| //===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This header contains common, non-processor-specific data structures and |
| // constants for the ELF file format. |
| // |
| // The details of the ELF32 bits in this file are largely based on the Tool |
| // Interface Standard (TIS) Executable and Linking Format (ELF) Specification |
| // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format |
| // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_SUPPORT_ELF_H |
| #define LLVM_SUPPORT_ELF_H |
| |
| #include "llvm/Support/DataTypes.h" |
| #include <cstring> |
| |
| namespace llvm { |
| |
| namespace ELF { |
| |
| typedef uint32_t Elf32_Addr; // Program address |
| typedef uint32_t Elf32_Off; // File offset |
| typedef uint16_t Elf32_Half; |
| typedef uint32_t Elf32_Word; |
| typedef int32_t Elf32_Sword; |
| |
| typedef uint64_t Elf64_Addr; |
| typedef uint64_t Elf64_Off; |
| typedef uint16_t Elf64_Half; |
| typedef uint32_t Elf64_Word; |
| typedef int32_t Elf64_Sword; |
| typedef uint64_t Elf64_Xword; |
| typedef int64_t Elf64_Sxword; |
| |
| // Object file magic string. |
| static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' }; |
| |
| // e_ident size and indices. |
| enum { |
| EI_MAG0 = 0, // File identification index. |
| EI_MAG1 = 1, // File identification index. |
| EI_MAG2 = 2, // File identification index. |
| EI_MAG3 = 3, // File identification index. |
| EI_CLASS = 4, // File class. |
| EI_DATA = 5, // Data encoding. |
| EI_VERSION = 6, // File version. |
| EI_OSABI = 7, // OS/ABI identification. |
| EI_ABIVERSION = 8, // ABI version. |
| EI_PAD = 9, // Start of padding bytes. |
| EI_NIDENT = 16 // Number of bytes in e_ident. |
| }; |
| |
| struct Elf32_Ehdr { |
| unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes |
| Elf32_Half e_type; // Type of file (see ET_* below) |
| Elf32_Half e_machine; // Required architecture for this file (see EM_*) |
| Elf32_Word e_version; // Must be equal to 1 |
| Elf32_Addr e_entry; // Address to jump to in order to start program |
| Elf32_Off e_phoff; // Program header table's file offset, in bytes |
| Elf32_Off e_shoff; // Section header table's file offset, in bytes |
| Elf32_Word e_flags; // Processor-specific flags |
| Elf32_Half e_ehsize; // Size of ELF header, in bytes |
| Elf32_Half e_phentsize; // Size of an entry in the program header table |
| Elf32_Half e_phnum; // Number of entries in the program header table |
| Elf32_Half e_shentsize; // Size of an entry in the section header table |
| Elf32_Half e_shnum; // Number of entries in the section header table |
| Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table |
| bool checkMagic() const { |
| return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; |
| } |
| unsigned char getFileClass() const { return e_ident[EI_CLASS]; } |
| unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } |
| }; |
| |
| // 64-bit ELF header. Fields are the same as for ELF32, but with different |
| // types (see above). |
| struct Elf64_Ehdr { |
| unsigned char e_ident[EI_NIDENT]; |
| Elf64_Half e_type; |
| Elf64_Half e_machine; |
| Elf64_Word e_version; |
| Elf64_Addr e_entry; |
| Elf64_Off e_phoff; |
| Elf64_Off e_shoff; |
| Elf64_Word e_flags; |
| Elf64_Half e_ehsize; |
| Elf64_Half e_phentsize; |
| Elf64_Half e_phnum; |
| Elf64_Half e_shentsize; |
| Elf64_Half e_shnum; |
| Elf64_Half e_shstrndx; |
| bool checkMagic() const { |
| return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; |
| } |
| unsigned char getFileClass() const { return e_ident[EI_CLASS]; } |
| unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } |
| }; |
| |
| // File types |
| enum { |
| ET_NONE = 0, // No file type |
| ET_REL = 1, // Relocatable file |
| ET_EXEC = 2, // Executable file |
| ET_DYN = 3, // Shared object file |
| ET_CORE = 4, // Core file |
| ET_LOPROC = 0xff00, // Beginning of processor-specific codes |
| ET_HIPROC = 0xffff // Processor-specific |
| }; |
| |
| // Versioning |
| enum { |
| EV_NONE = 0, |
| EV_CURRENT = 1 |
| }; |
| |
| // Machine architectures |
| enum { |
| EM_NONE = 0, // No machine |
| EM_M32 = 1, // AT&T WE 32100 |
| EM_SPARC = 2, // SPARC |
| EM_386 = 3, // Intel 386 |
| EM_68K = 4, // Motorola 68000 |
| EM_88K = 5, // Motorola 88000 |
| EM_486 = 6, // Intel 486 (deprecated) |
| EM_860 = 7, // Intel 80860 |
| EM_MIPS = 8, // MIPS R3000 |
| EM_S370 = 9, // IBM System/370 |
| EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian |
| EM_PARISC = 15, // Hewlett-Packard PA-RISC |
| EM_VPP500 = 17, // Fujitsu VPP500 |
| EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC |
| EM_960 = 19, // Intel 80960 |
| EM_PPC = 20, // PowerPC |
| EM_PPC64 = 21, // PowerPC64 |
| EM_S390 = 22, // IBM System/390 |
| EM_SPU = 23, // IBM SPU/SPC |
| EM_V800 = 36, // NEC V800 |
| EM_FR20 = 37, // Fujitsu FR20 |
| EM_RH32 = 38, // TRW RH-32 |
| EM_RCE = 39, // Motorola RCE |
| EM_ARM = 40, // ARM |
| EM_ALPHA = 41, // DEC Alpha |
| EM_SH = 42, // Hitachi SH |
| EM_SPARCV9 = 43, // SPARC V9 |
| EM_TRICORE = 44, // Siemens TriCore |
| EM_ARC = 45, // Argonaut RISC Core |
| EM_H8_300 = 46, // Hitachi H8/300 |
| EM_H8_300H = 47, // Hitachi H8/300H |
| EM_H8S = 48, // Hitachi H8S |
| EM_H8_500 = 49, // Hitachi H8/500 |
| EM_IA_64 = 50, // Intel IA-64 processor architecture |
| EM_MIPS_X = 51, // Stanford MIPS-X |
| EM_COLDFIRE = 52, // Motorola ColdFire |
| EM_68HC12 = 53, // Motorola M68HC12 |
| EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator |
| EM_PCP = 55, // Siemens PCP |
| EM_NCPU = 56, // Sony nCPU embedded RISC processor |
| EM_NDR1 = 57, // Denso NDR1 microprocessor |
| EM_STARCORE = 58, // Motorola Star*Core processor |
| EM_ME16 = 59, // Toyota ME16 processor |
| EM_ST100 = 60, // STMicroelectronics ST100 processor |
| EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family |
| EM_X86_64 = 62, // AMD x86-64 architecture |
| EM_PDSP = 63, // Sony DSP Processor |
| EM_PDP10 = 64, // Digital Equipment Corp. PDP-10 |
| EM_PDP11 = 65, // Digital Equipment Corp. PDP-11 |
| EM_FX66 = 66, // Siemens FX66 microcontroller |
| EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller |
| EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller |
| EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller |
| EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller |
| EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller |
| EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller |
| EM_SVX = 73, // Silicon Graphics SVx |
| EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller |
| EM_VAX = 75, // Digital VAX |
| EM_CRIS = 76, // Axis Communications 32-bit embedded processor |
| EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor |
| EM_FIREPATH = 78, // Element 14 64-bit DSP Processor |
| EM_ZSP = 79, // LSI Logic 16-bit DSP Processor |
| EM_MMIX = 80, // Donald Knuth's educational 64-bit processor |
| EM_HUANY = 81, // Harvard University machine-independent object files |
| EM_PRISM = 82, // SiTera Prism |
| EM_AVR = 83, // Atmel AVR 8-bit microcontroller |
| EM_FR30 = 84, // Fujitsu FR30 |
| EM_D10V = 85, // Mitsubishi D10V |
| EM_D30V = 86, // Mitsubishi D30V |
| EM_V850 = 87, // NEC v850 |
| EM_M32R = 88, // Mitsubishi M32R |
| EM_MN10300 = 89, // Matsushita MN10300 |
| EM_MN10200 = 90, // Matsushita MN10200 |
| EM_PJ = 91, // picoJava |
| EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor |
| EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old |
| // spelling/synonym: EM_ARC_A5) |
| EM_XTENSA = 94, // Tensilica Xtensa Architecture |
| EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor |
| EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor |
| EM_NS32K = 97, // National Semiconductor 32000 series |
| EM_TPC = 98, // Tenor Network TPC processor |
| EM_SNP1K = 99, // Trebia SNP 1000 processor |
| EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200 |
| EM_IP2K = 101, // Ubicom IP2xxx microcontroller family |
| EM_MAX = 102, // MAX Processor |
| EM_CR = 103, // National Semiconductor CompactRISC microprocessor |
| EM_F2MC16 = 104, // Fujitsu F2MC16 |
| EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430 |
| EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor |
| EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors |
| EM_SEP = 108, // Sharp embedded microprocessor |
| EM_ARCA = 109, // Arca RISC Microprocessor |
| EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC |
| // of Peking University |
| EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU |
| EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor |
| EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor |
| EM_CRX = 114, // National Semiconductor CompactRISC CRX |
| EM_XGATE = 115, // Motorola XGATE embedded processor |
| EM_C166 = 116, // Infineon C16x/XC16x processor |
| EM_M16C = 117, // Renesas M16C series microprocessors |
| EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal |
| // Controller |
| EM_CE = 119, // Freescale Communication Engine RISC core |
| EM_M32C = 120, // Renesas M32C series microprocessors |
| EM_TSK3000 = 131, // Altium TSK3000 core |
| EM_RS08 = 132, // Freescale RS08 embedded processor |
| EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP |
| // processors |
| EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor |
| EM_SCORE7 = 135, // Sunplus S+core7 RISC processor |
| EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor |
| EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor |
| EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture |
| EM_SE_C17 = 139, // Seiko Epson C17 family |
| EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family |
| EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family |
| EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family |
| EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor |
| EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor |
| EM_R32C = 162, // Renesas R32C series microprocessors |
| EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family |
| EM_QDSP6 = 164, // QUALCOMM DSP6 Processor |
| EM_8051 = 165, // Intel 8051 and variants |
| EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable |
| // and extensible RISC processors |
| EM_NDS32 = 167, // Andes Technology compact code size embedded RISC |
| // processor family |
| EM_ECOG1 = 168, // Cyan Technology eCOG1X family |
| EM_ECOG1X = 168, // Cyan Technology eCOG1X family |
| EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers |
| EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor |
| EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor |
| EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture |
| EM_RX = 173, // Renesas RX family |
| EM_METAG = 174, // Imagination Technologies META processor |
| // architecture |
| EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture |
| EM_ECOG16 = 176, // Cyan Technology eCOG16 family |
| EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit |
| // microprocessor |
| EM_ETPU = 178, // Freescale Extended Time Processing Unit |
| EM_SLE9X = 179, // Infineon Technologies SLE9X core |
| EM_L10M = 180, // Intel L10M |
| EM_K10M = 181, // Intel K10M |
| EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family |
| EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller |
| EM_TILE64 = 187, // Tilera TILE64 multicore architecture family |
| EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family |
| EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core |
| EM_CUDA = 190, // NVIDIA CUDA architecture |
| EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family |
| EM_CLOUDSHIELD = 192, // CloudShield architecture family |
| EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family |
| EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family |
| EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2 |
| EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core |
| EM_RL78 = 197, // Renesas RL78 family |
| EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor |
| EM_78KOR = 199, // Renesas 78KOR family |
| EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC) |
| EM_MBLAZE = 47787 // Xilinx MicroBlaze |
| }; |
| |
| // Object file classes. |
| enum { |
| ELFCLASSNONE = 0, |
| ELFCLASS32 = 1, // 32-bit object file |
| ELFCLASS64 = 2 // 64-bit object file |
| }; |
| |
| // Object file byte orderings. |
| enum { |
| ELFDATANONE = 0, // Invalid data encoding. |
| ELFDATA2LSB = 1, // Little-endian object file |
| ELFDATA2MSB = 2 // Big-endian object file |
| }; |
| |
| // OS ABI identification. |
| enum { |
| ELFOSABI_NONE = 0, // UNIX System V ABI |
| ELFOSABI_HPUX = 1, // HP-UX operating system |
| ELFOSABI_NETBSD = 2, // NetBSD |
| ELFOSABI_LINUX = 3, // GNU/Linux |
| ELFOSABI_HURD = 4, // GNU/Hurd |
| ELFOSABI_SOLARIS = 6, // Solaris |
| ELFOSABI_AIX = 7, // AIX |
| ELFOSABI_IRIX = 8, // IRIX |
| ELFOSABI_FREEBSD = 9, // FreeBSD |
| ELFOSABI_TRU64 = 10, // TRU64 UNIX |
| ELFOSABI_MODESTO = 11, // Novell Modesto |
| ELFOSABI_OPENBSD = 12, // OpenBSD |
| ELFOSABI_OPENVMS = 13, // OpenVMS |
| ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel |
| ELFOSABI_AROS = 15, // AROS |
| ELFOSABI_FENIXOS = 16, // FenixOS |
| ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 |
| ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000 |
| ELFOSABI_ARM = 97, // ARM |
| ELFOSABI_STANDALONE = 255 // Standalone (embedded) application |
| }; |
| |
| // X86_64 relocations. |
| enum { |
| R_X86_64_NONE = 0, |
| R_X86_64_64 = 1, |
| R_X86_64_PC32 = 2, |
| R_X86_64_GOT32 = 3, |
| R_X86_64_PLT32 = 4, |
| R_X86_64_COPY = 5, |
| R_X86_64_GLOB_DAT = 6, |
| R_X86_64_JUMP_SLOT = 7, |
| R_X86_64_RELATIVE = 8, |
| R_X86_64_GOTPCREL = 9, |
| R_X86_64_32 = 10, |
| R_X86_64_32S = 11, |
| R_X86_64_16 = 12, |
| R_X86_64_PC16 = 13, |
| R_X86_64_8 = 14, |
| R_X86_64_PC8 = 15, |
| R_X86_64_DTPMOD64 = 16, |
| R_X86_64_DTPOFF64 = 17, |
| R_X86_64_TPOFF64 = 18, |
| R_X86_64_TLSGD = 19, |
| R_X86_64_TLSLD = 20, |
| R_X86_64_DTPOFF32 = 21, |
| R_X86_64_GOTTPOFF = 22, |
| R_X86_64_TPOFF32 = 23, |
| R_X86_64_PC64 = 24, |
| R_X86_64_GOTOFF64 = 25, |
| R_X86_64_GOTPC32 = 26, |
| R_X86_64_GOT64 = 27, |
| R_X86_64_GOTPCREL64 = 28, |
| R_X86_64_GOTPC64 = 29, |
| R_X86_64_GOTPLT64 = 30, |
| R_X86_64_PLTOFF64 = 31, |
| R_X86_64_SIZE32 = 32, |
| R_X86_64_SIZE64 = 33, |
| R_X86_64_GOTPC32_TLSDESC = 34, |
| R_X86_64_TLSDESC_CALL = 35, |
| R_X86_64_TLSDESC = 36 |
| }; |
| |
| // i386 relocations. |
| // TODO: this is just a subset |
| enum { |
| R_386_NONE = 0, |
| R_386_32 = 1, |
| R_386_PC32 = 2, |
| R_386_GOT32 = 3, |
| R_386_PLT32 = 4, |
| R_386_COPY = 5, |
| R_386_GLOB_DAT = 6, |
| R_386_JUMP_SLOT = 7, |
| R_386_RELATIVE = 8, |
| R_386_GOTOFF = 9, |
| R_386_GOTPC = 10, |
| R_386_32PLT = 11, |
| R_386_TLS_TPOFF = 14, |
| R_386_TLS_IE = 15, |
| R_386_TLS_GOTIE = 16, |
| R_386_TLS_LE = 17, |
| R_386_TLS_GD = 18, |
| R_386_TLS_LDM = 19, |
| R_386_16 = 20, |
| R_386_PC16 = 21, |
| R_386_8 = 22, |
| R_386_PC8 = 23, |
| R_386_TLS_GD_32 = 24, |
| R_386_TLS_GD_PUSH = 25, |
| R_386_TLS_GD_CALL = 26, |
| R_386_TLS_GD_POP = 27, |
| R_386_TLS_LDM_32 = 28, |
| R_386_TLS_LDM_PUSH = 29, |
| R_386_TLS_LDM_CALL = 30, |
| R_386_TLS_LDM_POP = 31, |
| R_386_TLS_LDO_32 = 32, |
| R_386_TLS_IE_32 = 33, |
| R_386_TLS_LE_32 = 34, |
| R_386_TLS_DTPMOD32 = 35, |
| R_386_TLS_DTPOFF32 = 36, |
| R_386_TLS_TPOFF32 = 37, |
| R_386_TLS_GOTDESC = 39, |
| R_386_TLS_DESC_CALL = 40, |
| R_386_TLS_DESC = 41, |
| R_386_IRELATIVE = 42, |
| R_386_NUM = 43 |
| }; |
| |
| // MBlaze relocations. |
| enum { |
| R_MICROBLAZE_NONE = 0, |
| R_MICROBLAZE_32 = 1, |
| R_MICROBLAZE_32_PCREL = 2, |
| R_MICROBLAZE_64_PCREL = 3, |
| R_MICROBLAZE_32_PCREL_LO = 4, |
| R_MICROBLAZE_64 = 5, |
| R_MICROBLAZE_32_LO = 6, |
| R_MICROBLAZE_SRO32 = 7, |
| R_MICROBLAZE_SRW32 = 8, |
| R_MICROBLAZE_64_NONE = 9, |
| R_MICROBLAZE_32_SYM_OP_SYM = 10, |
| R_MICROBLAZE_GNU_VTINHERIT = 11, |
| R_MICROBLAZE_GNU_VTENTRY = 12, |
| R_MICROBLAZE_GOTPC_64 = 13, |
| R_MICROBLAZE_GOT_64 = 14, |
| R_MICROBLAZE_PLT_64 = 15, |
| R_MICROBLAZE_REL = 16, |
| R_MICROBLAZE_JUMP_SLOT = 17, |
| R_MICROBLAZE_GLOB_DAT = 18, |
| R_MICROBLAZE_GOTOFF_64 = 19, |
| R_MICROBLAZE_GOTOFF_32 = 20, |
| R_MICROBLAZE_COPY = 21 |
| }; |
| |
| enum { |
| R_PPC_NONE = 0, /* No relocation. */ |
| R_PPC_ADDR32 = 1, |
| R_PPC_ADDR24 = 2, |
| R_PPC_ADDR16 = 3, |
| R_PPC_ADDR16_LO = 4, |
| R_PPC_ADDR16_HI = 5, |
| R_PPC_ADDR16_HA = 6, |
| R_PPC_ADDR14 = 7, |
| R_PPC_ADDR14_BRTAKEN = 8, |
| R_PPC_ADDR14_BRNTAKEN = 9, |
| R_PPC_REL24 = 10, |
| R_PPC_REL14 = 11, |
| R_PPC_REL14_BRTAKEN = 12, |
| R_PPC_REL14_BRNTAKEN = 13, |
| R_PPC_REL32 = 26 |
| }; |
| |
| // ARM Specific e_flags |
| enum { EF_ARM_EABIMASK = 0xFF000000U }; |
| |
| // ELF Relocation types for ARM |
| // Meets 2.08 ABI Specs. |
| |
| enum { |
| R_ARM_NONE = 0x00, |
| R_ARM_PC24 = 0x01, |
| R_ARM_ABS32 = 0x02, |
| R_ARM_REL32 = 0x03, |
| R_ARM_LDR_PC_G0 = 0x04, |
| R_ARM_ABS16 = 0x05, |
| R_ARM_ABS12 = 0x06, |
| R_ARM_THM_ABS5 = 0x07, |
| R_ARM_ABS8 = 0x08, |
| R_ARM_SBREL32 = 0x09, |
| R_ARM_THM_CALL = 0x0a, |
| R_ARM_THM_PC8 = 0x0b, |
| R_ARM_BREL_ADJ = 0x0c, |
| R_ARM_TLS_DESC = 0x0d, |
| R_ARM_THM_SWI8 = 0x0e, |
| R_ARM_XPC25 = 0x0f, |
| R_ARM_THM_XPC22 = 0x10, |
| R_ARM_TLS_DTPMOD32 = 0x11, |
| R_ARM_TLS_DTPOFF32 = 0x12, |
| R_ARM_TLS_TPOFF32 = 0x13, |
| R_ARM_COPY = 0x14, |
| R_ARM_GLOB_DAT = 0x15, |
| R_ARM_JUMP_SLOT = 0x16, |
| R_ARM_RELATIVE = 0x17, |
| R_ARM_GOTOFF32 = 0x18, |
| R_ARM_BASE_PREL = 0x19, |
| R_ARM_GOT_BREL = 0x1a, |
| R_ARM_PLT32 = 0x1b, |
| R_ARM_CALL = 0x1c, |
| R_ARM_JUMP24 = 0x1d, |
| R_ARM_THM_JUMP24 = 0x1e, |
| R_ARM_BASE_ABS = 0x1f, |
| R_ARM_ALU_PCREL_7_0 = 0x20, |
| R_ARM_ALU_PCREL_15_8 = 0x21, |
| R_ARM_ALU_PCREL_23_15 = 0x22, |
| R_ARM_LDR_SBREL_11_0_NC = 0x23, |
| R_ARM_ALU_SBREL_19_12_NC = 0x24, |
| R_ARM_ALU_SBREL_27_20_CK = 0x25, |
| R_ARM_TARGET1 = 0x26, |
| R_ARM_SBREL31 = 0x27, |
| R_ARM_V4BX = 0x28, |
| R_ARM_TARGET2 = 0x29, |
| R_ARM_PREL31 = 0x2a, |
| R_ARM_MOVW_ABS_NC = 0x2b, |
| R_ARM_MOVT_ABS = 0x2c, |
| R_ARM_MOVW_PREL_NC = 0x2d, |
| R_ARM_MOVT_PREL = 0x2e, |
| R_ARM_THM_MOVW_ABS_NC = 0x2f, |
| R_ARM_THM_MOVT_ABS = 0x30, |
| R_ARM_THM_MOVW_PREL_NC = 0x31, |
| R_ARM_THM_MOVT_PREL = 0x32, |
| R_ARM_THM_JUMP19 = 0x33, |
| R_ARM_THM_JUMP6 = 0x34, |
| R_ARM_THM_ALU_PREL_11_0 = 0x35, |
| R_ARM_THM_PC12 = 0x36, |
| R_ARM_ABS32_NOI = 0x37, |
| R_ARM_REL32_NOI = 0x38, |
| R_ARM_ALU_PC_G0_NC = 0x39, |
| R_ARM_ALU_PC_G0 = 0x3a, |
| R_ARM_ALU_PC_G1_NC = 0x3b, |
| R_ARM_ALU_PC_G1 = 0x3c, |
| R_ARM_ALU_PC_G2 = 0x3d, |
| R_ARM_LDR_PC_G1 = 0x3e, |
| R_ARM_LDR_PC_G2 = 0x3f, |
| R_ARM_LDRS_PC_G0 = 0x40, |
| R_ARM_LDRS_PC_G1 = 0x41, |
| R_ARM_LDRS_PC_G2 = 0x42, |
| R_ARM_LDC_PC_G0 = 0x43, |
| R_ARM_LDC_PC_G1 = 0x44, |
| R_ARM_LDC_PC_G2 = 0x45, |
| R_ARM_ALU_SB_G0_NC = 0x46, |
| R_ARM_ALU_SB_G0 = 0x47, |
| R_ARM_ALU_SB_G1_NC = 0x48, |
| R_ARM_ALU_SB_G1 = 0x49, |
| R_ARM_ALU_SB_G2 = 0x4a, |
| R_ARM_LDR_SB_G0 = 0x4b, |
| R_ARM_LDR_SB_G1 = 0x4c, |
| R_ARM_LDR_SB_G2 = 0x4d, |
| R_ARM_LDRS_SB_G0 = 0x4e, |
| R_ARM_LDRS_SB_G1 = 0x4f, |
| R_ARM_LDRS_SB_G2 = 0x50, |
| R_ARM_LDC_SB_G0 = 0x51, |
| R_ARM_LDC_SB_G1 = 0x52, |
| R_ARM_LDC_SB_G2 = 0x53, |
| R_ARM_MOVW_BREL_NC = 0x54, |
| R_ARM_MOVT_BREL = 0x55, |
| R_ARM_MOVW_BREL = 0x56, |
| R_ARM_THM_MOVW_BREL_NC = 0x57, |
| R_ARM_THM_MOVT_BREL = 0x58, |
| R_ARM_THM_MOVW_BREL = 0x59, |
| R_ARM_TLS_GOTDESC = 0x5a, |
| R_ARM_TLS_CALL = 0x5b, |
| R_ARM_TLS_DESCSEQ = 0x5c, |
| R_ARM_THM_TLS_CALL = 0x5d, |
| R_ARM_PLT32_ABS = 0x5e, |
| R_ARM_GOT_ABS = 0x5f, |
| R_ARM_GOT_PREL = 0x60, |
| R_ARM_GOT_BREL12 = 0x61, |
| R_ARM_GOTOFF12 = 0x62, |
| R_ARM_GOTRELAX = 0x63, |
| R_ARM_GNU_VTENTRY = 0x64, |
| R_ARM_GNU_VTINHERIT = 0x65, |
| R_ARM_THM_JUMP11 = 0x66, |
| R_ARM_THM_JUMP8 = 0x67, |
| R_ARM_TLS_GD32 = 0x68, |
| R_ARM_TLS_LDM32 = 0x69, |
| R_ARM_TLS_LDO32 = 0x6a, |
| R_ARM_TLS_IE32 = 0x6b, |
| R_ARM_TLS_LE32 = 0x6c, |
| R_ARM_TLS_LDO12 = 0x6d, |
| R_ARM_TLS_LE12 = 0x6e, |
| R_ARM_TLS_IE12GP = 0x6f, |
| R_ARM_PRIVATE_0 = 0x70, |
| R_ARM_PRIVATE_1 = 0x71, |
| R_ARM_PRIVATE_2 = 0x72, |
| R_ARM_PRIVATE_3 = 0x73, |
| R_ARM_PRIVATE_4 = 0x74, |
| R_ARM_PRIVATE_5 = 0x75, |
| R_ARM_PRIVATE_6 = 0x76, |
| R_ARM_PRIVATE_7 = 0x77, |
| R_ARM_PRIVATE_8 = 0x78, |
| R_ARM_PRIVATE_9 = 0x79, |
| R_ARM_PRIVATE_10 = 0x7a, |
| R_ARM_PRIVATE_11 = 0x7b, |
| R_ARM_PRIVATE_12 = 0x7c, |
| R_ARM_PRIVATE_13 = 0x7d, |
| R_ARM_PRIVATE_14 = 0x7e, |
| R_ARM_PRIVATE_15 = 0x7f, |
| R_ARM_ME_TOO = 0x80, |
| R_ARM_THM_TLS_DESCSEQ16 = 0x81, |
| R_ARM_THM_TLS_DESCSEQ32 = 0x82 |
| }; |
| |
| // ELF Relocation types for Mips |
| enum { |
| R_MIPS_NONE = 0, |
| R_MIPS_16 = 1, |
| R_MIPS_32 = 2, |
| R_MIPS_REL32 = 3, |
| R_MIPS_26 = 4, |
| R_MIPS_HI16 = 5, |
| R_MIPS_LO16 = 6, |
| R_MIPS_GPREL16 = 7, |
| R_MIPS_LITERAL = 8, |
| R_MIPS_GOT16 = 9, |
| R_MIPS_PC16 = 10, |
| R_MIPS_CALL16 = 11, |
| R_MIPS_GPREL32 = 12, |
| R_MIPS_SHIFT5 = 16, |
| R_MIPS_SHIFT6 = 17, |
| R_MIPS_64 = 18, |
| R_MIPS_GOT_DISP = 19, |
| R_MIPS_GOT_PAGE = 20, |
| R_MIPS_GOT_OFST = 21, |
| R_MIPS_GOT_HI16 = 22, |
| R_MIPS_GOT_LO16 = 23, |
| R_MIPS_SUB = 24, |
| R_MIPS_INSERT_A = 25, |
| R_MIPS_INSERT_B = 26, |
| R_MIPS_DELETE = 27, |
| R_MIPS_HIGHER = 28, |
| R_MIPS_HIGHEST = 29, |
| R_MIPS_CALL_HI16 = 30, |
| R_MIPS_CALL_LO16 = 31, |
| R_MIPS_SCN_DISP = 32, |
| R_MIPS_REL16 = 33, |
| R_MIPS_ADD_IMMEDIATE = 34, |
| R_MIPS_PJUMP = 35, |
| R_MIPS_RELGOT = 36, |
| R_MIPS_JALR = 37, |
| R_MIPS_TLS_DTPMOD32 = 38, |
| R_MIPS_TLS_DTPREL32 = 39, |
| R_MIPS_TLS_DTPMOD64 = 40, |
| R_MIPS_TLS_DTPREL64 = 41, |
| R_MIPS_TLS_GD = 42, |
| R_MIPS_TLS_LDM = 43, |
| R_MIPS_TLS_DTPREL_HI16 = 44, |
| R_MIPS_TLS_DTPREL_LO16 = 45, |
| R_MIPS_TLS_GOTTPREL = 46, |
| R_MIPS_TLS_TPREL32 = 47, |
| R_MIPS_TLS_TPREL64 = 48, |
| R_MIPS_TLS_TPREL_HI16 = 49, |
| R_MIPS_TLS_TPREL_LO16 = 50, |
| R_MIPS_GLOB_DAT = 51, |
| R_MIPS_COPY = 126, |
| R_MIPS_JUMP_SLOT = 127, |
| R_MIPS_NUM = 218 |
| }; |
| |
| // Section header. |
| struct Elf32_Shdr { |
| Elf32_Word sh_name; // Section name (index into string table) |
| Elf32_Word sh_type; // Section type (SHT_*) |
| Elf32_Word sh_flags; // Section flags (SHF_*) |
| Elf32_Addr sh_addr; // Address where section is to be loaded |
| Elf32_Off sh_offset; // File offset of section data, in bytes |
| Elf32_Word sh_size; // Size of section, in bytes |
| Elf32_Word sh_link; // Section type-specific header table index link |
| Elf32_Word sh_info; // Section type-specific extra information |
| Elf32_Word sh_addralign; // Section address alignment |
| Elf32_Word sh_entsize; // Size of records contained within the section |
| }; |
| |
| // Section header for ELF64 - same fields as ELF32, different types. |
| struct Elf64_Shdr { |
| Elf64_Word sh_name; |
| Elf64_Word sh_type; |
| Elf64_Xword sh_flags; |
| Elf64_Addr sh_addr; |
| Elf64_Off sh_offset; |
| Elf64_Xword sh_size; |
| Elf64_Word sh_link; |
| Elf64_Word sh_info; |
| Elf64_Xword sh_addralign; |
| Elf64_Xword sh_entsize; |
| }; |
| |
| // Special section indices. |
| enum { |
| SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless |
| SHN_LORESERVE = 0xff00, // Lowest reserved index |
| SHN_LOPROC = 0xff00, // Lowest processor-specific index |
| SHN_HIPROC = 0xff1f, // Highest processor-specific index |
| SHN_LOOS = 0xff20, // Lowest operating system-specific index |
| SHN_HIOS = 0xff3f, // Highest operating system-specific index |
| SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation |
| SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables |
| SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE |
| SHN_HIRESERVE = 0xffff // Highest reserved index |
| }; |
| |
| // Section types. |
| enum { |
| SHT_NULL = 0, // No associated section (inactive entry). |
| SHT_PROGBITS = 1, // Program-defined contents. |
| SHT_SYMTAB = 2, // Symbol table. |
| SHT_STRTAB = 3, // String table. |
| SHT_RELA = 4, // Relocation entries; explicit addends. |
| SHT_HASH = 5, // Symbol hash table. |
| SHT_DYNAMIC = 6, // Information for dynamic linking. |
| SHT_NOTE = 7, // Information about the file. |
| SHT_NOBITS = 8, // Data occupies no space in the file. |
| SHT_REL = 9, // Relocation entries; no explicit addends. |
| SHT_SHLIB = 10, // Reserved. |
| SHT_DYNSYM = 11, // Symbol table. |
| SHT_INIT_ARRAY = 14, // Pointers to initialization functions. |
| SHT_FINI_ARRAY = 15, // Pointers to termination functions. |
| SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. |
| SHT_GROUP = 17, // Section group. |
| SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries. |
| SHT_LOOS = 0x60000000, // Lowest operating system-specific type. |
| SHT_HIOS = 0x6fffffff, // Highest operating system-specific type. |
| SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type. |
| // Fixme: All this is duplicated in MCSectionELF. Why?? |
| // Exception Index table |
| SHT_ARM_EXIDX = 0x70000001U, |
| // BPABI DLL dynamic linking pre-emption map |
| SHT_ARM_PREEMPTMAP = 0x70000002U, |
| // Object file compatibility attributes |
| SHT_ARM_ATTRIBUTES = 0x70000003U, |
| SHT_ARM_DEBUGOVERLAY = 0x70000004U, |
| SHT_ARM_OVERLAYSECTION = 0x70000005U, |
| |
| SHT_X86_64_UNWIND = 0x70000001, // Unwind information |
| |
| SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type. |
| SHT_LOUSER = 0x80000000, // Lowest type reserved for applications. |
| SHT_HIUSER = 0xffffffff // Highest type reserved for applications. |
| }; |
| |
| // Section flags. |
| enum { |
| // Section data should be writable during execution. |
| SHF_WRITE = 0x1, |
| |
| // Section occupies memory during program execution. |
| SHF_ALLOC = 0x2, |
| |
| // Section contains executable machine instructions. |
| SHF_EXECINSTR = 0x4, |
| |
| // The data in this section may be merged. |
| SHF_MERGE = 0x10, |
| |
| // The data in this section is null-terminated strings. |
| SHF_STRINGS = 0x20, |
| |
| // A field in this section holds a section header table index. |
| SHF_INFO_LINK = 0x40U, |
| |
| // Adds special ordering requirements for link editors. |
| SHF_LINK_ORDER = 0x80U, |
| |
| // This section requires special OS-specific processing to avoid incorrect |
| // behavior. |
| SHF_OS_NONCONFORMING = 0x100U, |
| |
| // This section is a member of a section group. |
| SHF_GROUP = 0x200U, |
| |
| // This section holds Thread-Local Storage. |
| SHF_TLS = 0x400U, |
| |
| // Start of target-specific flags. |
| |
| /// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped |
| /// together by the linker to form the constant pool and the cp register is |
| /// set to the start of the constant pool by the boot code. |
| XCORE_SHF_CP_SECTION = 0x800U, |
| |
| /// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped |
| /// together by the linker to form the data section and the dp register is |
| /// set to the start of the section by the boot code. |
| XCORE_SHF_DP_SECTION = 0x1000U, |
| |
| SHF_MASKOS = 0x0ff00000, |
| |
| // Bits indicating processor-specific flags. |
| SHF_MASKPROC = 0xf0000000, |
| |
| // If an object file section does not have this flag set, then it may not hold |
| // more than 2GB and can be freely referred to in objects using smaller code |
| // models. Otherwise, only objects using larger code models can refer to them. |
| // For example, a medium code model object can refer to data in a section that |
| // sets this flag besides being able to refer to data in a section that does |
| // not set it; likewise, a small code model object can refer only to code in a |
| // section that does not set this flag. |
| SHF_X86_64_LARGE = 0x10000000 |
| }; |
| |
| // Section Group Flags |
| enum { |
| GRP_COMDAT = 0x1, |
| GRP_MASKOS = 0x0ff00000, |
| GRP_MASKPROC = 0xf0000000 |
| }; |
| |
| // Symbol table entries for ELF32. |
| struct Elf32_Sym { |
| Elf32_Word st_name; // Symbol name (index into string table) |
| Elf32_Addr st_value; // Value or address associated with the symbol |
| Elf32_Word st_size; // Size of the symbol |
| unsigned char st_info; // Symbol's type and binding attributes |
| unsigned char st_other; // Must be zero; reserved |
| Elf32_Half st_shndx; // Which section (header table index) it's defined in |
| |
| // These accessors and mutators correspond to the ELF32_ST_BIND, |
| // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: |
| unsigned char getBinding() const { return st_info >> 4; } |
| unsigned char getType() const { return st_info & 0x0f; } |
| void setBinding(unsigned char b) { setBindingAndType(b, getType()); } |
| void setType(unsigned char t) { setBindingAndType(getBinding(), t); } |
| void setBindingAndType(unsigned char b, unsigned char t) { |
| st_info = (b << 4) + (t & 0x0f); |
| } |
| }; |
| |
| // Symbol table entries for ELF64. |
| struct Elf64_Sym { |
| Elf64_Word st_name; // Symbol name (index into string table) |
| unsigned char st_info; // Symbol's type and binding attributes |
| unsigned char st_other; // Must be zero; reserved |
| Elf64_Half st_shndx; // Which section (header table index) it's defined in |
| Elf64_Addr st_value; // Value or address associated with the symbol |
| Elf64_Xword st_size; // Size of the symbol |
| |
| // These accessors and mutators are identical to those defined for ELF32 |
| // symbol table entries. |
| unsigned char getBinding() const { return st_info >> 4; } |
| unsigned char getType() const { return st_info & 0x0f; } |
| void setBinding(unsigned char b) { setBindingAndType(b, getType()); } |
| void setType(unsigned char t) { setBindingAndType(getBinding(), t); } |
| void setBindingAndType(unsigned char b, unsigned char t) { |
| st_info = (b << 4) + (t & 0x0f); |
| } |
| }; |
| |
| // The size (in bytes) of symbol table entries. |
| enum { |
| SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size |
| SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size. |
| }; |
| |
| // Symbol bindings. |
| enum { |
| STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def |
| STB_GLOBAL = 1, // Global symbol, visible to all object files being combined |
| STB_WEAK = 2, // Weak symbol, like global but lower-precedence |
| STB_LOOS = 10, // Lowest operating system-specific binding type |
| STB_HIOS = 12, // Highest operating system-specific binding type |
| STB_LOPROC = 13, // Lowest processor-specific binding type |
| STB_HIPROC = 15 // Highest processor-specific binding type |
| }; |
| |
| // Symbol types. |
| enum { |
| STT_NOTYPE = 0, // Symbol's type is not specified |
| STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.) |
| STT_FUNC = 2, // Symbol is executable code (function, etc.) |
| STT_SECTION = 3, // Symbol refers to a section |
| STT_FILE = 4, // Local, absolute symbol that refers to a file |
| STT_COMMON = 5, // An uninitialized common block |
| STT_TLS = 6, // Thread local data object |
| STT_LOOS = 7, // Lowest operating system-specific symbol type |
| STT_HIOS = 8, // Highest operating system-specific symbol type |
| STT_LOPROC = 13, // Lowest processor-specific symbol type |
| STT_HIPROC = 15 // Highest processor-specific symbol type |
| }; |
| |
| enum { |
| STV_DEFAULT = 0, // Visibility is specified by binding type |
| STV_INTERNAL = 1, // Defined by processor supplements |
| STV_HIDDEN = 2, // Not visible to other components |
| STV_PROTECTED = 3 // Visible in other components but not preemptable |
| }; |
| |
| // Relocation entry, without explicit addend. |
| struct Elf32_Rel { |
| Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) |
| Elf32_Word r_info; // Symbol table index and type of relocation to apply |
| |
| // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, |
| // and ELF32_R_INFO macros defined in the ELF specification: |
| Elf32_Word getSymbol() const { return (r_info >> 8); } |
| unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } |
| void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } |
| void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } |
| void setSymbolAndType(Elf32_Word s, unsigned char t) { |
| r_info = (s << 8) + t; |
| } |
| }; |
| |
| // Relocation entry with explicit addend. |
| struct Elf32_Rela { |
| Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) |
| Elf32_Word r_info; // Symbol table index and type of relocation to apply |
| Elf32_Sword r_addend; // Compute value for relocatable field by adding this |
| |
| // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, |
| // and ELF32_R_INFO macros defined in the ELF specification: |
| Elf32_Word getSymbol() const { return (r_info >> 8); } |
| unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } |
| void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } |
| void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } |
| void setSymbolAndType(Elf32_Word s, unsigned char t) { |
| r_info = (s << 8) + t; |
| } |
| }; |
| |
| // Relocation entry, without explicit addend. |
| struct Elf64_Rel { |
| Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). |
| Elf64_Xword r_info; // Symbol table index and type of relocation to apply. |
| |
| // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, |
| // and ELF64_R_INFO macros defined in the ELF specification: |
| Elf64_Xword getSymbol() const { return (r_info >> 32); } |
| unsigned char getType() const { |
| return (unsigned char) (r_info & 0xffffffffL); |
| } |
| void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } |
| void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } |
| void setSymbolAndType(Elf64_Xword s, unsigned char t) { |
| r_info = (s << 32) + (t&0xffffffffL); |
| } |
| }; |
| |
| // Relocation entry with explicit addend. |
| struct Elf64_Rela { |
| Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). |
| Elf64_Xword r_info; // Symbol table index and type of relocation to apply. |
| Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. |
| |
| // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, |
| // and ELF64_R_INFO macros defined in the ELF specification: |
| Elf64_Xword getSymbol() const { return (r_info >> 32); } |
| unsigned char getType() const { |
| return (unsigned char) (r_info & 0xffffffffL); |
| } |
| void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); } |
| void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } |
| void setSymbolAndType(Elf64_Xword s, unsigned char t) { |
| r_info = (s << 32) + (t&0xffffffffL); |
| } |
| }; |
| |
| // Program header for ELF32. |
| struct Elf32_Phdr { |
| Elf32_Word p_type; // Type of segment |
| Elf32_Off p_offset; // File offset where segment is located, in bytes |
| Elf32_Addr p_vaddr; // Virtual address of beginning of segment |
| Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific) |
| Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) |
| Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) |
| Elf32_Word p_flags; // Segment flags |
| Elf32_Word p_align; // Segment alignment constraint |
| }; |
| |
| // Program header for ELF64. |
| struct Elf64_Phdr { |
| Elf64_Word p_type; // Type of segment |
| Elf64_Word p_flags; // Segment flags |
| Elf64_Off p_offset; // File offset where segment is located, in bytes |
| Elf64_Addr p_vaddr; // Virtual address of beginning of segment |
| Elf64_Addr p_paddr; // Physical address of beginning of segment (OS-specific) |
| Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) |
| Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) |
| Elf64_Xword p_align; // Segment alignment constraint |
| }; |
| |
| // Segment types. |
| enum { |
| PT_NULL = 0, // Unused segment. |
| PT_LOAD = 1, // Loadable segment. |
| PT_DYNAMIC = 2, // Dynamic linking information. |
| PT_INTERP = 3, // Interpreter pathname. |
| PT_NOTE = 4, // Auxiliary information. |
| PT_SHLIB = 5, // Reserved. |
| PT_PHDR = 6, // The program header table itself. |
| PT_TLS = 7, // The thread-local storage template. |
| PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type. |
| |
| // x86-64 program header types. |
| // These all contain stack unwind tables. |
| PT_GNU_EH_FRAME = 0x6474e550, |
| PT_SUNW_EH_FRAME = 0x6474e550, |
| PT_SUNW_UNWIND = 0x6464e550, |
| |
| PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type. |
| PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type. |
| PT_HIPROC = 0x7fffffff // Highest processor-specific program hdr entry type. |
| }; |
| |
| // Segment flag bits. |
| enum { |
| PF_X = 1, // Execute |
| PF_W = 2, // Write |
| PF_R = 4, // Read |
| PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics. |
| PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics. |
| }; |
| |
| // Dynamic table entry for ELF32. |
| struct Elf32_Dyn |
| { |
| Elf32_Sword d_tag; // Type of dynamic table entry. |
| union |
| { |
| Elf32_Word d_val; // Integer value of entry. |
| Elf32_Addr d_ptr; // Pointer value of entry. |
| } d_un; |
| }; |
| |
| // Dynamic table entry for ELF64. |
| struct Elf64_Dyn |
| { |
| Elf64_Sxword d_tag; // Type of dynamic table entry. |
| union |
| { |
| Elf64_Xword d_val; // Integer value of entry. |
| Elf64_Addr d_ptr; // Pointer value of entry. |
| } d_un; |
| }; |
| |
| // Dynamic table entry tags. |
| enum { |
| DT_NULL = 0, // Marks end of dynamic array. |
| DT_NEEDED = 1, // String table offset of needed library. |
| DT_PLTRELSZ = 2, // Size of relocation entries in PLT. |
| DT_PLTGOT = 3, // Address associated with linkage table. |
| DT_HASH = 4, // Address of symbolic hash table. |
| DT_STRTAB = 5, // Address of dynamic string table. |
| DT_SYMTAB = 6, // Address of dynamic symbol table. |
| DT_RELA = 7, // Address of relocation table (Rela entries). |
| DT_RELASZ = 8, // Size of Rela relocation table. |
| DT_RELAENT = 9, // Size of a Rela relocation entry. |
| DT_STRSZ = 10, // Total size of the string table. |
| DT_SYMENT = 11, // Size of a symbol table entry. |
| DT_INIT = 12, // Address of initialization function. |
| DT_FINI = 13, // Address of termination function. |
| DT_SONAME = 14, // String table offset of a shared objects name. |
| DT_RPATH = 15, // String table offset of library search path. |
| DT_SYMBOLIC = 16, // Changes symbol resolution algorithm. |
| DT_REL = 17, // Address of relocation table (Rel entries). |
| DT_RELSZ = 18, // Size of Rel relocation table. |
| DT_RELENT = 19, // Size of a Rel relocation entry. |
| DT_PLTREL = 20, // Type of relocation entry used for linking. |
| DT_DEBUG = 21, // Reserved for debugger. |
| DT_TEXTREL = 22, // Relocations exist for non-writable segments. |
| DT_JMPREL = 23, // Address of relocations associated with PLT. |
| DT_BIND_NOW = 24, // Process all relocations before execution. |
| DT_INIT_ARRAY = 25, // Pointer to array of initialization functions. |
| DT_FINI_ARRAY = 26, // Pointer to array of termination functions. |
| DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY. |
| DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY. |
| DT_RUNPATH = 29, // String table offset of lib search path. |
| DT_FLAGS = 30, // Flags. |
| DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules |
| // for the interpretation of the d_un union. |
| |
| DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions. |
| DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array. |
| |
| DT_LOOS = 0x60000000, // Start of environment specific tags. |
| DT_HIOS = 0x6FFFFFFF, // End of environment specific tags. |
| DT_LOPROC = 0x70000000, // Start of processor specific tags. |
| DT_HIPROC = 0x7FFFFFFF // End of processor specific tags. |
| }; |
| |
| // DT_FLAGS values. |
| enum { |
| DF_ORIGIN = 0x01, // The object may reference $ORIGIN. |
| DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe. |
| DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment. |
| DF_BIND_NOW = 0x08, // Process all relocations on load. |
| DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically. |
| }; |
| |
| } // end namespace ELF |
| |
| } // end namespace llvm |
| |
| #endif |