextIndex = 0; |
| |
| // For each operands to the ADD which are BUILD_VECTORs, |
| // check to see if each of their operands are an EXTRACT_VECTOR with |
| // the same vector and appropriate index. |
| for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { |
| if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT |
| && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| |
| SDValue ExtVec0 = N0->getOperand(i); |
| SDValue ExtVec1 = N1->getOperand(i); |
| |
| // First operand is the vector, verify its the same. |
| if (V != ExtVec0->getOperand(0).getNode() || |
| V != ExtVec1->getOperand(0).getNode()) |
| return SDValue(); |
| |
| // Second is the constant, verify its correct. |
| ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1)); |
| ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1)); |
| |
| // For the constant, we want to see all the even or all the odd. |
| if (!C0 || !C1 || C0->getZExtValue() != nextIndex |
| || C1->getZExtValue() != nextIndex+1) |
| return SDValue(); |
| |
| // Increment index. |
| nextIndex+=2; |
| } else |
| return SDValue(); |
| } |
| |
| // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure |
| // we're using the entire input vector, otherwise there's a size/legality |
| // mismatch somewhere. |
| if (nextIndex != Vec.getValueType().getVectorNumElements() || |
| Vec.getValueType().getVectorElementType() == VT.getVectorElementType()) |
| return SDValue(); |
| |
| // Create VPADDL node. |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| SDLoc dl(N); |
| |
| // Build operand list. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl, |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| |
| // Input is the vector. |
| Ops.push_back(Vec); |
| |
| // Get widened type and narrowed type. |
| MVT widenType; |
| unsigned numElem = VT.getVectorNumElements(); |
| |
| EVT inputLaneType = Vec.getValueType().getVectorElementType(); |
| switch (inputLaneType.getSimpleVT().SimpleTy) { |
| case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; |
| case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; |
| case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; |
| default: |
| llvm_unreachable("Invalid vector element type for padd optimization."); |
| } |
| |
| SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops); |
| unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE; |
| return DAG.getNode(ExtOp, dl, VT, tmp); |
| } |
| |
| static SDValue findMUL_LOHI(SDValue V) { |
| if (V->getOpcode() == ISD::UMUL_LOHI || |
| V->getOpcode() == ISD::SMUL_LOHI) |
| return V; |
| return SDValue(); |
| } |
| |
| static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| if (Subtarget->isThumb()) { |
| if (!Subtarget->hasDSP()) |
| return SDValue(); |
| } else if (!Subtarget->hasV5TEOps()) |
| return SDValue(); |
| |
| // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and |
| // accumulates the product into a 64-bit value. The 16-bit values will |
| // be sign extended somehow or SRA'd into 32-bit values |
| // (addc (adde (mul 16bit, 16bit), lo), hi) |
| SDValue Mul = AddcNode->getOperand(0); |
| SDValue Lo = AddcNode->getOperand(1); |
| if (Mul.getOpcode() != ISD::MUL) { |
| Lo = AddcNode->getOperand(0); |
| Mul = AddcNode->getOperand(1); |
| if (Mul.getOpcode() != ISD::MUL) |
| return SDValue(); |
| } |
| |
| SDValue SRA = AddeNode->getOperand(0); |
| SDValue Hi = AddeNode->getOperand(1); |
| if (SRA.getOpcode() != ISD::SRA) { |
| SRA = AddeNode->getOperand(1); |
| Hi = AddeNode->getOperand(0); |
| if (SRA.getOpcode() != ISD::SRA) |
| return SDValue(); |
| } |
| if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) { |
| if (Const->getZExtValue() != 31) |
| return SDValue(); |
| } else |
| return SDValue(); |
| |
| if (SRA.getOperand(0) != Mul) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(AddcNode); |
| unsigned Opcode = 0; |
| SDValue Op0; |
| SDValue Op1; |
| |
| if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) { |
| Opcode = ARMISD::SMLALBB; |
| Op0 = Mul.getOperand(0); |
| Op1 = Mul.getOperand(1); |
| } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) { |
| Opcode = ARMISD::SMLALBT; |
| Op0 = Mul.getOperand(0); |
| Op1 = Mul.getOperand(1).getOperand(0); |
| } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) { |
| Opcode = ARMISD::SMLALTB; |
| Op0 = Mul.getOperand(0).getOperand(0); |
| Op1 = Mul.getOperand(1); |
| } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) { |
| Opcode = ARMISD::SMLALTT; |
| Op0 = Mul->getOperand(0).getOperand(0); |
| Op1 = Mul->getOperand(1).getOperand(0); |
| } |
| |
| if (!Op0 || !Op1) |
| return SDValue(); |
| |
| SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), |
| Op0, Op1, Lo, Hi); |
| // Replace the ADDs' nodes uses by the MLA node's values. |
| SDValue HiMLALResult(SMLAL.getNode(), 1); |
| SDValue LoMLALResult(SMLAL.getNode(), 0); |
| |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); |
| |
| // Return original node to notify the driver to stop replacing. |
| SDValue resNode(AddcNode, 0); |
| return resNode; |
| } |
| |
| static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Look for multiply add opportunities. |
| // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where |
| // each add nodes consumes a value from ISD::UMUL_LOHI and there is |
| // a glue link from the first add to the second add. |
| // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by |
| // a S/UMLAL instruction. |
| // UMUL_LOHI |
| // / :lo \ :hi |
| // V \ [no multiline comment] |
| // loAdd -> ADDC | |
| // \ :carry / |
| // V V |
| // ADDE <- hiAdd |
| // |
| // In the special case where only the higher part of a signed result is used |
| // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts |
| // a constant with the exact value of 0x80000000, we recognize we are dealing |
| // with a "rounded multiply and add" (or subtract) and transform it into |
| // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively. |
| |
| assert((AddeSubeNode->getOpcode() == ARMISD::ADDE || |
| AddeSubeNode->getOpcode() == ARMISD::SUBE) && |
| "Expect an ADDE or SUBE"); |
| |
| assert(AddeSubeNode->getNumOperands() == 3 && |
| AddeSubeNode->getOperand(2).getValueType() == MVT::i32 && |
| "ADDE node has the wrong inputs"); |
| |
| // Check that we are chained to the right ADDC or SUBC node. |
| SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode(); |
| if ((AddeSubeNode->getOpcode() == ARMISD::ADDE && |
| AddcSubcNode->getOpcode() != ARMISD::ADDC) || |
| (AddeSubeNode->getOpcode() == ARMISD::SUBE && |
| AddcSubcNode->getOpcode() != ARMISD::SUBC)) |
| return SDValue(); |
| |
| SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0); |
| SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1); |
| |
| // Check if the two operands are from the same mul_lohi node. |
| if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode()) |
| return SDValue(); |
| |
| assert(AddcSubcNode->getNumValues() == 2 && |
| AddcSubcNode->getValueType(0) == MVT::i32 && |
| "Expect ADDC with two result values. First: i32"); |
| |
| // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it |
| // maybe a SMLAL which multiplies two 16-bit values. |
| if (AddeSubeNode->getOpcode() == ARMISD::ADDE && |
| AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI && |
| AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI && |
| AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI && |
| AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI) |
| return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget); |
| |
| // Check for the triangle shape. |
| SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0); |
| SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1); |
| |
| // Make sure that the ADDE/SUBE operands are not coming from the same node. |
| if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode()) |
| return SDValue(); |
| |
| // Find the MUL_LOHI node walking up ADDE/SUBE's operands. |
| bool IsLeftOperandMUL = false; |
| SDValue MULOp = findMUL_LOHI(AddeSubeOp0); |
| if (MULOp == SDValue()) |
| MULOp = findMUL_LOHI(AddeSubeOp1); |
| else |
| IsLeftOperandMUL = true; |
| if (MULOp == SDValue()) |
| return SDValue(); |
| |
| // Figure out the right opcode. |
| unsigned Opc = MULOp->getOpcode(); |
| unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; |
| |
| // Figure out the high and low input values to the MLAL node. |
| SDValue *HiAddSub = nullptr; |
| SDValue *LoMul = nullptr; |
| SDValue *LowAddSub = nullptr; |
| |
| // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI. |
| if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1))) |
| return SDValue(); |
| |
| if (IsLeftOperandMUL) |
| HiAddSub = &AddeSubeOp1; |
| else |
| HiAddSub = &AddeSubeOp0; |
| |
| // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node |
| // whose low result is fed to the ADDC/SUBC we are checking. |
| |
| if (AddcSubcOp0 == MULOp.getValue(0)) { |
| LoMul = &AddcSubcOp0; |
| LowAddSub = &AddcSubcOp1; |
| } |
| if (AddcSubcOp1 == MULOp.getValue(0)) { |
| LoMul = &AddcSubcOp1; |
| LowAddSub = &AddcSubcOp0; |
| } |
| |
| if (!LoMul) |
| return SDValue(); |
| |
| // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC |
| // the replacement below will create a cycle. |
| if (AddcSubcNode == HiAddSub->getNode() || |
| AddcSubcNode->isPredecessorOf(HiAddSub->getNode())) |
| return SDValue(); |
| |
| // Create the merged node. |
| SelectionDAG &DAG = DCI.DAG; |
| |
| // Start building operand list. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(LoMul->getOperand(0)); |
| Ops.push_back(LoMul->getOperand(1)); |
| |
| // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be |
| // the case, we must be doing signed multiplication and only use the higher |
| // part of the result of the MLAL, furthermore the LowAddSub must be a constant |
| // addition or subtraction with the value of 0x800000. |
| if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() && |
| FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) && |
| LowAddSub->getNode()->getOpcode() == ISD::Constant && |
| static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() == |
| 0x80000000) { |
| Ops.push_back(*HiAddSub); |
| if (AddcSubcNode->getOpcode() == ARMISD::SUBC) { |
| FinalOpc = ARMISD::SMMLSR; |
| } else { |
| FinalOpc = ARMISD::SMMLAR; |
| } |
| SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode); |
| |
| return SDValue(AddeSubeNode, 0); |
| } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC) |
| // SMMLS is generated during instruction selection and the rest of this |
| // function can not handle the case where AddcSubcNode is a SUBC. |
| return SDValue(); |
| |
| // Finish building the operand list for {U/S}MLAL |
| Ops.push_back(*LowAddSub); |
| Ops.push_back(*HiAddSub); |
| |
| SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), |
| DAG.getVTList(MVT::i32, MVT::i32), Ops); |
| |
| // Replace the ADDs' nodes uses by the MLA node's values. |
| SDValue HiMLALResult(MLALNode.getNode(), 1); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult); |
| |
| SDValue LoMLALResult(MLALNode.getNode(), 0); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult); |
| |
| // Return original node to notify the driver to stop replacing. |
| return SDValue(AddeSubeNode, 0); |
| } |
| |
| static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // UMAAL is similar to UMLAL except that it adds two unsigned values. |
| // While trying to combine for the other MLAL nodes, first search for the |
| // chance to use UMAAL. Check if Addc uses a node which has already |
| // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde |
| // as the addend, and it's handled in PerformUMLALCombine. |
| |
| if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) |
| return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget); |
| |
| // Check that we have a glued ADDC node. |
| SDNode* AddcNode = AddeNode->getOperand(2).getNode(); |
| if (AddcNode->getOpcode() != ARMISD::ADDC) |
| return SDValue(); |
| |
| // Find the converted UMAAL or quit if it doesn't exist. |
| SDNode *UmlalNode = nullptr; |
| SDValue AddHi; |
| if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) { |
| UmlalNode = AddcNode->getOperand(0).getNode(); |
| AddHi = AddcNode->getOperand(1); |
| } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) { |
| UmlalNode = AddcNode->getOperand(1).getNode(); |
| AddHi = AddcNode->getOperand(0); |
| } else { |
| return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget); |
| } |
| |
| // The ADDC should be glued to an ADDE node, which uses the same UMLAL as |
| // the ADDC as well as Zero. |
| if (!isNullConstant(UmlalNode->getOperand(3))) |
| return SDValue(); |
| |
| if ((isNullConstant(AddeNode->getOperand(0)) && |
| AddeNode->getOperand(1).getNode() == UmlalNode) || |
| (AddeNode->getOperand(0).getNode() == UmlalNode && |
| isNullConstant(AddeNode->getOperand(1)))) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1), |
| UmlalNode->getOperand(2), AddHi }; |
| SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode), |
| DAG.getVTList(MVT::i32, MVT::i32), Ops); |
| |
| // Replace the ADDs' nodes uses by the UMAAL node's values. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0)); |
| |
| // Return original node to notify the driver to stop replacing. |
| return SDValue(AddeNode, 0); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) |
| return SDValue(); |
| |
| // Check that we have a pair of ADDC and ADDE as operands. |
| // Both addends of the ADDE must be zero. |
| SDNode* AddcNode = N->getOperand(2).getNode(); |
| SDNode* AddeNode = N->getOperand(3).getNode(); |
| if ((AddcNode->getOpcode() == ARMISD::ADDC) && |
| (AddeNode->getOpcode() == ARMISD::ADDE) && |
| isNullConstant(AddeNode->getOperand(0)) && |
| isNullConstant(AddeNode->getOperand(1)) && |
| (AddeNode->getOperand(2).getNode() == AddcNode)) |
| return DAG.getNode(ARMISD::UMAAL, SDLoc(N), |
| DAG.getVTList(MVT::i32, MVT::i32), |
| {N->getOperand(0), N->getOperand(1), |
| AddcNode->getOperand(0), AddcNode->getOperand(1)}); |
| else |
| return SDValue(); |
| } |
| |
| static SDValue PerformAddcSubcCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| SelectionDAG &DAG(DCI.DAG); |
| |
| if (N->getOpcode() == ARMISD::SUBC) { |
| // (SUBC (ADDE 0, 0, C), 1) -> C |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| if (LHS->getOpcode() == ARMISD::ADDE && |
| isNullConstant(LHS->getOperand(0)) && |
| isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) { |
| return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2)); |
| } |
| } |
| |
| if (Subtarget->isThumb1Only()) { |
| SDValue RHS = N->getOperand(1); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| int32_t imm = C->getSExtValue(); |
| if (imm < 0 && imm > std::numeric_limits<int>::min()) { |
| SDLoc DL(N); |
| RHS = DAG.getConstant(-imm, DL, MVT::i32); |
| unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC |
| : ARMISD::ADDC; |
| return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformAddeSubeCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| if (Subtarget->isThumb1Only()) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue RHS = N->getOperand(1); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| int64_t imm = C->getSExtValue(); |
| if (imm < 0) { |
| SDLoc DL(N); |
| |
| // The with-carry-in form matches bitwise not instead of the negation. |
| // Effectively, the inverse interpretation of the carry flag already |
| // accounts for part of the negation. |
| RHS = DAG.getConstant(~imm, DL, MVT::i32); |
| |
| unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE |
| : ARMISD::ADDE; |
| return DAG.getNode(Opcode, DL, N->getVTList(), |
| N->getOperand(0), RHS, N->getOperand(2)); |
| } |
| } |
| } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) { |
| return AddCombineTo64bitMLAL(N, DCI, Subtarget); |
| } |
| return SDValue(); |
| } |
| |
| /// PerformADDECombine - Target-specific dag combine transform from |
| /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or |
| /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL |
| static SDValue PerformADDECombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Only ARM and Thumb2 support UMLAL/SMLAL. |
| if (Subtarget->isThumb1Only()) |
| return PerformAddeSubeCombine(N, DCI, Subtarget); |
| |
| // Only perform the checks after legalize when the pattern is available. |
| if (DCI.isBeforeLegalize()) return SDValue(); |
| |
| return AddCombineTo64bitUMAAL(N, DCI, Subtarget); |
| } |
| |
| /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with |
| /// operands N0 and N1. This is a helper for PerformADDCombine that is |
| /// called with the default operands, and if that fails, with commuted |
| /// operands. |
| static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget){ |
| // Attempt to create vpadd for this add. |
| if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget)) |
| return Result; |
| |
| // Attempt to create vpaddl for this add. |
| if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget)) |
| return Result; |
| if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI, |
| Subtarget)) |
| return Result; |
| |
| // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) |
| if (N0.getNode()->hasOneUse()) |
| if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI)) |
| return Result; |
| return SDValue(); |
| } |
| |
| static SDValue PerformSHLSimplify(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *ST) { |
| // Allow the generic combiner to identify potential bswaps. |
| if (DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| // DAG combiner will fold: |
| // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) |
| // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2 |
| // Other code patterns that can be also be modified have the following form: |
| // b + ((a << 1) | 510) |
| // b + ((a << 1) & 510) |
| // b + ((a << 1) ^ 510) |
| // b + ((a << 1) + 510) |
| |
| // Many instructions can perform the shift for free, but it requires both |
| // the operands to be registers. If c1 << c2 is too large, a mov immediate |
| // instruction will needed. So, unfold back to the original pattern if: |
| // - if c1 and c2 are small enough that they don't require mov imms. |
| // - the user(s) of the node can perform an shl |
| |
| // No shifted operands for 16-bit instructions. |
| if (ST->isThumb() && ST->isThumb1Only()) |
| return SDValue(); |
| |
| // Check that all the users could perform the shl themselves. |
| for (auto U : N->uses()) { |
| switch(U->getOpcode()) { |
| default: |
| return SDValue(); |
| case ISD::SUB: |
| case ISD::ADD: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SETCC: |
| case ARMISD::CMP: |
| // Check that the user isn't already using a constant because there |
| // aren't any instructions that support an immediate operand and a |
| // shifted operand. |
| if (isa<ConstantSDNode>(U->getOperand(0)) || |
| isa<ConstantSDNode>(U->getOperand(1))) |
| return SDValue(); |
| |
| // Check that it's not already using a shift. |
| if (U->getOperand(0).getOpcode() == ISD::SHL || |
| U->getOperand(1).getOpcode() == ISD::SHL) |
| return SDValue(); |
| break; |
| } |
| } |
| |
| if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR && |
| N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| if (N->getOperand(0).getOpcode() != ISD::SHL) |
| return SDValue(); |
| |
| SDValue SHL = N->getOperand(0); |
| |
| auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1)); |
| if (!C1ShlC2 || !C2) |
| return SDValue(); |
| |
| APInt C2Int = C2->getAPIntValue(); |
| APInt C1Int = C1ShlC2->getAPIntValue(); |
| |
| // Check that performing a lshr will not lose any information. |
| APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(), |
| C2Int.getBitWidth() - C2->getZExtValue()); |
| if ((C1Int & Mask) != C1Int) |
| return SDValue(); |
| |
| // Shift the first constant. |
| C1Int.lshrInPlace(C2Int); |
| |
| // The immediates are encoded as an 8-bit value that can be rotated. |
| auto LargeImm = [](const APInt &Imm) { |
| unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros(); |
| return Imm.getBitWidth() - Zeros > 8; |
| }; |
| |
| if (LargeImm(C1Int) || LargeImm(C2Int)) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| SDValue X = SHL.getOperand(0); |
| SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X, |
| DAG.getConstant(C1Int, dl, MVT::i32)); |
| // Shift left to compensate for the lshr of C1Int. |
| SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1)); |
| |
| LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump(); |
| SHL.dump(); N->dump()); |
| LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump()); |
| |
| DAG.ReplaceAllUsesWith(SDValue(N, 0), Res); |
| return SDValue(N, 0); |
| } |
| |
| |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. |
| /// |
| static SDValue PerformADDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Only works one way, because it needs an immediate operand. |
| if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) |
| return Result; |
| |
| // First try with the default operand order. |
| if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget)) |
| return Result; |
| |
| // If that didn't work, try again with the operands commuted. |
| return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); |
| } |
| |
| /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. |
| /// |
| static SDValue PerformSUBCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| if (N1.getNode()->hasOneUse()) |
| if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI)) |
| return Result; |
| |
| return SDValue(); |
| } |
| |
| /// PerformVMULCombine |
| /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the |
| /// special multiplier accumulator forwarding. |
| /// vmul d3, d0, d2 |
| /// vmla d3, d1, d2 |
| /// is faster than |
| /// vadd d3, d0, d1 |
| /// vmul d3, d3, d2 |
| // However, for (A + B) * (A + B), |
| // vadd d2, d0, d1 |
| // vmul d3, d0, d2 |
| // vmla d3, d1, d2 |
| // is slower than |
| // vadd d2, d0, d1 |
| // vmul d3, d2, d2 |
| static SDValue PerformVMULCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| if (!Subtarget->hasVMLxForwarding()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| unsigned Opcode = N0.getOpcode(); |
| if (Opcode != ISD::ADD && Opcode != ISD::SUB && |
| Opcode != ISD::FADD && Opcode != ISD::FSUB) { |
| Opcode = N1.getOpcode(); |
| if (Opcode != ISD::ADD && Opcode != ISD::SUB && |
| Opcode != ISD::FADD && Opcode != ISD::FSUB) |
| return SDValue(); |
| std::swap(N0, N1); |
| } |
| |
| if (N0 == N1) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| SDValue N00 = N0->getOperand(0); |
| SDValue N01 = N0->getOperand(1); |
| return DAG.getNode(Opcode, DL, VT, |
| DAG.getNode(ISD::MUL, DL, VT, N00, N1), |
| DAG.getNode(ISD::MUL, DL, VT, N01, N1)); |
| } |
| |
| static SDValue PerformMULCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if (Subtarget->isThumb1Only()) |
| return SDValue(); |
| |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT.is64BitVector() || VT.is128BitVector()) |
| return PerformVMULCombine(N, DCI, Subtarget); |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| int64_t MulAmt = C->getSExtValue(); |
| unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt); |
| |
| ShiftAmt = ShiftAmt & (32 - 1); |
| SDValue V = N->getOperand(0); |
| SDLoc DL(N); |
| |
| SDValue Res; |
| MulAmt >>= ShiftAmt; |
| |
| if (MulAmt >= 0) { |
| if (isPowerOf2_32(MulAmt - 1)) { |
| // (mul x, 2^N + 1) => (add (shl x, N), x) |
| Res = DAG.getNode(ISD::ADD, DL, VT, |
| V, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, |
| DAG.getConstant(Log2_32(MulAmt - 1), DL, |
| MVT::i32))); |
| } else if (isPowerOf2_32(MulAmt + 1)) { |
| // (mul x, 2^N - 1) => (sub (shl x, N), x) |
| Res = DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, |
| DAG.getConstant(Log2_32(MulAmt + 1), DL, |
| MVT::i32)), |
| V); |
| } else |
| return SDValue(); |
| } else { |
| uint64_t MulAmtAbs = -MulAmt; |
| if (isPowerOf2_32(MulAmtAbs + 1)) { |
| // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) |
| Res = DAG.getNode(ISD::SUB, DL, VT, |
| V, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, |
| DAG.getConstant(Log2_32(MulAmtAbs + 1), DL, |
| MVT::i32))); |
| } else if (isPowerOf2_32(MulAmtAbs - 1)) { |
| // (mul x, -(2^N + 1)) => - (add (shl x, N), x) |
| Res = DAG.getNode(ISD::ADD, DL, VT, |
| V, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, |
| DAG.getConstant(Log2_32(MulAmtAbs - 1), DL, |
| MVT::i32))); |
| Res = DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, DL, MVT::i32), Res); |
| } else |
| return SDValue(); |
| } |
| |
| if (ShiftAmt != 0) |
| Res = DAG.getNode(ISD::SHL, DL, VT, |
| Res, DAG.getConstant(ShiftAmt, DL, MVT::i32)); |
| |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, Res, false); |
| return SDValue(); |
| } |
| |
| static SDValue CombineANDShift(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Allow DAGCombine to pattern-match before we touch the canonical form. |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| if (N->getValueType(0) != MVT::i32) |
| return SDValue(); |
| |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!N1C) |
| return SDValue(); |
| |
| uint32_t C1 = (uint32_t)N1C->getZExtValue(); |
| // Don't transform uxtb/uxth. |
| if (C1 == 255 || C1 == 65535) |
| return SDValue(); |
| |
| SDNode *N0 = N->getOperand(0).getNode(); |
| if (!N0->hasOneUse()) |
| return SDValue(); |
| |
| if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| bool LeftShift = N0->getOpcode() == ISD::SHL; |
| |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); |
| if (!N01C) |
| return SDValue(); |
| |
| uint32_t C2 = (uint32_t)N01C->getZExtValue(); |
| if (!C2 || C2 >= 32) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| // We have a pattern of the form "(and (shl x, c2) c1)" or |
| // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to |
| // transform to a pair of shifts, to save materializing c1. |
| |
| // First pattern: right shift, and c1+1 is a power of two. |
| // FIXME: Also check reversed pattern (left shift, and ~c1+1 is a power |
| // of two). |
| // FIXME: Use demanded bits? |
| if (!LeftShift && isMask_32(C1)) { |
| uint32_t C3 = countLeadingZeros(C1); |
| if (C2 < C3) { |
| SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0), |
| DAG.getConstant(C3 - C2, DL, MVT::i32)); |
| return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL, |
| DAG.getConstant(C3, DL, MVT::i32)); |
| } |
| } |
| |
| // Second pattern: left shift, and (c1>>c2)+1 is a power of two. |
| // FIXME: Also check reversed pattern (right shift, and ~(c1<<c2)+1 |
| // is a power of two). |
| // FIXME: Use demanded bits? |
| if (LeftShift && isShiftedMask_32(C1)) { |
| uint32_t C3 = countLeadingZeros(C1); |
| if (C2 + C3 < 32 && C1 == ((-1U << (C2 + C3)) >> C3)) { |
| SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0), |
| DAG.getConstant(C2 + C3, DL, MVT::i32)); |
| return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL, |
| DAG.getConstant(C3, DL, MVT::i32)); |
| } |
| } |
| |
| // FIXME: Transform "(and (shl x, c2) c1)" -> |
| // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than |
| // c1. |
| return SDValue(); |
| } |
| |
| static SDValue PerformANDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Attempt to use immediate-form VBIC |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (BVN && |
| BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| if (SplatBitSize <= 64) { |
| EVT VbicVT; |
| SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(), |
| SplatUndef.getZExtValue(), SplatBitSize, |
| DAG, dl, VbicVT, VT.is128BitVector(), |
| OtherModImm); |
| if (Val.getNode()) { |
| SDValue Input = |
| DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); |
| SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); |
| } |
| } |
| } |
| |
| if (!Subtarget->isThumb1Only()) { |
| // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) |
| if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI)) |
| return Result; |
| |
| if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) |
| return Result; |
| } |
| |
| if (Subtarget->isThumb1Only()) |
| if (SDValue Result = CombineANDShift(N, DCI, Subtarget)) |
| return Result; |
| |
| return SDValue(); |
| } |
| |
| // Try combining OR nodes to SMULWB, SMULWT. |
| static SDValue PerformORCombineToSMULWBT(SDNode *OR, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| if (!Subtarget->hasV6Ops() || |
| (Subtarget->isThumb() && |
| (!Subtarget->hasThumb2() || !Subtarget->hasDSP()))) |
| return SDValue(); |
| |
| SDValue SRL = OR->getOperand(0); |
| SDValue SHL = OR->getOperand(1); |
| |
| if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) { |
| SRL = OR->getOperand(1); |
| SHL = OR->getOperand(0); |
| } |
| if (!isSRL16(SRL) || !isSHL16(SHL)) |
| return SDValue(); |
| |
| // The first operands to the shifts need to be the two results from the |
| // same smul_lohi node. |
| if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) || |
| SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI) |
| return SDValue(); |
| |
| SDNode *SMULLOHI = SRL.getOperand(0).getNode(); |
| if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) || |
| SHL.getOperand(0) != SDValue(SMULLOHI, 1)) |
| return SDValue(); |
| |
| // Now we have: |
| // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16))) |
| // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments. |
| // For SMUWB the 16-bit value will signed extended somehow. |
| // For SMULWT only the SRA is required. |
| // Check both sides of SMUL_LOHI |
| SDValue OpS16 = SMULLOHI->getOperand(0); |
| SDValue OpS32 = SMULLOHI->getOperand(1); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) { |
| OpS16 = OpS32; |
| OpS32 = SMULLOHI->getOperand(0); |
| } |
| |
| SDLoc dl(OR); |
| unsigned Opcode = 0; |
| if (isS16(OpS16, DAG)) |
| Opcode = ARMISD::SMULWB; |
| else if (isSRA16(OpS16)) { |
| Opcode = ARMISD::SMULWT; |
| OpS16 = OpS16->getOperand(0); |
| } |
| else |
| return SDValue(); |
| |
| SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res); |
| return SDValue(OR, 0); |
| } |
| |
| static SDValue PerformORCombineToBFI(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // BFI is only available on V6T2+ |
| if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| // 1) or (and A, mask), val => ARMbfi A, val, mask |
| // iff (val & mask) == val |
| // |
| // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask |
| // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) |
| // && mask == ~mask2 |
| // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) |
| // && ~mask == mask2 |
| // (i.e., copy a bitfield value into another bitfield of the same width) |
| |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| |
| // The value and the mask need to be constants so we can verify this is |
| // actually a bitfield set. If the mask is 0xffff, we can do better |
| // via a movt instruction, so don't use BFI in that case. |
| SDValue MaskOp = N0.getOperand(1); |
| ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp); |
| if (!MaskC) |
| return SDValue(); |
| unsigned Mask = MaskC->getZExtValue(); |
| if (Mask == 0xffff) |
| return SDValue(); |
| SDValue Res; |
| // Case (1): or (and A, mask), val => ARMbfi A, val, mask |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N1C) { |
| unsigned Val = N1C->getZExtValue(); |
| if ((Val & ~Mask) != Val) |
| return SDValue(); |
| |
| if (ARM::isBitFieldInvertedMask(Mask)) { |
| Val >>= countTrailingZeros(~Mask); |
| |
| Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, |
| DAG.getConstant(Val, DL, MVT::i32), |
| DAG.getConstant(Mask, DL, MVT::i32)); |
| |
| DCI.CombineTo(N, Res, false); |
| // Return value from the original node to inform the combiner than N is |
| // now dead. |
| return SDValue(N, 0); |
| } |
| } else if (N1.getOpcode() == ISD::AND) { |
| // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N11C) |
| return SDValue(); |
| unsigned Mask2 = N11C->getZExtValue(); |
| |
| // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern |
| // as is to match. |
| if (ARM::isBitFieldInvertedMask(Mask) && |
| (Mask == ~Mask2)) { |
| // The pack halfword instruction works better for masks that fit it, |
| // so use that when it's available. |
| if (Subtarget->hasDSP() && |
| (Mask == 0xffff || Mask == 0xffff0000)) |
| return SDValue(); |
| // 2a |
| unsigned amt = countTrailingZeros(Mask2); |
| Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), |
| DAG.getConstant(amt, DL, MVT::i32)); |
| Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, |
| DAG.getConstant(Mask, DL, MVT::i32)); |
| DCI.CombineTo(N, Res, false); |
| // Return value from the original node to inform the combiner than N is |
| // now dead. |
| return SDValue(N, 0); |
| } else if (ARM::isBitFieldInvertedMask(~Mask) && |
| (~Mask == Mask2)) { |
| // The pack halfword instruction works better for masks that fit it, |
| // so use that when it's available. |
| if (Subtarget->hasDSP() && |
| (Mask2 == 0xffff || Mask2 == 0xffff0000)) |
| return SDValue(); |
| // 2b |
| unsigned lsb = countTrailingZeros(Mask); |
| Res = DAG.getNode(ISD::SRL, DL, VT, N00, |
| DAG.getConstant(lsb, DL, MVT::i32)); |
| Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, |
| DAG.getConstant(Mask2, DL, MVT::i32)); |
| DCI.CombineTo(N, Res, false); |
| // Return value from the original node to inform the combiner than N is |
| // now dead. |
| return SDValue(N, 0); |
| } |
| } |
| |
| if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && |
| N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) && |
| ARM::isBitFieldInvertedMask(~Mask)) { |
| // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask |
| // where lsb(mask) == #shamt and masked bits of B are known zero. |
| SDValue ShAmt = N00.getOperand(1); |
| unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue(); |
| unsigned LSB = countTrailingZeros(Mask); |
| if (ShAmtC != LSB) |
| return SDValue(); |
| |
| Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), |
| DAG.getConstant(~Mask, DL, MVT::i32)); |
| |
| DCI.CombineTo(N, Res, false); |
| // Return value from the original node to inform the combiner than N is |
| // now dead. |
| return SDValue(N, 0); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformORCombine - Target-specific dag combine xforms for ISD::OR |
| static SDValue PerformORCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Attempt to use immediate-form VORR |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (BVN && Subtarget->hasNEON() && |
| BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| if (SplatBitSize <= 64) { |
| EVT VorrVT; |
| SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), |
| SplatUndef.getZExtValue(), SplatBitSize, |
| DAG, dl, VorrVT, VT.is128BitVector(), |
| OtherModImm); |
| if (Val.getNode()) { |
| SDValue Input = |
| DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); |
| SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); |
| } |
| } |
| } |
| |
| if (!Subtarget->isThumb1Only()) { |
| // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) |
| if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI)) |
| return Result; |
| if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget)) |
| return Result; |
| } |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. |
| if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && |
| DAG.getTargetLoweringInfo().isTypeLegal(VT)) { |
| |
| // The code below optimizes (or (and X, Y), Z). |
| // The AND operand needs to have a single user to make these optimizations |
| // profitable. |
| if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) |
| return SDValue(); |
| |
| APInt SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| |
| APInt SplatBits0, SplatBits1; |
| BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); |
| BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); |
| // Ensure that the second operand of both ands are constants |
| if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, |
| HasAnyUndefs) && !HasAnyUndefs) { |
| if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, |
| HasAnyUndefs) && !HasAnyUndefs) { |
| // Ensure that the bit width of the constants are the same and that |
| // the splat arguments are logical inverses as per the pattern we |
| // are trying to simplify. |
| if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() && |
| SplatBits0 == ~SplatBits1) { |
| // Canonicalize the vector type to make instruction selection |
| // simpler. |
| EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; |
| SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT, |
| N0->getOperand(1), |
| N0->getOperand(0), |
| N1->getOperand(0)); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Result); |
| } |
| } |
| } |
| } |
| |
| // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when |
| // reasonable. |
| if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) { |
| if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget)) |
| return Res; |
| } |
| |
| if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) |
| return Result; |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformXORCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| if (!Subtarget->isThumb1Only()) { |
| // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) |
| if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI)) |
| return Result; |
| |
| if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) |
| return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it, |
| // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and |
| // their position in "to" (Rd). |
| static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) { |
| assert(N->getOpcode() == ARMISD::BFI); |
| |
| SDValue From = N->getOperand(1); |
| ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue(); |
| FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation()); |
| |
| // If the Base came from a SHR #C, we can deduce that it is really testing bit |
| // #C in the base of the SHR. |
| if (From->getOpcode() == ISD::SRL && |
| isa<ConstantSDNode>(From->getOperand(1))) { |
| APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue(); |
| assert(Shift.getLimitedValue() < 32 && "Shift too large!"); |
| FromMask <<= Shift.getLimitedValue(31); |
| From = From->getOperand(0); |
| } |
| |
| return From; |
| } |
| |
| // If A and B contain one contiguous set of bits, does A | B == A . B? |
| // |
| // Neither A nor B must be zero. |
| static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) { |
| unsigned LastActiveBitInA = A.countTrailingZeros(); |
| unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1; |
| return LastActiveBitInA - 1 == FirstActiveBitInB; |
| } |
| |
| static SDValue FindBFIToCombineWith(SDNode *N) { |
| // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with, |
| // if one exists. |
| APInt ToMask, FromMask; |
| SDValue From = ParseBFI(N, ToMask, FromMask); |
| SDValue To = N->getOperand(0); |
| |
| // Now check for a compatible BFI to merge with. We can pass through BFIs that |
| // aren't compatible, but not if they set the same bit in their destination as |
| // we do (or that of any BFI we're going to combine with). |
| SDValue V = To; |
| APInt CombinedToMask = ToMask; |
| while (V.getOpcode() == ARMISD::BFI) { |
| APInt NewToMask, NewFromMask; |
| SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask); |
| if (NewFrom != From) { |
| // This BFI has a different base. Keep going. |
| CombinedToMask |= NewToMask; |
| V = V.getOperand(0); |
| continue; |
| } |
| |
| // Do the written bits conflict with any we've seen so far? |
| if ((NewToMask & CombinedToMask).getBoolValue()) |
| // Conflicting bits - bail out because going further is unsafe. |
| return SDValue(); |
| |
| // Are the new bits contiguous when combined with the old bits? |
| if (BitsProperlyConcatenate(ToMask, NewToMask) && |
| BitsProperlyConcatenate(FromMask, NewFromMask)) |
| return V; |
| if (BitsProperlyConcatenate(NewToMask, ToMask) && |
| BitsProperlyConcatenate(NewFromMask, FromMask)) |
| return V; |
| |
| // We've seen a write to some bits, so track it. |
| CombinedToMask |= NewToMask; |
| // Keep going... |
| V = V.getOperand(0); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformBFICombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N1 = N->getOperand(1); |
| if (N1.getOpcode() == ISD::AND) { |
| // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff |
| // the bits being cleared by the AND are not demanded by the BFI. |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N11C) |
| return SDValue(); |
| unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); |
| unsigned LSB = countTrailingZeros(~InvMask); |
| unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB; |
| assert(Width < |
| static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && |
| "undefined behavior"); |
| unsigned Mask = (1u << Width) - 1; |
| unsigned Mask2 = N11C->getZExtValue(); |
| if ((Mask & (~Mask2)) == 0) |
| return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0), |
| N->getOperand(0), N1.getOperand(0), |
| N->getOperand(2)); |
| } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) { |
| // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes. |
| // Keep track of any consecutive bits set that all come from the same base |
| // value. We can combine these together into a single BFI. |
| SDValue CombineBFI = FindBFIToCombineWith(N); |
| if (CombineBFI == SDValue()) |
| return SDValue(); |
| |
| // We've found a BFI. |
| APInt ToMask1, FromMask1; |
| SDValue From1 = ParseBFI(N, ToMask1, FromMask1); |
| |
| APInt ToMask2, FromMask2; |
| SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2); |
| assert(From1 == From2); |
| (void)From2; |
| |
| // First, unlink CombineBFI. |
| DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0)); |
| // Then create a new BFI, combining the two together. |
| APInt NewFromMask = FromMask1 | FromMask2; |
| APInt NewToMask = ToMask1 | ToMask2; |
| |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| |
| if (NewFromMask[0] == 0) |
| From1 = DCI.DAG.getNode( |
| ISD::SRL, dl, VT, From1, |
| DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT)); |
| return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1, |
| DCI.DAG.getConstant(~NewToMask, dl, VT)); |
| } |
| return SDValue(); |
| } |
| |
| /// PerformVMOVRRDCombine - Target-specific dag combine xforms for |
| /// ARMISD::VMOVRRD. |
| static SDValue PerformVMOVRRDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // vmovrrd(vmovdrr x, y) -> x,y |
| SDValue InDouble = N->getOperand(0); |
| if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP()) |
| return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); |
| |
| // vmovrrd(load f64) -> (load i32), (load i32) |
| SDNode *InNode = InDouble.getNode(); |
| if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && |
| InNode->getValueType(0) == MVT::f64 && |
| InNode->getOperand(1).getOpcode() == ISD::FrameIndex && |
| !cast<LoadSDNode>(InNode)->isVolatile()) { |
| // TODO: Should this be done for non-FrameIndex operands? |
| LoadSDNode *LD = cast<LoadSDNode>(InNode); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(LD); |
| SDValue BasePtr = LD->getBasePtr(); |
| SDValue NewLD1 = |
| DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(), |
| LD->getAlignment(), LD->getMemOperand()->getFlags()); |
| |
| SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, |
| DAG.getConstant(4, DL, MVT::i32)); |
| SDValue NewLD2 = DAG.getLoad( |
| MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(), |
| std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags()); |
| |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); |
| if (DCI.DAG.getDataLayout().isBigEndian()) |
| std::swap (NewLD1, NewLD2); |
| SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); |
| return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformVMOVDRRCombine - Target-specific dag combine xforms for |
| /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. |
| static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { |
| // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| if (Op0.getOpcode() == ISD::BITCAST) |
| Op0 = Op0.getOperand(0); |
| if (Op1.getOpcode() == ISD::BITCAST) |
| Op1 = Op1.getOperand(0); |
| if (Op0.getOpcode() == ARMISD::VMOVRRD && |
| Op0.getNode() == Op1.getNode() && |
| Op0.getResNo() == 0 && Op1.getResNo() == 1) |
| return DAG.getNode(ISD::BITCAST, SDLoc(N), |
| N->getValueType(0), Op0.getOperand(0)); |
| return SDValue(); |
| } |
| |
| /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node |
| /// are normal, non-volatile loads. If so, it is profitable to bitcast an |
| /// i64 vector to have f64 elements, since the value can then be loaded |
| /// directly into a VFP register. |
| static bool hasNormalLoadOperand(SDNode *N) { |
| unsigned NumElts = N->getValueType(0).getVectorNumElements(); |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDNode *Elt = N->getOperand(i).getNode(); |
| if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for |
| /// ISD::BUILD_VECTOR. |
| static SDValue PerformBUILD_VECTORCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): |
| // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value |
| // into a pair of GPRs, which is fine when the value is used as a scalar, |
| // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. |
| SelectionDAG &DAG = DCI.DAG; |
| if (N->getNumOperands() == 2) |
| if (SDValue RV = PerformVMOVDRRCombine(N, DAG)) |
| return RV; |
| |
| // Load i64 elements as f64 values so that type legalization does not split |
| // them up into i32 values. |
| EVT VT = N->getValueType(0); |
| if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) |
| return SDValue(); |
| SDLoc dl(N); |
| SmallVector<SDValue, 8> Ops; |
| unsigned NumElts = VT.getVectorNumElements(); |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); |
| Ops.push_back(V); |
| // Make the DAGCombiner fold the bitcast. |
| DCI.AddToWorklist(V.getNode()); |
| } |
| EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); |
| SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops); |
| return DAG.getNode(ISD::BITCAST, dl, VT, BV); |
| } |
| |
| /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR. |
| static SDValue |
| PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR. |
| // At that time, we may have inserted bitcasts from integer to float. |
| // If these bitcasts have survived DAGCombine, change the lowering of this |
| // BUILD_VECTOR in something more vector friendly, i.e., that does not |
| // force to use floating point types. |
| |
| // Make sure we can change the type of the vector. |
| // This is possible iff: |
| // 1. The vector is only used in a bitcast to a integer type. I.e., |
| // 1.1. Vector is used only once. |
| // 1.2. Use is a bit convert to an integer type. |
| // 2. The size of its operands are 32-bits (64-bits are not legal). |
| EVT VT = N->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| |
| // Check 1.1. and 2. |
| if (EltVT.getSizeInBits() != 32 || !N->hasOneUse()) |
| return SDValue(); |
| |
| // By construction, the input type must be float. |
| assert(EltVT == MVT::f32 && "Unexpected type!"); |
| |
| // Check 1.2. |
| SDNode *Use = *N->use_begin(); |
| if (Use->getOpcode() != ISD::BITCAST || |
| Use->getValueType(0).isFloatingPoint()) |
| return SDValue(); |
| |
| // Check profitability. |
| // Model is, if more than half of the relevant operands are bitcast from |
| // i32, turn the build_vector into a sequence of insert_vector_elt. |
| // Relevant operands are everything that is not statically |
| // (i.e., at compile time) bitcasted. |
| unsigned NumOfBitCastedElts = 0; |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumOfRelevantElts = NumElts; |
| for (unsigned Idx = 0; Idx < NumElts; ++Idx) { |
| SDValue Elt = N->getOperand(Idx); |
| if (Elt->getOpcode() == ISD::BITCAST) { |
| // Assume only bit cast to i32 will go away. |
| if (Elt->getOperand(0).getValueType() == MVT::i32) |
| ++NumOfBitCastedElts; |
| } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt)) |
| // Constants are statically casted, thus do not count them as |
| // relevant operands. |
| --NumOfRelevantElts; |
| } |
| |
| // Check if more than half of the elements require a non-free bitcast. |
| if (NumOfBitCastedElts <= NumOfRelevantElts / 2) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| // Create the new vector type. |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); |
| // Check if the type is legal. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.isTypeLegal(VecVT)) |
| return SDValue(); |
| |
| // Combine: |
| // ARMISD::BUILD_VECTOR E1, E2, ..., EN. |
| // => BITCAST INSERT_VECTOR_ELT |
| // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1), |
| // (BITCAST EN), N. |
| SDValue Vec = DAG.getUNDEF(VecVT); |
| SDLoc dl(N); |
| for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) { |
| SDValue V = N->getOperand(Idx); |
| if (V.isUndef()) |
| continue; |
| if (V.getOpcode() == ISD::BITCAST && |
| V->getOperand(0).getValueType() == MVT::i32) |
| // Fold obvious case. |
| V = V.getOperand(0); |
| else { |
| V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V); |
| // Make the DAGCombiner fold the bitcasts. |
| DCI.AddToWorklist(V.getNode()); |
| } |
| SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx); |
| } |
| Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec); |
| // Make the DAGCombiner fold the bitcasts. |
| DCI.AddToWorklist(Vec.getNode()); |
| return Vec; |
| } |
| |
| /// PerformInsertEltCombine - Target-specific dag combine xforms for |
| /// ISD::INSERT_VECTOR_ELT. |
| static SDValue PerformInsertEltCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // Bitcast an i64 load inserted into a vector to f64. |
| // Otherwise, the i64 value will be legalized to a pair of i32 values. |
| EVT VT = N->getValueType(0); |
| SDNode *Elt = N->getOperand(1).getNode(); |
| if (VT.getVectorElementType() != MVT::i64 || |
| !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, |
| VT.getVectorNumElements()); |
| SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); |
| SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); |
| // Make the DAGCombiner fold the bitcasts. |
| DCI.AddToWorklist(Vec.getNode()); |
| DCI.AddToWorklist(V.getNode()); |
| SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, |
| Vec, V, N->getOperand(2)); |
| return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); |
| } |
| |
| /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for |
| /// ISD::VECTOR_SHUFFLE. |
| static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { |
| // The LLVM shufflevector instruction does not require the shuffle mask |
| // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does |
| // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the |
| // operands do not match the mask length, they are extended by concatenating |
| // them with undef vectors. That is probably the right thing for other |
| // targets, but for NEON it is better to concatenate two double-register |
| // size vector operands into a single quad-register size vector. Do that |
| // transformation here: |
| // shuffle(concat(v1, undef), concat(v2, undef)) -> |
| // shuffle(concat(v1, v2), undef) |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| if (Op0.getOpcode() != ISD::CONCAT_VECTORS || |
| Op1.getOpcode() != ISD::CONCAT_VECTORS || |
| Op0.getNumOperands() != 2 || |
| Op1.getNumOperands() != 2) |
| return SDValue(); |
| SDValue Concat0Op1 = Op0.getOperand(1); |
| SDValue Concat1Op1 = Op1.getOperand(1); |
| if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef()) |
| return SDValue(); |
| // Skip the transformation if any of the types are illegal. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT VT = N->getValueType(0); |
| if (!TLI.isTypeLegal(VT) || |
| !TLI.isTypeLegal(Concat0Op1.getValueType()) || |
| !TLI.isTypeLegal(Concat1Op1.getValueType())) |
| return SDValue(); |
| |
| SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, |
| Op0.getOperand(0), Op1.getOperand(0)); |
| // Translate the shuffle mask. |
| SmallVector<int, 16> NewMask; |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned HalfElts = NumElts/2; |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| for (unsigned n = 0; n < NumElts; ++n) { |
| int MaskElt = SVN->getMaskElt(n); |
| int NewElt = -1; |
| if (MaskElt < (int)HalfElts) |
| NewElt = MaskElt; |
| else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) |
| NewElt = HalfElts + MaskElt - NumElts; |
| NewMask.push_back(NewElt); |
| } |
| return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat, |
| DAG.getUNDEF(VT), NewMask); |
| } |
| |
| /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP, |
| /// NEON load/store intrinsics, and generic vector load/stores, to merge |
| /// base address updates. |
| /// For generic load/stores, the memory type is assumed to be a vector. |
| /// The caller is assumed to have checked legality. |
| static SDValue CombineBaseUpdate(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || |
| N->getOpcode() == ISD::INTRINSIC_W_CHAIN); |
| const bool isStore = N->getOpcode() == ISD::STORE; |
| const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1); |
| SDValue Addr = N->getOperand(AddrOpIdx); |
| MemSDNode *MemN = cast<MemSDNode>(N); |
| SDLoc dl(N); |
| |
| // Search for a use of the address operand that is an increment. |
| for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), |
| UE = Addr.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User->getOpcode() != ISD::ADD || |
| UI.getUse().getResNo() != Addr.getResNo()) |
| continue; |
| |
| // Check that the add is independent of the load/store. Otherwise, folding |
| // it would create a cycle. |
| if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) |
| continue; |
| |
| // Find the new opcode for the updating load/store. |
| bool isLoadOp = true; |
| bool isLaneOp = false; |
| unsigned NewOpc = 0; |
| unsigned NumVecs = 0; |
| if (isIntrinsic) { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| default: llvm_unreachable("unexpected intrinsic for Neon base update"); |
| case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; |
| NumVecs = 1; break; |
| case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; |
| NumVecs = 2; break; |
| case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; |
| NumVecs = 3; break; |
| case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; |
| NumVecs = 4; break; |
| case Intrinsic::arm_neon_vld2dup: |
| case Intrinsic::arm_neon_vld3dup: |
| case Intrinsic::arm_neon_vld4dup: |
| // TODO: Support updating VLDxDUP nodes. For now, we just skip |
| // combining base updates for such intrinsics. |
| continue; |
| case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; |
| NumVecs = 2; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; |
| NumVecs = 3; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; |
| NumVecs = 4; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; |
| NumVecs = 1; isLoadOp = false; break; |
| case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; |
| NumVecs = 2; isLoadOp = false; break; |
| case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; |
| NumVecs = 3; isLoadOp = false; break; |
| case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; |
| NumVecs = 4; isLoadOp = false; break; |
| case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; |
| NumVecs = 2; isLoadOp = false; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; |
| NumVecs = 3; isLoadOp = false; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; |
| NumVecs = 4; isLoadOp = false; isLaneOp = true; break; |
| } |
| } else { |
| isLaneOp = true; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unexpected opcode for Neon base update"); |
| case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break; |
| case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; |
| case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; |
| case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; |
| case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD; |
| NumVecs = 1; isLaneOp = false; break; |
| case ISD::STORE: NewOpc = ARMISD::VST1_UPD; |
| NumVecs = 1; isLaneOp = false; isLoadOp = false; break; |
| } |
| } |
| |
| // Find the size of memory referenced by the load/store. |
| EVT VecTy; |
| if (isLoadOp) { |
| VecTy = N->getValueType(0); |
| } else if (isIntrinsic) { |
| VecTy = N->getOperand(AddrOpIdx+1).getValueType(); |
| } else { |
| assert(isStore && "Node has to be a load, a store, or an intrinsic!"); |
| VecTy = N->getOperand(1).getValueType(); |
| } |
| |
| unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; |
| if (isLaneOp) |
| NumBytes /= VecTy.getVectorNumElements(); |
| |
| // If the increment is a constant, it must match the memory ref size. |
| SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); |
| ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode()); |
| if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) { |
| // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two |
| // separate instructions that make it harder to use a non-constant update. |
| continue; |
| } |
| |
| // OK, we found an ADD we can fold into the base update. |
| // Now, create a _UPD node, taking care of not breaking alignment. |
| |
| EVT AlignedVecTy = VecTy; |
| unsigned Alignment = MemN->getAlignment(); |
| |
| // If this is a less-than-standard-aligned load/store, change the type to |
| // match the standard alignment. |
| // The alignment is overlooked when selecting _UPD variants; and it's |
| // easier to introduce bitcasts here than fix that. |
| // There are 3 ways to get to this base-update combine: |
| // - intrinsics: they are assumed to be properly aligned (to the standard |
| // alignment of the memory type), so we don't need to do anything. |
| // - ARMISD::VLDx nodes: they are only generated from the aforementioned |
| // intrinsics, so, likewise, there's nothing to do. |
| // - generic load/store instructions: the alignment is specified as an |
| // explicit operand, rather than implicitly as the standard alignment |
| // of the memory type (like the intrisics). We need to change the |
| // memory type to match the explicit alignment. That way, we don't |
| // generate non-standard-aligned ARMISD::VLDx nodes. |
| if (isa<LSBaseSDNode>(N)) { |
| if (Alignment == 0) |
| Alignment = 1; |
| if (Alignment < VecTy.getScalarSizeInBits() / 8) { |
| MVT EltTy = MVT::getIntegerVT(Alignment * 8); |
| assert(NumVecs == 1 && "Unexpected multi-element generic load/store."); |
| assert(!isLaneOp && "Unexpected generic load/store lane."); |
| unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8); |
| AlignedVecTy = MVT::getVectorVT(EltTy, NumElts); |
| } |
| // Don't set an explicit alignment on regular load/stores that we want |
| // to transform to VLD/VST 1_UPD nodes. |
| // This matches the behavior of regular load/stores, which only get an |
| // explicit alignment if the MMO alignment is larger than the standard |
| // alignment of the memory type. |
| // Intrinsics, however, always get an explicit alignment, set to the |
| // alignment of the MMO. |
| Alignment = 1; |
| } |
| |
| // Create the new updating load/store node. |
| // First, create an SDVTList for the new updating node's results. |
| EVT Tys[6]; |
| unsigned NumResultVecs = (isLoadOp ? NumVecs : 0); |
| unsigned n; |
| for (n = 0; n < NumResultVecs; ++n) |
| Tys[n] = AlignedVecTy; |
| Tys[n++] = MVT::i32; |
| Tys[n] = MVT::Other; |
| SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2)); |
| |
| // Then, gather the new node's operands. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(N->getOperand(0)); // incoming chain |
| Ops.push_back(N->getOperand(AddrOpIdx)); |
| Ops.push_back(Inc); |
| |
| if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) { |
| // Try to match the intrinsic's signature |
| Ops.push_back(StN->getValue()); |
| } else { |
| // Loads (and of course intrinsics) match the intrinsics' signature, |
| // so just add all but the alignment operand. |
| for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i) |
| Ops.push_back(N->getOperand(i)); |
| } |
| |
| // For all node types, the alignment operand is always the last one. |
| Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32)); |
| |
| // If this is a non-standard-aligned STORE, the penultimate operand is the |
| // stored value. Bitcast it to the aligned type. |
| if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) { |
| SDValue &StVal = Ops[Ops.size()-2]; |
| StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal); |
| } |
| |
| EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy; |
| SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT, |
| MemN->getMemOperand()); |
| |
| // Update the uses. |
| SmallVector<SDValue, 5> NewResults; |
| for (unsigned i = 0; i < NumResultVecs; ++i) |
| NewResults.push_back(SDValue(UpdN.getNode(), i)); |
| |
| // If this is an non-standard-aligned LOAD, the first result is the loaded |
| // value. Bitcast it to the expected result type. |
| if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) { |
| SDValue &LdVal = NewResults[0]; |
| LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal); |
| } |
| |
| NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain |
| DCI.CombineTo(N, NewResults); |
| DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); |
| |
| break; |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformVLDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| return CombineBaseUpdate(N, DCI); |
| } |
| |
| /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a |
| /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic |
| /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and |
| /// return true. |
| static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| // vldN-dup instructions only support 64-bit vectors for N > 1. |
| if (!VT.is64BitVector()) |
| return false; |
| |
| // Check if the VDUPLANE operand is a vldN-dup intrinsic. |
| SDNode *VLD = N->getOperand(0).getNode(); |
| if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| return false; |
| unsigned NumVecs = 0; |
| unsigned NewOpc = 0; |
| unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue(); |
| if (IntNo == Intrinsic::arm_neon_vld2lane) { |
| NumVecs = 2; |
| NewOpc = ARMISD::VLD2DUP; |
| } else if (IntNo == Intrinsic::arm_neon_vld3lane) { |
| NumVecs = 3; |
| NewOpc = ARMISD::VLD3DUP; |
| } else if (IntNo == Intrinsic::arm_neon_vld4lane) { |
| NumVecs = 4; |
| NewOpc = ARMISD::VLD4DUP; |
| } else { |
| return false; |
| } |
| |
| // First check that all the vldN-lane uses are VDUPLANEs and that the lane |
| // numbers match the load. |
| unsigned VLDLaneNo = |
| cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue(); |
| for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); |
| UI != UE; ++UI) { |
| // Ignore uses of the chain result. |
| if (UI.getUse().getResNo() == NumVecs) |
| continue; |
| SDNode *User = *UI; |
| if (User->getOpcode() != ARMISD::VDUPLANE || |
| VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue()) |
| return false; |
| } |
| |
| // Create the vldN-dup node. |
| EVT Tys[5]; |
| unsigned n; |
| for (n = 0; n < NumVecs; ++n) |
| Tys[n] = VT; |
| Tys[n] = MVT::Other; |
| SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1)); |
| SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; |
| MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); |
| SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, |
| Ops, VLDMemInt->getMemoryVT(), |
| VLDMemInt->getMemOperand()); |
| |
| // Update the uses. |
| for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); |
| UI != UE; ++UI) { |
| unsigned ResNo = UI.getUse().getResNo(); |
| // Ignore uses of the chain result. |
| if (ResNo == NumVecs) |
| continue; |
| SDNode *User = *UI; |
| DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); |
| } |
| |
| // Now the vldN-lane intrinsic is dead except for its chain result. |
| // Update uses of the chain. |
| std::vector<SDValue> VLDDupResults; |
| for (unsigned n = 0; n < NumVecs; ++n) |
| VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); |
| VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); |
| DCI.CombineTo(VLD, VLDDupResults); |
| |
| return true; |
| } |
| |
| /// PerformVDUPLANECombine - Target-specific dag combine xforms for |
| /// ARMISD::VDUPLANE. |
| static SDValue PerformVDUPLANECombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue Op = N->getOperand(0); |
| |
| // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses |
| // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. |
| if (CombineVLDDUP(N, DCI)) |
| return SDValue(N, 0); |
| |
| // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is |
| // redundant. Ignore bit_converts for now; element sizes are checked below. |
| while (Op.getOpcode() == ISD::BITCAST) |
| Op = Op.getOperand(0); |
| if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) |
| return SDValue(); |
| |
| // Make sure the VMOV element size is not bigger than the VDUPLANE elements. |
| unsigned EltSize = Op.getScalarValueSizeInBits(); |
| // The canonical VMOV for a zero vector uses a 32-bit element size. |
| unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned EltBits; |
| if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0) |
| EltSize = 8; |
| EVT VT = N->getValueType(0); |
| if (EltSize > VT.getScalarSizeInBits()) |
| return SDValue(); |
| |
| return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); |
| } |
| |
| /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP. |
| static SDValue PerformVDUPCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Op = N->getOperand(0); |
| |
| // Match VDUP(LOAD) -> VLD1DUP. |
| // We match this pattern here rather than waiting for isel because the |
| // transform is only legal for unindexed loads. |
| LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()); |
| if (LD && Op.hasOneUse() && LD->isUnindexed() && |
| LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) { |
| SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1), |
| DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) }; |
| SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other); |
| SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys, |
| Ops, LD->getMemoryVT(), |
| LD->getMemOperand()); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1)); |
| return VLDDup; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformLOADCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| EVT VT = N->getValueType(0); |
| |
| // If this is a legal vector load, try to combine it into a VLD1_UPD. |
| if (ISD::isNormalLoad(N) && VT.isVector() && |
| DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return CombineBaseUpdate(N, DCI); |
| |
| return SDValue(); |
| } |
| |
| /// PerformSTORECombine - Target-specific dag combine xforms for |
| /// ISD::STORE. |
| static SDValue PerformSTORECombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| StoreSDNode *St = cast<StoreSDNode>(N); |
| if (St->isVolatile()) |
| return SDValue(); |
| |
| // Optimize trunc store (of multiple scalars) to shuffle and store. First, |
| // pack all of the elements in one place. Next, store to memory in fewer |
| // chunks. |
| SDValue StVal = St->getValue(); |
| EVT VT = StVal.getValueType(); |
| if (St->isTruncatingStore() && VT.isVector()) { |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT StVT = St->getMemoryVT(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| assert(StVT != VT && "Cannot truncate to the same type"); |
| unsigned FromEltSz = VT.getScalarSizeInBits(); |
| unsigned ToEltSz = StVT.getScalarSizeInBits(); |
| |
| // From, To sizes and ElemCount must be pow of two |
| if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue(); |
| |
| // We are going to use the original vector elt for storing. |
| // Accumulated smaller vector elements must be a multiple of the store size. |
| if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue(); |
| |
| unsigned SizeRatio = FromEltSz / ToEltSz; |
| assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); |
| |
| // Create a type on which we perform the shuffle. |
| EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), |
| NumElems*SizeRatio); |
| assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); |
| |
| SDLoc DL(St); |
| SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); |
| SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i < NumElems; ++i) |
| ShuffleVec[i] = DAG.getDataLayout().isBigEndian() |
| ? (i + 1) * SizeRatio - 1 |
| : i * SizeRatio; |
| |
| // Can't shuffle using an illegal type. |
| if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); |
| |
| SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec, |
| DAG.getUNDEF(WideVec.getValueType()), |
| ShuffleVec); |
| // At this point all of the data is stored at the bottom of the |
| // register. We now need to save it to mem. |
| |
| // Find the largest store unit |
| MVT StoreType = MVT::i8; |
| for (MVT Tp : MVT::integer_valuetypes()) { |
| if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) |
| StoreType = Tp; |
| } |
| // Didn't find a legal store type. |
| if (!TLI.isTypeLegal(StoreType)) |
| return SDValue(); |
| |
| // Bitcast the original vector into a vector of store-size units |
| EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), |
| StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits()); |
| assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); |
| SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); |
| SmallVector<SDValue, 8> Chains; |
| SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL, |
| TLI.getPointerTy(DAG.getDataLayout())); |
| SDValue BasePtr = St->getBasePtr(); |
| |
| // Perform one or more big stores into memory. |
| unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits(); |
| for (unsigned I = 0; I < E; I++) { |
| SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, |
| StoreType, ShuffWide, |
| DAG.getIntPtrConstant(I, DL)); |
| SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr, |
| St->getPointerInfo(), St->getAlignment(), |
| St->getMemOperand()->getFlags()); |
| BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, |
| Increment); |
| Chains.push_back(Ch); |
| } |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
| } |
| |
| if (!ISD::isNormalStore(St)) |
| return SDValue(); |
| |
| // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and |
| // ARM stores of arguments in the same cache line. |
| if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && |
| StVal.getNode()->hasOneUse()) { |
| SelectionDAG &DAG = DCI.DAG; |
| bool isBigEndian = DAG.getDataLayout().isBigEndian(); |
| SDLoc DL(St); |
| SDValue BasePtr = St->getBasePtr(); |
| SDValue NewST1 = DAG.getStore( |
| St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0), |
| BasePtr, St->getPointerInfo(), St->getAlignment(), |
| St->getMemOperand()->getFlags()); |
| |
| SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, |
| DAG.getConstant(4, DL, MVT::i32)); |
| return DAG.getStore(NewST1.getValue(0), DL, |
| StVal.getNode()->getOperand(isBigEndian ? 0 : 1), |
| OffsetPtr, St->getPointerInfo(), |
| std::min(4U, St->getAlignment() / 2), |
| St->getMemOperand()->getFlags()); |
| } |
| |
| if (StVal.getValueType() == MVT::i64 && |
| StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| |
| // Bitcast an i64 store extracted from a vector to f64. |
| // Otherwise, the i64 value will be legalized to a pair of i32 values. |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(StVal); |
| SDValue IntVec = StVal.getOperand(0); |
| EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, |
| IntVec.getValueType().getVectorNumElements()); |
| SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); |
| SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| Vec, StVal.getOperand(1)); |
| dl = SDLoc(N); |
| SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); |
| // Make the DAGCombiner fold the bitcasts. |
| DCI.AddToWorklist(Vec.getNode()); |
| DCI.AddToWorklist(ExtElt.getNode()); |
| DCI.AddToWorklist(V.getNode()); |
| return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), |
| St->getPointerInfo(), St->getAlignment(), |
| St->getMemOperand()->getFlags(), St->getAAInfo()); |
| } |
| |
| // If this is a legal vector store, try to combine it into a VST1_UPD. |
| if (ISD::isNormalStore(N) && VT.isVector() && |
| DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return CombineBaseUpdate(N, DCI); |
| |
| return SDValue(); |
| } |
| |
| /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) |
| /// can replace combinations of VMUL and VCVT (floating-point to integer) |
| /// when the VMUL has a constant operand that is a power of 2. |
| /// |
| /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): |
| /// vmul.f32 d16, d17, d16 |
| /// vcvt.s32.f32 d16, d16 |
| /// becomes: |
| /// vcvt.s32.f32 d16, d16, #3 |
| static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| if (!Subtarget->hasNEON()) |
| return SDValue(); |
| |
| SDValue Op = N->getOperand(0); |
| if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || |
| Op.getOpcode() != ISD::FMUL) |
| return SDValue(); |
| |
| SDValue ConstVec = Op->getOperand(1); |
| if (!isa<BuildVectorSDNode>(ConstVec)) |
| return SDValue(); |
| |
| MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); |
| uint32_t FloatBits = FloatTy.getSizeInBits(); |
| MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); |
| uint32_t IntBits = IntTy.getSizeInBits(); |
| unsigned NumLanes = Op.getValueType().getVectorNumElements(); |
| if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) { |
| // These instructions only exist converting from f32 to i32. We can handle |
| // smaller integers by generating an extra truncate, but larger ones would |
| // be lossy. We also can't handle more then 4 lanes, since these intructions |
| // only support v2i32/v4i32 types. |
| return SDValue(); |
| } |
| |
| BitVector UndefElements; |
| BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); |
| int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); |
| if (C == -1 || C == 0 || C > 32) |
| return SDValue(); |
| |
| SDLoc dl(N); |
| bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; |
| unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : |
| Intrinsic::arm_neon_vcvtfp2fxu; |
| SDValue FixConv = DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, |
| DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0), |
| DAG.getConstant(C, dl, MVT::i32)); |
| |
| if (IntBits < FloatBits) |
| FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv); |
| |
| return FixConv; |
| } |
| |
| /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) |
| /// can replace combinations of VCVT (integer to floating-point) and VDIV |
| /// when the VDIV has a constant operand that is a power of 2. |
| /// |
| /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): |
| /// vcvt.f32.s32 d16, d16 |
| /// vdiv.f32 d16, d17, d16 |
| /// becomes: |
| /// vcvt.f32.s32 d16, d16, #3 |
| static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| if (!Subtarget->hasNEON()) |
| return SDValue(); |
| |
| SDValue Op = N->getOperand(0); |
| unsigned OpOpcode = Op.getNode()->getOpcode(); |
| if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() || |
| (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) |
| return SDValue(); |
| |
| SDValue ConstVec = N->getOperand(1); |
| if (!isa<BuildVectorSDNode>(ConstVec)) |
| return SDValue(); |
| |
| MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); |
| uint32_t FloatBits = FloatTy.getSizeInBits(); |
| MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); |
| uint32_t IntBits = IntTy.getSizeInBits(); |
| unsigned NumLanes = Op.getValueType().getVectorNumElements(); |
| if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) { |
| // These instructions only exist converting from i32 to f32. We can handle |
| // smaller integers by generating an extra extend, but larger ones would |
| // be lossy. We also can't handle more then 4 lanes, since these intructions |
| // only support v2i32/v4i32 types. |
| return SDValue(); |
| } |
| |
| BitVector UndefElements; |
| BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); |
| int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); |
| if (C == -1 || C == 0 || C > 32) |
| return SDValue(); |
| |
| SDLoc dl(N); |
| bool isSigned = OpOpcode == ISD::SINT_TO_FP; |
| SDValue ConvInput = Op.getOperand(0); |
| if (IntBits < FloatBits) |
| ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, |
| dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, |
| ConvInput); |
| |
| unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : |
| Intrinsic::arm_neon_vcvtfxu2fp; |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, |
| Op.getValueType(), |
| DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), |
| ConvInput, DAG.getConstant(C, dl, MVT::i32)); |
| } |
| |
| /// Getvshiftimm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift operation, where all the elements of the |
| /// build_vector must have the same constant integer value. |
| static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { |
| // Ignore bit_converts. |
| while (Op.getOpcode() == ISD::BITCAST) |
| Op = Op.getOperand(0); |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, |
| HasAnyUndefs, ElementBits) || |
| SplatBitSize > ElementBits) |
| return false; |
| Cnt = SplatBits.getSExtValue(); |
| return true; |
| } |
| |
| /// isVShiftLImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift left operation. That value must be in the range: |
| /// 0 <= Value < ElementBits for a left shift; or |
| /// 0 <= Value <= ElementBits for a long left shift. |
| static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { |
| assert(VT.isVector() && "vector shift count is not a vector type"); |
| int64_t ElementBits = VT.getScalarSizeInBits(); |
| if (! getVShiftImm(Op, ElementBits, Cnt)) |
| return false; |
| return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); |
| } |
| |
| /// isVShiftRImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift right operation. For a shift opcode, the value |
| /// is positive, but for an intrinsic the value count must be negative. The |
| /// absolute value must be in the range: |
| /// 1 <= |Value| <= ElementBits for a right shift; or |
| /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. |
| static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, |
| int64_t &Cnt) { |
| assert(VT.isVector() && "vector shift count is not a vector type"); |
| int64_t ElementBits = VT.getScalarSizeInBits(); |
| if (! getVShiftImm(Op, ElementBits, Cnt)) |
| return false; |
| if (!isIntrinsic) |
| return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); |
| if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) { |
| Cnt = -Cnt; |
| return true; |
| } |
| return false; |
| } |
| |
| /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. |
| static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IntNo) { |
| default: |
| // Don't do anything for most intrinsics. |
| break; |
| |
| // Vector shifts: check for immediate versions and lower them. |
| // Note: This is done during DAG combining instead of DAG legalizing because |
| // the build_vectors for 64-bit vector element shift counts are generally |
| // not legal, and it is hard to see their values after they get legalized to |
| // loads from a constant pool. |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| case Intrinsic::arm_neon_vrshifts: |
| case Intrinsic::arm_neon_vrshiftu: |
| case Intrinsic::arm_neon_vrshiftn: |
| case Intrinsic::arm_neon_vqshifts: |
| case Intrinsic::arm_neon_vqshiftu: |
| case Intrinsic::arm_neon_vqshiftsu: |
| case Intrinsic::arm_neon_vqshiftns: |
| case Intrinsic::arm_neon_vqshiftnu: |
| case Intrinsic::arm_neon_vqshiftnsu: |
| case Intrinsic::arm_neon_vqrshiftns: |
| case Intrinsic::arm_neon_vqrshiftnu: |
| case Intrinsic::arm_neon_vqrshiftnsu: { |
| EVT VT = N->getOperand(1).getValueType(); |
| int64_t Cnt; |
| unsigned VShiftOpc = 0; |
| |
| switch (IntNo) { |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { |
| VShiftOpc = ARMISD::VSHL; |
| break; |
| } |
| if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { |
| VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? |
| ARMISD::VSHRs : ARMISD::VSHRu); |
| break; |
| } |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vrshifts: |
| case Intrinsic::arm_neon_vrshiftu: |
| if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) |
| break; |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vqshifts: |
| case Intrinsic::arm_neon_vqshiftu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) |
| break; |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vqshiftsu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) |
| break; |
| llvm_unreachable("invalid shift count for vqshlu intrinsic"); |
| |
| case Intrinsic::arm_neon_vrshiftn: |
| case Intrinsic::arm_neon_vqshiftns: |
| case Intrinsic::arm_neon_vqshiftnu: |
| case Intrinsic::arm_neon_vqshiftnsu: |
| case Intrinsic::arm_neon_vqrshiftns: |
| case Intrinsic::arm_neon_vqrshiftnu: |
| case Intrinsic::arm_neon_vqrshiftnsu: |
| // Narrowing shifts require an immediate right shift. |
| if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) |
| break; |
| llvm_unreachable("invalid shift count for narrowing vector shift " |
| "intrinsic"); |
| |
| default: |
| llvm_unreachable("unhandled vector shift"); |
| } |
| |
| switch (IntNo) { |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| // Opcode already set above. |
| break; |
| case Intrinsic::arm_neon_vrshifts: |
| VShiftOpc = ARMISD::VRSHRs; break; |
| case Intrinsic::arm_neon_vrshiftu: |
| VShiftOpc = ARMISD::VRSHRu; break; |
| case Intrinsic::arm_neon_vrshiftn: |
| VShiftOpc = ARMISD::VRSHRN; break; |
| case Intrinsic::arm_neon_vqshifts: |
| VShiftOpc = ARMISD::VQSHLs; break; |
| case Intrinsic::arm_neon_vqshiftu: |
| VShiftOpc = ARMISD::VQSHLu; break; |
| case Intrinsic::arm_neon_vqshiftsu: |
| VShiftOpc = ARMISD::VQSHLsu; break; |
| case Intrinsic::arm_neon_vqshiftns: |
| VShiftOpc = ARMISD::VQSHRNs; break; |
| case Intrinsic::arm_neon_vqshiftnu: |
| VShiftOpc = ARMISD::VQSHRNu; break; |
| case Intrinsic::arm_neon_vqshiftnsu: |
| VShiftOpc = ARMISD::VQSHRNsu; break; |
| case Intrinsic::arm_neon_vqrshiftns: |
| VShiftOpc = ARMISD::VQRSHRNs; break; |
| case Intrinsic::arm_neon_vqrshiftnu: |
| VShiftOpc = ARMISD::VQRSHRNu; break; |
| case Intrinsic::arm_neon_vqrshiftnsu: |
| VShiftOpc = ARMISD::VQRSHRNsu; break; |
| } |
| |
| SDLoc dl(N); |
| return DAG.getNode(VShiftOpc, dl, N->getValueType(0), |
| N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32)); |
| } |
| |
| case Intrinsic::arm_neon_vshiftins: { |
| EVT VT = N->getOperand(1).getValueType(); |
| int64_t Cnt; |
| unsigned VShiftOpc = 0; |
| |
| if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) |
| VShiftOpc = ARMISD::VSLI; |
| else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) |
| VShiftOpc = ARMISD::VSRI; |
| else { |
| llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); |
| } |
| |
| SDLoc dl(N); |
| return DAG.getNode(VShiftOpc, dl, N->getValueType(0), |
| N->getOperand(1), N->getOperand(2), |
| DAG.getConstant(Cnt, dl, MVT::i32)); |
| } |
| |
| case Intrinsic::arm_neon_vqrshifts: |
| case Intrinsic::arm_neon_vqrshiftu: |
| // No immediate versions of these to check for. |
| break; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformShiftCombine - Checks for immediate versions of vector shifts and |
| /// lowers them. As with the vector shift intrinsics, this is done during DAG |
| /// combining instead of DAG legalizing because the build_vectors for 64-bit |
| /// vector element shift counts are generally not legal, and it is hard to see |
| /// their values after they get legalized to loads from a constant pool. |
| static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) { |
| // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high |
| // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16. |
| SDValue N1 = N->getOperand(1); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { |
| SDValue N0 = N->getOperand(0); |
| if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP && |
| DAG.MaskedValueIsZero(N0.getOperand(0), |
| APInt::getHighBitsSet(32, 16))) |
| return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1); |
| } |
| } |
| |
| // Nothing to be done for scalar shifts. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!VT.isVector() || !TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| assert(ST->hasNEON() && "unexpected vector shift"); |
| int64_t Cnt; |
| |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unexpected shift opcode"); |
| |
| case ISD::SHL: |
| if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) { |
| SDLoc dl(N); |
| return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0), |
| DAG.getConstant(Cnt, dl, MVT::i32)); |
| } |
| break; |
| |
| case ISD::SRA: |
| case ISD::SRL: |
| if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { |
| unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? |
| ARMISD::VSHRs : ARMISD::VSHRu); |
| SDLoc dl(N); |
| return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), |
| DAG.getConstant(Cnt, dl, MVT::i32)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, |
| /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. |
| static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| SDValue N0 = N->getOperand(0); |
| |
| // Check for sign- and zero-extensions of vector extract operations of 8- |
| // and 16-bit vector elements. NEON supports these directly. They are |
| // handled during DAG combining because type legalization will promote them |
| // to 32-bit types and it is messy to recognize the operations after that. |
| if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| SDValue Vec = N0.getOperand(0); |
| SDValue Lane = N0.getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT EltVT = N0.getValueType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (VT == MVT::i32 && |
| (EltVT == MVT::i8 || EltVT == MVT::i16) && |
| TLI.isTypeLegal(Vec.getValueType()) && |
| isa<ConstantSDNode>(Lane)) { |
| |
| unsigned Opc = 0; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ISD::SIGN_EXTEND: |
| Opc = ARMISD::VGETLANEs; |
| break; |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| Opc = ARMISD::VGETLANEu; |
| break; |
| } |
| return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static const APInt *isPowerOf2Constant(SDValue V) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); |
| if (!C) |
| return nullptr; |
| const APInt *CV = &C->getAPIntValue(); |
| return CV->isPowerOf2() ? CV : nullptr; |
| } |
| |
| SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const { |
| // If we have a CMOV, OR and AND combination such as: |
| // if (x & CN) |
| // y |= CM; |
| // |
| // And: |
| // * CN is a single bit; |
| // * All bits covered by CM are known zero in y |
| // |
| // Then we can convert this into a sequence of BFI instructions. This will |
| // always be a win if CM is a single bit, will always be no worse than the |
| // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is |
| // three bits (due to the extra IT instruction). |
| |
| SDValue Op0 = CMOV->getOperand(0); |
| SDValue Op1 = CMOV->getOperand(1); |
| auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2)); |
| auto CC = CCNode->getAPIntValue().getLimitedValue(); |
| SDValue CmpZ = CMOV->getOperand(4); |
| |
| // The compare must be against zero. |
| if (!isNullConstant(CmpZ->getOperand(1))) |
| return SDValue(); |
| |
| assert(CmpZ->getOpcode() == ARMISD::CMPZ); |
| SDValue And = CmpZ->getOperand(0); |
| if (And->getOpcode() != ISD::AND) |
| return SDValue(); |
| const APInt *AndC = isPowerOf2Constant(And->getOperand(1)); |
| if (!AndC) |
| return SDValue(); |
| SDValue X = And->getOperand(0); |
| |
| if (CC == ARMCC::EQ) { |
| // We're performing an "equal to zero" compare. Swap the operands so we |
| // canonicalize on a "not equal to zero" compare. |
| std::swap(Op0, Op1); |
| } else { |
| assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?"); |
| } |
| |
| if (Op1->getOpcode() != ISD::OR) |
| return SDValue(); |
| |
| ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1)); |
| if (!OrC) |
| return SDValue(); |
| SDValue Y = Op1->getOperand(0); |
| |
| if (Op0 != Y) |
| return SDValue(); |
| |
| // Now, is it profitable to continue? |
| APInt OrCI = OrC->getAPIntValue(); |
| unsigned Heuristic = Subtarget->isThumb() ? 3 : 2; |
| if (OrCI.countPopulation() > Heuristic) |
| return SDValue(); |
| |
| // Lastly, can we determine that the bits defined by OrCI |
| // are zero in Y? |
| KnownBits Known; |
| DAG.computeKnownBits(Y, Known); |
| if ((OrCI & Known.Zero) != OrCI) |
| return SDValue(); |
| |
| // OK, we can do the combine. |
| SDValue V = Y; |
| SDLoc dl(X); |
| EVT VT = X.getValueType(); |
| unsigned BitInX = AndC->logBase2(); |
| |
| if (BitInX != 0) { |
| // We must shift X first. |
| X = DAG.getNode(ISD::SRL, dl, VT, X, |
| DAG.getConstant(BitInX, dl, VT)); |
| } |
| |
| for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits(); |
| BitInY < NumActiveBits; ++BitInY) { |
| if (OrCI[BitInY] == 0) |
| continue; |
| APInt Mask(VT.getSizeInBits(), 0); |
| Mask.setBit(BitInY); |
| V = DAG.getNode(ARMISD::BFI, dl, VT, V, X, |
| // Confusingly, the operand is an *inverted* mask. |
| DAG.getConstant(~Mask, dl, VT)); |
| } |
| |
| return V; |
| } |
| |
| /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND. |
| SDValue |
| ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const { |
| SDValue Cmp = N->getOperand(4); |
| if (Cmp.getOpcode() != ARMISD::CMPZ) |
| // Only looking at NE cases. |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| SDValue LHS = Cmp.getOperand(0); |
| SDValue RHS = Cmp.getOperand(1); |
| SDValue Chain = N->getOperand(0); |
| SDValue BB = N->getOperand(1); |
| SDValue ARMcc = N->getOperand(2); |
| ARMCC::CondCodes CC = |
| (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); |
| |
| // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0)) |
| // -> (brcond Chain BB CC CPSR Cmp) |
| if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() && |
| LHS->getOperand(0)->getOpcode() == ARMISD::CMOV && |
| LHS->getOperand(0)->hasOneUse()) { |
| auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0)); |
| auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1)); |
| auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1)); |
| auto *RHSC = dyn_cast<ConstantSDNode>(RHS); |
| if ((LHS00C && LHS00C->getZExtValue() == 0) && |
| (LHS01C && LHS01C->getZExtValue() == 1) && |
| (LHS1C && LHS1C->getZExtValue() == 1) && |
| (RHSC && RHSC->getZExtValue() == 0)) { |
| return DAG.getNode( |
| ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2), |
| LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. |
| SDValue |
| ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { |
| SDValue Cmp = N->getOperand(4); |
| if (Cmp.getOpcode() != ARMISD::CMPZ) |
| // Only looking at EQ and NE cases. |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| SDValue LHS = Cmp.getOperand(0); |
| SDValue RHS = Cmp.getOperand(1); |
| SDValue FalseVal = N->getOperand(0); |
| SDValue TrueVal = N->getOperand(1); |
| SDValue ARMcc = N->getOperand(2); |
| ARMCC::CondCodes CC = |
| (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); |
| |
| // BFI is only available on V6T2+. |
| if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) { |
| SDValue R = PerformCMOVToBFICombine(N, DAG); |
| if (R) |
| return R; |
| } |
| |
| // Simplify |
| // mov r1, r0 |
| // cmp r1, x |
| // mov r0, y |
| // moveq r0, x |
| // to |
| // cmp r0, x |
| // movne r0, y |
| // |
| // mov r1, r0 |
| // cmp r1, x |
| // mov r0, x |
| // movne r0, y |
| // to |
| // cmp r0, x |
| // movne r0, y |
| /// FIXME: Turn this into a target neutral optimization? |
| SDValue Res; |
| if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { |
| Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, |
| N->getOperand(3), Cmp); |
| } else if (CC == ARMCC::EQ && TrueVal == RHS) { |
| SDValue ARMcc; |
| SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); |
| Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, |
| N->getOperand(3), NewCmp); |
| } |
| |
| // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0)) |
| // -> (cmov F T CC CPSR Cmp) |
| if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) { |
| auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)); |
| auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1)); |
| auto *RHSC = dyn_cast<ConstantSDNode>(RHS); |
| if ((LHS0C && LHS0C->getZExtValue() == 0) && |
| (LHS1C && LHS1C->getZExtValue() == 1) && |
| (RHSC && RHSC->getZExtValue() == 0)) { |
| return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, |
| LHS->getOperand(2), LHS->getOperand(3), |
| LHS->getOperand(4)); |
| } |
| } |
| |
| if (!VT.isInteger()) |
| return SDValue(); |
| |
| // Materialize a boolean comparison for integers so we can avoid branching. |
| if (isNullConstant(FalseVal)) { |
| if (CC == ARMCC::EQ && isOneConstant(TrueVal)) { |
| if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) { |
| // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it |
| // right 5 bits will make that 32 be 1, otherwise it will be 0. |
| // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5 |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); |
| Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub), |
| DAG.getConstant(5, dl, MVT::i32)); |
| } else { |
| // CMOV 0, 1, ==, (CMPZ x, y) -> |
| // (ADDCARRY (SUB x, y), t:0, t:1) |
| // where t = (SUBCARRY 0, (SUB x, y), 0) |
| // |
| // The SUBCARRY computes 0 - (x - y) and this will give a borrow when |
| // x != y. In other words, a carry C == 1 when x == y, C == 0 |
| // otherwise. |
| // The final ADDCARRY computes |
| // x - y + (0 - (x - y)) + C == C |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub); |
| // ISD::SUBCARRY returns a borrow but we want the carry here |
| // actually. |
| SDValue Carry = |
| DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1)); |
| Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry); |
| } |
| } else if (CC == ARMCC::NE && LHS != RHS && |
| (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) { |
| // This seems pointless but will allow us to combine it further below. |
| // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y) |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); |
| Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc, |
| N->getOperand(3), Cmp); |
| } |
| } else if (isNullConstant(TrueVal)) { |
| if (CC == ARMCC::EQ && LHS != RHS && |
| (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) { |
| // This seems pointless but will allow us to combine it further below |
| // Note that we change == for != as this is the dual for the case above. |
| // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y) |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); |
| Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal, |
| DAG.getConstant(ARMCC::NE, dl, MVT::i32), |
| N->getOperand(3), Cmp); |
| } |
| } |
| |
| // On Thumb1, the DAG above may be further combined if z is a power of 2 |
| // (z == 2 ^ K). |
| // CMOV (SUB x, y), z, !=, (CMPZ x, y) -> |
| // merge t3, t4 |
| // where t1 = (SUBCARRY (SUB x, y), z, 0) |
| // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1) |
| // t3 = if K != 0 then (SHL t2:0, K) else t2:0 |
| // t4 = (SUB 1, t2:1) [ we want a carry, not a borrow ] |
| const APInt *TrueConst; |
| if (Subtarget->isThumb1Only() && CC == ARMCC::NE && |
| (FalseVal.getOpcode() == ISD::SUB) && (FalseVal.getOperand(0) == LHS) && |
| (FalseVal.getOperand(1) == RHS) && |
| (TrueConst = isPowerOf2Constant(TrueVal))) { |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| unsigned ShiftAmount = TrueConst->logBase2(); |
| if (ShiftAmount) |
| TrueVal = DAG.getConstant(1, dl, VT); |
| SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal); |
| Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1)); |
| // Make it a carry, not a borrow. |
| SDValue Carry = DAG.getNode( |
| ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1)); |
| Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry); |
| |
| if (ShiftAmount) |
| Res = DAG.getNode(ISD::SHL, dl, VT, Res, |
| DAG.getConstant(ShiftAmount, dl, MVT::i32)); |
| } |
| |
| if (Res.getNode()) { |
| KnownBits Known; |
| DAG.computeKnownBits(SDValue(N,0), Known); |
| // Capture demanded bits information that would be otherwise lost. |
| if (Known.Zero == 0xfffffffe) |
| Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, |
| DAG.getValueType(MVT::i1)); |
| else if (Known.Zero == 0xffffff00) |
| Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, |
| DAG.getValueType(MVT::i8)); |
| else if (Known.Zero == 0xffff0000) |
| Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, |
| DAG.getValueType(MVT::i16)); |
| } |
| |
| return Res; |
| } |
| |
| SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| switch (N->getOpcode()) { |
| default: break; |
| case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget); |
| case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget); |
| case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); |
| case ISD::SUB: return PerformSUBCombine(N, DCI); |
| case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); |
| case ISD::OR: return PerformORCombine(N, DCI, Subtarget); |
| case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); |
| case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); |
| case ARMISD::ADDC: |
| case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget); |
| case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget); |
| case ARMISD::BFI: return PerformBFICombine(N, DCI); |
| case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget); |
| case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); |
| case ISD::STORE: return PerformSTORECombine(N, DCI); |
| case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget); |
| case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); |
| case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); |
| case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI); |
| case ARMISD::VDUP: return PerformVDUPCombine(N, DCI); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return PerformVCVTCombine(N, DCI.DAG, Subtarget); |
| case ISD::FDIV: |
| return PerformVDIVCombine(N, DCI.DAG, Subtarget); |
| case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); |
| case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); |
| case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG); |
| case ISD::LOAD: return PerformLOADCombine(N, DCI); |
| case ARMISD::VLD1DUP: |
| case ARMISD::VLD2DUP: |
| case ARMISD::VLD3DUP: |
| case ARMISD::VLD4DUP: |
| return PerformVLDCombine(N, DCI); |
| case ARMISD::BUILD_VECTOR: |
| return PerformARMBUILD_VECTORCombine(N, DCI); |
| case ARMISD::SMULWB: { |
| unsigned BitWidth = N->getValueType(0).getSizeInBits(); |
| APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); |
| if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)) |
| return SDValue(); |
| break; |
| } |
| case ARMISD::SMULWT: { |
| unsigned BitWidth = N->getValueType(0).getSizeInBits(); |
| APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16); |
| if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)) |
| return SDValue(); |
| break; |
| } |
| case ARMISD::SMLALBB: { |
| unsigned BitWidth = N->getValueType(0).getSizeInBits(); |
| APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); |
| if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) || |
| (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))) |
| return SDValue(); |
| break; |
| } |
| case ARMISD::SMLALBT: { |
| unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits(); |
| APInt LowMask = APInt::getLowBitsSet(LowWidth, 16); |
| unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits(); |
| APInt HighMask = APInt::getHighBitsSet(HighWidth, 16); |
| if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) || |
| (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI))) |
| return SDValue(); |
| break; |
| } |
| case ARMISD::SMLALTB: { |
| unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits(); |
| APInt HighMask = APInt::getHighBitsSet(HighWidth, 16); |
| unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits(); |
| APInt LowMask = APInt::getLowBitsSet(LowWidth, 16); |
| if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) || |
| (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI))) |
| return SDValue(); |
| break; |
| } |
| case ARMISD::SMLALTT: { |
| unsigned BitWidth = N->getValueType(0).getSizeInBits(); |
| APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16); |
| if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) || |
| (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))) |
| return SDValue(); |
| break; |
| } |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: |
| switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { |
| case Intrinsic::arm_neon_vld1: |
| case Intrinsic::arm_neon_vld1x2: |
| case Intrinsic::arm_neon_vld1x3: |
| case Intrinsic::arm_neon_vld1x4: |
| case Intrinsic::arm_neon_vld2: |
| case Intrinsic::arm_neon_vld3: |
| case Intrinsic::arm_neon_vld4: |
| case Intrinsic::arm_neon_vld2lane: |
| case Intrinsic::arm_neon_vld3lane: |
| case Intrinsic::arm_neon_vld4lane: |
| case Intrinsic::arm_neon_vld2dup: |
| case Intrinsic::arm_neon_vld3dup: |
| case Intrinsic::arm_neon_vld4dup: |
| case Intrinsic::arm_neon_vst1: |
| case Intrinsic::arm_neon_vst1x2: |
| case Intrinsic::arm_neon_vst1x3: |
| case Intrinsic::arm_neon_vst1x4: |
| case Intrinsic::arm_neon_vst2: |
| case Intrinsic::arm_neon_vst3: |
| case Intrinsic::arm_neon_vst4: |
| case Intrinsic::arm_neon_vst2lane: |
| case Intrinsic::arm_neon_vst3lane: |
| case Intrinsic::arm_neon_vst4lane: |
| return PerformVLDCombine(N, DCI); |
| default: break; |
| } |
| break; |
| } |
| return SDValue(); |
| } |
| |
| bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, |
| EVT VT) const { |
| return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); |
| } |
| |
| bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, |
| unsigned, |
| unsigned, |
| bool *Fast) const { |
| // Depends what it gets converted into if the type is weird. |
| if (!VT.isSimple()) |
| return false; |
| |
| // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus |
| bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| return false; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: { |
| // Unaligned access can use (for example) LRDB, LRDH, LDR |
| if (AllowsUnaligned) { |
| if (Fast) |
| *Fast = Subtarget->hasV7Ops(); |
| return true; |
| } |
| return false; |
| } |
| case MVT::f64: |
| case MVT::v2f64: { |
| // For any little-endian targets with neon, we can support unaligned ld/st |
| // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. |
| // A big-endian target may also explicitly support unaligned accesses |
| if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) { |
| if (Fast) |
| *Fast = true; |
| return true; |
| } |
| return false; |
| } |
| } |
| } |
| |
| static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, |
| unsigned AlignCheck) { |
| return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && |
| (DstAlign == 0 || DstAlign % AlignCheck == 0)); |
| } |
| |
| EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size, |
| unsigned DstAlign, unsigned SrcAlign, |
| bool IsMemset, bool ZeroMemset, |
| bool MemcpyStrSrc, |
| MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| |
| // See if we can use NEON instructions for this... |
| if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() && |
| !F.hasFnAttribute(Attribute::NoImplicitFloat)) { |
| bool Fast; |
| if (Size >= 16 && |
| (memOpAlign(SrcAlign, DstAlign, 16) || |
| (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) { |
| return MVT::v2f64; |
| } else if (Size >= 8 && |
| (memOpAlign(SrcAlign, DstAlign, 8) || |
| (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) && |
| Fast))) { |
| return MVT::f64; |
| } |
| } |
| |
| // Let the target-independent logic figure it out. |
| return MVT::Other; |
| } |
| |
| // 64-bit integers are split into their high and low parts and held in two |
| // different registers, so the trunc is free since the low register can just |
| // be used. |
| bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { |
| if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) |
| return false; |
| unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); |
| unsigned DestBits = DstTy->getPrimitiveSizeInBits(); |
| return (SrcBits == 64 && DestBits == 32); |
| } |
| |
| bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { |
| if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() || |
| !DstVT.isInteger()) |
| return false; |
| unsigned SrcBits = SrcVT.getSizeInBits(); |
| unsigned DestBits = DstVT.getSizeInBits(); |
| return (SrcBits == 64 && DestBits == 32); |
| } |
| |
| bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| if (Val.getOpcode() != ISD::LOAD) |
| return false; |
| |
| EVT VT1 = Val.getValueType(); |
| if (!VT1.isSimple() || !VT1.isInteger() || |
| !VT2.isSimple() || !VT2.isInteger()) |
| return false; |
| |
| switch (VT1.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ARMTargetLowering::isFNegFree(EVT VT) const { |
| if (!VT.isSimple()) |
| return false; |
| |
| // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that |
| // negate values directly (fneg is free). So, we don't want to let the DAG |
| // combiner rewrite fneg into xors and some other instructions. For f16 and |
| // FullFP16 argument passing, some bitcast nodes may be introduced, |
| // triggering this DAG combine rewrite, so we are avoiding that with this. |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::f16: |
| return Subtarget->hasFullFP16(); |
| } |
| |
| return false; |
| } |
| |
| bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { |
| EVT VT = ExtVal.getValueType(); |
| |
| if (!isTypeLegal(VT)) |
| return false; |
| |
| // Don't create a loadext if we can fold the extension into a wide/long |
| // instruction. |
| // If there's more than one user instruction, the loadext is desirable no |
| // matter what. There can be two uses by the same instruction. |
| if (ExtVal->use_empty() || |
| !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode())) |
| return true; |
| |
| SDNode *U = *ExtVal->use_begin(); |
| if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB || |
| U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL)) |
| return false; |
| |
| return true; |
| } |
| |
| bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { |
| if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| return false; |
| |
| if (!isTypeLegal(EVT::getEVT(Ty1))) |
| return false; |
| |
| assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); |
| |
| // Assuming the caller doesn't have a zeroext or signext return parameter, |
| // truncation all the way down to i1 is valid. |
| return true; |
| } |
| |
| int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS) const { |
| if (isLegalAddressingMode(DL, AM, Ty, AS)) { |
| if (Subtarget->hasFPAO()) |
| return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster |
| return 0; |
| } |
| return -1; |
| } |
| |
| static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { |
| if (V < 0) |
| return false; |
| |
| unsigned Scale = 1; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| // Scale == 1; |
| break; |
| case MVT::i16: |
| // Scale == 2; |
| Scale = 2; |
| break; |
| case MVT::i32: |
| // Scale == 4; |
| Scale = 4; |
| break; |
| } |
| |
| if ((V & (Scale - 1)) != 0) |
| return false; |
| V /= Scale; |
| return V == (V & ((1LL << 5) - 1)); |
| } |
| |
| static bool isLegalT2AddressImmediate(int64_t V, EVT VT, |
| const ARMSubtarget *Subtarget) { |
| bool isNeg = false; |
| if (V < 0) { |
| isNeg = true; |
| V = - V; |
| } |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| // + imm12 or - imm8 |
| if (isNeg) |
| return V == (V & ((1LL << 8) - 1)); |
| return V == (V & ((1LL << 12) - 1)); |
| case MVT::f32: |
| case MVT::f64: |
| // Same as ARM mode. FIXME: NEON? |
| if (!Subtarget->hasVFP2()) |
| return false; |
| if ((V & 3) != 0) |
| return false; |
| V >>= 2; |
| return V == (V & ((1LL << 8) - 1)); |
| } |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode for load / store of the |
| /// given type. |
| static bool isLegalAddressImmediate(int64_t V, EVT VT, |
| const ARMSubtarget *Subtarget) { |
| if (V == 0) |
| return true; |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (Subtarget->isThumb1Only()) |
| return isLegalT1AddressImmediate(V, VT); |
| else if (Subtarget->isThumb2()) |
| return isLegalT2AddressImmediate(V, VT, Subtarget); |
| |
| // ARM mode. |
| if (V < 0) |
| V = - V; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| // +- imm12 |
| return V == (V & ((1LL << 12) - 1)); |
| case MVT::i16: |
| // +- imm8 |
| return V == (V & ((1LL << 8) - 1)); |
| case MVT::f32: |
| case MVT::f64: |
| if (!Subtarget->hasVFP2()) // FIXME: NEON? |
| return false; |
| if ((V & 3) != 0) |
| return false; |
| V >>= 2; |
| return V == (V & ((1LL << 8) - 1)); |
| } |
| } |
| |
| bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, |
| EVT VT) const { |
| int Scale = AM.Scale; |
| if (Scale < 0) |
| return false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (Scale == 1) |
| return true; |
| // r + r << imm |
| Scale = Scale & ~1; |
| return Scale == 2 || Scale == 4 || Scale == 8; |
| case MVT::i64: |
| // FIXME: What are we trying to model here? ldrd doesn't have an r + r |
| // version in Thumb mode. |
| // r + r |
| if (Scale == 1) |
| return true; |
| // r * 2 (this can be lowered to r + r). |
| if (!AM.HasBaseReg && Scale == 2) |
| return true; |
| return false; |
| case MVT::isVoid: |
| // Note, we allow "void" uses (basically, uses that aren't loads or |
| // stores), because arm allows folding a scale into many arithmetic |
| // operations. This should be made more precise and revisited later. |
| |
| // Allow r << imm, but the imm has to be a multiple of two. |
| if (Scale & 1) return false; |
| return isPowerOf2_32(Scale); |
| } |
| } |
| |
| bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM, |
| EVT VT) const { |
| const int Scale = AM.Scale; |
| |
| // Negative scales are not supported in Thumb1. |
| if (Scale < 0) |
| return false; |
| |
| // Thumb1 addressing modes do not support register scaling excepting the |
| // following cases: |
| // 1. Scale == 1 means no scaling. |
| // 2. Scale == 2 this can be lowered to r + r if there is no base register. |
| return (Scale == 1) || (!AM.HasBaseReg && Scale == 2); |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| EVT VT = getValueType(DL, Ty, true); |
| if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) |
| return false; |
| |
| // Can never fold addr of global into load/store. |
| if (AM.BaseGV) |
| return false; |
| |
| switch (AM.Scale) { |
| case 0: // no scale reg, must be "r+i" or "r", or "i". |
| break; |
| default: |
| // ARM doesn't support any R+R*scale+imm addr modes. |
| if (AM.BaseOffs) |
| return false; |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (Subtarget->isThumb1Only()) |
| return isLegalT1ScaledAddressingMode(AM, VT); |
| |
| if (Subtarget->isThumb2()) |
| return isLegalT2ScaledAddressingMode(AM, VT); |
| |
| int Scale = AM.Scale; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| if (Scale < 0) Scale = -Scale; |
| if (Scale == 1) |
| return true; |
| // r + r << imm |
| return isPowerOf2_32(Scale & ~1); |
| case MVT::i16: |
| case MVT::i64: |
| // r +/- r |
| if (Scale == 1 || (AM.HasBaseReg && Scale == -1)) |
| return true; |
| // r * 2 (this can be lowered to r + r). |
| if (!AM.HasBaseReg && Scale == 2) |
| return true; |
| return false; |
| |
| case MVT::isVoid: |
| // Note, we allow "void" uses (basically, uses that aren't loads or |
| // stores), because arm allows folding a scale into many arithmetic |
| // operations. This should be made more precise and revisited later. |
| |
| // Allow r << imm, but the imm has to be a multiple of two. |
| if (Scale & 1) return false; |
| return isPowerOf2_32(Scale); |
| } |
| } |
| return true; |
| } |
| |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal |
| /// icmp immediate, that is the target has icmp instructions which can compare |
| /// a register against the immediate without having to materialize the |
| /// immediate into a register. |
| bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| // Thumb2 and ARM modes can use cmn for negative immediates. |
| if (!Subtarget->isThumb()) |
| return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 || |
| ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1; |
| if (Subtarget->isThumb2()) |
| return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 || |
| ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1; |
| // Thumb1 doesn't have cmn, and only 8-bit immediates. |
| return Imm >= 0 && Imm <= 255; |
| } |
| |
| /// isLegalAddImmediate - Return true if the specified immediate is a legal add |
| /// *or sub* immediate, that is the target has add or sub instructions which can |
| /// add a register with the immediate without having to materialize the |
| /// immediate into a register. |
| bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| // Same encoding for add/sub, just flip the sign. |
| int64_t AbsImm = std::abs(Imm); |
| if (!Subtarget->isThumb()) |
| return ARM_AM::getSOImmVal(AbsImm) != -1; |
| if (Subtarget->isThumb2()) |
| return ARM_AM::getT2SOImmVal(AbsImm) != -1; |
| // Thumb1 only has 8-bit unsigned immediate. |
| return AbsImm >= 0 && AbsImm <= 255; |
| } |
| |
| static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, |
| bool isSEXTLoad, SDValue &Base, |
| SDValue &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) |
| return false; |
| |
| if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { |
| // AddressingMode 3 |
| Base = Ptr->getOperand(0); |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -256) { |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); |
| return true; |
| } |
| } |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { |
| // AddressingMode 2 |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -0x1000) { |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); |
| Base = Ptr->getOperand(0); |
| return true; |
| } |
| } |
| |
| if (Ptr->getOpcode() == ISD::ADD) { |
| isInc = true; |
| ARM_AM::ShiftOpc ShOpcVal= |
| ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); |
| if (ShOpcVal != ARM_AM::no_shift) { |
| Base = Ptr->getOperand(1); |
| Offset = Ptr->getOperand(0); |
| } else { |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| } |
| return true; |
| } |
| |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } |
| |
| // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. |
| return false; |
| } |
| |
| static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, |
| bool isSEXTLoad, SDValue &Base, |
| SDValue &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) |
| return false; |
| |
| Base = Ptr->getOperand(0); |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -0x100) { // 8 bits. |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); |
| return true; |
| } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. |
| isInc = Ptr->getOpcode() == ISD::ADD; |
| Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool |
| ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (Subtarget->isThumb1Only()) |
| return false; |
| |
| EVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| VT = LD->getMemoryVT(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| Ptr = ST->getBasePtr(); |
| VT = ST->getMemoryVT(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = false; |
| if (Subtarget->isThumb2()) |
| isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, |
| Offset, isInc, DAG); |
| else |
| isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, |
| Offset, isInc, DAG); |
| if (!isLegal) |
| return false; |
| |
| AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; |
| return true; |
| } |
| |
| /// getPostIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| EVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false, isNonExt; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| Ptr = LD->getBasePtr(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| Ptr = ST->getBasePtr(); |
| isNonExt = !ST->isTruncatingStore(); |
| } else |
| return false; |
| |
| if (Subtarget->isThumb1Only()) { |
| // Thumb-1 can do a limited post-inc load or store as an updating LDM. It |
| // must be non-extending/truncating, i32, with an offset of 4. |
| assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!"); |
| if (Op->getOpcode() != ISD::ADD || !isNonExt) |
| return false; |
| auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!RHS || RHS->getZExtValue() != 4) |
| return false; |
| |
| Offset = Op->getOperand(1); |
| Base = Op->getOperand(0); |
| AM = ISD::POST_INC; |
| return true; |
| } |
| |
| bool isInc; |
| bool isLegal = false; |
| if (Subtarget->isThumb2()) |
| isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| else |
| isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| if (!isLegal) |
| return false; |
| |
| if (Ptr != Base) { |
| // Swap base ptr and offset to catch more post-index load / store when |
| // it's legal. In Thumb2 mode, offset must be an immediate. |
| if (Ptr == Offset && Op->getOpcode() == ISD::ADD && |
| !Subtarget->isThumb2()) |
| std::swap(Base, Offset); |
| |
| // Post-indexed load / store update the base pointer. |
| if (Ptr != Base) |
| return false; |
| } |
| |
| AM = isInc ? ISD::POST_INC : ISD::POST_DEC; |
| return true; |
| } |
| |
| void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| unsigned BitWidth = Known.getBitWidth(); |
| Known.resetAll(); |
| switch (Op.getOpcode()) { |
| default: break; |
| case ARMISD::ADDC: |
| case ARMISD::ADDE: |
| case ARMISD::SUBC: |
| case ARMISD::SUBE: |
| // Special cases when we convert a carry to a boolean. |
| if (Op.getResNo() == 0) { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| // (ADDE 0, 0, C) will give us a single bit. |
| if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) && |
| isNullConstant(RHS)) { |
| Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); |
| return; |
| } |
| } |
| break; |
| case ARMISD::CMOV: { |
| // Bits are known zero/one if known on the LHS and RHS. |
| DAG.computeKnownBits(Op.getOperand(0), Known, Depth+1); |
| if (Known.isUnknown()) |
| return; |
| |
| KnownBits KnownRHS; |
| DAG.computeKnownBits(Op.getOperand(1), KnownRHS, Depth+1); |
| Known.Zero &= KnownRHS.Zero; |
| Known.One &= KnownRHS.One; |
| return; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); |
| Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); |
| switch (IntID) { |
| default: return; |
| case Intrinsic::arm_ldaex: |
| case Intrinsic::arm_ldrex: { |
| EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); |
| unsigned MemBits = VT.getScalarSizeInBits(); |
| Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); |
| return; |
| } |
| } |
| } |
| case ARMISD::BFI: { |
| // Conservatively, we can recurse down the first operand |
| // and just mask out all affected bits. |
| DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1); |
| |
| // The operand to BFI is already a mask suitable for removing the bits it |
| // sets. |
| ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2)); |
| const APInt &Mask = CI->getAPIntValue(); |
| Known.Zero &= Mask; |
| Known.One &= Mask; |
| return; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { |
| // Looking for "rev" which is V6+. |
| if (!Subtarget->hasV6Ops()) |
| return false; |
| |
| InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); |
| std::string AsmStr = IA->getAsmString(); |
| SmallVector<StringRef, 4> AsmPieces; |
| SplitString(AsmStr, AsmPieces, ";\n"); |
| |
| switch (AsmPieces.size()) { |
| default: return false; |
| case 1: |
| AsmStr = AsmPieces[0]; |
| AsmPieces.clear(); |
| SplitString(AsmStr, AsmPieces, " \t,"); |
| |
| // rev $0, $1 |
| if (AsmPieces.size() == 3 && |
| AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && |
| IA->getConstraintString().compare(0, 4, "=l,l") == 0) { |
| IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); |
| if (Ty && Ty->getBitWidth() == 32) |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| break; |
| } |
| |
| return false; |
| } |
| |
| const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const { |
| // At this point, we have to lower this constraint to something else, so we |
| // lower it to an "r" or "w". However, by doing this we will force the result |
| // to be in register, while the X constraint is much more permissive. |
| // |
| // Although we are correct (we are free to emit anything, without |
| // constraints), we might break use cases that would expect us to be more |
| // efficient and emit something else. |
| if (!Subtarget->hasVFP2()) |
| return "r"; |
| if (ConstraintVT.isFloatingPoint()) |
| return "w"; |
| if (ConstraintVT.isVector() && Subtarget->hasNEON() && |
| (ConstraintVT.getSizeInBits() == 64 || |
| ConstraintVT.getSizeInBits() == 128)) |
| return "w"; |
| |
| return "r"; |
| } |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| ARMTargetLowering::ConstraintType |
| ARMTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'l': return C_RegisterClass; |
| case 'w': return C_RegisterClass; |
| case 'h': return C_RegisterClass; |
| case 'x': return C_RegisterClass; |
| case 't': return C_RegisterClass; |
| case 'j': return C_Other; // Constant for movw. |
| // An address with a single base register. Due to the way we |
| // currently handle addresses it is the same as an 'r' memory constraint. |
| case 'Q': return C_Memory; |
| } |
| } else if (Constraint.size() == 2) { |
| switch (Constraint[0]) { |
| default: break; |
| // All 'U+' constraints are addresses. |
| case 'U': return C_Memory; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| ARMTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (!CallOperandVal) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'l': |
| if (type->isIntegerTy()) { |
| if (Subtarget->isThumb()) |
| weight = CW_SpecificReg; |
| else |
| weight = CW_Register; |
| } |
| break; |
| case 'w': |
| if (type->isFloatingPointTy()) |
| weight = CW_Register; |
| break; |
| } |
| return weight; |
| } |
| |
| using RCPair = std::pair<unsigned, const TargetRegisterClass *>; |
| |
| RCPair ARMTargetLowering::getRegForInlineAsmConstraint( |
| const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { |
| if (Constraint.size() == 1) { |
| // GCC ARM Constraint Letters |
| switch (Constraint[0]) { |
| case 'l': // Low regs or general regs. |
| if (Subtarget->isThumb()) |
| return RCPair(0U, &ARM::tGPRRegClass); |
| return RCPair(0U, &ARM::GPRRegClass); |
| case 'h': // High regs or no regs. |
| if (Subtarget->isThumb()) |
| return RCPair(0U, &ARM::hGPRRegClass); |
| break; |
| case 'r': |
| if (Subtarget->isThumb1Only()) |
| return RCPair(0U, &ARM::tGPRRegClass); |
| return RCPair(0U, &ARM::GPRRegClass); |
| case 'w': |
| if (VT == MVT::Other) |
| break; |
| if (VT == MVT::f32) |
| return RCPair(0U, &ARM::SPRRegClass); |
| if (VT.getSizeInBits() == 64) |
| return RCPair(0U, &ARM::DPRRegClass); |
| if (VT.getSizeInBits() == 128) |
| return RCPair(0U, &ARM::QPRRegClass); |
| break; |
| case 'x': |
| if (VT == MVT::Other) |
| break; |
| if (VT == MVT::f32) |
| return RCPair(0U, &ARM::SPR_8RegClass); |
| if (VT.getSizeInBits() == 64) |
| return RCPair(0U, &ARM::DPR_8RegClass); |
| if (VT.getSizeInBits() == 128) |
| return RCPair(0U, &ARM::QPR_8RegClass); |
| break; |
| case 't': |
| if (VT == MVT::Other) |
| break; |
| if (VT == MVT::f32 || VT == MVT::i32) |
| return RCPair(0U, &ARM::SPRRegClass); |
| if (VT.getSizeInBits() == 64) |
| return RCPair(0U, &ARM::DPR_VFP2RegClass); |
| if (VT.getSizeInBits() == 128) |
| return RCPair(0U, &ARM::QPR_VFP2RegClass); |
| break; |
| } |
| } |
| if (StringRef("{cc}").equals_lower(Constraint)) |
| return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); |
| |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result; |
| |
| // Currently only support length 1 constraints. |
| if (Constraint.length() != 1) return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: break; |
| case 'j': |
| case 'I': case 'J': case 'K': case 'L': |
| case 'M': case 'N': case 'O': |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) |
| return; |
| |
| int64_t CVal64 = C->getSExtValue(); |
| int CVal = (int) CVal64; |
| // None of these constraints allow values larger than 32 bits. Check |
| // that the value fits in an int. |
| if (CVal != CVal64) |
| return; |
| |
| switch (ConstraintLetter) { |
| case 'j': |
| // Constant suitable for movw, must be between 0 and |
| // 65535. |
| if (Subtarget->hasV6T2Ops()) |
| if (CVal >= 0 && CVal <= 65535) |
| break; |
| return; |
| case 'I': |
| if (Subtarget->isThumb1Only()) { |
| // This must be a constant between 0 and 255, for ADD |
| // immediates. |
| if (CVal >= 0 && CVal <= 255) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant that can be used as an immediate value in a |
| // data-processing instruction. |
| if (ARM_AM::getT2SOImmVal(CVal) != -1) |
| break; |
| } else { |
| // A constant that can be used as an immediate value in a |
| // data-processing instruction. |
| if (ARM_AM::getSOImmVal(CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'J': |
| if (Subtarget->isThumb1Only()) { |
| // This must be a constant between -255 and -1, for negated ADD |
| // immediates. This can be used in GCC with an "n" modifier that |
| // prints the negated value, for use with SUB instructions. It is |
| // not useful otherwise but is implemented for compatibility. |
| if (CVal >= -255 && CVal <= -1) |
| break; |
| } else { |
| // This must be a constant between -4095 and 4095. It is not clear |
| // what this constraint is intended for. Implemented for |
| // compatibility with GCC. |
| if (CVal >= -4095 && CVal <= 4095) |
| break; |
| } |
| return; |
| |
| case 'K': |
| if (Subtarget->isThumb1Only()) { |
| // A 32-bit value where only one byte has a nonzero value. Exclude |
| // zero to match GCC. This constraint is used by GCC internally for |
| // constants that can be loaded with a move/shift combination. |
| // It is not useful otherwise but is implemented for compatibility. |
| if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant whose bitwise inverse can be used as an immediate |
| // value in a data-processing instruction. This can be used in GCC |
| // with a "B" modifier that prints the inverted value, for use with |
| // BIC and MVN instructions. It is not useful otherwise but is |
| // implemented for compatibility. |
| if (ARM_AM::getT2SOImmVal(~CVal) != -1) |
| break; |
| } else { |
| // A constant whose bitwise inverse can be used as an immediate |
| // value in a data-processing instruction. This can be used in GCC |
| // with a "B" modifier that prints the inverted value, for use with |
| // BIC and MVN instructions. It is not useful otherwise but is |
| // implemented for compatibility. |
| if (ARM_AM::getSOImmVal(~CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'L': |
| if (Subtarget->isThumb1Only()) { |
| // This must be a constant between -7 and 7, |
| // for 3-operand ADD/SUB immediate instructions. |
| if (CVal >= -7 && CVal < 7) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant whose negation can be used as an immediate value in a |
| // data-processing instruction. This can be used in GCC with an "n" |
| // modifier that prints the negated value, for use with SUB |
| // instructions. It is not useful otherwise but is implemented for |
| // compatibility. |
| if (ARM_AM::getT2SOImmVal(-CVal) != -1) |
| break; |
| } else { |
| // A constant whose negation can be used as an immediate value in a |
| // data-processing instruction. This can be used in GCC with an "n" |
| // modifier that prints the negated value, for use with SUB |
| // instructions. It is not useful otherwise but is implemented for |
| // compatibility. |
| if (ARM_AM::getSOImmVal(-CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'M': |
| if (Subtarget->isThumb1Only()) { |
| // This must be a multiple of 4 between 0 and 1020, for |
| // ADD sp + immediate. |
| if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) |
| break; |
| } else { |
| // A power of two or a constant between 0 and 32. This is used in |
| // GCC for the shift amount on shifted register operands, but it is |
| // useful in general for any shift amounts. |
| if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) |
| break; |
| } |
| return; |
| |
| case 'N': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a constant between 0 and 31, for shift amounts. |
| if (CVal >= 0 && CVal <= 31) |
| break; |
| } |
| return; |
| |
| case 'O': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a multiple of 4 between -508 and 508, for |
| // ADD/SUB sp = sp + immediate. |
| if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) |
| break; |
| } |
| return; |
| } |
| Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType()); |
| break; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| static RTLIB::Libcall getDivRemLibcall( |
| const SDNode *N, MVT::SimpleValueType SVT) { |
| assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || |
| N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && |
| "Unhandled Opcode in getDivRemLibcall"); |
| bool isSigned = N->getOpcode() == ISD::SDIVREM || |
| N->getOpcode() == ISD::SREM; |
| RTLIB::Libcall LC; |
| switch (SVT) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; |
| case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; |
| case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; |
| case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; |
| } |
| return LC; |
| } |
| |
| static TargetLowering::ArgListTy getDivRemArgList( |
| const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) { |
| assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || |
| N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && |
| "Unhandled Opcode in getDivRemArgList"); |
| bool isSigned = N->getOpcode() == ISD::SDIVREM || |
| N->getOpcode() == ISD::SREM; |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| EVT ArgVT = N->getOperand(i).getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*Context); |
| Entry.Node = N->getOperand(i); |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = isSigned; |
| Entry.IsZExt = !isSigned; |
| Args.push_back(Entry); |
| } |
| if (Subtarget->isTargetWindows() && Args.size() >= 2) |
| std::swap(Args[0], Args[1]); |
| return Args; |
| } |
| |
| SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { |
| assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() || |
| Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() || |
| Subtarget->isTargetWindows()) && |
| "Register-based DivRem lowering only"); |
| unsigned Opcode = Op->getOpcode(); |
| assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && |
| "Invalid opcode for Div/Rem lowering"); |
| bool isSigned = (Opcode == ISD::SDIVREM); |
| EVT VT = Op->getValueType(0); |
| Type *Ty = VT.getTypeForEVT(*DAG.getContext()); |
| SDLoc dl(Op); |
| |
| // If the target has hardware divide, use divide + multiply + subtract: |
| // div = a / b |
| // rem = a - b * div |
| // return {div, rem} |
| // This should be lowered into UDIV/SDIV + MLS later on. |
| bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode() |
| : Subtarget->hasDivideInARMMode(); |
| if (hasDivide && Op->getValueType(0).isSimple() && |
| Op->getSimpleValueType(0) == MVT::i32) { |
| unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; |
| const SDValue Dividend = Op->getOperand(0); |
| const SDValue Divisor = Op->getOperand(1); |
| SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor); |
| SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor); |
| SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); |
| |
| SDValue Values[2] = {Div, Rem}; |
| return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values); |
| } |
| |
| RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(), |
| VT.getSimpleVT().SimpleTy); |
| SDValue InChain = DAG.getEntryNode(); |
| |
| TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(), |
| DAG.getContext(), |
| Subtarget); |
| |
| SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), |
| getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = StructType::get(Ty, Ty); |
| |
| if (Subtarget->isTargetWindows()) |
| InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl).setChain(InChain) |
| .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) |
| .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); |
| |
| std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| return CallInfo.first; |
| } |
| |
| // Lowers REM using divmod helpers |
| // see RTABI section 4.2/4.3 |
| SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const { |
| // Build return types (div and rem) |
| std::vector<Type*> RetTyParams; |
| Type *RetTyElement; |
| |
| switch (N->getValueType(0).getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break; |
| case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break; |
| case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break; |
| case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break; |
| } |
| |
| RetTyParams.push_back(RetTyElement); |
| RetTyParams.push_back(RetTyElement); |
| ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams); |
| Type *RetTy = StructType::get(*DAG.getContext(), ret); |
| |
| RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT(). |
| SimpleTy); |
| SDValue InChain = DAG.getEntryNode(); |
| TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(), |
| Subtarget); |
| bool isSigned = N->getOpcode() == ISD::SREM; |
| SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), |
| getPointerTy(DAG.getDataLayout())); |
| |
| if (Subtarget->isTargetWindows()) |
| InChain = WinDBZCheckDenominator(DAG, N, InChain); |
| |
| // Lower call |
| CallLoweringInfo CLI(DAG); |
| CLI.setChain(InChain) |
| .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args)) |
| .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N)); |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| |
| // Return second (rem) result operand (first contains div) |
| SDNode *ResNode = CallResult.first.getNode(); |
| assert(ResNode->getNumOperands() == 2 && "divmod should return two operands"); |
| return ResNode->getOperand(1); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetWindows() && "unsupported target platform"); |
| SDLoc DL(Op); |
| |
| // Get the inputs. |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| |
| if (DAG.getMachineFunction().getFunction().hasFnAttribute( |
| "no-stack-arg-probe")) { |
| unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); |
| Chain = SP.getValue(1); |
| SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size); |
| if (Align) |
| SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0), |
| DAG.getConstant(-(uint64_t)Align, DL, MVT::i32)); |
| Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP); |
| SDValue Ops[2] = { SP, Chain }; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size, |
| DAG.getConstant(2, DL, MVT::i32)); |
| |
| SDValue Flag; |
| Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag); |
| Flag = Chain.getValue(1); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag); |
| |
| SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); |
| Chain = NewSP.getValue(1); |
| |
| SDValue Ops[2] = { NewSP, Chain }; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { |
| assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && |
| "Unexpected type for custom-lowering FP_EXTEND"); |
| |
| RTLIB::Libcall LC; |
| LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| SDValue SrcVal = Op.getOperand(0); |
| return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, |
| SDLoc(Op)).first; |
| } |
| |
| SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { |
| assert(Op.getOperand(0).getValueType() == MVT::f64 && |
| Subtarget->isFPOnlySP() && |
| "Unexpected type for custom-lowering FP_ROUND"); |
| |
| RTLIB::Libcall LC; |
| LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| SDValue SrcVal = Op.getOperand(0); |
| return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, |
| SDLoc(Op)).first; |
| } |
| |
| bool |
| ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The ARM target isn't yet aware of offsets. |
| return false; |
| } |
| |
| bool ARM::isBitFieldInvertedMask(unsigned v) { |
| if (v == 0xffffffff) |
| return false; |
| |
| // there can be 1's on either or both "outsides", all the "inside" |
| // bits must be 0's |
| return isShiftedMask_32(~v); |
| } |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| if (!Subtarget->hasVFP3()) |
| return false; |
| if (VT == MVT::f16 && Subtarget->hasFullFP16()) |
| return ARM_AM::getFP16Imm(Imm) != -1; |
| if (VT == MVT::f32) |
| return ARM_AM::getFP32Imm(Imm) != -1; |
| if (VT == MVT::f64 && !Subtarget->isFPOnlySP()) |
| return ARM_AM::getFP64Imm(Imm) != -1; |
| return false; |
| } |
| |
| /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as |
| /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment |
| /// specified in the intrinsic calls. |
| bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const { |
| switch (Intrinsic) { |
| case Intrinsic::arm_neon_vld1: |
| case Intrinsic::arm_neon_vld2: |
| case Intrinsic::arm_neon_vld3: |
| case Intrinsic::arm_neon_vld4: |
| case Intrinsic::arm_neon_vld2lane: |
| case Intrinsic::arm_neon_vld3lane: |
| case Intrinsic::arm_neon_vld4lane: |
| case Intrinsic::arm_neon_vld2dup: |
| case Intrinsic::arm_neon_vld3dup: |
| case Intrinsic::arm_neon_vld4dup: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| // Conservatively set memVT to the entire set of vectors loaded. |
| auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); |
| uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; |
| Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); |
| Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); |
| // volatile loads with NEON intrinsics not supported |
| Info.flags = MachineMemOperand::MOLoad; |
| return true; |
| } |
| case Intrinsic::arm_neon_vld1x2: |
| case Intrinsic::arm_neon_vld1x3: |
| case Intrinsic::arm_neon_vld1x4: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| // Conservatively set memVT to the entire set of vectors loaded. |
| auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); |
| uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; |
| Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); |
| Info.offset = 0; |
| Info.align = 0; |
| // volatile loads with NEON intrinsics not supported |
| Info.flags = MachineMemOperand::MOLoad; |
| return true; |
| } |
| case Intrinsic::arm_neon_vst1: |
| case Intrinsic::arm_neon_vst2: |
| case Intrinsic::arm_neon_vst3: |
| case Intrinsic::arm_neon_vst4: |
| case Intrinsic::arm_neon_vst2lane: |
| case Intrinsic::arm_neon_vst3lane: |
| case Intrinsic::arm_neon_vst4lane: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| // Conservatively set memVT to the entire set of vectors stored. |
| auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); |
| unsigned NumElts = 0; |
| for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { |
| Type *ArgTy = I.getArgOperand(ArgI)->getType(); |
| if (!ArgTy->isVectorTy()) |
| break; |
| NumElts += DL.getTypeSizeInBits(ArgTy) / 64; |
| } |
| Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); |
| Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); |
| // volatile stores with NEON intrinsics not supported |
| Info.flags = MachineMemOperand::MOStore; |
| return true; |
| } |
| case Intrinsic::arm_neon_vst1x2: |
| case Intrinsic::arm_neon_vst1x3: |
| case Intrinsic::arm_neon_vst1x4: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| // Conservatively set memVT to the entire set of vectors stored. |
| auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); |
| unsigned NumElts = 0; |
| for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { |
| Type *ArgTy = I.getArgOperand(ArgI)->getType(); |
| if (!ArgTy->isVectorTy()) |
| break; |
| NumElts += DL.getTypeSizeInBits(ArgTy) / 64; |
| } |
| Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = 0; |
| // volatile stores with NEON intrinsics not supported |
| Info.flags = MachineMemOperand::MOStore; |
| return true; |
| } |
| case Intrinsic::arm_ldaex: |
| case Intrinsic::arm_ldrex: { |
| auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); |
| PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(PtrTy->getElementType()); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; |
| return true; |
| } |
| case Intrinsic::arm_stlex: |
| case Intrinsic::arm_strex: { |
| auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); |
| PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(PtrTy->getElementType()); |
| Info.ptrVal = I.getArgOperand(1); |
| Info.offset = 0; |
| Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); |
| Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; |
| return true; |
| } |
| case Intrinsic::arm_stlexd: |
| case Intrinsic::arm_strexd: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i64; |
| Info.ptrVal = I.getArgOperand(2); |
| Info.offset = 0; |
| Info.align = 8; |
| Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; |
| return true; |
| |
| case Intrinsic::arm_ldaexd: |
| case Intrinsic::arm_ldrexd: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = 8; |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; |
| return true; |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// Returns true if it is beneficial to convert a load of a constant |
| /// to just the constant itself. |
| bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| Type *Ty) const { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned Bits = Ty->getPrimitiveSizeInBits(); |
| if (Bits == 0 || Bits > 32) |
| return false; |
| return true; |
| } |
| |
| bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, |
| unsigned Index) const { |
| if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) |
| return false; |
| |
| return (Index == 0 || Index == ResVT.getVectorNumElements()); |
| } |
| |
| Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder, |
| ARM_MB::MemBOpt Domain) const { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| |
| // First, if the target has no DMB, see what fallback we can use. |
| if (!Subtarget->hasDataBarrier()) { |
| // Some ARMv6 cpus can support data barriers with an mcr instruction. |
| // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get |
| // here. |
| if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) { |
| Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr); |
| Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0), |
| Builder.getInt32(0), Builder.getInt32(7), |
| Builder.getInt32(10), Builder.getInt32(5)}; |
| return Builder.CreateCall(MCR, args); |
| } else { |
| // Instead of using barriers, atomic accesses on these subtargets use |
| // libcalls. |
| llvm_unreachable("makeDMB on a target so old that it has no barriers"); |
| } |
| } else { |
| Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb); |
| // Only a full system barrier exists in the M-class architectures. |
| Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain; |
| Constant *CDomain = Builder.getInt32(Domain); |
| return Builder.CreateCall(DMB, CDomain); |
| } |
| } |
| |
| // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html |
| Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| switch (Ord) { |
| case AtomicOrdering::NotAtomic: |
| case AtomicOrdering::Unordered: |
| llvm_unreachable("Invalid fence: unordered/non-atomic"); |
| case AtomicOrdering::Monotonic: |
| case AtomicOrdering::Acquire: |
| return nullptr; // Nothing to do |
| case AtomicOrdering::SequentiallyConsistent: |
| if (!Inst->hasAtomicStore()) |
| return nullptr; // Nothing to do |
| LLVM_FALLTHROUGH; |
| case AtomicOrdering::Release: |
| case AtomicOrdering::AcquireRelease: |
| if (Subtarget->preferISHSTBarriers()) |
| return makeDMB(Builder, ARM_MB::ISHST); |
| // FIXME: add a comment with a link to documentation justifying this. |
| else |
| return makeDMB(Builder, ARM_MB::ISH); |
| } |
| llvm_unreachable("Unknown fence ordering in emitLeadingFence"); |
| } |
| |
| Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| switch (Ord) { |
| case AtomicOrdering::NotAtomic: |
| case AtomicOrdering::Unordered: |
| llvm_unreachable("Invalid fence: unordered/not-atomic"); |
| case AtomicOrdering::Monotonic: |
| case AtomicOrdering::Release: |
| return nullptr; // Nothing to do |
| case AtomicOrdering::Acquire: |
| case AtomicOrdering::AcquireRelease: |
| case AtomicOrdering::SequentiallyConsistent: |
| return makeDMB(Builder, ARM_MB::ISH); |
| } |
| llvm_unreachable("Unknown fence ordering in emitTrailingFence"); |
| } |
| |
| // Loads and stores less than 64-bits are already atomic; ones above that |
| // are doomed anyway, so defer to the default libcall and blame the OS when |
| // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit |
| // anything for those. |
| bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { |
| unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); |
| return (Size == 64) && !Subtarget->isMClass(); |
| } |
| |
| // Loads and stores less than 64-bits are already atomic; ones above that |
| // are doomed anyway, so defer to the default libcall and blame the OS when |
| // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit |
| // anything for those. |
| // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that |
| // guarantee, see DDI0406C ARM architecture reference manual, |
| // sections A8.8.72-74 LDRD) |
| TargetLowering::AtomicExpansionKind |
| ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { |
| unsigned Size = LI->getType()->getPrimitiveSizeInBits(); |
| return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly |
| : AtomicExpansionKind::None; |
| } |
| |
| // For the real atomic operations, we have ldrex/strex up to 32 bits, |
| // and up to 64 bits on the non-M profiles |
| TargetLowering::AtomicExpansionKind |
| ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| unsigned Size = AI->getType()->getPrimitiveSizeInBits(); |
| bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps(); |
| return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW) |
| ? AtomicExpansionKind::LLSC |
| : AtomicExpansionKind::None; |
| } |
| |
| bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR( |
| AtomicCmpXchgInst *AI) const { |
| // At -O0, fast-regalloc cannot cope with the live vregs necessary to |
| // implement cmpxchg without spilling. If the address being exchanged is also |
| // on the stack and close enough to the spill slot, this can lead to a |
| // situation where the monitor always gets cleared and the atomic operation |
| // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. |
| bool hasAtomicCmpXchg = |
| !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps(); |
| return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg; |
| } |
| |
| bool ARMTargetLowering::shouldInsertFencesForAtomic( |
| const Instruction *I) const { |
| return InsertFencesForAtomic; |
| } |
| |
| // This has so far only been implemented for MachO. |
| bool ARMTargetLowering::useLoadStackGuardNode() const { |
| return Subtarget->isTargetMachO(); |
| } |
| |
| bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx, |
| unsigned &Cost) const { |
| // If we do not have NEON, vector types are not natively supported. |
| if (!Subtarget->hasNEON()) |
| return false; |
| |
| // Floating point values and vector values map to the same register file. |
| // Therefore, although we could do a store extract of a vector type, this is |
| // better to leave at float as we have more freedom in the addressing mode for |
| // those. |
| if (VectorTy->isFPOrFPVectorTy()) |
| return false; |
| |
| // If the index is unknown at compile time, this is very expensive to lower |
| // and it is not possible to combine the store with the extract. |
| if (!isa<ConstantInt>(Idx)) |
| return false; |
| |
| assert(VectorTy->isVectorTy() && "VectorTy is not a vector type"); |
| unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth(); |
| // We can do a store + vector extract on any vector that fits perfectly in a D |
| // or Q register. |
| if (BitWidth == 64 || BitWidth == 128) { |
| Cost = 0; |
| return true; |
| } |
| return false; |
| } |
| |
| bool ARMTargetLowering::isCheapToSpeculateCttz() const { |
| return Subtarget->hasV6T2Ops(); |
| } |
| |
| bool ARMTargetLowering::isCheapToSpeculateCtlz() const { |
| return Subtarget->hasV6T2Ops(); |
| } |
| |
| Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, |
| AtomicOrdering Ord) const { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); |
| bool IsAcquire = isAcquireOrStronger(Ord); |
| |
| // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd |
| // intrinsic must return {i32, i32} and we have to recombine them into a |
| // single i64 here. |
| if (ValTy->getPrimitiveSizeInBits() == 64) { |
| Intrinsic::ID Int = |
| IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd; |
| Function *Ldrex = Intrinsic::getDeclaration(M, Int); |
| |
| Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); |
| Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi"); |
| |
| Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); |
| Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); |
| if (!Subtarget->isLittle()) |
| std::swap (Lo, Hi); |
| Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); |
| Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); |
| return Builder.CreateOr( |
| Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64"); |
| } |
| |
| Type *Tys[] = { Addr->getType() }; |
| Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex; |
| Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys); |
| |
| return Builder.CreateTruncOrBitCast( |
| Builder.CreateCall(Ldrex, Addr), |
| cast<PointerType>(Addr->getType())->getElementType()); |
| } |
| |
| void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance( |
| IRBuilder<> &Builder) const { |
| if (!Subtarget->hasV7Ops()) |
| return; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex)); |
| } |
| |
| Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val, |
| Value *Addr, |
| AtomicOrdering Ord) const { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| bool IsRelease = isReleaseOrStronger(Ord); |
| |
| // Since the intrinsics must have legal type, the i64 intrinsics take two |
| // parameters: "i32, i32". We must marshal Val into the appropriate form |
| // before the call. |
| if (Val->getType()->getPrimitiveSizeInBits() == 64) { |
| Intrinsic::ID Int = |
| IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd; |
| Function *Strex = Intrinsic::getDeclaration(M, Int); |
| Type *Int32Ty = Type::getInt32Ty(M->getContext()); |
| |
| Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo"); |
| Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi"); |
| if (!Subtarget->isLittle()) |
| std::swap(Lo, Hi); |
| Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); |
| return Builder.CreateCall(Strex, {Lo, Hi, Addr}); |
| } |
| |
| Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex; |
| Type *Tys[] = { Addr->getType() }; |
| Function *Strex = Intrinsic::getDeclaration(M, Int, Tys); |
| |
| return Builder.CreateCall( |
| Strex, {Builder.CreateZExtOrBitCast( |
| Val, Strex->getFunctionType()->getParamType(0)), |
| Addr}); |
| } |
| |
| /// A helper function for determining the number of interleaved accesses we |
| /// will generate when lowering accesses of the given type. |
| unsigned |
| ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy, |
| const DataLayout &DL) const { |
| return (DL.getTypeSizeInBits(VecTy) + 127) / 128; |
| } |
| |
| bool ARMTargetLowering::isLegalInterleavedAccessType( |
| VectorType *VecTy, const DataLayout &DL) const { |
| |
| unsigned VecSize = DL.getTypeSizeInBits(VecTy); |
| unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); |
| |
| // Ensure the vector doesn't have f16 elements. Even though we could do an |
| // i16 vldN, we can't hold the f16 vectors and will end up converting via |
| // f32. |
| if (VecTy->getElementType()->isHalfTy()) |
| return false; |
| |
| // Ensure the number of vector elements is greater than 1. |
| if (VecTy->getNumElements() < 2) |
| return false; |
| |
| // Ensure the element type is legal. |
| if (ElSize != 8 && ElSize != 16 && ElSize != 32) |
| return false; |
| |
| // Ensure the total vector size is 64 or a multiple of 128. Types larger than |
| // 128 will be split into multiple interleaved accesses. |
| return VecSize == 64 || VecSize % 128 == 0; |
| } |
| |
| /// Lower an interleaved load into a vldN intrinsic. |
| /// |
| /// E.g. Lower an interleaved load (Factor = 2): |
| /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4 |
| /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements |
| /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements |
| /// |
| /// Into: |
| /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4) |
| /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0 |
| /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1 |
| bool ARMTargetLowering::lowerInterleavedLoad( |
| LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, |
| ArrayRef<unsigned> Indices, unsigned Factor) const { |
| assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
| "Invalid interleave factor"); |
| assert(!Shuffles.empty() && "Empty shufflevector input"); |
| assert(Shuffles.size() == Indices.size() && |
| "Unmatched number of shufflevectors and indices"); |
| |
| VectorType *VecTy = Shuffles[0]->getType(); |
| Type *EltTy = VecTy->getVectorElementType(); |
| |
| const DataLayout &DL = LI->getModule()->getDataLayout(); |
| |
| // Skip if we do not have NEON and skip illegal vector types. We can |
| // "legalize" wide vector types into multiple interleaved accesses as long as |
| // the vector types are divisible by 128. |
| if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL)) |
| return false; |
| |
| unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL); |
| |
| // A pointer vector can not be the return type of the ldN intrinsics. Need to |
| // load integer vectors first and then convert to pointer vectors. |
| if (EltTy->isPointerTy()) |
| VecTy = |
| VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements()); |
| |
| IRBuilder<> Builder(LI); |
| |
| // The base address of the load. |
| Value *BaseAddr = LI->getPointerOperand(); |
| |
| if (NumLoads > 1) { |
| // If we're going to generate more than one load, reset the sub-vector type |
| // to something legal. |
| VecTy = VectorType::get(VecTy->getVectorElementType(), |
| VecTy->getVectorNumElements() / NumLoads); |
| |
| // We will compute the pointer operand of each load from the original base |
| // address using GEPs. Cast the base address to a pointer to the scalar |
| // element type. |
| BaseAddr = Builder.CreateBitCast( |
| BaseAddr, VecTy->getVectorElementType()->getPointerTo( |
| LI->getPointerAddressSpace())); |
| } |
| |
| assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!"); |
| |
| Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace()); |
| Type *Tys[] = {VecTy, Int8Ptr}; |
| static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2, |
| Intrinsic::arm_neon_vld3, |
| Intrinsic::arm_neon_vld4}; |
| Function *VldnFunc = |
| Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); |
| |
| // Holds sub-vectors extracted from the load intrinsic return values. The |
| // sub-vectors are associated with the shufflevector instructions they will |
| // replace. |
| DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs; |
| |
| for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { |
| // If we're generating more than one load, compute the base address of |
| // subsequent loads as an offset from the previous. |
| if (LoadCount > 0) |
| BaseAddr = Builder.CreateConstGEP1_32( |
| BaseAddr, VecTy->getVectorNumElements() * Factor); |
| |
| SmallVector<Value *, 2> Ops; |
| Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr)); |
| Ops.push_back(Builder.getInt32(LI->getAlignment())); |
| |
| CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN"); |
| |
| // Replace uses of each shufflevector with the corresponding vector loaded |
| // by ldN. |
| for (unsigned i = 0; i < Shuffles.size(); i++) { |
| ShuffleVectorInst *SV = Shuffles[i]; |
| unsigned Index = Indices[i]; |
| |
| Value *SubVec = Builder.CreateExtractValue(VldN, Index); |
| |
| // Convert the integer vector to pointer vector if the element is pointer. |
| if (EltTy->isPointerTy()) |
| SubVec = Builder.CreateIntToPtr( |
| SubVec, VectorType::get(SV->getType()->getVectorElementType(), |
| VecTy->getVectorNumElements())); |
| |
| SubVecs[SV].push_back(SubVec); |
| } |
| } |
| |
| // Replace uses of the shufflevector instructions with the sub-vectors |
| // returned by the load intrinsic. If a shufflevector instruction is |
| // associated with more than one sub-vector, those sub-vectors will be |
| // concatenated into a single wide vector. |
| for (ShuffleVectorInst *SVI : Shuffles) { |
| auto &SubVec = SubVecs[SVI]; |
| auto *WideVec = |
| SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; |
| SVI->replaceAllUsesWith(WideVec); |
| } |
| |
| return true; |
| } |
| |
| /// Lower an interleaved store into a vstN intrinsic. |
| /// |
| /// E.g. Lower an interleaved store (Factor = 3): |
| /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, |
| /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> |
| /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4 |
| /// |
| /// Into: |
| /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> |
| /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> |
| /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> |
| /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4) |
| /// |
| /// Note that the new shufflevectors will be removed and we'll only generate one |
| /// vst3 instruction in CodeGen. |
| /// |
| /// Example for a more general valid mask (Factor 3). Lower: |
| /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, |
| /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> |
| /// store <12 x i32> %i.vec, <12 x i32>* %ptr |
| /// |
| /// Into: |
| /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> |
| /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> |
| /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> |
| /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4) |
| bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI, |
| ShuffleVectorInst *SVI, |
| unsigned Factor) const { |
| assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
| "Invalid interleave factor"); |
| |
| VectorType *VecTy = SVI->getType(); |
| assert(VecTy->getVectorNumElements() % Factor == 0 && |
| "Invalid interleaved store"); |
| |
| unsigned LaneLen = VecTy->getVectorNumElements() / Factor; |
| Type *EltTy = VecTy->getVectorElementType(); |
| VectorType *SubVecTy = VectorType::get(EltTy, LaneLen); |
| |
| const DataLayout &DL = SI->getModule()->getDataLayout(); |
| |
| // Skip if we do not have NEON and skip illegal vector types. We can |
| // "legalize" wide vector types into multiple interleaved accesses as long as |
| // the vector types are divisible by 128. |
| if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL)) |
| return false; |
| |
| unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL); |
| |
| Value *Op0 = SVI->getOperand(0); |
| Value *Op1 = SVI->getOperand(1); |
| IRBuilder<> Builder(SI); |
| |
| // StN intrinsics don't support pointer vectors as arguments. Convert pointer |
| // vectors to integer vectors. |
| if (EltTy->isPointerTy()) { |
| Type *IntTy = DL.getIntPtrType(EltTy); |
| |
| // Convert to the corresponding integer vector. |
| Type *IntVecTy = |
| VectorType::get(IntTy, Op0->getType()->getVectorNumElements()); |
| Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); |
| Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); |
| |
| SubVecTy = VectorType::get(IntTy, LaneLen); |
| } |
| |
| // The base address of the store. |
| Value *BaseAddr = SI->getPointerOperand(); |
| |
| if (NumStores > 1) { |
| // If we're going to generate more than one store, reset the lane length |
| // and sub-vector type to something legal. |
| LaneLen /= NumStores; |
| SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen); |
| |
| // We will compute the pointer operand of each store from the original base |
| // address using GEPs. Cast the base address to a pointer to the scalar |
| // element type. |
| BaseAddr = Builder.CreateBitCast( |
| BaseAddr, SubVecTy->getVectorElementType()->getPointerTo( |
| SI->getPointerAddressSpace())); |
| } |
| |
| assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!"); |
| |
| auto Mask = SVI->getShuffleMask(); |
| |
| Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace()); |
| Type *Tys[] = {Int8Ptr, SubVecTy}; |
| static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2, |
| Intrinsic::arm_neon_vst3, |
| Intrinsic::arm_neon_vst4}; |
| |
| for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { |
| // If we generating more than one store, we compute the base address of |
| // subsequent stores as an offset from the previous. |
| if (StoreCount > 0) |
| BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor); |
| |
| SmallVector<Value *, 6> Ops; |
| Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr)); |
| |
| Function *VstNFunc = |
| Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys); |
| |
| // Split the shufflevector operands into sub vectors for the new vstN call. |
| for (unsigned i = 0; i < Factor; i++) { |
| unsigned IdxI = StoreCount * LaneLen * Factor + i; |
| if (Mask[IdxI] >= 0) { |
| Ops.push_back(Builder.CreateShuffleVector( |
| Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0))); |
| } else { |
| unsigned StartMask = 0; |
| for (unsigned j = 1; j < LaneLen; j++) { |
| unsigned IdxJ = StoreCount * LaneLen * Factor + j; |
| if (Mask[IdxJ * Factor + IdxI] >= 0) { |
| StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ; |
| break; |
| } |
| } |
| // Note: If all elements in a chunk are undefs, StartMask=0! |
| // Note: Filling undef gaps with random elements is ok, since |
| // those elements were being written anyway (with undefs). |
| // In the case of all undefs we're defaulting to using elems from 0 |
| // Note: StartMask cannot be negative, it's checked in |
| // isReInterleaveMask |
| Ops.push_back(Builder.CreateShuffleVector( |
| Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0))); |
| } |
| } |
| |
| Ops.push_back(Builder.getInt32(SI->getAlignment())); |
| Builder.CreateCall(VstNFunc, Ops); |
| } |
| return true; |
| } |
| |
| enum HABaseType { |
| HA_UNKNOWN = 0, |
| HA_FLOAT, |
| HA_DOUBLE, |
| HA_VECT64, |
| HA_VECT128 |
| }; |
| |
| static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base, |
| uint64_t &Members) { |
| if (auto *ST = dyn_cast<StructType>(Ty)) { |
| for (unsigned i = 0; i < ST->getNumElements(); ++i) { |
| uint64_t SubMembers = 0; |
| if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers)) |
| return false; |
| Members += SubMembers; |
| } |
| } else if (auto *AT = dyn_cast<ArrayType>(Ty)) { |
| uint64_t SubMembers = 0; |
| if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers)) |
| return false; |
| Members += SubMembers * AT->getNumElements(); |
| } else if (Ty->isFloatTy()) { |
| if (Base != HA_UNKNOWN && Base != HA_FLOAT) |
| return false; |
| Members = 1; |
| Base = HA_FLOAT; |
| } else if (Ty->isDoubleTy()) { |
| if (Base != HA_UNKNOWN && Base != HA_DOUBLE) |
| return false; |
| Members = 1; |
| Base = HA_DOUBLE; |
| } else if (auto *VT = dyn_cast<VectorType>(Ty)) { |
| Members = 1; |
| switch (Base) { |
| case HA_FLOAT: |
| case HA_DOUBLE: |
| return false; |
| case HA_VECT64: |
| return VT->getBitWidth() == 64; |
| case HA_VECT128: |
| return VT->getBitWidth() == 128; |
| case HA_UNKNOWN: |
| switch (VT->getBitWidth()) { |
| case 64: |
| Base = HA_VECT64; |
| return true; |
| case 128: |
| Base = HA_VECT128; |
| return true; |
| default: |
| return false; |
| } |
| } |
| } |
| |
| return (Members > 0 && Members <= 4); |
| } |
| |
| /// Return the correct alignment for the current calling convention. |
| unsigned |
| ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy, |
| DataLayout DL) const { |
| if (!ArgTy->isVectorTy()) |
| return DL.getABITypeAlignment(ArgTy); |
| |
| // Avoid over-aligning vector parameters. It would require realigning the |
| // stack and waste space for no real benefit. |
| return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment()); |
| } |
| |
| /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of |
| /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when |
| /// passing according to AAPCS rules. |
| bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters( |
| Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { |
| if (getEffectiveCallingConv(CallConv, isVarArg) != |
| CallingConv::ARM_AAPCS_VFP) |
| return false; |
| |
| HABaseType Base = HA_UNKNOWN; |
| uint64_t Members = 0; |
| bool IsHA = isHomogeneousAggregate(Ty, Base, Members); |
| LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump()); |
| |
| bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy(); |
| return IsHA || IsIntArray; |
| } |
| |
| unsigned ARMTargetLowering::getExceptionPointerRegister( |
| const Constant *PersonalityFn) const { |
| // Platforms which do not use SjLj EH may return values in these registers |
| // via the personality function. |
| return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0; |
| } |
| |
| unsigned ARMTargetLowering::getExceptionSelectorRegister( |
| const Constant *PersonalityFn) const { |
| // Platforms which do not use SjLj EH may return values in these registers |
| // via the personality function. |
| return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1; |
| } |
| |
| void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { |
| // Update IsSplitCSR in ARMFunctionInfo. |
| ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>(); |
| AFI->setIsSplitCSR(true); |
| } |
| |
| void ARMTargetLowering::insertCopiesSplitCSR( |
| MachineBasicBlock *Entry, |
| const SmallVectorImpl<MachineBasicBlock *> &Exits) const { |
| const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); |
| if (!IStart) |
| return; |
| |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); |
| MachineBasicBlock::iterator MBBI = Entry->begin(); |
| for (const MCPhysReg *I = IStart; *I; ++I) { |
| const TargetRegisterClass *RC = nullptr; |
| if (ARM::GPRRegClass.contains(*I)) |
| RC = &ARM::GPRRegClass; |
| else if (ARM::DPRRegClass.contains(*I)) |
| RC = &ARM::DPRRegClass; |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| |
| unsigned NewVR = MRI->createVirtualRegister(RC); |
| // Create copy from CSR to a virtual register. |
| // FIXME: this currently does not emit CFI pseudo-instructions, it works |
| // fine for CXX_FAST_TLS since the C++-style TLS access functions should be |
| // nounwind. If we want to generalize this later, we may need to emit |
| // CFI pseudo-instructions. |
| assert(Entry->getParent()->getFunction().hasFnAttribute( |
| Attribute::NoUnwind) && |
| "Function should be nounwind in insertCopiesSplitCSR!"); |
| Entry->addLiveIn(*I); |
| BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) |
| .addReg(*I); |
| |
| // Insert the copy-back instructions right before the terminator. |
| for (auto *Exit : Exits) |
| BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), |
| TII->get(TargetOpcode::COPY), *I) |
| .addReg(NewVR); |
| } |
| } |
| |
| void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const { |
| MF.getFrameInfo().computeMaxCallFrameSize(MF); |
| TargetLoweringBase::finalizeLowering(MF); |
| } |