blob: 34fb1d286a5829433059be77ce970c3ab834838a [file] [log] [blame]
//=- llvm/CodeGen/DFAPacketizer.cpp - DFA Packetizer for VLIW -*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This class implements a deterministic finite automaton (DFA) based
// packetizing mechanism for VLIW architectures. It provides APIs to
// determine whether there exists a legal mapping of instructions to
// functional unit assignments in a packet. The DFA is auto-generated from
// the target's Schedule.td file.
//
// A DFA consists of 3 major elements: states, inputs, and transitions. For
// the packetizing mechanism, the input is the set of instruction classes for
// a target. The state models all possible combinations of functional unit
// consumption for a given set of instructions in a packet. A transition
// models the addition of an instruction to a packet. In the DFA constructed
// by this class, if an instruction can be added to a packet, then a valid
// transition exists from the corresponding state. Invalid transitions
// indicate that the instruction cannot be added to the current packet.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "packets"
static cl::opt<unsigned> InstrLimit("dfa-instr-limit", cl::Hidden,
cl::init(0), cl::desc("If present, stops packetizing after N instructions"));
static unsigned InstrCount = 0;
// Check if the resources occupied by a MCInstrDesc are available in the
// current state.
bool DFAPacketizer::canReserveResources(const MCInstrDesc *MID) {
unsigned Action = ItinActions[MID->getSchedClass()];
if (MID->getSchedClass() == 0 || Action == 0)
return false;
return A.canAdd(Action);
}
// Reserve the resources occupied by a MCInstrDesc and change the current
// state to reflect that change.
void DFAPacketizer::reserveResources(const MCInstrDesc *MID) {
unsigned Action = ItinActions[MID->getSchedClass()];
if (MID->getSchedClass() == 0 || Action == 0)
return;
A.add(Action);
}
// Check if the resources occupied by a machine instruction are available
// in the current state.
bool DFAPacketizer::canReserveResources(MachineInstr &MI) {
const MCInstrDesc &MID = MI.getDesc();
return canReserveResources(&MID);
}
// Reserve the resources occupied by a machine instruction and change the
// current state to reflect that change.
void DFAPacketizer::reserveResources(MachineInstr &MI) {
const MCInstrDesc &MID = MI.getDesc();
reserveResources(&MID);
}
unsigned DFAPacketizer::getUsedResources(unsigned InstIdx) {
ArrayRef<NfaPath> NfaPaths = A.getNfaPaths();
assert(!NfaPaths.empty() && "Invalid bundle!");
const NfaPath &RS = NfaPaths.front();
// RS stores the cumulative resources used up to and including the I'th
// instruction. The 0th instruction is the base case.
if (InstIdx == 0)
return RS[0];
// Return the difference between the cumulative resources used by InstIdx and
// its predecessor.
return RS[InstIdx] ^ RS[InstIdx - 1];
}
namespace llvm {
// This class extends ScheduleDAGInstrs and overrides the schedule method
// to build the dependence graph.
class DefaultVLIWScheduler : public ScheduleDAGInstrs {
private:
AAResults *AA;
/// Ordered list of DAG postprocessing steps.
std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
public:
DefaultVLIWScheduler(MachineFunction &MF, MachineLoopInfo &MLI,
AAResults *AA);
// Actual scheduling work.
void schedule() override;
/// DefaultVLIWScheduler takes ownership of the Mutation object.
void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
Mutations.push_back(std::move(Mutation));
}
protected:
void postprocessDAG();
};
} // end namespace llvm
DefaultVLIWScheduler::DefaultVLIWScheduler(MachineFunction &MF,
MachineLoopInfo &MLI,
AAResults *AA)
: ScheduleDAGInstrs(MF, &MLI), AA(AA) {
CanHandleTerminators = true;
}
/// Apply each ScheduleDAGMutation step in order.
void DefaultVLIWScheduler::postprocessDAG() {
for (auto &M : Mutations)
M->apply(this);
}
void DefaultVLIWScheduler::schedule() {
// Build the scheduling graph.
buildSchedGraph(AA);
postprocessDAG();
}
VLIWPacketizerList::VLIWPacketizerList(MachineFunction &mf,
MachineLoopInfo &mli, AAResults *aa)
: MF(mf), TII(mf.getSubtarget().getInstrInfo()), AA(aa) {
ResourceTracker = TII->CreateTargetScheduleState(MF.getSubtarget());
ResourceTracker->setTrackResources(true);
VLIWScheduler = new DefaultVLIWScheduler(MF, mli, AA);
}
VLIWPacketizerList::~VLIWPacketizerList() {
delete VLIWScheduler;
delete ResourceTracker;
}
// End the current packet, bundle packet instructions and reset DFA state.
void VLIWPacketizerList::endPacket(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI) {
LLVM_DEBUG({
if (!CurrentPacketMIs.empty()) {
dbgs() << "Finalizing packet:\n";
unsigned Idx = 0;
for (MachineInstr *MI : CurrentPacketMIs) {
unsigned R = ResourceTracker->getUsedResources(Idx++);
dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
}
}
});
if (CurrentPacketMIs.size() > 1) {
MachineInstr &MIFirst = *CurrentPacketMIs.front();
finalizeBundle(*MBB, MIFirst.getIterator(), MI.getInstrIterator());
}
CurrentPacketMIs.clear();
ResourceTracker->clearResources();
LLVM_DEBUG(dbgs() << "End packet\n");
}
// Bundle machine instructions into packets.
void VLIWPacketizerList::PacketizeMIs(MachineBasicBlock *MBB,
MachineBasicBlock::iterator BeginItr,
MachineBasicBlock::iterator EndItr) {
assert(VLIWScheduler && "VLIW Scheduler is not initialized!");
VLIWScheduler->startBlock(MBB);
VLIWScheduler->enterRegion(MBB, BeginItr, EndItr,
std::distance(BeginItr, EndItr));
VLIWScheduler->schedule();
LLVM_DEBUG({
dbgs() << "Scheduling DAG of the packetize region\n";
VLIWScheduler->dump();
});
// Generate MI -> SU map.
MIToSUnit.clear();
for (SUnit &SU : VLIWScheduler->SUnits)
MIToSUnit[SU.getInstr()] = &SU;
bool LimitPresent = InstrLimit.getPosition();
// The main packetizer loop.
for (; BeginItr != EndItr; ++BeginItr) {
if (LimitPresent) {
if (InstrCount >= InstrLimit) {
EndItr = BeginItr;
break;
}
InstrCount++;
}
MachineInstr &MI = *BeginItr;
initPacketizerState();
// End the current packet if needed.
if (isSoloInstruction(MI)) {
endPacket(MBB, MI);
continue;
}
// Ignore pseudo instructions.
if (ignorePseudoInstruction(MI, MBB))
continue;
SUnit *SUI = MIToSUnit[&MI];
assert(SUI && "Missing SUnit Info!");
// Ask DFA if machine resource is available for MI.
LLVM_DEBUG(dbgs() << "Checking resources for adding MI to packet " << MI);
bool ResourceAvail = ResourceTracker->canReserveResources(MI);
LLVM_DEBUG({
if (ResourceAvail)
dbgs() << " Resources are available for adding MI to packet\n";
else
dbgs() << " Resources NOT available\n";
});
if (ResourceAvail && shouldAddToPacket(MI)) {
// Dependency check for MI with instructions in CurrentPacketMIs.
for (auto *MJ : CurrentPacketMIs) {
SUnit *SUJ = MIToSUnit[MJ];
assert(SUJ && "Missing SUnit Info!");
LLVM_DEBUG(dbgs() << " Checking against MJ " << *MJ);
// Is it legal to packetize SUI and SUJ together.
if (!isLegalToPacketizeTogether(SUI, SUJ)) {
LLVM_DEBUG(dbgs() << " Not legal to add MI, try to prune\n");
// Allow packetization if dependency can be pruned.
if (!isLegalToPruneDependencies(SUI, SUJ)) {
// End the packet if dependency cannot be pruned.
LLVM_DEBUG(dbgs()
<< " Could not prune dependencies for adding MI\n");
endPacket(MBB, MI);
break;
}
LLVM_DEBUG(dbgs() << " Pruned dependence for adding MI\n");
}
}
} else {
LLVM_DEBUG(if (ResourceAvail) dbgs()
<< "Resources are available, but instruction should not be "
"added to packet\n "
<< MI);
// End the packet if resource is not available, or if the instruction
// shoud not be added to the current packet.
endPacket(MBB, MI);
}
// Add MI to the current packet.
LLVM_DEBUG(dbgs() << "* Adding MI to packet " << MI << '\n');
BeginItr = addToPacket(MI);
} // For all instructions in the packetization range.
// End any packet left behind.
endPacket(MBB, EndItr);
VLIWScheduler->exitRegion();
VLIWScheduler->finishBlock();
}
bool VLIWPacketizerList::alias(const MachineMemOperand &Op1,
const MachineMemOperand &Op2,
bool UseTBAA) const {
if (!Op1.getValue() || !Op2.getValue())
return true;
int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;
AliasResult AAResult =
AA->alias(MemoryLocation(Op1.getValue(), Overlapa,
UseTBAA ? Op1.getAAInfo() : AAMDNodes()),
MemoryLocation(Op2.getValue(), Overlapb,
UseTBAA ? Op2.getAAInfo() : AAMDNodes()));
return AAResult != AliasResult::NoAlias;
}
bool VLIWPacketizerList::alias(const MachineInstr &MI1,
const MachineInstr &MI2,
bool UseTBAA) const {
if (MI1.memoperands_empty() || MI2.memoperands_empty())
return true;
for (const MachineMemOperand *Op1 : MI1.memoperands())
for (const MachineMemOperand *Op2 : MI2.memoperands())
if (alias(*Op1, *Op2, UseTBAA))
return true;
return false;
}
// Add a DAG mutation object to the ordered list.
void VLIWPacketizerList::addMutation(
std::unique_ptr<ScheduleDAGMutation> Mutation) {
VLIWScheduler->addMutation(std::move(Mutation));
}