| //===- MIParser.cpp - Machine instructions parser implementation ----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the parsing of machine instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MIRParser/MIParser.h" |
| #include "MILexer.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/AsmParser/Parser.h" |
| #include "llvm/AsmParser/SlotMapping.h" |
| #include "llvm/CodeGen/MIRFormatter.h" |
| #include "llvm/CodeGen/MIRPrinter.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterBank.h" |
| #include "llvm/CodeGen/RegisterBankInfo.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDwarf.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LowLevelTypeImpl.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/SMLoc.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cassert> |
| #include <cctype> |
| #include <cstddef> |
| #include <cstdint> |
| #include <limits> |
| #include <string> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| void PerTargetMIParsingState::setTarget( |
| const TargetSubtargetInfo &NewSubtarget) { |
| |
| // If the subtarget changed, over conservatively assume everything is invalid. |
| if (&Subtarget == &NewSubtarget) |
| return; |
| |
| Names2InstrOpCodes.clear(); |
| Names2Regs.clear(); |
| Names2RegMasks.clear(); |
| Names2SubRegIndices.clear(); |
| Names2TargetIndices.clear(); |
| Names2DirectTargetFlags.clear(); |
| Names2BitmaskTargetFlags.clear(); |
| Names2MMOTargetFlags.clear(); |
| |
| initNames2RegClasses(); |
| initNames2RegBanks(); |
| } |
| |
| void PerTargetMIParsingState::initNames2Regs() { |
| if (!Names2Regs.empty()) |
| return; |
| |
| // The '%noreg' register is the register 0. |
| Names2Regs.insert(std::make_pair("noreg", 0)); |
| const auto *TRI = Subtarget.getRegisterInfo(); |
| assert(TRI && "Expected target register info"); |
| |
| for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { |
| bool WasInserted = |
| Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) |
| .second; |
| (void)WasInserted; |
| assert(WasInserted && "Expected registers to be unique case-insensitively"); |
| } |
| } |
| |
| bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, |
| Register &Reg) { |
| initNames2Regs(); |
| auto RegInfo = Names2Regs.find(RegName); |
| if (RegInfo == Names2Regs.end()) |
| return true; |
| Reg = RegInfo->getValue(); |
| return false; |
| } |
| |
| void PerTargetMIParsingState::initNames2InstrOpCodes() { |
| if (!Names2InstrOpCodes.empty()) |
| return; |
| const auto *TII = Subtarget.getInstrInfo(); |
| assert(TII && "Expected target instruction info"); |
| for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) |
| Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); |
| } |
| |
| bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, |
| unsigned &OpCode) { |
| initNames2InstrOpCodes(); |
| auto InstrInfo = Names2InstrOpCodes.find(InstrName); |
| if (InstrInfo == Names2InstrOpCodes.end()) |
| return true; |
| OpCode = InstrInfo->getValue(); |
| return false; |
| } |
| |
| void PerTargetMIParsingState::initNames2RegMasks() { |
| if (!Names2RegMasks.empty()) |
| return; |
| const auto *TRI = Subtarget.getRegisterInfo(); |
| assert(TRI && "Expected target register info"); |
| ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); |
| ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); |
| assert(RegMasks.size() == RegMaskNames.size()); |
| for (size_t I = 0, E = RegMasks.size(); I < E; ++I) |
| Names2RegMasks.insert( |
| std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); |
| } |
| |
| const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { |
| initNames2RegMasks(); |
| auto RegMaskInfo = Names2RegMasks.find(Identifier); |
| if (RegMaskInfo == Names2RegMasks.end()) |
| return nullptr; |
| return RegMaskInfo->getValue(); |
| } |
| |
| void PerTargetMIParsingState::initNames2SubRegIndices() { |
| if (!Names2SubRegIndices.empty()) |
| return; |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) |
| Names2SubRegIndices.insert( |
| std::make_pair(TRI->getSubRegIndexName(I), I)); |
| } |
| |
| unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { |
| initNames2SubRegIndices(); |
| auto SubRegInfo = Names2SubRegIndices.find(Name); |
| if (SubRegInfo == Names2SubRegIndices.end()) |
| return 0; |
| return SubRegInfo->getValue(); |
| } |
| |
| void PerTargetMIParsingState::initNames2TargetIndices() { |
| if (!Names2TargetIndices.empty()) |
| return; |
| const auto *TII = Subtarget.getInstrInfo(); |
| assert(TII && "Expected target instruction info"); |
| auto Indices = TII->getSerializableTargetIndices(); |
| for (const auto &I : Indices) |
| Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); |
| } |
| |
| bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { |
| initNames2TargetIndices(); |
| auto IndexInfo = Names2TargetIndices.find(Name); |
| if (IndexInfo == Names2TargetIndices.end()) |
| return true; |
| Index = IndexInfo->second; |
| return false; |
| } |
| |
| void PerTargetMIParsingState::initNames2DirectTargetFlags() { |
| if (!Names2DirectTargetFlags.empty()) |
| return; |
| |
| const auto *TII = Subtarget.getInstrInfo(); |
| assert(TII && "Expected target instruction info"); |
| auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); |
| for (const auto &I : Flags) |
| Names2DirectTargetFlags.insert( |
| std::make_pair(StringRef(I.second), I.first)); |
| } |
| |
| bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, |
| unsigned &Flag) { |
| initNames2DirectTargetFlags(); |
| auto FlagInfo = Names2DirectTargetFlags.find(Name); |
| if (FlagInfo == Names2DirectTargetFlags.end()) |
| return true; |
| Flag = FlagInfo->second; |
| return false; |
| } |
| |
| void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { |
| if (!Names2BitmaskTargetFlags.empty()) |
| return; |
| |
| const auto *TII = Subtarget.getInstrInfo(); |
| assert(TII && "Expected target instruction info"); |
| auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); |
| for (const auto &I : Flags) |
| Names2BitmaskTargetFlags.insert( |
| std::make_pair(StringRef(I.second), I.first)); |
| } |
| |
| bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, |
| unsigned &Flag) { |
| initNames2BitmaskTargetFlags(); |
| auto FlagInfo = Names2BitmaskTargetFlags.find(Name); |
| if (FlagInfo == Names2BitmaskTargetFlags.end()) |
| return true; |
| Flag = FlagInfo->second; |
| return false; |
| } |
| |
| void PerTargetMIParsingState::initNames2MMOTargetFlags() { |
| if (!Names2MMOTargetFlags.empty()) |
| return; |
| |
| const auto *TII = Subtarget.getInstrInfo(); |
| assert(TII && "Expected target instruction info"); |
| auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); |
| for (const auto &I : Flags) |
| Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); |
| } |
| |
| bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, |
| MachineMemOperand::Flags &Flag) { |
| initNames2MMOTargetFlags(); |
| auto FlagInfo = Names2MMOTargetFlags.find(Name); |
| if (FlagInfo == Names2MMOTargetFlags.end()) |
| return true; |
| Flag = FlagInfo->second; |
| return false; |
| } |
| |
| void PerTargetMIParsingState::initNames2RegClasses() { |
| if (!Names2RegClasses.empty()) |
| return; |
| |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { |
| const auto *RC = TRI->getRegClass(I); |
| Names2RegClasses.insert( |
| std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); |
| } |
| } |
| |
| void PerTargetMIParsingState::initNames2RegBanks() { |
| if (!Names2RegBanks.empty()) |
| return; |
| |
| const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); |
| // If the target does not support GlobalISel, we may not have a |
| // register bank info. |
| if (!RBI) |
| return; |
| |
| for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { |
| const auto &RegBank = RBI->getRegBank(I); |
| Names2RegBanks.insert( |
| std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); |
| } |
| } |
| |
| const TargetRegisterClass * |
| PerTargetMIParsingState::getRegClass(StringRef Name) { |
| auto RegClassInfo = Names2RegClasses.find(Name); |
| if (RegClassInfo == Names2RegClasses.end()) |
| return nullptr; |
| return RegClassInfo->getValue(); |
| } |
| |
| const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { |
| auto RegBankInfo = Names2RegBanks.find(Name); |
| if (RegBankInfo == Names2RegBanks.end()) |
| return nullptr; |
| return RegBankInfo->getValue(); |
| } |
| |
| PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, |
| SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) |
| : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { |
| } |
| |
| VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { |
| auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); |
| if (I.second) { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| VRegInfo *Info = new (Allocator) VRegInfo; |
| Info->VReg = MRI.createIncompleteVirtualRegister(); |
| I.first->second = Info; |
| } |
| return *I.first->second; |
| } |
| |
| VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { |
| assert(RegName != "" && "Expected named reg."); |
| |
| auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); |
| if (I.second) { |
| VRegInfo *Info = new (Allocator) VRegInfo; |
| Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); |
| I.first->second = Info; |
| } |
| return *I.first->second; |
| } |
| |
| static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, |
| DenseMap<unsigned, const Value *> &Slots2Values) { |
| int Slot = MST.getLocalSlot(V); |
| if (Slot == -1) |
| return; |
| Slots2Values.insert(std::make_pair(unsigned(Slot), V)); |
| } |
| |
| /// Creates the mapping from slot numbers to function's unnamed IR values. |
| static void initSlots2Values(const Function &F, |
| DenseMap<unsigned, const Value *> &Slots2Values) { |
| ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); |
| MST.incorporateFunction(F); |
| for (const auto &Arg : F.args()) |
| mapValueToSlot(&Arg, MST, Slots2Values); |
| for (const auto &BB : F) { |
| mapValueToSlot(&BB, MST, Slots2Values); |
| for (const auto &I : BB) |
| mapValueToSlot(&I, MST, Slots2Values); |
| } |
| } |
| |
| const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { |
| if (Slots2Values.empty()) |
| initSlots2Values(MF.getFunction(), Slots2Values); |
| return Slots2Values.lookup(Slot); |
| } |
| |
| namespace { |
| |
| /// A wrapper struct around the 'MachineOperand' struct that includes a source |
| /// range and other attributes. |
| struct ParsedMachineOperand { |
| MachineOperand Operand; |
| StringRef::iterator Begin; |
| StringRef::iterator End; |
| std::optional<unsigned> TiedDefIdx; |
| |
| ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, |
| StringRef::iterator End, |
| std::optional<unsigned> &TiedDefIdx) |
| : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { |
| if (TiedDefIdx) |
| assert(Operand.isReg() && Operand.isUse() && |
| "Only used register operands can be tied"); |
| } |
| }; |
| |
| class MIParser { |
| MachineFunction &MF; |
| SMDiagnostic &Error; |
| StringRef Source, CurrentSource; |
| SMRange SourceRange; |
| MIToken Token; |
| PerFunctionMIParsingState &PFS; |
| /// Maps from slot numbers to function's unnamed basic blocks. |
| DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; |
| |
| public: |
| MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, |
| StringRef Source); |
| MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, |
| StringRef Source, SMRange SourceRange); |
| |
| /// \p SkipChar gives the number of characters to skip before looking |
| /// for the next token. |
| void lex(unsigned SkipChar = 0); |
| |
| /// Report an error at the current location with the given message. |
| /// |
| /// This function always return true. |
| bool error(const Twine &Msg); |
| |
| /// Report an error at the given location with the given message. |
| /// |
| /// This function always return true. |
| bool error(StringRef::iterator Loc, const Twine &Msg); |
| |
| bool |
| parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); |
| bool parseBasicBlocks(); |
| bool parse(MachineInstr *&MI); |
| bool parseStandaloneMBB(MachineBasicBlock *&MBB); |
| bool parseStandaloneNamedRegister(Register &Reg); |
| bool parseStandaloneVirtualRegister(VRegInfo *&Info); |
| bool parseStandaloneRegister(Register &Reg); |
| bool parseStandaloneStackObject(int &FI); |
| bool parseStandaloneMDNode(MDNode *&Node); |
| bool parseMachineMetadata(); |
| bool parseMDTuple(MDNode *&MD, bool IsDistinct); |
| bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts); |
| bool parseMetadata(Metadata *&MD); |
| |
| bool |
| parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); |
| bool parseBasicBlock(MachineBasicBlock &MBB, |
| MachineBasicBlock *&AddFalthroughFrom); |
| bool parseBasicBlockLiveins(MachineBasicBlock &MBB); |
| bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); |
| |
| bool parseNamedRegister(Register &Reg); |
| bool parseVirtualRegister(VRegInfo *&Info); |
| bool parseNamedVirtualRegister(VRegInfo *&Info); |
| bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); |
| bool parseRegisterFlag(unsigned &Flags); |
| bool parseRegisterClassOrBank(VRegInfo &RegInfo); |
| bool parseSubRegisterIndex(unsigned &SubReg); |
| bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); |
| bool parseRegisterOperand(MachineOperand &Dest, |
| std::optional<unsigned> &TiedDefIdx, |
| bool IsDef = false); |
| bool parseImmediateOperand(MachineOperand &Dest); |
| bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, |
| const Constant *&C); |
| bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); |
| bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); |
| bool parseTypedImmediateOperand(MachineOperand &Dest); |
| bool parseFPImmediateOperand(MachineOperand &Dest); |
| bool parseMBBReference(MachineBasicBlock *&MBB); |
| bool parseMBBOperand(MachineOperand &Dest); |
| bool parseStackFrameIndex(int &FI); |
| bool parseStackObjectOperand(MachineOperand &Dest); |
| bool parseFixedStackFrameIndex(int &FI); |
| bool parseFixedStackObjectOperand(MachineOperand &Dest); |
| bool parseGlobalValue(GlobalValue *&GV); |
| bool parseGlobalAddressOperand(MachineOperand &Dest); |
| bool parseConstantPoolIndexOperand(MachineOperand &Dest); |
| bool parseSubRegisterIndexOperand(MachineOperand &Dest); |
| bool parseJumpTableIndexOperand(MachineOperand &Dest); |
| bool parseExternalSymbolOperand(MachineOperand &Dest); |
| bool parseMCSymbolOperand(MachineOperand &Dest); |
| bool parseMDNode(MDNode *&Node); |
| bool parseDIExpression(MDNode *&Expr); |
| bool parseDILocation(MDNode *&Expr); |
| bool parseMetadataOperand(MachineOperand &Dest); |
| bool parseCFIOffset(int &Offset); |
| bool parseCFIRegister(Register &Reg); |
| bool parseCFIAddressSpace(unsigned &AddressSpace); |
| bool parseCFIEscapeValues(std::string& Values); |
| bool parseCFIOperand(MachineOperand &Dest); |
| bool parseIRBlock(BasicBlock *&BB, const Function &F); |
| bool parseBlockAddressOperand(MachineOperand &Dest); |
| bool parseIntrinsicOperand(MachineOperand &Dest); |
| bool parsePredicateOperand(MachineOperand &Dest); |
| bool parseShuffleMaskOperand(MachineOperand &Dest); |
| bool parseTargetIndexOperand(MachineOperand &Dest); |
| bool parseDbgInstrRefOperand(MachineOperand &Dest); |
| bool parseCustomRegisterMaskOperand(MachineOperand &Dest); |
| bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); |
| bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, |
| MachineOperand &Dest, |
| std::optional<unsigned> &TiedDefIdx); |
| bool parseMachineOperandAndTargetFlags(const unsigned OpCode, |
| const unsigned OpIdx, |
| MachineOperand &Dest, |
| std::optional<unsigned> &TiedDefIdx); |
| bool parseOffset(int64_t &Offset); |
| bool parseIRBlockAddressTaken(BasicBlock *&BB); |
| bool parseAlignment(uint64_t &Alignment); |
| bool parseAddrspace(unsigned &Addrspace); |
| bool parseSectionID(std::optional<MBBSectionID> &SID); |
| bool parseBBID(std::optional<unsigned> &BBID); |
| bool parseOperandsOffset(MachineOperand &Op); |
| bool parseIRValue(const Value *&V); |
| bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); |
| bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); |
| bool parseMachinePointerInfo(MachinePointerInfo &Dest); |
| bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); |
| bool parseOptionalAtomicOrdering(AtomicOrdering &Order); |
| bool parseMachineMemoryOperand(MachineMemOperand *&Dest); |
| bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); |
| bool parseHeapAllocMarker(MDNode *&Node); |
| bool parsePCSections(MDNode *&Node); |
| |
| bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, |
| MachineOperand &Dest, const MIRFormatter &MF); |
| |
| private: |
| /// Convert the integer literal in the current token into an unsigned integer. |
| /// |
| /// Return true if an error occurred. |
| bool getUnsigned(unsigned &Result); |
| |
| /// Convert the integer literal in the current token into an uint64. |
| /// |
| /// Return true if an error occurred. |
| bool getUint64(uint64_t &Result); |
| |
| /// Convert the hexadecimal literal in the current token into an unsigned |
| /// APInt with a minimum bitwidth required to represent the value. |
| /// |
| /// Return true if the literal does not represent an integer value. |
| bool getHexUint(APInt &Result); |
| |
| /// If the current token is of the given kind, consume it and return false. |
| /// Otherwise report an error and return true. |
| bool expectAndConsume(MIToken::TokenKind TokenKind); |
| |
| /// If the current token is of the given kind, consume it and return true. |
| /// Otherwise return false. |
| bool consumeIfPresent(MIToken::TokenKind TokenKind); |
| |
| bool parseInstruction(unsigned &OpCode, unsigned &Flags); |
| |
| bool assignRegisterTies(MachineInstr &MI, |
| ArrayRef<ParsedMachineOperand> Operands); |
| |
| bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, |
| const MCInstrDesc &MCID); |
| |
| const BasicBlock *getIRBlock(unsigned Slot); |
| const BasicBlock *getIRBlock(unsigned Slot, const Function &F); |
| |
| /// Get or create an MCSymbol for a given name. |
| MCSymbol *getOrCreateMCSymbol(StringRef Name); |
| |
| /// parseStringConstant |
| /// ::= StringConstant |
| bool parseStringConstant(std::string &Result); |
| |
| /// Map the location in the MI string to the corresponding location specified |
| /// in `SourceRange`. |
| SMLoc mapSMLoc(StringRef::iterator Loc); |
| }; |
| |
| } // end anonymous namespace |
| |
| MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, |
| StringRef Source) |
| : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) |
| {} |
| |
| MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, |
| StringRef Source, SMRange SourceRange) |
| : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), |
| SourceRange(SourceRange), PFS(PFS) {} |
| |
| void MIParser::lex(unsigned SkipChar) { |
| CurrentSource = lexMIToken( |
| CurrentSource.slice(SkipChar, StringRef::npos), Token, |
| [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); |
| } |
| |
| bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } |
| |
| bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { |
| const SourceMgr &SM = *PFS.SM; |
| assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); |
| const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); |
| if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { |
| // Create an ordinary diagnostic when the source manager's buffer is the |
| // source string. |
| Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); |
| return true; |
| } |
| // Create a diagnostic for a YAML string literal. |
| Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, |
| Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), |
| Source, std::nullopt, std::nullopt); |
| return true; |
| } |
| |
| SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) { |
| assert(SourceRange.isValid() && "Invalid source range"); |
| assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); |
| return SMLoc::getFromPointer(SourceRange.Start.getPointer() + |
| (Loc - Source.data())); |
| } |
| |
| typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> |
| ErrorCallbackType; |
| |
| static const char *toString(MIToken::TokenKind TokenKind) { |
| switch (TokenKind) { |
| case MIToken::comma: |
| return "','"; |
| case MIToken::equal: |
| return "'='"; |
| case MIToken::colon: |
| return "':'"; |
| case MIToken::lparen: |
| return "'('"; |
| case MIToken::rparen: |
| return "')'"; |
| default: |
| return "<unknown token>"; |
| } |
| } |
| |
| bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { |
| if (Token.isNot(TokenKind)) |
| return error(Twine("expected ") + toString(TokenKind)); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { |
| if (Token.isNot(TokenKind)) |
| return false; |
| lex(); |
| return true; |
| } |
| |
| // Parse Machine Basic Block Section ID. |
| bool MIParser::parseSectionID(std::optional<MBBSectionID> &SID) { |
| assert(Token.is(MIToken::kw_bbsections)); |
| lex(); |
| if (Token.is(MIToken::IntegerLiteral)) { |
| unsigned Value = 0; |
| if (getUnsigned(Value)) |
| return error("Unknown Section ID"); |
| SID = MBBSectionID{Value}; |
| } else { |
| const StringRef &S = Token.stringValue(); |
| if (S == "Exception") |
| SID = MBBSectionID::ExceptionSectionID; |
| else if (S == "Cold") |
| SID = MBBSectionID::ColdSectionID; |
| else |
| return error("Unknown Section ID"); |
| } |
| lex(); |
| return false; |
| } |
| |
| // Parse Machine Basic Block ID. |
| bool MIParser::parseBBID(std::optional<unsigned> &BBID) { |
| assert(Token.is(MIToken::kw_bb_id)); |
| lex(); |
| unsigned Value = 0; |
| if (getUnsigned(Value)) |
| return error("Unknown BB ID"); |
| BBID = Value; |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseBasicBlockDefinition( |
| DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { |
| assert(Token.is(MIToken::MachineBasicBlockLabel)); |
| unsigned ID = 0; |
| if (getUnsigned(ID)) |
| return true; |
| auto Loc = Token.location(); |
| auto Name = Token.stringValue(); |
| lex(); |
| bool MachineBlockAddressTaken = false; |
| BasicBlock *AddressTakenIRBlock = nullptr; |
| bool IsLandingPad = false; |
| bool IsInlineAsmBrIndirectTarget = false; |
| bool IsEHFuncletEntry = false; |
| std::optional<MBBSectionID> SectionID; |
| uint64_t Alignment = 0; |
| std::optional<unsigned> BBID; |
| BasicBlock *BB = nullptr; |
| if (consumeIfPresent(MIToken::lparen)) { |
| do { |
| // TODO: Report an error when multiple same attributes are specified. |
| switch (Token.kind()) { |
| case MIToken::kw_machine_block_address_taken: |
| MachineBlockAddressTaken = true; |
| lex(); |
| break; |
| case MIToken::kw_ir_block_address_taken: |
| if (parseIRBlockAddressTaken(AddressTakenIRBlock)) |
| return true; |
| break; |
| case MIToken::kw_landing_pad: |
| IsLandingPad = true; |
| lex(); |
| break; |
| case MIToken::kw_inlineasm_br_indirect_target: |
| IsInlineAsmBrIndirectTarget = true; |
| lex(); |
| break; |
| case MIToken::kw_ehfunclet_entry: |
| IsEHFuncletEntry = true; |
| lex(); |
| break; |
| case MIToken::kw_align: |
| if (parseAlignment(Alignment)) |
| return true; |
| break; |
| case MIToken::IRBlock: |
| case MIToken::NamedIRBlock: |
| // TODO: Report an error when both name and ir block are specified. |
| if (parseIRBlock(BB, MF.getFunction())) |
| return true; |
| lex(); |
| break; |
| case MIToken::kw_bbsections: |
| if (parseSectionID(SectionID)) |
| return true; |
| break; |
| case MIToken::kw_bb_id: |
| if (parseBBID(BBID)) |
| return true; |
| break; |
| default: |
| break; |
| } |
| } while (consumeIfPresent(MIToken::comma)); |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| } |
| if (expectAndConsume(MIToken::colon)) |
| return true; |
| |
| if (!Name.empty()) { |
| BB = dyn_cast_or_null<BasicBlock>( |
| MF.getFunction().getValueSymbolTable()->lookup(Name)); |
| if (!BB) |
| return error(Loc, Twine("basic block '") + Name + |
| "' is not defined in the function '" + |
| MF.getName() + "'"); |
| } |
| auto *MBB = MF.CreateMachineBasicBlock(BB); |
| MF.insert(MF.end(), MBB); |
| bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; |
| if (!WasInserted) |
| return error(Loc, Twine("redefinition of machine basic block with id #") + |
| Twine(ID)); |
| if (Alignment) |
| MBB->setAlignment(Align(Alignment)); |
| if (MachineBlockAddressTaken) |
| MBB->setMachineBlockAddressTaken(); |
| if (AddressTakenIRBlock) |
| MBB->setAddressTakenIRBlock(AddressTakenIRBlock); |
| MBB->setIsEHPad(IsLandingPad); |
| MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget); |
| MBB->setIsEHFuncletEntry(IsEHFuncletEntry); |
| if (SectionID) { |
| MBB->setSectionID(*SectionID); |
| MF.setBBSectionsType(BasicBlockSection::List); |
| } |
| if (BBID.has_value()) { |
| // BBSectionsType is set to `List` if any basic blocks has `SectionID`. |
| // Here, we set it to `Labels` if it hasn't been set above. |
| if (!MF.hasBBSections()) |
| MF.setBBSectionsType(BasicBlockSection::Labels); |
| MBB->setBBID(BBID.value()); |
| } |
| return false; |
| } |
| |
| bool MIParser::parseBasicBlockDefinitions( |
| DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { |
| lex(); |
| // Skip until the first machine basic block. |
| while (Token.is(MIToken::Newline)) |
| lex(); |
| if (Token.isErrorOrEOF()) |
| return Token.isError(); |
| if (Token.isNot(MIToken::MachineBasicBlockLabel)) |
| return error("expected a basic block definition before instructions"); |
| unsigned BraceDepth = 0; |
| do { |
| if (parseBasicBlockDefinition(MBBSlots)) |
| return true; |
| bool IsAfterNewline = false; |
| // Skip until the next machine basic block. |
| while (true) { |
| if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || |
| Token.isErrorOrEOF()) |
| break; |
| else if (Token.is(MIToken::MachineBasicBlockLabel)) |
| return error("basic block definition should be located at the start of " |
| "the line"); |
| else if (consumeIfPresent(MIToken::Newline)) { |
| IsAfterNewline = true; |
| continue; |
| } |
| IsAfterNewline = false; |
| if (Token.is(MIToken::lbrace)) |
| ++BraceDepth; |
| if (Token.is(MIToken::rbrace)) { |
| if (!BraceDepth) |
| return error("extraneous closing brace ('}')"); |
| --BraceDepth; |
| } |
| lex(); |
| } |
| // Verify that we closed all of the '{' at the end of a file or a block. |
| if (!Token.isError() && BraceDepth) |
| return error("expected '}'"); // FIXME: Report a note that shows '{'. |
| } while (!Token.isErrorOrEOF()); |
| return Token.isError(); |
| } |
| |
| bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { |
| assert(Token.is(MIToken::kw_liveins)); |
| lex(); |
| if (expectAndConsume(MIToken::colon)) |
| return true; |
| if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. |
| return false; |
| do { |
| if (Token.isNot(MIToken::NamedRegister)) |
| return error("expected a named register"); |
| Register Reg; |
| if (parseNamedRegister(Reg)) |
| return true; |
| lex(); |
| LaneBitmask Mask = LaneBitmask::getAll(); |
| if (consumeIfPresent(MIToken::colon)) { |
| // Parse lane mask. |
| if (Token.isNot(MIToken::IntegerLiteral) && |
| Token.isNot(MIToken::HexLiteral)) |
| return error("expected a lane mask"); |
| static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), |
| "Use correct get-function for lane mask"); |
| LaneBitmask::Type V; |
| if (getUint64(V)) |
| return error("invalid lane mask value"); |
| Mask = LaneBitmask(V); |
| lex(); |
| } |
| MBB.addLiveIn(Reg, Mask); |
| } while (consumeIfPresent(MIToken::comma)); |
| return false; |
| } |
| |
| bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { |
| assert(Token.is(MIToken::kw_successors)); |
| lex(); |
| if (expectAndConsume(MIToken::colon)) |
| return true; |
| if (Token.isNewlineOrEOF()) // Allow an empty list of successors. |
| return false; |
| do { |
| if (Token.isNot(MIToken::MachineBasicBlock)) |
| return error("expected a machine basic block reference"); |
| MachineBasicBlock *SuccMBB = nullptr; |
| if (parseMBBReference(SuccMBB)) |
| return true; |
| lex(); |
| unsigned Weight = 0; |
| if (consumeIfPresent(MIToken::lparen)) { |
| if (Token.isNot(MIToken::IntegerLiteral) && |
| Token.isNot(MIToken::HexLiteral)) |
| return error("expected an integer literal after '('"); |
| if (getUnsigned(Weight)) |
| return true; |
| lex(); |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| } |
| MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); |
| } while (consumeIfPresent(MIToken::comma)); |
| MBB.normalizeSuccProbs(); |
| return false; |
| } |
| |
| bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, |
| MachineBasicBlock *&AddFalthroughFrom) { |
| // Skip the definition. |
| assert(Token.is(MIToken::MachineBasicBlockLabel)); |
| lex(); |
| if (consumeIfPresent(MIToken::lparen)) { |
| while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) |
| lex(); |
| consumeIfPresent(MIToken::rparen); |
| } |
| consumeIfPresent(MIToken::colon); |
| |
| // Parse the liveins and successors. |
| // N.B: Multiple lists of successors and liveins are allowed and they're |
| // merged into one. |
| // Example: |
| // liveins: $edi |
| // liveins: $esi |
| // |
| // is equivalent to |
| // liveins: $edi, $esi |
| bool ExplicitSuccessors = false; |
| while (true) { |
| if (Token.is(MIToken::kw_successors)) { |
| if (parseBasicBlockSuccessors(MBB)) |
| return true; |
| ExplicitSuccessors = true; |
| } else if (Token.is(MIToken::kw_liveins)) { |
| if (parseBasicBlockLiveins(MBB)) |
| return true; |
| } else if (consumeIfPresent(MIToken::Newline)) { |
| continue; |
| } else |
| break; |
| if (!Token.isNewlineOrEOF()) |
| return error("expected line break at the end of a list"); |
| lex(); |
| } |
| |
| // Parse the instructions. |
| bool IsInBundle = false; |
| MachineInstr *PrevMI = nullptr; |
| while (!Token.is(MIToken::MachineBasicBlockLabel) && |
| !Token.is(MIToken::Eof)) { |
| if (consumeIfPresent(MIToken::Newline)) |
| continue; |
| if (consumeIfPresent(MIToken::rbrace)) { |
| // The first parsing pass should verify that all closing '}' have an |
| // opening '{'. |
| assert(IsInBundle); |
| IsInBundle = false; |
| continue; |
| } |
| MachineInstr *MI = nullptr; |
| if (parse(MI)) |
| return true; |
| MBB.insert(MBB.end(), MI); |
| if (IsInBundle) { |
| PrevMI->setFlag(MachineInstr::BundledSucc); |
| MI->setFlag(MachineInstr::BundledPred); |
| } |
| PrevMI = MI; |
| if (Token.is(MIToken::lbrace)) { |
| if (IsInBundle) |
| return error("nested instruction bundles are not allowed"); |
| lex(); |
| // This instruction is the start of the bundle. |
| MI->setFlag(MachineInstr::BundledSucc); |
| IsInBundle = true; |
| if (!Token.is(MIToken::Newline)) |
| // The next instruction can be on the same line. |
| continue; |
| } |
| assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); |
| lex(); |
| } |
| |
| // Construct successor list by searching for basic block machine operands. |
| if (!ExplicitSuccessors) { |
| SmallVector<MachineBasicBlock*,4> Successors; |
| bool IsFallthrough; |
| guessSuccessors(MBB, Successors, IsFallthrough); |
| for (MachineBasicBlock *Succ : Successors) |
| MBB.addSuccessor(Succ); |
| |
| if (IsFallthrough) { |
| AddFalthroughFrom = &MBB; |
| } else { |
| MBB.normalizeSuccProbs(); |
| } |
| } |
| |
| return false; |
| } |
| |
| bool MIParser::parseBasicBlocks() { |
| lex(); |
| // Skip until the first machine basic block. |
| while (Token.is(MIToken::Newline)) |
| lex(); |
| if (Token.isErrorOrEOF()) |
| return Token.isError(); |
| // The first parsing pass should have verified that this token is a MBB label |
| // in the 'parseBasicBlockDefinitions' method. |
| assert(Token.is(MIToken::MachineBasicBlockLabel)); |
| MachineBasicBlock *AddFalthroughFrom = nullptr; |
| do { |
| MachineBasicBlock *MBB = nullptr; |
| if (parseMBBReference(MBB)) |
| return true; |
| if (AddFalthroughFrom) { |
| if (!AddFalthroughFrom->isSuccessor(MBB)) |
| AddFalthroughFrom->addSuccessor(MBB); |
| AddFalthroughFrom->normalizeSuccProbs(); |
| AddFalthroughFrom = nullptr; |
| } |
| if (parseBasicBlock(*MBB, AddFalthroughFrom)) |
| return true; |
| // The method 'parseBasicBlock' should parse the whole block until the next |
| // block or the end of file. |
| assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); |
| } while (Token.isNot(MIToken::Eof)); |
| return false; |
| } |
| |
| bool MIParser::parse(MachineInstr *&MI) { |
| // Parse any register operands before '=' |
| MachineOperand MO = MachineOperand::CreateImm(0); |
| SmallVector<ParsedMachineOperand, 8> Operands; |
| while (Token.isRegister() || Token.isRegisterFlag()) { |
| auto Loc = Token.location(); |
| std::optional<unsigned> TiedDefIdx; |
| if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) |
| return true; |
| Operands.push_back( |
| ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); |
| if (Token.isNot(MIToken::comma)) |
| break; |
| lex(); |
| } |
| if (!Operands.empty() && expectAndConsume(MIToken::equal)) |
| return true; |
| |
| unsigned OpCode, Flags = 0; |
| if (Token.isError() || parseInstruction(OpCode, Flags)) |
| return true; |
| |
| // Parse the remaining machine operands. |
| while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && |
| Token.isNot(MIToken::kw_post_instr_symbol) && |
| Token.isNot(MIToken::kw_heap_alloc_marker) && |
| Token.isNot(MIToken::kw_pcsections) && |
| Token.isNot(MIToken::kw_cfi_type) && |
| Token.isNot(MIToken::kw_debug_location) && |
| Token.isNot(MIToken::kw_debug_instr_number) && |
| Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { |
| auto Loc = Token.location(); |
| std::optional<unsigned> TiedDefIdx; |
| if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) |
| return true; |
| Operands.push_back( |
| ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); |
| if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || |
| Token.is(MIToken::lbrace)) |
| break; |
| if (Token.isNot(MIToken::comma)) |
| return error("expected ',' before the next machine operand"); |
| lex(); |
| } |
| |
| MCSymbol *PreInstrSymbol = nullptr; |
| if (Token.is(MIToken::kw_pre_instr_symbol)) |
| if (parsePreOrPostInstrSymbol(PreInstrSymbol)) |
| return true; |
| MCSymbol *PostInstrSymbol = nullptr; |
| if (Token.is(MIToken::kw_post_instr_symbol)) |
| if (parsePreOrPostInstrSymbol(PostInstrSymbol)) |
| return true; |
| MDNode *HeapAllocMarker = nullptr; |
| if (Token.is(MIToken::kw_heap_alloc_marker)) |
| if (parseHeapAllocMarker(HeapAllocMarker)) |
| return true; |
| MDNode *PCSections = nullptr; |
| if (Token.is(MIToken::kw_pcsections)) |
| if (parsePCSections(PCSections)) |
| return true; |
| |
| unsigned CFIType = 0; |
| if (Token.is(MIToken::kw_cfi_type)) { |
| lex(); |
| if (Token.isNot(MIToken::IntegerLiteral)) |
| return error("expected an integer literal after 'cfi-type'"); |
| // getUnsigned is sufficient for 32-bit integers. |
| if (getUnsigned(CFIType)) |
| return true; |
| lex(); |
| // Lex past trailing comma if present. |
| if (Token.is(MIToken::comma)) |
| lex(); |
| } |
| |
| unsigned InstrNum = 0; |
| if (Token.is(MIToken::kw_debug_instr_number)) { |
| lex(); |
| if (Token.isNot(MIToken::IntegerLiteral)) |
| return error("expected an integer literal after 'debug-instr-number'"); |
| if (getUnsigned(InstrNum)) |
| return true; |
| lex(); |
| // Lex past trailing comma if present. |
| if (Token.is(MIToken::comma)) |
| lex(); |
| } |
| |
| DebugLoc DebugLocation; |
| if (Token.is(MIToken::kw_debug_location)) { |
| lex(); |
| MDNode *Node = nullptr; |
| if (Token.is(MIToken::exclaim)) { |
| if (parseMDNode(Node)) |
| return true; |
| } else if (Token.is(MIToken::md_dilocation)) { |
| if (parseDILocation(Node)) |
| return true; |
| } else |
| return error("expected a metadata node after 'debug-location'"); |
| if (!isa<DILocation>(Node)) |
| return error("referenced metadata is not a DILocation"); |
| DebugLocation = DebugLoc(Node); |
| } |
| |
| // Parse the machine memory operands. |
| SmallVector<MachineMemOperand *, 2> MemOperands; |
| if (Token.is(MIToken::coloncolon)) { |
| lex(); |
| while (!Token.isNewlineOrEOF()) { |
| MachineMemOperand *MemOp = nullptr; |
| if (parseMachineMemoryOperand(MemOp)) |
| return true; |
| MemOperands.push_back(MemOp); |
| if (Token.isNewlineOrEOF()) |
| break; |
| if (Token.isNot(MIToken::comma)) |
| return error("expected ',' before the next machine memory operand"); |
| lex(); |
| } |
| } |
| |
| const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); |
| if (!MCID.isVariadic()) { |
| // FIXME: Move the implicit operand verification to the machine verifier. |
| if (verifyImplicitOperands(Operands, MCID)) |
| return true; |
| } |
| |
| MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); |
| MI->setFlags(Flags); |
| |
| unsigned NumExplicitOps = 0; |
| for (const auto &Operand : Operands) { |
| bool IsImplicitOp = Operand.Operand.isReg() && Operand.Operand.isImplicit(); |
| if (!IsImplicitOp) { |
| if (!MCID.isVariadic() && NumExplicitOps >= MCID.getNumOperands() && |
| !Operand.Operand.isValidExcessOperand()) |
| return error(Operand.Begin, "too many operands for instruction"); |
| |
| ++NumExplicitOps; |
| } |
| |
| MI->addOperand(MF, Operand.Operand); |
| } |
| |
| if (assignRegisterTies(*MI, Operands)) |
| return true; |
| if (PreInstrSymbol) |
| MI->setPreInstrSymbol(MF, PreInstrSymbol); |
| if (PostInstrSymbol) |
| MI->setPostInstrSymbol(MF, PostInstrSymbol); |
| if (HeapAllocMarker) |
| MI->setHeapAllocMarker(MF, HeapAllocMarker); |
| if (PCSections) |
| MI->setPCSections(MF, PCSections); |
| if (CFIType) |
| MI->setCFIType(MF, CFIType); |
| if (!MemOperands.empty()) |
| MI->setMemRefs(MF, MemOperands); |
| if (InstrNum) |
| MI->setDebugInstrNum(InstrNum); |
| return false; |
| } |
| |
| bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { |
| lex(); |
| if (Token.isNot(MIToken::MachineBasicBlock)) |
| return error("expected a machine basic block reference"); |
| if (parseMBBReference(MBB)) |
| return true; |
| lex(); |
| if (Token.isNot(MIToken::Eof)) |
| return error( |
| "expected end of string after the machine basic block reference"); |
| return false; |
| } |
| |
| bool MIParser::parseStandaloneNamedRegister(Register &Reg) { |
| lex(); |
| if (Token.isNot(MIToken::NamedRegister)) |
| return error("expected a named register"); |
| if (parseNamedRegister(Reg)) |
| return true; |
| lex(); |
| if (Token.isNot(MIToken::Eof)) |
| return error("expected end of string after the register reference"); |
| return false; |
| } |
| |
| bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { |
| lex(); |
| if (Token.isNot(MIToken::VirtualRegister)) |
| return error("expected a virtual register"); |
| if (parseVirtualRegister(Info)) |
| return true; |
| lex(); |
| if (Token.isNot(MIToken::Eof)) |
| return error("expected end of string after the register reference"); |
| return false; |
| } |
| |
| bool MIParser::parseStandaloneRegister(Register &Reg) { |
| lex(); |
| if (Token.isNot(MIToken::NamedRegister) && |
| Token.isNot(MIToken::VirtualRegister)) |
| return error("expected either a named or virtual register"); |
| |
| VRegInfo *Info; |
| if (parseRegister(Reg, Info)) |
| return true; |
| |
| lex(); |
| if (Token.isNot(MIToken::Eof)) |
| return error("expected end of string after the register reference"); |
| return false; |
| } |
| |
| bool MIParser::parseStandaloneStackObject(int &FI) { |
| lex(); |
| if (Token.isNot(MIToken::StackObject)) |
| return error("expected a stack object"); |
| if (parseStackFrameIndex(FI)) |
| return true; |
| if (Token.isNot(MIToken::Eof)) |
| return error("expected end of string after the stack object reference"); |
| return false; |
| } |
| |
| bool MIParser::parseStandaloneMDNode(MDNode *&Node) { |
| lex(); |
| if (Token.is(MIToken::exclaim)) { |
| if (parseMDNode(Node)) |
| return true; |
| } else if (Token.is(MIToken::md_diexpr)) { |
| if (parseDIExpression(Node)) |
| return true; |
| } else if (Token.is(MIToken::md_dilocation)) { |
| if (parseDILocation(Node)) |
| return true; |
| } else |
| return error("expected a metadata node"); |
| if (Token.isNot(MIToken::Eof)) |
| return error("expected end of string after the metadata node"); |
| return false; |
| } |
| |
| bool MIParser::parseMachineMetadata() { |
| lex(); |
| if (Token.isNot(MIToken::exclaim)) |
| return error("expected a metadata node"); |
| |
| lex(); |
| if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) |
| return error("expected metadata id after '!'"); |
| unsigned ID = 0; |
| if (getUnsigned(ID)) |
| return true; |
| lex(); |
| if (expectAndConsume(MIToken::equal)) |
| return true; |
| bool IsDistinct = Token.is(MIToken::kw_distinct); |
| if (IsDistinct) |
| lex(); |
| if (Token.isNot(MIToken::exclaim)) |
| return error("expected a metadata node"); |
| lex(); |
| |
| MDNode *MD; |
| if (parseMDTuple(MD, IsDistinct)) |
| return true; |
| |
| auto FI = PFS.MachineForwardRefMDNodes.find(ID); |
| if (FI != PFS.MachineForwardRefMDNodes.end()) { |
| FI->second.first->replaceAllUsesWith(MD); |
| PFS.MachineForwardRefMDNodes.erase(FI); |
| |
| assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work"); |
| } else { |
| if (PFS.MachineMetadataNodes.count(ID)) |
| return error("Metadata id is already used"); |
| PFS.MachineMetadataNodes[ID].reset(MD); |
| } |
| |
| return false; |
| } |
| |
| bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { |
| SmallVector<Metadata *, 16> Elts; |
| if (parseMDNodeVector(Elts)) |
| return true; |
| MD = (IsDistinct ? MDTuple::getDistinct |
| : MDTuple::get)(MF.getFunction().getContext(), Elts); |
| return false; |
| } |
| |
| bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { |
| if (Token.isNot(MIToken::lbrace)) |
| return error("expected '{' here"); |
| lex(); |
| |
| if (Token.is(MIToken::rbrace)) { |
| lex(); |
| return false; |
| } |
| |
| do { |
| Metadata *MD; |
| if (parseMetadata(MD)) |
| return true; |
| |
| Elts.push_back(MD); |
| |
| if (Token.isNot(MIToken::comma)) |
| break; |
| lex(); |
| } while (true); |
| |
| if (Token.isNot(MIToken::rbrace)) |
| return error("expected end of metadata node"); |
| lex(); |
| |
| return false; |
| } |
| |
| // ::= !42 |
| // ::= !"string" |
| bool MIParser::parseMetadata(Metadata *&MD) { |
| if (Token.isNot(MIToken::exclaim)) |
| return error("expected '!' here"); |
| lex(); |
| |
| if (Token.is(MIToken::StringConstant)) { |
| std::string Str; |
| if (parseStringConstant(Str)) |
| return true; |
| MD = MDString::get(MF.getFunction().getContext(), Str); |
| return false; |
| } |
| |
| if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) |
| return error("expected metadata id after '!'"); |
| |
| SMLoc Loc = mapSMLoc(Token.location()); |
| |
| unsigned ID = 0; |
| if (getUnsigned(ID)) |
| return true; |
| lex(); |
| |
| auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); |
| if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) { |
| MD = NodeInfo->second.get(); |
| return false; |
| } |
| // Check machine metadata. |
| NodeInfo = PFS.MachineMetadataNodes.find(ID); |
| if (NodeInfo != PFS.MachineMetadataNodes.end()) { |
| MD = NodeInfo->second.get(); |
| return false; |
| } |
| // Forward reference. |
| auto &FwdRef = PFS.MachineForwardRefMDNodes[ID]; |
| FwdRef = std::make_pair( |
| MDTuple::getTemporary(MF.getFunction().getContext(), std::nullopt), Loc); |
| PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get()); |
| MD = FwdRef.first.get(); |
| |
| return false; |
| } |
| |
| static const char *printImplicitRegisterFlag(const MachineOperand &MO) { |
| assert(MO.isImplicit()); |
| return MO.isDef() ? "implicit-def" : "implicit"; |
| } |
| |
| static std::string getRegisterName(const TargetRegisterInfo *TRI, |
| Register Reg) { |
| assert(Reg.isPhysical() && "expected phys reg"); |
| return StringRef(TRI->getName(Reg)).lower(); |
| } |
| |
| /// Return true if the parsed machine operands contain a given machine operand. |
| static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, |
| ArrayRef<ParsedMachineOperand> Operands) { |
| for (const auto &I : Operands) { |
| if (ImplicitOperand.isIdenticalTo(I.Operand)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, |
| const MCInstrDesc &MCID) { |
| if (MCID.isCall()) |
| // We can't verify call instructions as they can contain arbitrary implicit |
| // register and register mask operands. |
| return false; |
| |
| // Gather all the expected implicit operands. |
| SmallVector<MachineOperand, 4> ImplicitOperands; |
| for (MCPhysReg ImpDef : MCID.implicit_defs()) |
| ImplicitOperands.push_back(MachineOperand::CreateReg(ImpDef, true, true)); |
| for (MCPhysReg ImpUse : MCID.implicit_uses()) |
| ImplicitOperands.push_back(MachineOperand::CreateReg(ImpUse, false, true)); |
| |
| const auto *TRI = MF.getSubtarget().getRegisterInfo(); |
| assert(TRI && "Expected target register info"); |
| for (const auto &I : ImplicitOperands) { |
| if (isImplicitOperandIn(I, Operands)) |
| continue; |
| return error(Operands.empty() ? Token.location() : Operands.back().End, |
| Twine("missing implicit register operand '") + |
| printImplicitRegisterFlag(I) + " $" + |
| getRegisterName(TRI, I.getReg()) + "'"); |
| } |
| return false; |
| } |
| |
| bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { |
| // Allow frame and fast math flags for OPCODE |
| while (Token.is(MIToken::kw_frame_setup) || |
| Token.is(MIToken::kw_frame_destroy) || |
| Token.is(MIToken::kw_nnan) || |
| Token.is(MIToken::kw_ninf) || |
| Token.is(MIToken::kw_nsz) || |
| Token.is(MIToken::kw_arcp) || |
| Token.is(MIToken::kw_contract) || |
| Token.is(MIToken::kw_afn) || |
| Token.is(MIToken::kw_reassoc) || |
| Token.is(MIToken::kw_nuw) || |
| Token.is(MIToken::kw_nsw) || |
| Token.is(MIToken::kw_exact) || |
| Token.is(MIToken::kw_nofpexcept)) { |
| // Mine frame and fast math flags |
| if (Token.is(MIToken::kw_frame_setup)) |
| Flags |= MachineInstr::FrameSetup; |
| if (Token.is(MIToken::kw_frame_destroy)) |
| Flags |= MachineInstr::FrameDestroy; |
| if (Token.is(MIToken::kw_nnan)) |
| Flags |= MachineInstr::FmNoNans; |
| if (Token.is(MIToken::kw_ninf)) |
| Flags |= MachineInstr::FmNoInfs; |
| if (Token.is(MIToken::kw_nsz)) |
| Flags |= MachineInstr::FmNsz; |
| if (Token.is(MIToken::kw_arcp)) |
| Flags |= MachineInstr::FmArcp; |
| if (Token.is(MIToken::kw_contract)) |
| Flags |= MachineInstr::FmContract; |
| if (Token.is(MIToken::kw_afn)) |
| Flags |= MachineInstr::FmAfn; |
| if (Token.is(MIToken::kw_reassoc)) |
| Flags |= MachineInstr::FmReassoc; |
| if (Token.is(MIToken::kw_nuw)) |
| Flags |= MachineInstr::NoUWrap; |
| if (Token.is(MIToken::kw_nsw)) |
| Flags |= MachineInstr::NoSWrap; |
| if (Token.is(MIToken::kw_exact)) |
| Flags |= MachineInstr::IsExact; |
| if (Token.is(MIToken::kw_nofpexcept)) |
| Flags |= MachineInstr::NoFPExcept; |
| |
| lex(); |
| } |
| if (Token.isNot(MIToken::Identifier)) |
| return error("expected a machine instruction"); |
| StringRef InstrName = Token.stringValue(); |
| if (PFS.Target.parseInstrName(InstrName, OpCode)) |
| return error(Twine("unknown machine instruction name '") + InstrName + "'"); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseNamedRegister(Register &Reg) { |
| assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); |
| StringRef Name = Token.stringValue(); |
| if (PFS.Target.getRegisterByName(Name, Reg)) |
| return error(Twine("unknown register name '") + Name + "'"); |
| return false; |
| } |
| |
| bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { |
| assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); |
| StringRef Name = Token.stringValue(); |
| // TODO: Check that the VReg name is not the same as a physical register name. |
| // If it is, then print a warning (when warnings are implemented). |
| Info = &PFS.getVRegInfoNamed(Name); |
| return false; |
| } |
| |
| bool MIParser::parseVirtualRegister(VRegInfo *&Info) { |
| if (Token.is(MIToken::NamedVirtualRegister)) |
| return parseNamedVirtualRegister(Info); |
| assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); |
| unsigned ID; |
| if (getUnsigned(ID)) |
| return true; |
| Info = &PFS.getVRegInfo(ID); |
| return false; |
| } |
| |
| bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { |
| switch (Token.kind()) { |
| case MIToken::underscore: |
| Reg = 0; |
| return false; |
| case MIToken::NamedRegister: |
| return parseNamedRegister(Reg); |
| case MIToken::NamedVirtualRegister: |
| case MIToken::VirtualRegister: |
| if (parseVirtualRegister(Info)) |
| return true; |
| Reg = Info->VReg; |
| return false; |
| // TODO: Parse other register kinds. |
| default: |
| llvm_unreachable("The current token should be a register"); |
| } |
| } |
| |
| bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { |
| if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) |
| return error("expected '_', register class, or register bank name"); |
| StringRef::iterator Loc = Token.location(); |
| StringRef Name = Token.stringValue(); |
| |
| // Was it a register class? |
| const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); |
| if (RC) { |
| lex(); |
| |
| switch (RegInfo.Kind) { |
| case VRegInfo::UNKNOWN: |
| case VRegInfo::NORMAL: |
| RegInfo.Kind = VRegInfo::NORMAL; |
| if (RegInfo.Explicit && RegInfo.D.RC != RC) { |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| return error(Loc, Twine("conflicting register classes, previously: ") + |
| Twine(TRI.getRegClassName(RegInfo.D.RC))); |
| } |
| RegInfo.D.RC = RC; |
| RegInfo.Explicit = true; |
| return false; |
| |
| case VRegInfo::GENERIC: |
| case VRegInfo::REGBANK: |
| return error(Loc, "register class specification on generic register"); |
| } |
| llvm_unreachable("Unexpected register kind"); |
| } |
| |
| // Should be a register bank or a generic register. |
| const RegisterBank *RegBank = nullptr; |
| if (Name != "_") { |
| RegBank = PFS.Target.getRegBank(Name); |
| if (!RegBank) |
| return error(Loc, "expected '_', register class, or register bank name"); |
| } |
| |
| lex(); |
| |
| switch (RegInfo.Kind) { |
| case VRegInfo::UNKNOWN: |
| case VRegInfo::GENERIC: |
| case VRegInfo::REGBANK: |
| RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; |
| if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) |
| return error(Loc, "conflicting generic register banks"); |
| RegInfo.D.RegBank = RegBank; |
| RegInfo.Explicit = true; |
| return false; |
| |
| case VRegInfo::NORMAL: |
| return error(Loc, "register bank specification on normal register"); |
| } |
| llvm_unreachable("Unexpected register kind"); |
| } |
| |
| bool MIParser::parseRegisterFlag(unsigned &Flags) { |
| const unsigned OldFlags = Flags; |
| switch (Token.kind()) { |
| case MIToken::kw_implicit: |
| Flags |= RegState::Implicit; |
| break; |
| case MIToken::kw_implicit_define: |
| Flags |= RegState::ImplicitDefine; |
| break; |
| case MIToken::kw_def: |
| Flags |= RegState::Define; |
| break; |
| case MIToken::kw_dead: |
| Flags |= RegState::Dead; |
| break; |
| case MIToken::kw_killed: |
| Flags |= RegState::Kill; |
| break; |
| case MIToken::kw_undef: |
| Flags |= RegState::Undef; |
| break; |
| case MIToken::kw_internal: |
| Flags |= RegState::InternalRead; |
| break; |
| case MIToken::kw_early_clobber: |
| Flags |= RegState::EarlyClobber; |
| break; |
| case MIToken::kw_debug_use: |
| Flags |= RegState::Debug; |
| break; |
| case MIToken::kw_renamable: |
| Flags |= RegState::Renamable; |
| break; |
| default: |
| llvm_unreachable("The current token should be a register flag"); |
| } |
| if (OldFlags == Flags) |
| // We know that the same flag is specified more than once when the flags |
| // weren't modified. |
| return error("duplicate '" + Token.stringValue() + "' register flag"); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { |
| assert(Token.is(MIToken::dot)); |
| lex(); |
| if (Token.isNot(MIToken::Identifier)) |
| return error("expected a subregister index after '.'"); |
| auto Name = Token.stringValue(); |
| SubReg = PFS.Target.getSubRegIndex(Name); |
| if (!SubReg) |
| return error(Twine("use of unknown subregister index '") + Name + "'"); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { |
| if (!consumeIfPresent(MIToken::kw_tied_def)) |
| return true; |
| if (Token.isNot(MIToken::IntegerLiteral)) |
| return error("expected an integer literal after 'tied-def'"); |
| if (getUnsigned(TiedDefIdx)) |
| return true; |
| lex(); |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| return false; |
| } |
| |
| bool MIParser::assignRegisterTies(MachineInstr &MI, |
| ArrayRef<ParsedMachineOperand> Operands) { |
| SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; |
| for (unsigned I = 0, E = Operands.size(); I != E; ++I) { |
| if (!Operands[I].TiedDefIdx) |
| continue; |
| // The parser ensures that this operand is a register use, so we just have |
| // to check the tied-def operand. |
| unsigned DefIdx = *Operands[I].TiedDefIdx; |
| if (DefIdx >= E) |
| return error(Operands[I].Begin, |
| Twine("use of invalid tied-def operand index '" + |
| Twine(DefIdx) + "'; instruction has only ") + |
| Twine(E) + " operands"); |
| const auto &DefOperand = Operands[DefIdx].Operand; |
| if (!DefOperand.isReg() || !DefOperand.isDef()) |
| // FIXME: add note with the def operand. |
| return error(Operands[I].Begin, |
| Twine("use of invalid tied-def operand index '") + |
| Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + |
| " isn't a defined register"); |
| // Check that the tied-def operand wasn't tied elsewhere. |
| for (const auto &TiedPair : TiedRegisterPairs) { |
| if (TiedPair.first == DefIdx) |
| return error(Operands[I].Begin, |
| Twine("the tied-def operand #") + Twine(DefIdx) + |
| " is already tied with another register operand"); |
| } |
| TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); |
| } |
| // FIXME: Verify that for non INLINEASM instructions, the def and use tied |
| // indices must be less than tied max. |
| for (const auto &TiedPair : TiedRegisterPairs) |
| MI.tieOperands(TiedPair.first, TiedPair.second); |
| return false; |
| } |
| |
| bool MIParser::parseRegisterOperand(MachineOperand &Dest, |
| std::optional<unsigned> &TiedDefIdx, |
| bool IsDef) { |
| unsigned Flags = IsDef ? RegState::Define : 0; |
| while (Token.isRegisterFlag()) { |
| if (parseRegisterFlag(Flags)) |
| return true; |
| } |
| if (!Token.isRegister()) |
| return error("expected a register after register flags"); |
| Register Reg; |
| VRegInfo *RegInfo; |
| if (parseRegister(Reg, RegInfo)) |
| return true; |
| lex(); |
| unsigned SubReg = 0; |
| if (Token.is(MIToken::dot)) { |
| if (parseSubRegisterIndex(SubReg)) |
| return true; |
| if (!Reg.isVirtual()) |
| return error("subregister index expects a virtual register"); |
| } |
| if (Token.is(MIToken::colon)) { |
| if (!Reg.isVirtual()) |
| return error("register class specification expects a virtual register"); |
| lex(); |
| if (parseRegisterClassOrBank(*RegInfo)) |
| return true; |
| } |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| if ((Flags & RegState::Define) == 0) { |
| if (consumeIfPresent(MIToken::lparen)) { |
| unsigned Idx; |
| if (!parseRegisterTiedDefIndex(Idx)) |
| TiedDefIdx = Idx; |
| else { |
| // Try a redundant low-level type. |
| LLT Ty; |
| if (parseLowLevelType(Token.location(), Ty)) |
| return error("expected tied-def or low-level type after '('"); |
| |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| |
| if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) |
| return error("inconsistent type for generic virtual register"); |
| |
| MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); |
| MRI.setType(Reg, Ty); |
| } |
| } |
| } else if (consumeIfPresent(MIToken::lparen)) { |
| // Virtual registers may have a tpe with GlobalISel. |
| if (!Reg.isVirtual()) |
| return error("unexpected type on physical register"); |
| |
| LLT Ty; |
| if (parseLowLevelType(Token.location(), Ty)) |
| return true; |
| |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| |
| if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) |
| return error("inconsistent type for generic virtual register"); |
| |
| MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); |
| MRI.setType(Reg, Ty); |
| } else if (Reg.isVirtual()) { |
| // Generic virtual registers must have a type. |
| // If we end up here this means the type hasn't been specified and |
| // this is bad! |
| if (RegInfo->Kind == VRegInfo::GENERIC || |
| RegInfo->Kind == VRegInfo::REGBANK) |
| return error("generic virtual registers must have a type"); |
| } |
| |
| if (Flags & RegState::Define) { |
| if (Flags & RegState::Kill) |
| return error("cannot have a killed def operand"); |
| } else { |
| if (Flags & RegState::Dead) |
| return error("cannot have a dead use operand"); |
| } |
| |
| Dest = MachineOperand::CreateReg( |
| Reg, Flags & RegState::Define, Flags & RegState::Implicit, |
| Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, |
| Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, |
| Flags & RegState::InternalRead, Flags & RegState::Renamable); |
| |
| return false; |
| } |
| |
| bool MIParser::parseImmediateOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::IntegerLiteral)); |
| const APSInt &Int = Token.integerValue(); |
| if (auto SImm = Int.trySExtValue(); Int.isSigned() && SImm.has_value()) |
| Dest = MachineOperand::CreateImm(*SImm); |
| else if (auto UImm = Int.tryZExtValue(); !Int.isSigned() && UImm.has_value()) |
| Dest = MachineOperand::CreateImm(*UImm); |
| else |
| return error("integer literal is too large to be an immediate operand"); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, |
| const unsigned OpIdx, |
| MachineOperand &Dest, |
| const MIRFormatter &MF) { |
| assert(Token.is(MIToken::dot)); |
| auto Loc = Token.location(); // record start position |
| size_t Len = 1; // for "." |
| lex(); |
| |
| // Handle the case that mnemonic starts with number. |
| if (Token.is(MIToken::IntegerLiteral)) { |
| Len += Token.range().size(); |
| lex(); |
| } |
| |
| StringRef Src; |
| if (Token.is(MIToken::comma)) |
| Src = StringRef(Loc, Len); |
| else { |
| assert(Token.is(MIToken::Identifier)); |
| Src = StringRef(Loc, Len + Token.stringValue().size()); |
| } |
| int64_t Val; |
| if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, |
| [this](StringRef::iterator Loc, const Twine &Msg) |
| -> bool { return error(Loc, Msg); })) |
| return true; |
| |
| Dest = MachineOperand::CreateImm(Val); |
| if (!Token.is(MIToken::comma)) |
| lex(); |
| return false; |
| } |
| |
| static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, |
| PerFunctionMIParsingState &PFS, const Constant *&C, |
| ErrorCallbackType ErrCB) { |
| auto Source = StringValue.str(); // The source has to be null terminated. |
| SMDiagnostic Err; |
| C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), |
| &PFS.IRSlots); |
| if (!C) |
| return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); |
| return false; |
| } |
| |
| bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, |
| const Constant *&C) { |
| return ::parseIRConstant( |
| Loc, StringValue, PFS, C, |
| [this](StringRef::iterator Loc, const Twine &Msg) -> bool { |
| return error(Loc, Msg); |
| }); |
| } |
| |
| bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { |
| if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) |
| return true; |
| lex(); |
| return false; |
| } |
| |
| // See LLT implementation for bit size limits. |
| static bool verifyScalarSize(uint64_t Size) { |
| return Size != 0 && isUInt<16>(Size); |
| } |
| |
| static bool verifyVectorElementCount(uint64_t NumElts) { |
| return NumElts != 0 && isUInt<16>(NumElts); |
| } |
| |
| static bool verifyAddrSpace(uint64_t AddrSpace) { |
| return isUInt<24>(AddrSpace); |
| } |
| |
| bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { |
| if (Token.range().front() == 's' || Token.range().front() == 'p') { |
| StringRef SizeStr = Token.range().drop_front(); |
| if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) |
| return error("expected integers after 's'/'p' type character"); |
| } |
| |
| if (Token.range().front() == 's') { |
| auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); |
| if (!verifyScalarSize(ScalarSize)) |
| return error("invalid size for scalar type"); |
| |
| Ty = LLT::scalar(ScalarSize); |
| lex(); |
| return false; |
| } else if (Token.range().front() == 'p') { |
| const DataLayout &DL = MF.getDataLayout(); |
| uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); |
| if (!verifyAddrSpace(AS)) |
| return error("invalid address space number"); |
| |
| Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); |
| lex(); |
| return false; |
| } |
| |
| // Now we're looking for a vector. |
| if (Token.isNot(MIToken::less)) |
| return error(Loc, |
| "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); |
| lex(); |
| |
| if (Token.isNot(MIToken::IntegerLiteral)) |
| return error(Loc, "expected <M x sN> or <M x pA> for vector type"); |
| uint64_t NumElements = Token.integerValue().getZExtValue(); |
| if (!verifyVectorElementCount(NumElements)) |
| return error("invalid number of vector elements"); |
| |
| lex(); |
| |
| if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") |
| return error(Loc, "expected <M x sN> or <M x pA> for vector type"); |
| lex(); |
| |
| if (Token.range().front() != 's' && Token.range().front() != 'p') |
| return error(Loc, "expected <M x sN> or <M x pA> for vector type"); |
| StringRef SizeStr = Token.range().drop_front(); |
| if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) |
| return error("expected integers after 's'/'p' type character"); |
| |
| if (Token.range().front() == 's') { |
| auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); |
| if (!verifyScalarSize(ScalarSize)) |
| return error("invalid size for scalar type"); |
| Ty = LLT::scalar(ScalarSize); |
| } else if (Token.range().front() == 'p') { |
| const DataLayout &DL = MF.getDataLayout(); |
| uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); |
| if (!verifyAddrSpace(AS)) |
| return error("invalid address space number"); |
| |
| Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); |
| } else |
| return error(Loc, "expected <M x sN> or <M x pA> for vector type"); |
| lex(); |
| |
| if (Token.isNot(MIToken::greater)) |
| return error(Loc, "expected <M x sN> or <M x pA> for vector type"); |
| lex(); |
| |
| Ty = LLT::fixed_vector(NumElements, Ty); |
| return false; |
| } |
| |
| bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::Identifier)); |
| StringRef TypeStr = Token.range(); |
| if (TypeStr.front() != 'i' && TypeStr.front() != 's' && |
| TypeStr.front() != 'p') |
| return error( |
| "a typed immediate operand should start with one of 'i', 's', or 'p'"); |
| StringRef SizeStr = Token.range().drop_front(); |
| if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) |
| return error("expected integers after 'i'/'s'/'p' type character"); |
| |
| auto Loc = Token.location(); |
| lex(); |
| if (Token.isNot(MIToken::IntegerLiteral)) { |
| if (Token.isNot(MIToken::Identifier) || |
| !(Token.range() == "true" || Token.range() == "false")) |
| return error("expected an integer literal"); |
| } |
| const Constant *C = nullptr; |
| if (parseIRConstant(Loc, C)) |
| return true; |
| Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); |
| return false; |
| } |
| |
| bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { |
| auto Loc = Token.location(); |
| lex(); |
| if (Token.isNot(MIToken::FloatingPointLiteral) && |
| Token.isNot(MIToken::HexLiteral)) |
| return error("expected a floating point literal"); |
| const Constant *C = nullptr; |
| if (parseIRConstant(Loc, C)) |
| return true; |
| Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); |
| return false; |
| } |
| |
| static bool getHexUint(const MIToken &Token, APInt &Result) { |
| assert(Token.is(MIToken::HexLiteral)); |
| StringRef S = Token.range(); |
| assert(S[0] == '0' && tolower(S[1]) == 'x'); |
| // This could be a floating point literal with a special prefix. |
| if (!isxdigit(S[2])) |
| return true; |
| StringRef V = S.substr(2); |
| APInt A(V.size()*4, V, 16); |
| |
| // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make |
| // sure it isn't the case before constructing result. |
| unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); |
| Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); |
| return false; |
| } |
| |
| static bool getUnsigned(const MIToken &Token, unsigned &Result, |
| ErrorCallbackType ErrCB) { |
| if (Token.hasIntegerValue()) { |
| const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; |
| uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); |
| if (Val64 == Limit) |
| return ErrCB(Token.location(), "expected 32-bit integer (too large)"); |
| Result = Val64; |
| return false; |
| } |
| if (Token.is(MIToken::HexLiteral)) { |
| APInt A; |
| if (getHexUint(Token, A)) |
| return true; |
| if (A.getBitWidth() > 32) |
| return ErrCB(Token.location(), "expected 32-bit integer (too large)"); |
| Result = A.getZExtValue(); |
| return false; |
| } |
| return true; |
| } |
| |
| bool MIParser::getUnsigned(unsigned &Result) { |
| return ::getUnsigned( |
| Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { |
| return error(Loc, Msg); |
| }); |
| } |
| |
| bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { |
| assert(Token.is(MIToken::MachineBasicBlock) || |
| Token.is(MIToken::MachineBasicBlockLabel)); |
| unsigned Number; |
| if (getUnsigned(Number)) |
| return true; |
| auto MBBInfo = PFS.MBBSlots.find(Number); |
| if (MBBInfo == PFS.MBBSlots.end()) |
| return error(Twine("use of undefined machine basic block #") + |
| Twine(Number)); |
| MBB = MBBInfo->second; |
| // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once |
| // we drop the <irname> from the bb.<id>.<irname> format. |
| if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) |
| return error(Twine("the name of machine basic block #") + Twine(Number) + |
| " isn't '" + Token.stringValue() + "'"); |
| return false; |
| } |
| |
| bool MIParser::parseMBBOperand(MachineOperand &Dest) { |
| MachineBasicBlock *MBB; |
| if (parseMBBReference(MBB)) |
| return true; |
| Dest = MachineOperand::CreateMBB(MBB); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseStackFrameIndex(int &FI) { |
| assert(Token.is(MIToken::StackObject)); |
| unsigned ID; |
| if (getUnsigned(ID)) |
| return true; |
| auto ObjectInfo = PFS.StackObjectSlots.find(ID); |
| if (ObjectInfo == PFS.StackObjectSlots.end()) |
| return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + |
| "'"); |
| StringRef Name; |
| if (const auto *Alloca = |
| MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) |
| Name = Alloca->getName(); |
| if (!Token.stringValue().empty() && Token.stringValue() != Name) |
| return error(Twine("the name of the stack object '%stack.") + Twine(ID) + |
| "' isn't '" + Token.stringValue() + "'"); |
| lex(); |
| FI = ObjectInfo->second; |
| return false; |
| } |
| |
| bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { |
| int FI; |
| if (parseStackFrameIndex(FI)) |
| return true; |
| Dest = MachineOperand::CreateFI(FI); |
| return false; |
| } |
| |
| bool MIParser::parseFixedStackFrameIndex(int &FI) { |
| assert(Token.is(MIToken::FixedStackObject)); |
| unsigned ID; |
| if (getUnsigned(ID)) |
| return true; |
| auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); |
| if (ObjectInfo == PFS.FixedStackObjectSlots.end()) |
| return error(Twine("use of undefined fixed stack object '%fixed-stack.") + |
| Twine(ID) + "'"); |
| lex(); |
| FI = ObjectInfo->second; |
| return false; |
| } |
| |
| bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { |
| int FI; |
| if (parseFixedStackFrameIndex(FI)) |
| return true; |
| Dest = MachineOperand::CreateFI(FI); |
| return false; |
| } |
| |
| static bool parseGlobalValue(const MIToken &Token, |
| PerFunctionMIParsingState &PFS, GlobalValue *&GV, |
| ErrorCallbackType ErrCB) { |
| switch (Token.kind()) { |
| case MIToken::NamedGlobalValue: { |
| const Module *M = PFS.MF.getFunction().getParent(); |
| GV = M->getNamedValue(Token.stringValue()); |
| if (!GV) |
| return ErrCB(Token.location(), Twine("use of undefined global value '") + |
| Token.range() + "'"); |
| break; |
| } |
| case MIToken::GlobalValue: { |
| unsigned GVIdx; |
| if (getUnsigned(Token, GVIdx, ErrCB)) |
| return true; |
| if (GVIdx >= PFS.IRSlots.GlobalValues.size()) |
| return ErrCB(Token.location(), Twine("use of undefined global value '@") + |
| Twine(GVIdx) + "'"); |
| GV = PFS.IRSlots.GlobalValues[GVIdx]; |
| break; |
| } |
| default: |
| llvm_unreachable("The current token should be a global value"); |
| } |
| return false; |
| } |
| |
| bool MIParser::parseGlobalValue(GlobalValue *&GV) { |
| return ::parseGlobalValue( |
| Token, PFS, GV, |
| [this](StringRef::iterator Loc, const Twine &Msg) -> bool { |
| return error(Loc, Msg); |
| }); |
| } |
| |
| bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { |
| GlobalValue *GV = nullptr; |
| if (parseGlobalValue(GV)) |
| return true; |
| lex(); |
| Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); |
| if (parseOperandsOffset(Dest)) |
| return true; |
| return false; |
| } |
| |
| bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::ConstantPoolItem)); |
| unsigned ID; |
| if (getUnsigned(ID)) |
| return true; |
| auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); |
| if (ConstantInfo == PFS.ConstantPoolSlots.end()) |
| return error("use of undefined constant '%const." + Twine(ID) + "'"); |
| lex(); |
| Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); |
| if (parseOperandsOffset(Dest)) |
| return true; |
| return false; |
| } |
| |
| bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::JumpTableIndex)); |
| unsigned ID; |
| if (getUnsigned(ID)) |
| return true; |
| auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); |
| if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) |
| return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); |
| lex(); |
| Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); |
| return false; |
| } |
| |
| bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::ExternalSymbol)); |
| const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); |
| lex(); |
| Dest = MachineOperand::CreateES(Symbol); |
| if (parseOperandsOffset(Dest)) |
| return true; |
| return false; |
| } |
| |
| bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::MCSymbol)); |
| MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); |
| lex(); |
| Dest = MachineOperand::CreateMCSymbol(Symbol); |
| if (parseOperandsOffset(Dest)) |
| return true; |
| return false; |
| } |
| |
| bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::SubRegisterIndex)); |
| StringRef Name = Token.stringValue(); |
| unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); |
| if (SubRegIndex == 0) |
| return error(Twine("unknown subregister index '") + Name + "'"); |
| lex(); |
| Dest = MachineOperand::CreateImm(SubRegIndex); |
| return false; |
| } |
| |
| bool MIParser::parseMDNode(MDNode *&Node) { |
| assert(Token.is(MIToken::exclaim)); |
| |
| auto Loc = Token.location(); |
| lex(); |
| if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) |
| return error("expected metadata id after '!'"); |
| unsigned ID; |
| if (getUnsigned(ID)) |
| return true; |
| auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); |
| if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) { |
| NodeInfo = PFS.MachineMetadataNodes.find(ID); |
| if (NodeInfo == PFS.MachineMetadataNodes.end()) |
| return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); |
| } |
| lex(); |
| Node = NodeInfo->second.get(); |
| return false; |
| } |
| |
| bool MIParser::parseDIExpression(MDNode *&Expr) { |
| assert(Token.is(MIToken::md_diexpr)); |
| lex(); |
| |
| // FIXME: Share this parsing with the IL parser. |
| SmallVector<uint64_t, 8> Elements; |
| |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| |
| if (Token.isNot(MIToken::rparen)) { |
| do { |
| if (Token.is(MIToken::Identifier)) { |
| if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { |
| lex(); |
| Elements.push_back(Op); |
| continue; |
| } |
| if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { |
| lex(); |
| Elements.push_back(Enc); |
| continue; |
| } |
| return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); |
| } |
| |
| if (Token.isNot(MIToken::IntegerLiteral) || |
| Token.integerValue().isSigned()) |
| return error("expected unsigned integer"); |
| |
| auto &U = Token.integerValue(); |
| if (U.ugt(UINT64_MAX)) |
| return error("element too large, limit is " + Twine(UINT64_MAX)); |
| Elements.push_back(U.getZExtValue()); |
| lex(); |
| |
| } while (consumeIfPresent(MIToken::comma)); |
| } |
| |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| |
| Expr = DIExpression::get(MF.getFunction().getContext(), Elements); |
| return false; |
| } |
| |
| bool MIParser::parseDILocation(MDNode *&Loc) { |
| assert(Token.is(MIToken::md_dilocation)); |
| lex(); |
| |
| bool HaveLine = false; |
| unsigned Line = 0; |
| unsigned Column = 0; |
| MDNode *Scope = nullptr; |
| MDNode *InlinedAt = nullptr; |
| bool ImplicitCode = false; |
| |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| |
| if (Token.isNot(MIToken::rparen)) { |
| do { |
| if (Token.is(MIToken::Identifier)) { |
| if (Token.stringValue() == "line") { |
| lex(); |
| if (expectAndConsume(MIToken::colon)) |
| return true; |
| if (Token.isNot(MIToken::IntegerLiteral) || |
| Token.integerValue().isSigned()) |
| return error("expected unsigned integer"); |
| Line = Token.integerValue().getZExtValue(); |
| HaveLine = true; |
| lex(); |
| continue; |
| } |
| if (Token.stringValue() == "column") { |
| lex(); |
| if (expectAndConsume(MIToken::colon)) |
| return true; |
| if (Token.isNot(MIToken::IntegerLiteral) || |
| Token.integerValue().isSigned()) |
| return error("expected unsigned integer"); |
| Column = Token.integerValue().getZExtValue(); |
| lex(); |
| continue; |
| } |
| if (Token.stringValue() == "scope") { |
| lex(); |
| if (expectAndConsume(MIToken::colon)) |
| return true; |
| if (parseMDNode(Scope)) |
| return error("expected metadata node"); |
| if (!isa<DIScope>(Scope)) |
| return error("expected DIScope node"); |
| continue; |
| } |
| if (Token.stringValue() == "inlinedAt") { |
| lex(); |
| if (expectAndConsume(MIToken::colon)) |
| return true; |
| if (Token.is(MIToken::exclaim)) { |
| if (parseMDNode(InlinedAt)) |
| return true; |
| } else if (Token.is(MIToken::md_dilocation)) { |
| if (parseDILocation(InlinedAt)) |
| return true; |
| } else |
| return error("expected metadata node"); |
| if (!isa<DILocation>(InlinedAt)) |
| return error("expected DILocation node"); |
| continue; |
| } |
| if (Token.stringValue() == "isImplicitCode") { |
| lex(); |
| if (expectAndConsume(MIToken::colon)) |
| return true; |
| if (!Token.is(MIToken::Identifier)) |
| return error("expected true/false"); |
| // As far as I can see, we don't have any existing need for parsing |
| // true/false in MIR yet. Do it ad-hoc until there's something else |
| // that needs it. |
| if (Token.stringValue() == "true") |
| ImplicitCode = true; |
| else if (Token.stringValue() == "false") |
| ImplicitCode = false; |
| else |
| return error("expected true/false"); |
| lex(); |
| continue; |
| } |
| } |
| return error(Twine("invalid DILocation argument '") + |
| Token.stringValue() + "'"); |
| } while (consumeIfPresent(MIToken::comma)); |
| } |
| |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| |
| if (!HaveLine) |
| return error("DILocation requires line number"); |
| if (!Scope) |
| return error("DILocation requires a scope"); |
| |
| Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, |
| InlinedAt, ImplicitCode); |
| return false; |
| } |
| |
| bool MIParser::parseMetadataOperand(MachineOperand &Dest) { |
| MDNode *Node = nullptr; |
| if (Token.is(MIToken::exclaim)) { |
| if (parseMDNode(Node)) |
| return true; |
| } else if (Token.is(MIToken::md_diexpr)) { |
| if (parseDIExpression(Node)) |
| return true; |
| } |
| Dest = MachineOperand::CreateMetadata(Node); |
| return false; |
| } |
| |
| bool MIParser::parseCFIOffset(int &Offset) { |
| if (Token.isNot(MIToken::IntegerLiteral)) |
| return error("expected a cfi offset"); |
| if (Token.integerValue().getMinSignedBits() > 32) |
| return error("expected a 32 bit integer (the cfi offset is too large)"); |
| Offset = (int)Token.integerValue().getExtValue(); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseCFIRegister(Register &Reg) { |
| if (Token.isNot(MIToken::NamedRegister)) |
| return error("expected a cfi register"); |
| Register LLVMReg; |
| if (parseNamedRegister(LLVMReg)) |
| return true; |
| const auto *TRI = MF.getSubtarget().getRegisterInfo(); |
| assert(TRI && "Expected target register info"); |
| int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); |
| if (DwarfReg < 0) |
| return error("invalid DWARF register"); |
| Reg = (unsigned)DwarfReg; |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) { |
| if (Token.isNot(MIToken::IntegerLiteral)) |
| return error("expected a cfi address space literal"); |
| if (Token.integerValue().isSigned()) |
| return error("expected an unsigned integer (cfi address space)"); |
| AddressSpace = Token.integerValue().getZExtValue(); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseCFIEscapeValues(std::string &Values) { |
| do { |
| if (Token.isNot(MIToken::HexLiteral)) |
| return error("expected a hexadecimal literal"); |
| unsigned Value; |
| if (getUnsigned(Value)) |
| return true; |
| if (Value > UINT8_MAX) |
| return error("expected a 8-bit integer (too large)"); |
| Values.push_back(static_cast<uint8_t>(Value)); |
| lex(); |
| } while (consumeIfPresent(MIToken::comma)); |
| return false; |
| } |
| |
| bool MIParser::parseCFIOperand(MachineOperand &Dest) { |
| auto Kind = Token.kind(); |
| lex(); |
| int Offset; |
| Register Reg; |
| unsigned AddressSpace; |
| unsigned CFIIndex; |
| switch (Kind) { |
| case MIToken::kw_cfi_same_value: |
| if (parseCFIRegister(Reg)) |
| return true; |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); |
| break; |
| case MIToken::kw_cfi_offset: |
| if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || |
| parseCFIOffset(Offset)) |
| return true; |
| CFIIndex = |
| MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); |
| break; |
| case MIToken::kw_cfi_rel_offset: |
| if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || |
| parseCFIOffset(Offset)) |
| return true; |
| CFIIndex = MF.addFrameInst( |
| MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); |
| break; |
| case MIToken::kw_cfi_def_cfa_register: |
| if (parseCFIRegister(Reg)) |
| return true; |
| CFIIndex = |
| MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); |
| break; |
| case MIToken::kw_cfi_def_cfa_offset: |
| if (parseCFIOffset(Offset)) |
| return true; |
| CFIIndex = |
| MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); |
| break; |
| case MIToken::kw_cfi_adjust_cfa_offset: |
| if (parseCFIOffset(Offset)) |
| return true; |
| CFIIndex = MF.addFrameInst( |
| MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); |
| break; |
| case MIToken::kw_cfi_def_cfa: |
| if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || |
| parseCFIOffset(Offset)) |
| return true; |
| CFIIndex = |
| MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); |
| break; |
| case MIToken::kw_cfi_llvm_def_aspace_cfa: |
| if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || |
| parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) || |
| parseCFIAddressSpace(AddressSpace)) |
| return true; |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa( |
| nullptr, Reg, Offset, AddressSpace)); |
| break; |
| case MIToken::kw_cfi_remember_state: |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); |
| break; |
| case MIToken::kw_cfi_restore: |
| if (parseCFIRegister(Reg)) |
| return true; |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); |
| break; |
| case MIToken::kw_cfi_restore_state: |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); |
| break; |
| case MIToken::kw_cfi_undefined: |
| if (parseCFIRegister(Reg)) |
| return true; |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); |
| break; |
| case MIToken::kw_cfi_register: { |
| Register Reg2; |
| if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || |
| parseCFIRegister(Reg2)) |
| return true; |
| |
| CFIIndex = |
| MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); |
| break; |
| } |
| case MIToken::kw_cfi_window_save: |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); |
| break; |
| case MIToken::kw_cfi_aarch64_negate_ra_sign_state: |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); |
| break; |
| case MIToken::kw_cfi_escape: { |
| std::string Values; |
| if (parseCFIEscapeValues(Values)) |
| return true; |
| CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); |
| break; |
| } |
| default: |
| // TODO: Parse the other CFI operands. |
| llvm_unreachable("The current token should be a cfi operand"); |
| } |
| Dest = MachineOperand::CreateCFIIndex(CFIIndex); |
| return false; |
| } |
| |
| bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { |
| switch (Token.kind()) { |
| case MIToken::NamedIRBlock: { |
| BB = dyn_cast_or_null<BasicBlock>( |
| F.getValueSymbolTable()->lookup(Token.stringValue())); |
| if (!BB) |
| return error(Twine("use of undefined IR block '") + Token.range() + "'"); |
| break; |
| } |
| case MIToken::IRBlock: { |
| unsigned SlotNumber = 0; |
| if (getUnsigned(SlotNumber)) |
| return true; |
| BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); |
| if (!BB) |
| return error(Twine("use of undefined IR block '%ir-block.") + |
| Twine(SlotNumber) + "'"); |
| break; |
| } |
| default: |
| llvm_unreachable("The current token should be an IR block reference"); |
| } |
| return false; |
| } |
| |
| bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::kw_blockaddress)); |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| if (Token.isNot(MIToken::GlobalValue) && |
| Token.isNot(MIToken::NamedGlobalValue)) |
| return error("expected a global value"); |
| GlobalValue *GV = nullptr; |
| if (parseGlobalValue(GV)) |
| return true; |
| auto *F = dyn_cast<Function>(GV); |
| if (!F) |
| return error("expected an IR function reference"); |
| lex(); |
| if (expectAndConsume(MIToken::comma)) |
| return true; |
| BasicBlock *BB = nullptr; |
| if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) |
| return error("expected an IR block reference"); |
| if (parseIRBlock(BB, *F)) |
| return true; |
| lex(); |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); |
| if (parseOperandsOffset(Dest)) |
| return true; |
| return false; |
| } |
| |
| bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::kw_intrinsic)); |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return error("expected syntax intrinsic(@llvm.whatever)"); |
| |
| if (Token.isNot(MIToken::NamedGlobalValue)) |
| return error("expected syntax intrinsic(@llvm.whatever)"); |
| |
| std::string Name = std::string(Token.stringValue()); |
| lex(); |
| |
| if (expectAndConsume(MIToken::rparen)) |
| return error("expected ')' to terminate intrinsic name"); |
| |
| // Find out what intrinsic we're dealing with, first try the global namespace |
| // and then the target's private intrinsics if that fails. |
| const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); |
| Intrinsic::ID ID = Function::lookupIntrinsicID(Name); |
| if (ID == Intrinsic::not_intrinsic && TII) |
| ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); |
| |
| if (ID == Intrinsic::not_intrinsic) |
| return error("unknown intrinsic name"); |
| Dest = MachineOperand::CreateIntrinsicID(ID); |
| |
| return false; |
| } |
| |
| bool MIParser::parsePredicateOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); |
| bool IsFloat = Token.is(MIToken::kw_floatpred); |
| lex(); |
| |
| if (expectAndConsume(MIToken::lparen)) |
| return error("expected syntax intpred(whatever) or floatpred(whatever"); |
| |
| if (Token.isNot(MIToken::Identifier)) |
| return error("whatever"); |
| |
| CmpInst::Predicate Pred; |
| if (IsFloat) { |
| Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) |
| .Case("false", CmpInst::FCMP_FALSE) |
| .Case("oeq", CmpInst::FCMP_OEQ) |
| .Case("ogt", CmpInst::FCMP_OGT) |
| .Case("oge", CmpInst::FCMP_OGE) |
| .Case("olt", CmpInst::FCMP_OLT) |
| .Case("ole", CmpInst::FCMP_OLE) |
| .Case("one", CmpInst::FCMP_ONE) |
| .Case("ord", CmpInst::FCMP_ORD) |
| .Case("uno", CmpInst::FCMP_UNO) |
| .Case("ueq", CmpInst::FCMP_UEQ) |
| .Case("ugt", CmpInst::FCMP_UGT) |
| .Case("uge", CmpInst::FCMP_UGE) |
| .Case("ult", CmpInst::FCMP_ULT) |
| .Case("ule", CmpInst::FCMP_ULE) |
| .Case("une", CmpInst::FCMP_UNE) |
| .Case("true", CmpInst::FCMP_TRUE) |
| .Default(CmpInst::BAD_FCMP_PREDICATE); |
| if (!CmpInst::isFPPredicate(Pred)) |
| return error("invalid floating-point predicate"); |
| } else { |
| Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) |
| .Case("eq", CmpInst::ICMP_EQ) |
| .Case("ne", CmpInst::ICMP_NE) |
| .Case("sgt", CmpInst::ICMP_SGT) |
| .Case("sge", CmpInst::ICMP_SGE) |
| .Case("slt", CmpInst::ICMP_SLT) |
| .Case("sle", CmpInst::ICMP_SLE) |
| .Case("ugt", CmpInst::ICMP_UGT) |
| .Case("uge", CmpInst::ICMP_UGE) |
| .Case("ult", CmpInst::ICMP_ULT) |
| .Case("ule", CmpInst::ICMP_ULE) |
| .Default(CmpInst::BAD_ICMP_PREDICATE); |
| if (!CmpInst::isIntPredicate(Pred)) |
| return error("invalid integer predicate"); |
| } |
| |
| lex(); |
| Dest = MachineOperand::CreatePredicate(Pred); |
| if (expectAndConsume(MIToken::rparen)) |
| return error("predicate should be terminated by ')'."); |
| |
| return false; |
| } |
| |
| bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::kw_shufflemask)); |
| |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return error("expected syntax shufflemask(<integer or undef>, ...)"); |
| |
| SmallVector<int, 32> ShufMask; |
| do { |
| if (Token.is(MIToken::kw_undef)) { |
| ShufMask.push_back(-1); |
| } else if (Token.is(MIToken::IntegerLiteral)) { |
| const APSInt &Int = Token.integerValue(); |
| ShufMask.push_back(Int.getExtValue()); |
| } else |
| return error("expected integer constant"); |
| |
| lex(); |
| } while (consumeIfPresent(MIToken::comma)); |
| |
| if (expectAndConsume(MIToken::rparen)) |
| return error("shufflemask should be terminated by ')'."); |
| |
| ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); |
| Dest = MachineOperand::CreateShuffleMask(MaskAlloc); |
| return false; |
| } |
| |
| bool MIParser::parseDbgInstrRefOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::kw_dbg_instr_ref)); |
| |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)"); |
| |
| if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative()) |
| return error("expected unsigned integer for instruction index"); |
| uint64_t InstrIdx = Token.integerValue().getZExtValue(); |
| assert(InstrIdx <= std::numeric_limits<unsigned>::max() && |
| "Instruction reference's instruction index is too large"); |
| lex(); |
| |
| if (expectAndConsume(MIToken::comma)) |
| return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)"); |
| |
| if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative()) |
| return error("expected unsigned integer for operand index"); |
| uint64_t OpIdx = Token.integerValue().getZExtValue(); |
| assert(OpIdx <= std::numeric_limits<unsigned>::max() && |
| "Instruction reference's operand index is too large"); |
| lex(); |
| |
| if (expectAndConsume(MIToken::rparen)) |
| return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)"); |
| |
| Dest = MachineOperand::CreateDbgInstrRef(InstrIdx, OpIdx); |
| return false; |
| } |
| |
| bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::kw_target_index)); |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| if (Token.isNot(MIToken::Identifier)) |
| return error("expected the name of the target index"); |
| int Index = 0; |
| if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) |
| return error("use of undefined target index '" + Token.stringValue() + "'"); |
| lex(); |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); |
| if (parseOperandsOffset(Dest)) |
| return true; |
| return false; |
| } |
| |
| bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { |
| assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| |
| uint32_t *Mask = MF.allocateRegMask(); |
| do { |
| if (Token.isNot(MIToken::rparen)) { |
| if (Token.isNot(MIToken::NamedRegister)) |
| return error("expected a named register"); |
| Register Reg; |
| if (parseNamedRegister(Reg)) |
| return true; |
| lex(); |
| Mask[Reg / 32] |= 1U << (Reg % 32); |
| } |
| |
| // TODO: Report an error if the same register is used more than once. |
| } while (consumeIfPresent(MIToken::comma)); |
| |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| Dest = MachineOperand::CreateRegMask(Mask); |
| return false; |
| } |
| |
| bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { |
| assert(Token.is(MIToken::kw_liveout)); |
| uint32_t *Mask = MF.allocateRegMask(); |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| while (true) { |
| if (Token.isNot(MIToken::NamedRegister)) |
| return error("expected a named register"); |
| Register Reg; |
| if (parseNamedRegister(Reg)) |
| return true; |
| lex(); |
| Mask[Reg / 32] |= 1U << (Reg % 32); |
| // TODO: Report an error if the same register is used more than once. |
| if (Token.isNot(MIToken::comma)) |
| break; |
| lex(); |
| } |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| Dest = MachineOperand::CreateRegLiveOut(Mask); |
| return false; |
| } |
| |
| bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, |
| MachineOperand &Dest, |
| std::optional<unsigned> &TiedDefIdx) { |
| switch (Token.kind()) { |
| case MIToken::kw_implicit: |
| case MIToken::kw_implicit_define: |
| case MIToken::kw_def: |
| case MIToken::kw_dead: |
| case MIToken::kw_killed: |
| case MIToken::kw_undef: |
| case MIToken::kw_internal: |
| case MIToken::kw_early_clobber: |
| case MIToken::kw_debug_use: |
| case MIToken::kw_renamable: |
| case MIToken::underscore: |
| case MIToken::NamedRegister: |
| case MIToken::VirtualRegister: |
| case MIToken::NamedVirtualRegister: |
| return parseRegisterOperand(Dest, TiedDefIdx); |
| case MIToken::IntegerLiteral: |
| return parseImmediateOperand(Dest); |
| case MIToken::kw_half: |
| case MIToken::kw_float: |
| case MIToken::kw_double: |
| case MIToken::kw_x86_fp80: |
| case MIToken::kw_fp128: |
| case MIToken::kw_ppc_fp128: |
| return parseFPImmediateOperand(Dest); |
| case MIToken::MachineBasicBlock: |
| return parseMBBOperand(Dest); |
| case MIToken::StackObject: |
| return parseStackObjectOperand(Dest); |
| case MIToken::FixedStackObject: |
| return parseFixedStackObjectOperand(Dest); |
| case MIToken::GlobalValue: |
| case MIToken::NamedGlobalValue: |
| return parseGlobalAddressOperand(Dest); |
| case MIToken::ConstantPoolItem: |
| return parseConstantPoolIndexOperand(Dest); |
| case MIToken::JumpTableIndex: |
| return parseJumpTableIndexOperand(Dest); |
| case MIToken::ExternalSymbol: |
| return parseExternalSymbolOperand(Dest); |
| case MIToken::MCSymbol: |
| return parseMCSymbolOperand(Dest); |
| case MIToken::SubRegisterIndex: |
| return parseSubRegisterIndexOperand(Dest); |
| case MIToken::md_diexpr: |
| case MIToken::exclaim: |
| return parseMetadataOperand(Dest); |
| case MIToken::kw_cfi_same_value: |
| case MIToken::kw_cfi_offset: |
| case MIToken::kw_cfi_rel_offset: |
| case MIToken::kw_cfi_def_cfa_register: |
| case MIToken::kw_cfi_def_cfa_offset: |
| case MIToken::kw_cfi_adjust_cfa_offset: |
| case MIToken::kw_cfi_escape: |
| case MIToken::kw_cfi_def_cfa: |
| case MIToken::kw_cfi_llvm_def_aspace_cfa: |
| case MIToken::kw_cfi_register: |
| case MIToken::kw_cfi_remember_state: |
| case MIToken::kw_cfi_restore: |
| case MIToken::kw_cfi_restore_state: |
| case MIToken::kw_cfi_undefined: |
| case MIToken::kw_cfi_window_save: |
| case MIToken::kw_cfi_aarch64_negate_ra_sign_state: |
| return parseCFIOperand(Dest); |
| case MIToken::kw_blockaddress: |
| return parseBlockAddressOperand(Dest); |
| case MIToken::kw_intrinsic: |
| return parseIntrinsicOperand(Dest); |
| case MIToken::kw_target_index: |
| return parseTargetIndexOperand(Dest); |
| case MIToken::kw_liveout: |
| return parseLiveoutRegisterMaskOperand(Dest); |
| case MIToken::kw_floatpred: |
| case MIToken::kw_intpred: |
| return parsePredicateOperand(Dest); |
| case MIToken::kw_shufflemask: |
| return parseShuffleMaskOperand(Dest); |
| case MIToken::kw_dbg_instr_ref: |
| return parseDbgInstrRefOperand(Dest); |
| case MIToken::Error: |
| return true; |
| case MIToken::Identifier: |
| if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { |
| Dest = MachineOperand::CreateRegMask(RegMask); |
| lex(); |
| break; |
| } else if (Token.stringValue() == "CustomRegMask") { |
| return parseCustomRegisterMaskOperand(Dest); |
| } else |
| return parseTypedImmediateOperand(Dest); |
| case MIToken::dot: { |
| const auto *TII = MF.getSubtarget().getInstrInfo(); |
| if (const auto *Formatter = TII->getMIRFormatter()) { |
| return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); |
| } |
| [[fallthrough]]; |
| } |
| default: |
| // FIXME: Parse the MCSymbol machine operand. |
| return error("expected a machine operand"); |
| } |
| return false; |
| } |
| |
| bool MIParser::parseMachineOperandAndTargetFlags( |
| const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, |
| std::optional<unsigned> &TiedDefIdx) { |
| unsigned TF = 0; |
| bool HasTargetFlags = false; |
| if (Token.is(MIToken::kw_target_flags)) { |
| HasTargetFlags = true; |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| if (Token.isNot(MIToken::Identifier)) |
| return error("expected the name of the target flag"); |
| if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { |
| if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) |
| return error("use of undefined target flag '" + Token.stringValue() + |
| "'"); |
| } |
| lex(); |
| while (Token.is(MIToken::comma)) { |
| lex(); |
| if (Token.isNot(MIToken::Identifier)) |
| return error("expected the name of the target flag"); |
| unsigned BitFlag = 0; |
| if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) |
| return error("use of undefined target flag '" + Token.stringValue() + |
| "'"); |
| // TODO: Report an error when using a duplicate bit target flag. |
| TF |= BitFlag; |
| lex(); |
| } |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| } |
| auto Loc = Token.location(); |
| if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) |
| return true; |
| if (!HasTargetFlags) |
| return false; |
| if (Dest.isReg()) |
| return error(Loc, "register operands can't have target flags"); |
| Dest.setTargetFlags(TF); |
| return false; |
| } |
| |
| bool MIParser::parseOffset(int64_t &Offset) { |
| if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) |
| return false; |
| StringRef Sign = Token.range(); |
| bool IsNegative = Token.is(MIToken::minus); |
| lex(); |
| if (Token.isNot(MIToken::IntegerLiteral)) |
| return error("expected an integer literal after '" + Sign + "'"); |
| if (Token.integerValue().getMinSignedBits() > 64) |
| return error("expected 64-bit integer (too large)"); |
| Offset = Token.integerValue().getExtValue(); |
| if (IsNegative) |
| Offset = -Offset; |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseIRBlockAddressTaken(BasicBlock *&BB) { |
| assert(Token.is(MIToken::kw_ir_block_address_taken)); |
| lex(); |
| if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) |
| return error("expected basic block after 'ir_block_address_taken'"); |
| |
| if (parseIRBlock(BB, MF.getFunction())) |
| return true; |
| |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseAlignment(uint64_t &Alignment) { |
| assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); |
| lex(); |
| if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) |
| return error("expected an integer literal after 'align'"); |
| if (getUint64(Alignment)) |
| return true; |
| lex(); |
| |
| if (!isPowerOf2_64(Alignment)) |
| return error("expected a power-of-2 literal after 'align'"); |
| |
| return false; |
| } |
| |
| bool MIParser::parseAddrspace(unsigned &Addrspace) { |
| assert(Token.is(MIToken::kw_addrspace)); |
| lex(); |
| if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) |
| return error("expected an integer literal after 'addrspace'"); |
| if (getUnsigned(Addrspace)) |
| return true; |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseOperandsOffset(MachineOperand &Op) { |
| int64_t Offset = 0; |
| if (parseOffset(Offset)) |
| return true; |
| Op.setOffset(Offset); |
| return false; |
| } |
| |
| static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, |
| const Value *&V, ErrorCallbackType ErrCB) { |
| switch (Token.kind()) { |
| case MIToken::NamedIRValue: { |
| V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); |
| break; |
| } |
| case MIToken::IRValue: { |
| unsigned SlotNumber = 0; |
| if (getUnsigned(Token, SlotNumber, ErrCB)) |
| return true; |
| V = PFS.getIRValue(SlotNumber); |
| break; |
| } |
| case MIToken::NamedGlobalValue: |
| case MIToken::GlobalValue: { |
| GlobalValue *GV = nullptr; |
| if (parseGlobalValue(Token, PFS, GV, ErrCB)) |
| return true; |
| V = GV; |
| break; |
| } |
| case MIToken::QuotedIRValue: { |
| const Constant *C = nullptr; |
| if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) |
| return true; |
| V = C; |
| break; |
| } |
| case MIToken::kw_unknown_address: |
| V = nullptr; |
| return false; |
| default: |
| llvm_unreachable("The current token should be an IR block reference"); |
| } |
| if (!V) |
| return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); |
| return false; |
| } |
| |
| bool MIParser::parseIRValue(const Value *&V) { |
| return ::parseIRValue( |
| Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { |
| return error(Loc, Msg); |
| }); |
| } |
| |
| bool MIParser::getUint64(uint64_t &Result) { |
| if (Token.hasIntegerValue()) { |
| if (Token.integerValue().getActiveBits() > 64) |
| return error("expected 64-bit integer (too large)"); |
| Result = Token.integerValue().getZExtValue(); |
| return false; |
| } |
| if (Token.is(MIToken::HexLiteral)) { |
| APInt A; |
| if (getHexUint(A)) |
| return true; |
| if (A.getBitWidth() > 64) |
| return error("expected 64-bit integer (too large)"); |
| Result = A.getZExtValue(); |
| return false; |
| } |
| return true; |
| } |
| |
| bool MIParser::getHexUint(APInt &Result) { |
| return ::getHexUint(Token, Result); |
| } |
| |
| bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { |
| const auto OldFlags = Flags; |
| switch (Token.kind()) { |
| case MIToken::kw_volatile: |
| Flags |= MachineMemOperand::MOVolatile; |
| break; |
| case MIToken::kw_non_temporal: |
| Flags |= MachineMemOperand::MONonTemporal; |
| break; |
| case MIToken::kw_dereferenceable: |
| Flags |= MachineMemOperand::MODereferenceable; |
| break; |
| case MIToken::kw_invariant: |
| Flags |= MachineMemOperand::MOInvariant; |
| break; |
| case MIToken::StringConstant: { |
| MachineMemOperand::Flags TF; |
| if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) |
| return error("use of undefined target MMO flag '" + Token.stringValue() + |
| "'"); |
| Flags |= TF; |
| break; |
| } |
| default: |
| llvm_unreachable("The current token should be a memory operand flag"); |
| } |
| if (OldFlags == Flags) |
| // We know that the same flag is specified more than once when the flags |
| // weren't modified. |
| return error("duplicate '" + Token.stringValue() + "' memory operand flag"); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { |
| switch (Token.kind()) { |
| case MIToken::kw_stack: |
| PSV = MF.getPSVManager().getStack(); |
| break; |
| case MIToken::kw_got: |
| PSV = MF.getPSVManager().getGOT(); |
| break; |
| case MIToken::kw_jump_table: |
| PSV = MF.getPSVManager().getJumpTable(); |
| break; |
| case MIToken::kw_constant_pool: |
| PSV = MF.getPSVManager().getConstantPool(); |
| break; |
| case MIToken::FixedStackObject: { |
| int FI; |
| if (parseFixedStackFrameIndex(FI)) |
| return true; |
| PSV = MF.getPSVManager().getFixedStack(FI); |
| // The token was already consumed, so use return here instead of break. |
| return false; |
| } |
| case MIToken::StackObject: { |
| int FI; |
| if (parseStackFrameIndex(FI)) |
| return true; |
| PSV = MF.getPSVManager().getFixedStack(FI); |
| // The token was already consumed, so use return here instead of break. |
| return false; |
| } |
| case MIToken::kw_call_entry: |
| lex(); |
| switch (Token.kind()) { |
| case MIToken::GlobalValue: |
| case MIToken::NamedGlobalValue: { |
| GlobalValue *GV = nullptr; |
| if (parseGlobalValue(GV)) |
| return true; |
| PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); |
| break; |
| } |
| case MIToken::ExternalSymbol: |
| PSV = MF.getPSVManager().getExternalSymbolCallEntry( |
| MF.createExternalSymbolName(Token.stringValue())); |
| break; |
| default: |
| return error( |
| "expected a global value or an external symbol after 'call-entry'"); |
| } |
| break; |
| case MIToken::kw_custom: { |
| lex(); |
| const auto *TII = MF.getSubtarget().getInstrInfo(); |
| if (const auto *Formatter = TII->getMIRFormatter()) { |
| if (Formatter->parseCustomPseudoSourceValue( |
| Token.stringValue(), MF, PFS, PSV, |
| [this](StringRef::iterator Loc, const Twine &Msg) -> bool { |
| return error(Loc, Msg); |
| })) |
| return true; |
| } else |
| return error("unable to parse target custom pseudo source value"); |
| break; |
| } |
| default: |
| llvm_unreachable("The current token should be pseudo source value"); |
| } |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { |
| if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || |
| Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || |
| Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || |
| Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { |
| const PseudoSourceValue *PSV = nullptr; |
| if (parseMemoryPseudoSourceValue(PSV)) |
| return true; |
| int64_t Offset = 0; |
| if (parseOffset(Offset)) |
| return true; |
| Dest = MachinePointerInfo(PSV, Offset); |
| return false; |
| } |
| if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && |
| Token.isNot(MIToken::GlobalValue) && |
| Token.isNot(MIToken::NamedGlobalValue) && |
| Token.isNot(MIToken::QuotedIRValue) && |
| Token.isNot(MIToken::kw_unknown_address)) |
| return error("expected an IR value reference"); |
| const Value *V = nullptr; |
| if (parseIRValue(V)) |
| return true; |
| if (V && !V->getType()->isPointerTy()) |
| return error("expected a pointer IR value"); |
| lex(); |
| int64_t Offset = 0; |
| if (parseOffset(Offset)) |
| return true; |
| Dest = MachinePointerInfo(V, Offset); |
| return false; |
| } |
| |
| bool MIParser::parseOptionalScope(LLVMContext &Context, |
| SyncScope::ID &SSID) { |
| SSID = SyncScope::System; |
| if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { |
| lex(); |
| if (expectAndConsume(MIToken::lparen)) |
| return error("expected '(' in syncscope"); |
| |
| std::string SSN; |
| if (parseStringConstant(SSN)) |
| return true; |
| |
| SSID = Context.getOrInsertSyncScopeID(SSN); |
| if (expectAndConsume(MIToken::rparen)) |
| return error("expected ')' in syncscope"); |
| } |
| |
| return false; |
| } |
| |
| bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { |
| Order = AtomicOrdering::NotAtomic; |
| if (Token.isNot(MIToken::Identifier)) |
| return false; |
| |
| Order = StringSwitch<AtomicOrdering>(Token.stringValue()) |
| .Case("unordered", AtomicOrdering::Unordered) |
| .Case("monotonic", AtomicOrdering::Monotonic) |
| .Case("acquire", AtomicOrdering::Acquire) |
| .Case("release", AtomicOrdering::Release) |
| .Case("acq_rel", AtomicOrdering::AcquireRelease) |
| .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) |
| .Default(AtomicOrdering::NotAtomic); |
| |
| if (Order != AtomicOrdering::NotAtomic) { |
| lex(); |
| return false; |
| } |
| |
| return error("expected an atomic scope, ordering or a size specification"); |
| } |
| |
| bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| MachineMemOperand::Flags Flags = MachineMemOperand::MONone; |
| while (Token.isMemoryOperandFlag()) { |
| if (parseMemoryOperandFlag(Flags)) |
| return true; |
| } |
| if (Token.isNot(MIToken::Identifier) || |
| (Token.stringValue() != "load" && Token.stringValue() != "store")) |
| return error("expected 'load' or 'store' memory operation"); |
| if (Token.stringValue() == "load") |
| Flags |= MachineMemOperand::MOLoad; |
| else |
| Flags |= MachineMemOperand::MOStore; |
| lex(); |
| |
| // Optional 'store' for operands that both load and store. |
| if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { |
| Flags |= MachineMemOperand::MOStore; |
| lex(); |
| } |
| |
| // Optional synchronization scope. |
| SyncScope::ID SSID; |
| if (parseOptionalScope(MF.getFunction().getContext(), SSID)) |
| return true; |
| |
| // Up to two atomic orderings (cmpxchg provides guarantees on failure). |
| AtomicOrdering Order, FailureOrder; |
| if (parseOptionalAtomicOrdering(Order)) |
| return true; |
| |
| if (parseOptionalAtomicOrdering(FailureOrder)) |
| return true; |
| |
| LLT MemoryType; |
| if (Token.isNot(MIToken::IntegerLiteral) && |
| Token.isNot(MIToken::kw_unknown_size) && |
| Token.isNot(MIToken::lparen)) |
| return error("expected memory LLT, the size integer literal or 'unknown-size' after " |
| "memory operation"); |
| |
| uint64_t Size = MemoryLocation::UnknownSize; |
| if (Token.is(MIToken::IntegerLiteral)) { |
| if (getUint64(Size)) |
| return true; |
| |
| // Convert from bytes to bits for storage. |
| MemoryType = LLT::scalar(8 * Size); |
| lex(); |
| } else if (Token.is(MIToken::kw_unknown_size)) { |
| Size = MemoryLocation::UnknownSize; |
| lex(); |
| } else { |
| if (expectAndConsume(MIToken::lparen)) |
| return true; |
| if (parseLowLevelType(Token.location(), MemoryType)) |
| return true; |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| |
| Size = MemoryType.getSizeInBytes(); |
| } |
| |
| MachinePointerInfo Ptr = MachinePointerInfo(); |
| if (Token.is(MIToken::Identifier)) { |
| const char *Word = |
| ((Flags & MachineMemOperand::MOLoad) && |
| (Flags & MachineMemOperand::MOStore)) |
| ? "on" |
| : Flags & MachineMemOperand::MOLoad ? "from" : "into"; |
| if (Token.stringValue() != Word) |
| return error(Twine("expected '") + Word + "'"); |
| lex(); |
| |
| if (parseMachinePointerInfo(Ptr)) |
| return true; |
| } |
| uint64_t BaseAlignment = |
| (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1); |
| AAMDNodes AAInfo; |
| MDNode *Range = nullptr; |
| while (consumeIfPresent(MIToken::comma)) { |
| switch (Token.kind()) { |
| case MIToken::kw_align: { |
| // align is printed if it is different than size. |
| uint64_t Alignment; |
| if (parseAlignment(Alignment)) |
| return true; |
| if (Ptr.Offset & (Alignment - 1)) { |
| // MachineMemOperand::getAlign never returns a value greater than the |
| // alignment of offset, so this just guards against hand-written MIR |
| // that specifies a large "align" value when it should probably use |
| // "basealign" instead. |
| return error("specified alignment is more aligned than offset"); |
| } |
| BaseAlignment = Alignment; |
| break; |
| } |
| case MIToken::kw_basealign: |
| // basealign is printed if it is different than align. |
| if (parseAlignment(BaseAlignment)) |
| return true; |
| break; |
| case MIToken::kw_addrspace: |
| if (parseAddrspace(Ptr.AddrSpace)) |
| return true; |
| break; |
| case MIToken::md_tbaa: |
| lex(); |
| if (parseMDNode(AAInfo.TBAA)) |
| return true; |
| break; |
| case MIToken::md_alias_scope: |
| lex(); |
| if (parseMDNode(AAInfo.Scope)) |
| return true; |
| break; |
| case MIToken::md_noalias: |
| lex(); |
| if (parseMDNode(AAInfo.NoAlias)) |
| return true; |
| break; |
| case MIToken::md_range: |
| lex(); |
| if (parseMDNode(Range)) |
| return true; |
| break; |
| // TODO: Report an error on duplicate metadata nodes. |
| default: |
| return error("expected 'align' or '!tbaa' or '!alias.scope' or " |
| "'!noalias' or '!range'"); |
| } |
| } |
| if (expectAndConsume(MIToken::rparen)) |
| return true; |
| Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment), |
| AAInfo, Range, SSID, Order, FailureOrder); |
| return false; |
| } |
| |
| bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { |
| assert((Token.is(MIToken::kw_pre_instr_symbol) || |
| Token.is(MIToken::kw_post_instr_symbol)) && |
| "Invalid token for a pre- post-instruction symbol!"); |
| lex(); |
| if (Token.isNot(MIToken::MCSymbol)) |
| return error("expected a symbol after 'pre-instr-symbol'"); |
| Symbol = getOrCreateMCSymbol(Token.stringValue()); |
| lex(); |
| if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || |
| Token.is(MIToken::lbrace)) |
| return false; |
| if (Token.isNot(MIToken::comma)) |
| return error("expected ',' before the next machine operand"); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parseHeapAllocMarker(MDNode *&Node) { |
| assert(Token.is(MIToken::kw_heap_alloc_marker) && |
| "Invalid token for a heap alloc marker!"); |
| lex(); |
| parseMDNode(Node); |
| if (!Node) |
| return error("expected a MDNode after 'heap-alloc-marker'"); |
| if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || |
| Token.is(MIToken::lbrace)) |
| return false; |
| if (Token.isNot(MIToken::comma)) |
| return error("expected ',' before the next machine operand"); |
| lex(); |
| return false; |
| } |
| |
| bool MIParser::parsePCSections(MDNode *&Node) { |
| assert(Token.is(MIToken::kw_pcsections) && |
| "Invalid token for a PC sections!"); |
| lex(); |
| parseMDNode(Node); |
| if (!Node) |
| return error("expected a MDNode after 'pcsections'"); |
| if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || |
| Token.is(MIToken::lbrace)) |
| return false; |
| if (Token.isNot(MIToken::comma)) |
| return error("expected ',' before the next machine operand"); |
| lex(); |
| return false; |
| } |
| |
| static void initSlots2BasicBlocks( |
| const Function &F, |
| DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { |
| ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); |
| MST.incorporateFunction(F); |
| for (const auto &BB : F) { |
| if (BB.hasName()) |
| continue; |
| int Slot = MST.getLocalSlot(&BB); |
| if (Slot == -1) |
| continue; |
| Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); |
| } |
| } |
| |
| static const BasicBlock *getIRBlockFromSlot( |
| unsigned Slot, |
| const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { |
| return Slots2BasicBlocks.lookup(Slot); |
| } |
| |
| const BasicBlock *MIParser::getIRBlock(unsigned Slot) { |
| if (Slots2BasicBlocks.empty()) |
| initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); |
| return getIRBlockFromSlot(Slot, Slots2BasicBlocks); |
| } |
| |
| const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { |
| if (&F == &MF.getFunction()) |
| return getIRBlock(Slot); |
| DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; |
| initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); |
| return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); |
| } |
| |
| MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { |
| // FIXME: Currently we can't recognize temporary or local symbols and call all |
| // of the appropriate forms to create them. However, this handles basic cases |
| // well as most of the special aspects are recognized by a prefix on their |
| // name, and the input names should already be unique. For test cases, keeping |
| // the symbol name out of the symbol table isn't terribly important. |
| return MF.getContext().getOrCreateSymbol(Name); |
| } |
| |
| bool MIParser::parseStringConstant(std::string &Result) { |
| if (Token.isNot(MIToken::StringConstant)) |
| return error("expected string constant"); |
| Result = std::string(Token.stringValue()); |
| lex(); |
| return false; |
| } |
| |
| bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, |
| StringRef Src, |
| SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); |
| } |
| |
| bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, |
| StringRef Src, SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src).parseBasicBlocks(); |
| } |
| |
| bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, |
| MachineBasicBlock *&MBB, StringRef Src, |
| SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); |
| } |
| |
| bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, |
| Register &Reg, StringRef Src, |
| SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); |
| } |
| |
| bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, |
| Register &Reg, StringRef Src, |
| SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); |
| } |
| |
| bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, |
| VRegInfo *&Info, StringRef Src, |
| SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); |
| } |
| |
| bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, |
| int &FI, StringRef Src, |
| SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); |
| } |
| |
| bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, |
| MDNode *&Node, StringRef Src, SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); |
| } |
| |
| bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, |
| SMRange SrcRange, SMDiagnostic &Error) { |
| return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata(); |
| } |
| |
| bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, |
| PerFunctionMIParsingState &PFS, const Value *&V, |
| ErrorCallbackType ErrorCallback) { |
| MIToken Token; |
| Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { |
| ErrorCallback(Loc, Msg); |
| }); |
| V = nullptr; |
| |
| return ::parseIRValue(Token, PFS, V, ErrorCallback); |
| } |