| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "ShaderCore.hpp" |
| |
| #include "Device/Renderer.hpp" |
| #include "System/Debug.hpp" |
| |
| #include <limits.h> |
| |
| // TODO(chromium:1299047) |
| #ifndef SWIFTSHADER_LEGACY_PRECISION |
| # define SWIFTSHADER_LEGACY_PRECISION false |
| #endif |
| |
| namespace sw { |
| |
| Vector4s::Vector4s() |
| { |
| } |
| |
| Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) |
| { |
| this->x = Short4(x); |
| this->y = Short4(y); |
| this->z = Short4(z); |
| this->w = Short4(w); |
| } |
| |
| Vector4s::Vector4s(const Vector4s &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| } |
| |
| Vector4s &Vector4s::operator=(const Vector4s &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| |
| return *this; |
| } |
| |
| Short4 &Vector4s::operator[](int i) |
| { |
| switch(i) |
| { |
| case 0: return x; |
| case 1: return y; |
| case 2: return z; |
| case 3: return w; |
| } |
| |
| return x; |
| } |
| |
| Vector4f::Vector4f() |
| { |
| } |
| |
| Vector4f::Vector4f(float x, float y, float z, float w) |
| { |
| this->x = Float4(x); |
| this->y = Float4(y); |
| this->z = Float4(z); |
| this->w = Float4(w); |
| } |
| |
| Vector4f::Vector4f(const Vector4f &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| } |
| |
| Vector4f &Vector4f::operator=(const Vector4f &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| |
| return *this; |
| } |
| |
| Float4 &Vector4f::operator[](int i) |
| { |
| switch(i) |
| { |
| case 0: return x; |
| case 1: return y; |
| case 2: return z; |
| case 3: return w; |
| } |
| |
| return x; |
| } |
| |
| Vector4i::Vector4i() |
| { |
| } |
| |
| Vector4i::Vector4i(int x, int y, int z, int w) |
| { |
| this->x = Int4(x); |
| this->y = Int4(y); |
| this->z = Int4(z); |
| this->w = Int4(w); |
| } |
| |
| Vector4i::Vector4i(const Vector4i &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| } |
| |
| Vector4i &Vector4i::operator=(const Vector4i &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| |
| return *this; |
| } |
| |
| Int4 &Vector4i::operator[](int i) |
| { |
| switch(i) |
| { |
| case 0: return x; |
| case 1: return y; |
| case 2: return z; |
| case 3: return w; |
| } |
| |
| return x; |
| } |
| |
| // Approximation of atan in [0..1] |
| static RValue<Float4> Atan_01(Float4 x) |
| { |
| // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
| const Float4 a2(-0.3333314528f); |
| const Float4 a4(0.1999355085f); |
| const Float4 a6(-0.1420889944f); |
| const Float4 a8(0.1065626393f); |
| const Float4 a10(-0.0752896400f); |
| const Float4 a12(0.0429096138f); |
| const Float4 a14(-0.0161657367f); |
| const Float4 a16(0.0028662257f); |
| Float4 x2 = x * x; |
| return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); |
| } |
| |
| // Polynomial approximation of order 5 for sin(x * 2 * pi) in the range [-1/4, 1/4] |
| static RValue<Float4> Sin5(Float4 x) |
| { |
| // A * x^5 + B * x^3 + C * x |
| // Exact at x = 0, 1/12, 1/6, 1/4, and their negatives, which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2 |
| const Float4 A = (36288 - 20736 * sqrt(3)) / 5; |
| const Float4 B = 288 * sqrt(3) - 540; |
| const Float4 C = (47 - 9 * sqrt(3)) / 5; |
| |
| Float4 x2 = x * x; |
| |
| return MulAdd(MulAdd(A, x2, B), x2, C) * x; |
| } |
| |
| RValue<Float4> Sin(RValue<Float4> x, bool relaxedPrecision) |
| { |
| const Float4 q = 0.25f; |
| const Float4 pi2 = 1 / (2 * 3.1415926535f); |
| |
| // Range reduction and mirroring |
| Float4 x_2 = MulAdd(x, -pi2, q); |
| Float4 z = q - Abs(x_2 - Round(x_2)); |
| |
| return Sin5(z); |
| } |
| |
| RValue<Float4> Cos(RValue<Float4> x, bool relaxedPrecision) |
| { |
| const Float4 q = 0.25f; |
| const Float4 pi2 = 1 / (2 * 3.1415926535f); |
| |
| // Phase shift, range reduction, and mirroring |
| Float4 x_2 = x * pi2; |
| Float4 z = q - Abs(x_2 - Round(x_2)); |
| |
| return Sin5(z); |
| } |
| |
| RValue<Float4> Tan(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return sw::Sin(x, relaxedPrecision) / sw::Cos(x, relaxedPrecision); |
| } |
| |
| static RValue<Float4> Asin_4_terms(RValue<Float4> x) |
| { |
| // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
| // |e(x)| <= 5e-8 |
| const Float4 half_pi(1.57079632f); |
| const Float4 a0(1.5707288f); |
| const Float4 a1(-0.2121144f); |
| const Float4 a2(0.0742610f); |
| const Float4 a3(-0.0187293f); |
| Float4 absx = Abs(x); |
| return As<Float4>(As<Int4>(half_pi - Sqrt<Highp>(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ |
| (As<Int4>(x) & Int4(0x80000000))); |
| } |
| |
| static RValue<Float4> Asin_8_terms(RValue<Float4> x) |
| { |
| // From 4.4.46, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
| // |e(x)| <= 0e-8 |
| const Float4 half_pi(1.5707963268f); |
| const Float4 a0(1.5707963050f); |
| const Float4 a1(-0.2145988016f); |
| const Float4 a2(0.0889789874f); |
| const Float4 a3(-0.0501743046f); |
| const Float4 a4(0.0308918810f); |
| const Float4 a5(-0.0170881256f); |
| const Float4 a6(0.006700901f); |
| const Float4 a7(-0.0012624911f); |
| Float4 absx = Abs(x); |
| return As<Float4>(As<Int4>(half_pi - Sqrt<Highp>(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * (a3 + absx * (a4 + absx * (a5 + absx * (a6 + absx * a7)))))))) ^ |
| (As<Int4>(x) & Int4(0x80000000))); |
| } |
| |
| RValue<Float4> Asin(RValue<Float4> x, bool relaxedPrecision) |
| { |
| // TODO(b/169755566): Surprisingly, deqp-vk's precision.acos.highp/mediump tests pass when using the 4-term polynomial |
| // approximation version of acos, unlike for Asin, which requires higher precision algorithms. |
| |
| if(!relaxedPrecision) |
| { |
| return rr::Asin(x); |
| } |
| |
| return Asin_8_terms(x); |
| } |
| |
| RValue<Float4> Acos(RValue<Float4> x, bool relaxedPrecision) |
| { |
| // pi/2 - arcsin(x) |
| return 1.57079632e+0f - Asin_4_terms(x); |
| } |
| |
| RValue<Float4> Atan(RValue<Float4> x, bool relaxedPrecision) |
| { |
| Float4 absx = Abs(x); |
| Int4 O = CmpNLT(absx, 1.0f); |
| Float4 y = As<Float4>((O & As<Int4>(1.0f / absx)) | (~O & As<Int4>(absx))); // FIXME: Vector select |
| |
| const Float4 half_pi(1.57079632f); |
| Float4 theta = Atan_01(y); |
| return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^ // FIXME: Vector select |
| (As<Int4>(x) & Int4(0x80000000))); |
| } |
| |
| RValue<Float4> Atan2(RValue<Float4> y, RValue<Float4> x, bool relaxedPrecision) |
| { |
| const Float4 pi(3.14159265f); // pi |
| const Float4 minus_pi(-3.14159265f); // -pi |
| const Float4 half_pi(1.57079632f); // pi/2 |
| const Float4 quarter_pi(7.85398163e-1f); // pi/4 |
| |
| // Rotate to upper semicircle when in lower semicircle |
| Int4 S = CmpLT(y, 0.0f); |
| Float4 theta = As<Float4>(S & As<Int4>(minus_pi)); |
| Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x)); |
| Float4 y0 = Abs(y); |
| |
| // Rotate to right quadrant when in left quadrant |
| Int4 Q = CmpLT(x0, 0.0f); |
| theta += As<Float4>(Q & As<Int4>(half_pi)); |
| Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0))); // FIXME: Vector select |
| Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0))); // FIXME: Vector select |
| |
| // Mirror to first octant when in second octant |
| Int4 O = CmpNLT(y1, x1); |
| Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1))); // FIXME: Vector select |
| Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1))); // FIXME: Vector select |
| |
| // Approximation of atan in [0..1] |
| Int4 zero_x = CmpEQ(x2, 0.0f); |
| Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 |
| Float4 atan2_theta = Atan_01(y2 / x2); |
| theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) | // FIXME: Vector select |
| (inf_y & As<Int4>(quarter_pi))); |
| |
| // Recover loss of precision for tiny theta angles |
| // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta |
| Int4 precision_loss = S & Q & O & ~inf_y; |
| |
| return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta))); // FIXME: Vector select |
| } |
| |
| // TODO(chromium:1299047) |
| static RValue<Float4> Exp2_legacy(RValue<Float4> x0) |
| { |
| Int4 i = RoundInt(x0 - 0.5f); |
| Float4 ii = As<Float4>((i + Int4(127)) << 23); |
| |
| Float4 f = x0 - Float4(i); |
| Float4 ff = As<Float4>(Int4(0x3AF61905)); |
| ff = ff * f + As<Float4>(Int4(0x3C134806)); |
| ff = ff * f + As<Float4>(Int4(0x3D64AA23)); |
| ff = ff * f + As<Float4>(Int4(0x3E75EAD4)); |
| ff = ff * f + As<Float4>(Int4(0x3F31727B)); |
| ff = ff * f + 1.0f; |
| |
| return ii * ff; |
| } |
| |
| RValue<Float4> Exp2(RValue<Float4> x, bool relaxedPrecision) |
| { |
| // Clamp to prevent overflow past the representation of infinity. |
| Float4 x0 = x; |
| x0 = Min(x0, 128.0f); |
| x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF))); // -126.999992 |
| |
| if(SWIFTSHADER_LEGACY_PRECISION) // TODO(chromium:1299047) |
| { |
| return Exp2_legacy(x0); |
| } |
| |
| Float4 xi = Floor(x0); |
| Float4 f = x0 - xi; |
| |
| if(!relaxedPrecision) // highp |
| { |
| // Polynomial which approximates (2^x-x-1)/x. Multiplying with x |
| // gives us a correction term to be added to 1+x to obtain 2^x. |
| const Float4 a = 1.8852974e-3f; |
| const Float4 b = 8.9733787e-3f; |
| const Float4 c = 5.5835927e-2f; |
| const Float4 d = 2.4015281e-1f; |
| const Float4 e = -3.0684753e-1f; |
| |
| Float4 r = MulAdd(MulAdd(MulAdd(MulAdd(a, f, b), f, c), f, d), f, e); |
| |
| // bit_cast<float>(int(x * 2^23)) is a piecewise linear approximation of 2^x. |
| // See "Fast Exponential Computation on SIMD Architectures" by Malossi et al. |
| Float4 y = MulAdd(r, f, x0); |
| Int4 i = Int4(y * (1 << 23)) + (127 << 23); |
| |
| return As<Float4>(i); |
| } |
| else // RelaxedPrecision / mediump |
| { |
| // Polynomial which approximates (2^x-x-1)/x. Multiplying with x |
| // gives us a correction term to be added to 1+x to obtain 2^x. |
| const Float4 a = 7.8145574e-2f; |
| const Float4 b = 2.2617357e-1f; |
| const Float4 c = -3.0444314e-1f; |
| |
| Float4 r = MulAdd(MulAdd(a, f, b), f, c); |
| |
| // bit_cast<float>(int(x * 2^23)) is a piecewise linear approximation of 2^x. |
| // See "Fast Exponential Computation on SIMD Architectures" by Malossi et al. |
| Float4 y = MulAdd(r, f, x0); |
| Int4 i = Int4(MulAdd((1 << 23), y, (127 << 23))); |
| |
| return As<Float4>(i); |
| } |
| } |
| |
| RValue<Float4> Log2_legacy(RValue<Float4> x) |
| { |
| Float4 x1 = As<Float4>(As<Int4>(x) & Int4(0x7F800000)); |
| x1 = As<Float4>(As<UInt4>(x1) >> 8); |
| x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f))); |
| x1 = (x1 - 1.4960938f) * 256.0f; |
| Float4 x0 = As<Float4>((As<Int4>(x) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f))); |
| |
| Float4 x2 = MulAdd(MulAdd(9.5428179e-2f, x0, 4.7779095e-1f), x0, 1.9782813e-1f); |
| Float4 x3 = MulAdd(MulAdd(MulAdd(1.6618466e-2f, x0, 2.0350508e-1f), x0, 2.7382900e-1f), x0, 4.0496687e-2f); |
| |
| x1 += (x0 - 1.0f) * (x2 / x3); |
| |
| Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000)); |
| return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1))); |
| } |
| |
| RValue<Float4> Log2(RValue<Float4> x, bool relaxedPrecision) |
| { |
| if(SWIFTSHADER_LEGACY_PRECISION) // TODO(chromium:1299047) |
| { |
| return Log2_legacy(x); |
| } |
| |
| if(!relaxedPrecision) // highp |
| { |
| // Reinterpretation as an integer provides a piecewise linear |
| // approximation of log2(). Scale to the radix and subtract exponent bias. |
| Int4 im = As<Int4>(x); |
| Float4 y = Float4(im - (127 << 23)) * (1.0f / (1 << 23)); |
| |
| // Handle log2(inf) = inf. |
| y = As<Float4>(As<Int4>(y) | (CmpEQ(im, 0x7F800000) & As<Int4>(Float4::infinity()))); |
| |
| Float4 m = Float4(im & 0x007FFFFF) * (1.0f / (1 << 23)); // Normalized mantissa of x. |
| |
| // Add a polynomial approximation of log2(m+1)-m to the result's mantissa. |
| const Float4 a = -9.3091638e-3f; |
| const Float4 b = 5.2059003e-2f; |
| const Float4 c = -1.3752135e-1f; |
| const Float4 d = 2.4186478e-1f; |
| const Float4 e = -3.4730109e-1f; |
| const Float4 f = 4.786837e-1f; |
| const Float4 g = -7.2116581e-1f; |
| const Float4 h = 4.4268988e-1f; |
| |
| Float4 z = MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(a, m, b), m, c), m, d), m, e), m, f), m, g), m, h); |
| |
| return MulAdd(z, m, y); |
| } |
| else // RelaxedPrecision / mediump |
| { |
| // Reinterpretation as an integer provides a piecewise linear |
| // approximation of log2(). Scale to the radix and subtract exponent bias. |
| Int4 im = As<Int4>(x); |
| Float4 y = MulAdd(Float4(im), (1.0f / (1 << 23)), -127.0f); |
| |
| // Handle log2(inf) = inf. |
| y = As<Float4>(As<Int4>(y) | (CmpEQ(im, 0x7F800000) & As<Int4>(Float4::infinity()))); |
| |
| Float4 m = Float4(im & 0x007FFFFF); // Unnormalized mantissa of x. |
| |
| // Add a polynomial approximation of log2(m+1)-m to the result's mantissa. |
| const Float4 a = 2.8017103e-22f; |
| const Float4 b = -8.373131e-15f; |
| const Float4 c = 5.0615534e-8f; |
| |
| Float4 f = MulAdd(MulAdd(a, m, b), m, c); |
| |
| return MulAdd(f, m, y); |
| } |
| } |
| |
| RValue<Float4> Exp(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return sw::Exp2(1.44269504f * x, relaxedPrecision); // 1/ln(2) |
| } |
| |
| RValue<Float4> Log(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return 6.93147181e-1f * sw::Log2(x, relaxedPrecision); // ln(2) |
| } |
| |
| RValue<Float4> Pow(RValue<Float4> x, RValue<Float4> y, bool relaxedPrecision) |
| { |
| Float4 log = sw::Log2(x, relaxedPrecision); |
| log *= y; |
| return sw::Exp2(log, relaxedPrecision); |
| } |
| |
| RValue<Float4> Sinh(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return (sw::Exp(x, relaxedPrecision) - sw::Exp(-x, relaxedPrecision)) * 0.5f; |
| } |
| |
| RValue<Float4> Cosh(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return (sw::Exp(x, relaxedPrecision) + sw::Exp(-x, relaxedPrecision)) * 0.5f; |
| } |
| |
| RValue<Float4> Tanh(RValue<Float4> x, bool relaxedPrecision) |
| { |
| Float4 e_x = sw::Exp(x, relaxedPrecision); |
| Float4 e_minus_x = sw::Exp(-x, relaxedPrecision); |
| return (e_x - e_minus_x) / (e_x + e_minus_x); |
| } |
| |
| RValue<Float4> Asinh(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return sw::Log(x + Sqrt(x * x + 1.0f, relaxedPrecision), relaxedPrecision); |
| } |
| |
| RValue<Float4> Acosh(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return sw::Log(x + Sqrt(x + 1.0f, relaxedPrecision) * Sqrt(x - 1.0f, relaxedPrecision), relaxedPrecision); |
| } |
| |
| RValue<Float4> Atanh(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return sw::Log((1.0f + x) / (1.0f - x), relaxedPrecision) * 0.5f; |
| } |
| |
| RValue<Float4> Sqrt(RValue<Float4> x, bool relaxedPrecision) |
| { |
| return rr::Sqrt(x); // TODO(b/222218659): Optimize for relaxed precision. |
| } |
| |
| RValue<Float4> reciprocal(RValue<Float4> x, bool pp, bool exactAtPow2) |
| { |
| return Rcp(x, pp, exactAtPow2); |
| } |
| |
| RValue<Float4> reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) |
| { |
| Float4 abs = x; |
| |
| if(absolute) |
| { |
| abs = Abs(abs); |
| } |
| |
| return Rcp(abs, pp); |
| } |
| |
| // TODO(chromium:1299047): Eliminate when Chromium tests accept both fused and unfused multiply-add. |
| RValue<Float4> mulAdd(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z) |
| { |
| if(SWIFTSHADER_LEGACY_PRECISION) |
| { |
| return x * y + z; |
| } |
| |
| return rr::MulAdd(x, y, z); |
| } |
| |
| void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) |
| { |
| Int2 tmp0 = UnpackHigh(row0, row1); |
| Int2 tmp1 = UnpackHigh(row2, row3); |
| Int2 tmp2 = UnpackLow(row0, row1); |
| Int2 tmp3 = UnpackLow(row2, row3); |
| |
| row0 = UnpackLow(tmp2, tmp3); |
| row1 = UnpackHigh(tmp2, tmp3); |
| row2 = UnpackLow(tmp0, tmp1); |
| row3 = UnpackHigh(tmp0, tmp1); |
| } |
| |
| void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) |
| { |
| Int2 tmp0 = UnpackHigh(row0, row1); |
| Int2 tmp1 = UnpackHigh(row2, row3); |
| Int2 tmp2 = UnpackLow(row0, row1); |
| Int2 tmp3 = UnpackLow(row2, row3); |
| |
| row0 = UnpackLow(tmp2, tmp3); |
| row1 = UnpackHigh(tmp2, tmp3); |
| row2 = UnpackLow(tmp0, tmp1); |
| } |
| |
| void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| Float4 tmp2 = UnpackHigh(row0, row1); |
| Float4 tmp3 = UnpackHigh(row2, row3); |
| |
| row0 = Float4(tmp0.xy, tmp1.xy); |
| row1 = Float4(tmp0.zw, tmp1.zw); |
| row2 = Float4(tmp2.xy, tmp3.xy); |
| row3 = Float4(tmp2.zw, tmp3.zw); |
| } |
| |
| void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| Float4 tmp2 = UnpackHigh(row0, row1); |
| Float4 tmp3 = UnpackHigh(row2, row3); |
| |
| row0 = Float4(tmp0.xy, tmp1.xy); |
| row1 = Float4(tmp0.zw, tmp1.zw); |
| row2 = Float4(tmp2.xy, tmp3.xy); |
| } |
| |
| void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| |
| row0 = Float4(tmp0.xy, tmp1.xy); |
| row1 = Float4(tmp0.zw, tmp1.zw); |
| } |
| |
| void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| |
| row0 = Float4(tmp0.xy, tmp1.xy); |
| } |
| |
| void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp01 = UnpackLow(row0, row1); |
| Float4 tmp23 = UnpackHigh(row0, row1); |
| |
| row0 = tmp01; |
| row1 = Float4(tmp01.zw, row1.zw); |
| row2 = tmp23; |
| row3 = Float4(tmp23.zw, row3.zw); |
| } |
| |
| void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) |
| { |
| switch(N) |
| { |
| case 1: transpose4x1(row0, row1, row2, row3); break; |
| case 2: transpose4x2(row0, row1, row2, row3); break; |
| case 3: transpose4x3(row0, row1, row2, row3); break; |
| case 4: transpose4x4(row0, row1, row2, row3); break; |
| } |
| } |
| |
| SIMD::UInt halfToFloatBits(SIMD::UInt halfBits) |
| { |
| auto magic = SIMD::UInt(126 << 23); |
| |
| auto sign16 = halfBits & SIMD::UInt(0x8000); |
| auto man16 = halfBits & SIMD::UInt(0x03FF); |
| auto exp16 = halfBits & SIMD::UInt(0x7C00); |
| |
| auto isDnormOrZero = CmpEQ(exp16, SIMD::UInt(0)); |
| auto isInfOrNaN = CmpEQ(exp16, SIMD::UInt(0x7C00)); |
| |
| auto sign32 = sign16 << 16; |
| auto man32 = man16 << 13; |
| auto exp32 = (exp16 + SIMD::UInt(0x1C000)) << 13; |
| auto norm32 = (man32 | exp32) | (isInfOrNaN & SIMD::UInt(0x7F800000)); |
| |
| auto denorm32 = As<SIMD::UInt>(As<SIMD::Float>(magic + man16) - As<SIMD::Float>(magic)); |
| |
| return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); |
| } |
| |
| SIMD::UInt floatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits) |
| { |
| SIMD::UInt sign = floatBits & SIMD::UInt(0x80000000); |
| SIMD::UInt abs = floatBits & SIMD::UInt(0x7FFFFFFF); |
| |
| SIMD::UInt normal = CmpNLE(abs, SIMD::UInt(0x38800000)); |
| |
| SIMD::UInt mantissa = (abs & SIMD::UInt(0x007FFFFF)) | SIMD::UInt(0x00800000); |
| SIMD::UInt e = SIMD::UInt(113) - (abs >> 23); |
| SIMD::UInt denormal = CmpLT(e, SIMD::UInt(24)) & (mantissa >> e); |
| |
| SIMD::UInt base = (normal & abs) | (~normal & denormal); // TODO: IfThenElse() |
| |
| // float exponent bias is 127, half bias is 15, so adjust by -112 |
| SIMD::UInt bias = normal & SIMD::UInt(0xC8000000); |
| |
| SIMD::UInt rounded = base + bias + SIMD::UInt(0x00000FFF) + ((base >> 13) & SIMD::UInt(1)); |
| SIMD::UInt fp16u = rounded >> 13; |
| |
| // Infinity |
| fp16u |= CmpNLE(abs, SIMD::UInt(0x47FFEFFF)) & SIMD::UInt(0x7FFF); |
| |
| return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); |
| } |
| |
| Float4 r11g11b10Unpack(UInt r11g11b10bits) |
| { |
| // 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa. |
| // Since the Half float format also has a 5 bit exponent, we can convert these formats to half by |
| // copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format. |
| // In this case, we have: |
| // MSB | B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R | LSB |
| UInt4 halfBits; |
| halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x000007FFu)) << 4, 0); |
| halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x003FF800u)) >> 7, 1); |
| halfBits = Insert(halfBits, (r11g11b10bits & UInt(0xFFC00000u)) >> 17, 2); |
| halfBits = Insert(halfBits, UInt(0x00003C00u), 3); |
| return As<Float4>(halfToFloatBits(halfBits)); |
| } |
| |
| UInt r11g11b10Pack(const Float4 &value) |
| { |
| // 10 and 11 bit floats are unsigned, so their minimal value is 0 |
| auto halfBits = floatToHalfBits(As<UInt4>(Max(value, Float4(0.0f))), true); |
| // Truncates instead of rounding. See b/147900455 |
| UInt4 truncBits = halfBits & UInt4(0x7FF00000, 0x7FF00000, 0x7FE00000, 0); |
| return (UInt(truncBits.x) >> 20) | (UInt(truncBits.y) >> 9) | (UInt(truncBits.z) << 1); |
| } |
| |
| RValue<Bool> AnyTrue(const RValue<SIMD::Int> &bools) |
| { |
| return SignMask(bools) != 0; |
| } |
| |
| RValue<Bool> AnyFalse(const RValue<SIMD::Int> &bools) |
| { |
| return SignMask(~bools) != 0; // TODO(b/214588983): Compare against mask of SIMD::Width 1's to avoid bitwise NOT. |
| } |
| |
| RValue<Bool> AllTrue(const RValue<SIMD::Int> &bools) |
| { |
| return SignMask(~bools) == 0; // TODO(b/214588983): Compare against mask of SIMD::Width 1's to avoid bitwise NOT. |
| } |
| |
| RValue<Bool> AllFalse(const RValue<SIMD::Int> &bools) |
| { |
| return SignMask(bools) == 0; |
| } |
| |
| RValue<Bool> Divergent(const RValue<SIMD::Int> &ints) |
| { |
| auto broadcastFirst = SIMD::Int(Extract(ints, 0)); |
| return AnyTrue(CmpNEQ(broadcastFirst, ints)); |
| } |
| |
| RValue<Bool> Divergent(const RValue<SIMD::Float> &floats) |
| { |
| auto broadcastFirst = SIMD::Float(Extract(floats, 0)); |
| return AnyTrue(CmpNEQ(broadcastFirst, floats)); |
| } |
| |
| RValue<Bool> Uniform(const RValue<SIMD::Int> &ints) |
| { |
| auto broadcastFirst = SIMD::Int(Extract(ints, 0)); |
| return AllFalse(CmpNEQ(broadcastFirst, ints)); |
| } |
| |
| RValue<Bool> Uniform(const RValue<SIMD::Float> &floats) |
| { |
| auto broadcastFirst = SIMD::Float(rr::Extract(floats, 0)); |
| return AllFalse(CmpNEQ(broadcastFirst, floats)); |
| } |
| |
| rr::RValue<sw::SIMD::Float> Sign(rr::RValue<sw::SIMD::Float> const &val) |
| { |
| return rr::As<sw::SIMD::Float>((rr::As<sw::SIMD::UInt>(val) & sw::SIMD::UInt(0x80000000)) | sw::SIMD::UInt(0x3f800000)); |
| } |
| |
| // Returns the <whole, frac> of val. |
| // Both whole and frac will have the same sign as val. |
| std::pair<rr::RValue<sw::SIMD::Float>, rr::RValue<sw::SIMD::Float>> |
| Modf(rr::RValue<sw::SIMD::Float> const &val) |
| { |
| auto abs = Abs(val); |
| auto sign = Sign(val); |
| auto whole = Floor(abs) * sign; |
| auto frac = Frac(abs) * sign; |
| return std::make_pair(whole, frac); |
| } |
| |
| // Returns the number of 1s in bits, per lane. |
| sw::SIMD::UInt CountBits(rr::RValue<sw::SIMD::UInt> const &bits) |
| { |
| // TODO: Add an intrinsic to reactor. Even if there isn't a |
| // single vector instruction, there may be target-dependent |
| // ways to make this faster. |
| // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| sw::SIMD::UInt c = bits - ((bits >> 1) & sw::SIMD::UInt(0x55555555)); |
| c = ((c >> 2) & sw::SIMD::UInt(0x33333333)) + (c & sw::SIMD::UInt(0x33333333)); |
| c = ((c >> 4) + c) & sw::SIMD::UInt(0x0F0F0F0F); |
| c = ((c >> 8) + c) & sw::SIMD::UInt(0x00FF00FF); |
| c = ((c >> 16) + c) & sw::SIMD::UInt(0x0000FFFF); |
| return c; |
| } |
| |
| // Returns 1 << bits. |
| // If the resulting bit overflows a 32 bit integer, 0 is returned. |
| rr::RValue<sw::SIMD::UInt> NthBit32(rr::RValue<sw::SIMD::UInt> const &bits) |
| { |
| return ((sw::SIMD::UInt(1) << bits) & rr::CmpLT(bits, sw::SIMD::UInt(32))); |
| } |
| |
| // Returns bitCount number of of 1's starting from the LSB. |
| rr::RValue<sw::SIMD::UInt> Bitmask32(rr::RValue<sw::SIMD::UInt> const &bitCount) |
| { |
| return NthBit32(bitCount) - sw::SIMD::UInt(1); |
| } |
| |
| // Returns the exponent of the floating point number f. |
| // Assumes IEEE 754 |
| rr::RValue<sw::SIMD::Int> Exponent(rr::RValue<sw::SIMD::Float> f) |
| { |
| auto v = rr::As<sw::SIMD::UInt>(f); |
| return (sw::SIMD::Int((v >> sw::SIMD::UInt(23)) & sw::SIMD::UInt(0xFF)) - sw::SIMD::Int(126)); |
| } |
| |
| // Returns y if y < x; otherwise result is x. |
| // If one operand is a NaN, the other operand is the result. |
| // If both operands are NaN, the result is a NaN. |
| rr::RValue<sw::SIMD::Float> NMin(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y) |
| { |
| auto xIsNan = IsNan(x); |
| auto yIsNan = IsNan(y); |
| return As<sw::SIMD::Float>( |
| // If neither are NaN, return min |
| ((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Min(x, y))) | |
| // If one operand is a NaN, the other operand is the result |
| // If both operands are NaN, the result is a NaN. |
| ((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) | |
| (xIsNan & As<sw::SIMD::Int>(y))); |
| } |
| |
| // Returns y if y > x; otherwise result is x. |
| // If one operand is a NaN, the other operand is the result. |
| // If both operands are NaN, the result is a NaN. |
| rr::RValue<sw::SIMD::Float> NMax(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y) |
| { |
| auto xIsNan = IsNan(x); |
| auto yIsNan = IsNan(y); |
| return As<sw::SIMD::Float>( |
| // If neither are NaN, return max |
| ((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Max(x, y))) | |
| // If one operand is a NaN, the other operand is the result |
| // If both operands are NaN, the result is a NaN. |
| ((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) | |
| (xIsNan & As<sw::SIMD::Int>(y))); |
| } |
| |
| // Returns the determinant of a 2x2 matrix. |
| rr::RValue<sw::SIMD::Float> Determinant( |
| rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, |
| rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d) |
| { |
| return a * d - b * c; |
| } |
| |
| // Returns the determinant of a 3x3 matrix. |
| rr::RValue<sw::SIMD::Float> Determinant( |
| rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, |
| rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, |
| rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i) |
| { |
| return a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h; |
| } |
| |
| // Returns the determinant of a 4x4 matrix. |
| rr::RValue<sw::SIMD::Float> Determinant( |
| rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d, |
| rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, |
| rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l, |
| rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p) |
| { |
| return a * Determinant(f, g, h, |
| j, k, l, |
| n, o, p) - |
| b * Determinant(e, g, h, |
| i, k, l, |
| m, o, p) + |
| c * Determinant(e, f, h, |
| i, j, l, |
| m, n, p) - |
| d * Determinant(e, f, g, |
| i, j, k, |
| m, n, o); |
| } |
| |
| // Returns the inverse of a 2x2 matrix. |
| std::array<rr::RValue<sw::SIMD::Float>, 4> MatrixInverse( |
| rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, |
| rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d) |
| { |
| auto s = sw::SIMD::Float(1.0f) / Determinant(a, b, c, d); |
| return { { s * d, -s * b, -s * c, s * a } }; |
| } |
| |
| // Returns the inverse of a 3x3 matrix. |
| std::array<rr::RValue<sw::SIMD::Float>, 9> MatrixInverse( |
| rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, |
| rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, |
| rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i) |
| { |
| auto s = sw::SIMD::Float(1.0f) / Determinant( |
| a, b, c, |
| d, e, f, |
| g, h, i); // TODO: duplicate arithmetic calculating the det and below. |
| |
| return { { |
| s * (e * i - f * h), |
| s * (c * h - b * i), |
| s * (b * f - c * e), |
| s * (f * g - d * i), |
| s * (a * i - c * g), |
| s * (c * d - a * f), |
| s * (d * h - e * g), |
| s * (b * g - a * h), |
| s * (a * e - b * d), |
| } }; |
| } |
| |
| // Returns the inverse of a 4x4 matrix. |
| std::array<rr::RValue<sw::SIMD::Float>, 16> MatrixInverse( |
| rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d, |
| rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, |
| rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l, |
| rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p) |
| { |
| auto s = sw::SIMD::Float(1.0f) / Determinant( |
| a, b, c, d, |
| e, f, g, h, |
| i, j, k, l, |
| m, n, o, p); // TODO: duplicate arithmetic calculating the det and below. |
| |
| auto kplo = k * p - l * o, jpln = j * p - l * n, jokn = j * o - k * n; |
| auto gpho = g * p - h * o, fphn = f * p - h * n, fogn = f * o - g * n; |
| auto glhk = g * l - h * k, flhj = f * l - h * j, fkgj = f * k - g * j; |
| auto iplm = i * p - l * m, iokm = i * o - k * m, ephm = e * p - h * m; |
| auto eogm = e * o - g * m, elhi = e * l - h * i, ekgi = e * k - g * i; |
| auto injm = i * n - j * m, enfm = e * n - f * m, ejfi = e * j - f * i; |
| |
| return { { |
| s * (f * kplo - g * jpln + h * jokn), |
| s * (-b * kplo + c * jpln - d * jokn), |
| s * (b * gpho - c * fphn + d * fogn), |
| s * (-b * glhk + c * flhj - d * fkgj), |
| |
| s * (-e * kplo + g * iplm - h * iokm), |
| s * (a * kplo - c * iplm + d * iokm), |
| s * (-a * gpho + c * ephm - d * eogm), |
| s * (a * glhk - c * elhi + d * ekgi), |
| |
| s * (e * jpln - f * iplm + h * injm), |
| s * (-a * jpln + b * iplm - d * injm), |
| s * (a * fphn - b * ephm + d * enfm), |
| s * (-a * flhj + b * elhi - d * ejfi), |
| |
| s * (-e * jokn + f * iokm - g * injm), |
| s * (a * jokn - b * iokm + c * injm), |
| s * (-a * fogn + b * eogm - c * enfm), |
| s * (a * fkgj - b * ekgi + c * ejfi), |
| } }; |
| } |
| |
| namespace SIMD { |
| |
| Pointer::Pointer(rr::Pointer<Byte> base, rr::Int limit) |
| : base(base) |
| , dynamicLimit(limit) |
| , staticLimit(0) |
| , dynamicOffsets(0) |
| , staticOffsets{} |
| , hasDynamicLimit(true) |
| , hasDynamicOffsets(false) |
| {} |
| |
| Pointer::Pointer(rr::Pointer<Byte> base, unsigned int limit) |
| : base(base) |
| , dynamicLimit(0) |
| , staticLimit(limit) |
| , dynamicOffsets(0) |
| , staticOffsets{} |
| , hasDynamicLimit(false) |
| , hasDynamicOffsets(false) |
| {} |
| |
| Pointer::Pointer(rr::Pointer<Byte> base, rr::Int limit, SIMD::Int offset) |
| : base(base) |
| , dynamicLimit(limit) |
| , staticLimit(0) |
| , dynamicOffsets(offset) |
| , staticOffsets{} |
| , hasDynamicLimit(true) |
| , hasDynamicOffsets(true) |
| {} |
| |
| Pointer::Pointer(rr::Pointer<Byte> base, unsigned int limit, SIMD::Int offset) |
| : base(base) |
| , dynamicLimit(0) |
| , staticLimit(limit) |
| , dynamicOffsets(offset) |
| , staticOffsets{} |
| , hasDynamicLimit(false) |
| , hasDynamicOffsets(true) |
| {} |
| |
| Pointer &Pointer::operator+=(Int i) |
| { |
| dynamicOffsets += i; |
| hasDynamicOffsets = true; |
| return *this; |
| } |
| |
| Pointer &Pointer::operator*=(Int i) |
| { |
| dynamicOffsets = offsets() * i; |
| staticOffsets = {}; |
| hasDynamicOffsets = true; |
| return *this; |
| } |
| |
| Pointer Pointer::operator+(SIMD::Int i) |
| { |
| Pointer p = *this; |
| p += i; |
| return p; |
| } |
| Pointer Pointer::operator*(SIMD::Int i) |
| { |
| Pointer p = *this; |
| p *= i; |
| return p; |
| } |
| |
| Pointer &Pointer::operator+=(int i) |
| { |
| for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] += i; } |
| return *this; |
| } |
| |
| Pointer &Pointer::operator*=(int i) |
| { |
| for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] *= i; } |
| if(hasDynamicOffsets) |
| { |
| dynamicOffsets *= SIMD::Int(i); |
| } |
| return *this; |
| } |
| |
| Pointer Pointer::operator+(int i) |
| { |
| Pointer p = *this; |
| p += i; |
| return p; |
| } |
| Pointer Pointer::operator*(int i) |
| { |
| Pointer p = *this; |
| p *= i; |
| return p; |
| } |
| |
| SIMD::Int Pointer::offsets() const |
| { |
| static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); |
| return dynamicOffsets + SIMD::Int(staticOffsets[0], staticOffsets[1], staticOffsets[2], staticOffsets[3]); |
| } |
| |
| SIMD::Int Pointer::isInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const |
| { |
| ASSERT(accessSize > 0); |
| |
| if(isStaticallyInBounds(accessSize, robustness)) |
| { |
| return SIMD::Int(0xffffffff); |
| } |
| |
| if(!hasDynamicOffsets && !hasDynamicLimit) |
| { |
| // Common fast paths. |
| static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); |
| return SIMD::Int( |
| (staticOffsets[0] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, |
| (staticOffsets[1] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, |
| (staticOffsets[2] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, |
| (staticOffsets[3] + accessSize - 1 < staticLimit) ? 0xffffffff : 0); |
| } |
| |
| return CmpGE(offsets(), SIMD::Int(0)) & CmpLT(offsets() + SIMD::Int(accessSize - 1), SIMD::Int(limit())); |
| } |
| |
| bool Pointer::isStaticallyInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const |
| { |
| if(hasDynamicOffsets) |
| { |
| return false; |
| } |
| |
| if(hasDynamicLimit) |
| { |
| if(hasStaticEqualOffsets() || hasStaticSequentialOffsets(accessSize)) |
| { |
| switch(robustness) |
| { |
| case OutOfBoundsBehavior::UndefinedBehavior: |
| // With this robustness setting the application/compiler guarantees in-bounds accesses on active lanes, |
| // but since it can't know in advance which branches are taken this must be true even for inactives lanes. |
| return true; |
| case OutOfBoundsBehavior::Nullify: |
| case OutOfBoundsBehavior::RobustBufferAccess: |
| case OutOfBoundsBehavior::UndefinedValue: |
| return false; |
| } |
| } |
| } |
| |
| for(int i = 0; i < SIMD::Width; i++) |
| { |
| if(staticOffsets[i] + accessSize - 1 >= staticLimit) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| rr::Int Pointer::limit() const |
| { |
| return dynamicLimit + staticLimit; |
| } |
| |
| // Returns true if all offsets are sequential |
| // (N+0*step, N+1*step, N+2*step, N+3*step) |
| rr::Bool Pointer::hasSequentialOffsets(unsigned int step) const |
| { |
| if(hasDynamicOffsets) |
| { |
| auto o = offsets(); |
| static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); |
| return rr::SignMask(~CmpEQ(o.yzww, o + SIMD::Int(1 * step, 2 * step, 3 * step, 0))) == 0; |
| } |
| return hasStaticSequentialOffsets(step); |
| } |
| |
| // Returns true if all offsets are are compile-time static and |
| // sequential (N+0*step, N+1*step, N+2*step, N+3*step) |
| bool Pointer::hasStaticSequentialOffsets(unsigned int step) const |
| { |
| if(hasDynamicOffsets) |
| { |
| return false; |
| } |
| for(int i = 1; i < SIMD::Width; i++) |
| { |
| if(staticOffsets[i - 1] + int32_t(step) != staticOffsets[i]) { return false; } |
| } |
| return true; |
| } |
| |
| // Returns true if all offsets are equal (N, N, N, N) |
| rr::Bool Pointer::hasEqualOffsets() const |
| { |
| if(hasDynamicOffsets) |
| { |
| auto o = offsets(); |
| static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); |
| return rr::SignMask(~CmpEQ(o, o.yzwx)) == 0; |
| } |
| return hasStaticEqualOffsets(); |
| } |
| |
| // Returns true if all offsets are compile-time static and are equal |
| // (N, N, N, N) |
| bool Pointer::hasStaticEqualOffsets() const |
| { |
| if(hasDynamicOffsets) |
| { |
| return false; |
| } |
| for(int i = 1; i < SIMD::Width; i++) |
| { |
| if(staticOffsets[i - 1] != staticOffsets[i]) { return false; } |
| } |
| return true; |
| } |
| |
| } // namespace SIMD |
| |
| } // namespace sw |