| //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file is a part of MemorySanitizer, a detector of uninitialized |
| /// reads. |
| /// |
| /// The algorithm of the tool is similar to Memcheck |
| /// (http://goo.gl/QKbem). We associate a few shadow bits with every |
| /// byte of the application memory, poison the shadow of the malloc-ed |
| /// or alloca-ed memory, load the shadow bits on every memory read, |
| /// propagate the shadow bits through some of the arithmetic |
| /// instruction (including MOV), store the shadow bits on every memory |
| /// write, report a bug on some other instructions (e.g. JMP) if the |
| /// associated shadow is poisoned. |
| /// |
| /// But there are differences too. The first and the major one: |
| /// compiler instrumentation instead of binary instrumentation. This |
| /// gives us much better register allocation, possible compiler |
| /// optimizations and a fast start-up. But this brings the major issue |
| /// as well: msan needs to see all program events, including system |
| /// calls and reads/writes in system libraries, so we either need to |
| /// compile *everything* with msan or use a binary translation |
| /// component (e.g. DynamoRIO) to instrument pre-built libraries. |
| /// Another difference from Memcheck is that we use 8 shadow bits per |
| /// byte of application memory and use a direct shadow mapping. This |
| /// greatly simplifies the instrumentation code and avoids races on |
| /// shadow updates (Memcheck is single-threaded so races are not a |
| /// concern there. Memcheck uses 2 shadow bits per byte with a slow |
| /// path storage that uses 8 bits per byte). |
| /// |
| /// The default value of shadow is 0, which means "clean" (not poisoned). |
| /// |
| /// Every module initializer should call __msan_init to ensure that the |
| /// shadow memory is ready. On error, __msan_warning is called. Since |
| /// parameters and return values may be passed via registers, we have a |
| /// specialized thread-local shadow for return values |
| /// (__msan_retval_tls) and parameters (__msan_param_tls). |
| /// |
| /// Origin tracking. |
| /// |
| /// MemorySanitizer can track origins (allocation points) of all uninitialized |
| /// values. This behavior is controlled with a flag (msan-track-origins) and is |
| /// disabled by default. |
| /// |
| /// Origins are 4-byte values created and interpreted by the runtime library. |
| /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes |
| /// of application memory. Propagation of origins is basically a bunch of |
| /// "select" instructions that pick the origin of a dirty argument, if an |
| /// instruction has one. |
| /// |
| /// Every 4 aligned, consecutive bytes of application memory have one origin |
| /// value associated with them. If these bytes contain uninitialized data |
| /// coming from 2 different allocations, the last store wins. Because of this, |
| /// MemorySanitizer reports can show unrelated origins, but this is unlikely in |
| /// practice. |
| /// |
| /// Origins are meaningless for fully initialized values, so MemorySanitizer |
| /// avoids storing origin to memory when a fully initialized value is stored. |
| /// This way it avoids needless overwritting origin of the 4-byte region on |
| /// a short (i.e. 1 byte) clean store, and it is also good for performance. |
| /// |
| /// Atomic handling. |
| /// |
| /// Ideally, every atomic store of application value should update the |
| /// corresponding shadow location in an atomic way. Unfortunately, atomic store |
| /// of two disjoint locations can not be done without severe slowdown. |
| /// |
| /// Therefore, we implement an approximation that may err on the safe side. |
| /// In this implementation, every atomically accessed location in the program |
| /// may only change from (partially) uninitialized to fully initialized, but |
| /// not the other way around. We load the shadow _after_ the application load, |
| /// and we store the shadow _before_ the app store. Also, we always store clean |
| /// shadow (if the application store is atomic). This way, if the store-load |
| /// pair constitutes a happens-before arc, shadow store and load are correctly |
| /// ordered such that the load will get either the value that was stored, or |
| /// some later value (which is always clean). |
| /// |
| /// This does not work very well with Compare-And-Swap (CAS) and |
| /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW |
| /// must store the new shadow before the app operation, and load the shadow |
| /// after the app operation. Computers don't work this way. Current |
| /// implementation ignores the load aspect of CAS/RMW, always returning a clean |
| /// value. It implements the store part as a simple atomic store by storing a |
| /// clean shadow. |
| /// |
| /// Instrumenting inline assembly. |
| /// |
| /// For inline assembly code LLVM has little idea about which memory locations |
| /// become initialized depending on the arguments. It can be possible to figure |
| /// out which arguments are meant to point to inputs and outputs, but the |
| /// actual semantics can be only visible at runtime. In the Linux kernel it's |
| /// also possible that the arguments only indicate the offset for a base taken |
| /// from a segment register, so it's dangerous to treat any asm() arguments as |
| /// pointers. We take a conservative approach generating calls to |
| /// __msan_instrument_asm_store(ptr, size) |
| /// , which defer the memory unpoisoning to the runtime library. |
| /// The latter can perform more complex address checks to figure out whether |
| /// it's safe to touch the shadow memory. |
| /// Like with atomic operations, we call __msan_instrument_asm_store() before |
| /// the assembly call, so that changes to the shadow memory will be seen by |
| /// other threads together with main memory initialization. |
| /// |
| /// KernelMemorySanitizer (KMSAN) implementation. |
| /// |
| /// The major differences between KMSAN and MSan instrumentation are: |
| /// - KMSAN always tracks the origins and implies msan-keep-going=true; |
| /// - KMSAN allocates shadow and origin memory for each page separately, so |
| /// there are no explicit accesses to shadow and origin in the |
| /// instrumentation. |
| /// Shadow and origin values for a particular X-byte memory location |
| /// (X=1,2,4,8) are accessed through pointers obtained via the |
| /// __msan_metadata_ptr_for_load_X(ptr) |
| /// __msan_metadata_ptr_for_store_X(ptr) |
| /// functions. The corresponding functions check that the X-byte accesses |
| /// are possible and returns the pointers to shadow and origin memory. |
| /// Arbitrary sized accesses are handled with: |
| /// __msan_metadata_ptr_for_load_n(ptr, size) |
| /// __msan_metadata_ptr_for_store_n(ptr, size); |
| /// - TLS variables are stored in a single per-task struct. A call to a |
| /// function __msan_get_context_state() returning a pointer to that struct |
| /// is inserted into every instrumented function before the entry block; |
| /// - __msan_warning() takes a 32-bit origin parameter; |
| /// - local variables are poisoned with __msan_poison_alloca() upon function |
| /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the |
| /// function; |
| /// - the pass doesn't declare any global variables or add global constructors |
| /// to the translation unit. |
| /// |
| /// Also, KMSAN currently ignores uninitialized memory passed into inline asm |
| /// calls, making sure we're on the safe side wrt. possible false positives. |
| /// |
| /// KernelMemorySanitizer only supports X86_64 at the moment. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueMap.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "msan" |
| |
| static const unsigned kOriginSize = 4; |
| static const Align kMinOriginAlignment = Align(4); |
| static const Align kShadowTLSAlignment = Align(8); |
| |
| // These constants must be kept in sync with the ones in msan.h. |
| static const unsigned kParamTLSSize = 800; |
| static const unsigned kRetvalTLSSize = 800; |
| |
| // Accesses sizes are powers of two: 1, 2, 4, 8. |
| static const size_t kNumberOfAccessSizes = 4; |
| |
| /// Track origins of uninitialized values. |
| /// |
| /// Adds a section to MemorySanitizer report that points to the allocation |
| /// (stack or heap) the uninitialized bits came from originally. |
| static cl::opt<int> ClTrackOrigins("msan-track-origins", |
| cl::desc("Track origins (allocation sites) of poisoned memory"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<bool> ClKeepGoing("msan-keep-going", |
| cl::desc("keep going after reporting a UMR"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClPoisonStack("msan-poison-stack", |
| cl::desc("poison uninitialized stack variables"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", |
| cl::desc("poison uninitialized stack variables with a call"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", |
| cl::desc("poison uninitialized stack variables with the given pattern"), |
| cl::Hidden, cl::init(0xff)); |
| |
| static cl::opt<bool> ClPoisonUndef("msan-poison-undef", |
| cl::desc("poison undef temps"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClHandleICmp("msan-handle-icmp", |
| cl::desc("propagate shadow through ICmpEQ and ICmpNE"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", |
| cl::desc("exact handling of relational integer ICmp"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClHandleLifetimeIntrinsics( |
| "msan-handle-lifetime-intrinsics", |
| cl::desc( |
| "when possible, poison scoped variables at the beginning of the scope " |
| "(slower, but more precise)"), |
| cl::Hidden, cl::init(true)); |
| |
| // When compiling the Linux kernel, we sometimes see false positives related to |
| // MSan being unable to understand that inline assembly calls may initialize |
| // local variables. |
| // This flag makes the compiler conservatively unpoison every memory location |
| // passed into an assembly call. Note that this may cause false positives. |
| // Because it's impossible to figure out the array sizes, we can only unpoison |
| // the first sizeof(type) bytes for each type* pointer. |
| // The instrumentation is only enabled in KMSAN builds, and only if |
| // -msan-handle-asm-conservative is on. This is done because we may want to |
| // quickly disable assembly instrumentation when it breaks. |
| static cl::opt<bool> ClHandleAsmConservative( |
| "msan-handle-asm-conservative", |
| cl::desc("conservative handling of inline assembly"), cl::Hidden, |
| cl::init(true)); |
| |
| // This flag controls whether we check the shadow of the address |
| // operand of load or store. Such bugs are very rare, since load from |
| // a garbage address typically results in SEGV, but still happen |
| // (e.g. only lower bits of address are garbage, or the access happens |
| // early at program startup where malloc-ed memory is more likely to |
| // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. |
| static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", |
| cl::desc("report accesses through a pointer which has poisoned shadow"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", |
| cl::desc("print out instructions with default strict semantics"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<int> ClInstrumentationWithCallThreshold( |
| "msan-instrumentation-with-call-threshold", |
| cl::desc( |
| "If the function being instrumented requires more than " |
| "this number of checks and origin stores, use callbacks instead of " |
| "inline checks (-1 means never use callbacks)."), |
| cl::Hidden, cl::init(3500)); |
| |
| static cl::opt<bool> |
| ClEnableKmsan("msan-kernel", |
| cl::desc("Enable KernelMemorySanitizer instrumentation"), |
| cl::Hidden, cl::init(false)); |
| |
| // This is an experiment to enable handling of cases where shadow is a non-zero |
| // compile-time constant. For some unexplainable reason they were silently |
| // ignored in the instrumentation. |
| static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", |
| cl::desc("Insert checks for constant shadow values"), |
| cl::Hidden, cl::init(false)); |
| |
| // This is off by default because of a bug in gold: |
| // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 |
| static cl::opt<bool> ClWithComdat("msan-with-comdat", |
| cl::desc("Place MSan constructors in comdat sections"), |
| cl::Hidden, cl::init(false)); |
| |
| // These options allow to specify custom memory map parameters |
| // See MemoryMapParams for details. |
| static cl::opt<uint64_t> ClAndMask("msan-and-mask", |
| cl::desc("Define custom MSan AndMask"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<uint64_t> ClXorMask("msan-xor-mask", |
| cl::desc("Define custom MSan XorMask"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", |
| cl::desc("Define custom MSan ShadowBase"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<uint64_t> ClOriginBase("msan-origin-base", |
| cl::desc("Define custom MSan OriginBase"), |
| cl::Hidden, cl::init(0)); |
| |
| static const char *const kMsanModuleCtorName = "msan.module_ctor"; |
| static const char *const kMsanInitName = "__msan_init"; |
| |
| namespace { |
| |
| // Memory map parameters used in application-to-shadow address calculation. |
| // Offset = (Addr & ~AndMask) ^ XorMask |
| // Shadow = ShadowBase + Offset |
| // Origin = OriginBase + Offset |
| struct MemoryMapParams { |
| uint64_t AndMask; |
| uint64_t XorMask; |
| uint64_t ShadowBase; |
| uint64_t OriginBase; |
| }; |
| |
| struct PlatformMemoryMapParams { |
| const MemoryMapParams *bits32; |
| const MemoryMapParams *bits64; |
| }; |
| |
| } // end anonymous namespace |
| |
| // i386 Linux |
| static const MemoryMapParams Linux_I386_MemoryMapParams = { |
| 0x000080000000, // AndMask |
| 0, // XorMask (not used) |
| 0, // ShadowBase (not used) |
| 0x000040000000, // OriginBase |
| }; |
| |
| // x86_64 Linux |
| static const MemoryMapParams Linux_X86_64_MemoryMapParams = { |
| #ifdef MSAN_LINUX_X86_64_OLD_MAPPING |
| 0x400000000000, // AndMask |
| 0, // XorMask (not used) |
| 0, // ShadowBase (not used) |
| 0x200000000000, // OriginBase |
| #else |
| 0, // AndMask (not used) |
| 0x500000000000, // XorMask |
| 0, // ShadowBase (not used) |
| 0x100000000000, // OriginBase |
| #endif |
| }; |
| |
| // mips64 Linux |
| static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { |
| 0, // AndMask (not used) |
| 0x008000000000, // XorMask |
| 0, // ShadowBase (not used) |
| 0x002000000000, // OriginBase |
| }; |
| |
| // ppc64 Linux |
| static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { |
| 0xE00000000000, // AndMask |
| 0x100000000000, // XorMask |
| 0x080000000000, // ShadowBase |
| 0x1C0000000000, // OriginBase |
| }; |
| |
| // aarch64 Linux |
| static const MemoryMapParams Linux_AArch64_MemoryMapParams = { |
| 0, // AndMask (not used) |
| 0x06000000000, // XorMask |
| 0, // ShadowBase (not used) |
| 0x01000000000, // OriginBase |
| }; |
| |
| // i386 FreeBSD |
| static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { |
| 0x000180000000, // AndMask |
| 0x000040000000, // XorMask |
| 0x000020000000, // ShadowBase |
| 0x000700000000, // OriginBase |
| }; |
| |
| // x86_64 FreeBSD |
| static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { |
| 0xc00000000000, // AndMask |
| 0x200000000000, // XorMask |
| 0x100000000000, // ShadowBase |
| 0x380000000000, // OriginBase |
| }; |
| |
| // x86_64 NetBSD |
| static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { |
| 0, // AndMask |
| 0x500000000000, // XorMask |
| 0, // ShadowBase |
| 0x100000000000, // OriginBase |
| }; |
| |
| static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { |
| &Linux_I386_MemoryMapParams, |
| &Linux_X86_64_MemoryMapParams, |
| }; |
| |
| static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { |
| nullptr, |
| &Linux_MIPS64_MemoryMapParams, |
| }; |
| |
| static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { |
| nullptr, |
| &Linux_PowerPC64_MemoryMapParams, |
| }; |
| |
| static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { |
| nullptr, |
| &Linux_AArch64_MemoryMapParams, |
| }; |
| |
| static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { |
| &FreeBSD_I386_MemoryMapParams, |
| &FreeBSD_X86_64_MemoryMapParams, |
| }; |
| |
| static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { |
| nullptr, |
| &NetBSD_X86_64_MemoryMapParams, |
| }; |
| |
| namespace { |
| |
| /// Instrument functions of a module to detect uninitialized reads. |
| /// |
| /// Instantiating MemorySanitizer inserts the msan runtime library API function |
| /// declarations into the module if they don't exist already. Instantiating |
| /// ensures the __msan_init function is in the list of global constructors for |
| /// the module. |
| class MemorySanitizer { |
| public: |
| MemorySanitizer(Module &M, MemorySanitizerOptions Options) |
| : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), |
| Recover(Options.Recover) { |
| initializeModule(M); |
| } |
| |
| // MSan cannot be moved or copied because of MapParams. |
| MemorySanitizer(MemorySanitizer &&) = delete; |
| MemorySanitizer &operator=(MemorySanitizer &&) = delete; |
| MemorySanitizer(const MemorySanitizer &) = delete; |
| MemorySanitizer &operator=(const MemorySanitizer &) = delete; |
| |
| bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); |
| |
| private: |
| friend struct MemorySanitizerVisitor; |
| friend struct VarArgAMD64Helper; |
| friend struct VarArgMIPS64Helper; |
| friend struct VarArgAArch64Helper; |
| friend struct VarArgPowerPC64Helper; |
| |
| void initializeModule(Module &M); |
| void initializeCallbacks(Module &M); |
| void createKernelApi(Module &M); |
| void createUserspaceApi(Module &M); |
| |
| /// True if we're compiling the Linux kernel. |
| bool CompileKernel; |
| /// Track origins (allocation points) of uninitialized values. |
| int TrackOrigins; |
| bool Recover; |
| |
| LLVMContext *C; |
| Type *IntptrTy; |
| Type *OriginTy; |
| |
| // XxxTLS variables represent the per-thread state in MSan and per-task state |
| // in KMSAN. |
| // For the userspace these point to thread-local globals. In the kernel land |
| // they point to the members of a per-task struct obtained via a call to |
| // __msan_get_context_state(). |
| |
| /// Thread-local shadow storage for function parameters. |
| Value *ParamTLS; |
| |
| /// Thread-local origin storage for function parameters. |
| Value *ParamOriginTLS; |
| |
| /// Thread-local shadow storage for function return value. |
| Value *RetvalTLS; |
| |
| /// Thread-local origin storage for function return value. |
| Value *RetvalOriginTLS; |
| |
| /// Thread-local shadow storage for in-register va_arg function |
| /// parameters (x86_64-specific). |
| Value *VAArgTLS; |
| |
| /// Thread-local shadow storage for in-register va_arg function |
| /// parameters (x86_64-specific). |
| Value *VAArgOriginTLS; |
| |
| /// Thread-local shadow storage for va_arg overflow area |
| /// (x86_64-specific). |
| Value *VAArgOverflowSizeTLS; |
| |
| /// Thread-local space used to pass origin value to the UMR reporting |
| /// function. |
| Value *OriginTLS; |
| |
| /// Are the instrumentation callbacks set up? |
| bool CallbacksInitialized = false; |
| |
| /// The run-time callback to print a warning. |
| FunctionCallee WarningFn; |
| |
| // These arrays are indexed by log2(AccessSize). |
| FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; |
| FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; |
| |
| /// Run-time helper that generates a new origin value for a stack |
| /// allocation. |
| FunctionCallee MsanSetAllocaOrigin4Fn; |
| |
| /// Run-time helper that poisons stack on function entry. |
| FunctionCallee MsanPoisonStackFn; |
| |
| /// Run-time helper that records a store (or any event) of an |
| /// uninitialized value and returns an updated origin id encoding this info. |
| FunctionCallee MsanChainOriginFn; |
| |
| /// MSan runtime replacements for memmove, memcpy and memset. |
| FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; |
| |
| /// KMSAN callback for task-local function argument shadow. |
| StructType *MsanContextStateTy; |
| FunctionCallee MsanGetContextStateFn; |
| |
| /// Functions for poisoning/unpoisoning local variables |
| FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; |
| |
| /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin |
| /// pointers. |
| FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; |
| FunctionCallee MsanMetadataPtrForLoad_1_8[4]; |
| FunctionCallee MsanMetadataPtrForStore_1_8[4]; |
| FunctionCallee MsanInstrumentAsmStoreFn; |
| |
| /// Helper to choose between different MsanMetadataPtrXxx(). |
| FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); |
| |
| /// Memory map parameters used in application-to-shadow calculation. |
| const MemoryMapParams *MapParams; |
| |
| /// Custom memory map parameters used when -msan-shadow-base or |
| // -msan-origin-base is provided. |
| MemoryMapParams CustomMapParams; |
| |
| MDNode *ColdCallWeights; |
| |
| /// Branch weights for origin store. |
| MDNode *OriginStoreWeights; |
| |
| /// An empty volatile inline asm that prevents callback merge. |
| InlineAsm *EmptyAsm; |
| }; |
| |
| void insertModuleCtor(Module &M) { |
| getOrCreateSanitizerCtorAndInitFunctions( |
| M, kMsanModuleCtorName, kMsanInitName, |
| /*InitArgTypes=*/{}, |
| /*InitArgs=*/{}, |
| // This callback is invoked when the functions are created the first |
| // time. Hook them into the global ctors list in that case: |
| [&](Function *Ctor, FunctionCallee) { |
| if (!ClWithComdat) { |
| appendToGlobalCtors(M, Ctor, 0); |
| return; |
| } |
| Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); |
| Ctor->setComdat(MsanCtorComdat); |
| appendToGlobalCtors(M, Ctor, 0, Ctor); |
| }); |
| } |
| |
| /// A legacy function pass for msan instrumentation. |
| /// |
| /// Instruments functions to detect unitialized reads. |
| struct MemorySanitizerLegacyPass : public FunctionPass { |
| // Pass identification, replacement for typeid. |
| static char ID; |
| |
| MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) |
| : FunctionPass(ID), Options(Options) {} |
| StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| return MSan->sanitizeFunction( |
| F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); |
| } |
| bool doInitialization(Module &M) override; |
| |
| Optional<MemorySanitizer> MSan; |
| MemorySanitizerOptions Options; |
| }; |
| |
| template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { |
| return (Opt.getNumOccurrences() > 0) ? Opt : Default; |
| } |
| |
| } // end anonymous namespace |
| |
| MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) |
| : Kernel(getOptOrDefault(ClEnableKmsan, K)), |
| TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), |
| Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} |
| |
| PreservedAnalyses MemorySanitizerPass::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| MemorySanitizer Msan(*F.getParent(), Options); |
| if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| PreservedAnalyses MemorySanitizerPass::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| if (Options.Kernel) |
| return PreservedAnalyses::all(); |
| insertModuleCtor(M); |
| return PreservedAnalyses::none(); |
| } |
| |
| char MemorySanitizerLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", |
| "MemorySanitizer: detects uninitialized reads.", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", |
| "MemorySanitizer: detects uninitialized reads.", false, |
| false) |
| |
| FunctionPass * |
| llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { |
| return new MemorySanitizerLegacyPass(Options); |
| } |
| |
| /// Create a non-const global initialized with the given string. |
| /// |
| /// Creates a writable global for Str so that we can pass it to the |
| /// run-time lib. Runtime uses first 4 bytes of the string to store the |
| /// frame ID, so the string needs to be mutable. |
| static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, |
| StringRef Str) { |
| Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); |
| return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, |
| GlobalValue::PrivateLinkage, StrConst, ""); |
| } |
| |
| /// Create KMSAN API callbacks. |
| void MemorySanitizer::createKernelApi(Module &M) { |
| IRBuilder<> IRB(*C); |
| |
| // These will be initialized in insertKmsanPrologue(). |
| RetvalTLS = nullptr; |
| RetvalOriginTLS = nullptr; |
| ParamTLS = nullptr; |
| ParamOriginTLS = nullptr; |
| VAArgTLS = nullptr; |
| VAArgOriginTLS = nullptr; |
| VAArgOverflowSizeTLS = nullptr; |
| // OriginTLS is unused in the kernel. |
| OriginTLS = nullptr; |
| |
| // __msan_warning() in the kernel takes an origin. |
| WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), |
| IRB.getInt32Ty()); |
| // Requests the per-task context state (kmsan_context_state*) from the |
| // runtime library. |
| MsanContextStateTy = StructType::get( |
| ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), |
| ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), |
| ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), |
| ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ |
| IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, |
| OriginTy); |
| MsanGetContextStateFn = M.getOrInsertFunction( |
| "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); |
| |
| Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), |
| PointerType::get(IRB.getInt32Ty(), 0)); |
| |
| for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { |
| std::string name_load = |
| "__msan_metadata_ptr_for_load_" + std::to_string(size); |
| std::string name_store = |
| "__msan_metadata_ptr_for_store_" + std::to_string(size); |
| MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( |
| name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); |
| MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( |
| name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); |
| } |
| |
| MsanMetadataPtrForLoadN = M.getOrInsertFunction( |
| "__msan_metadata_ptr_for_load_n", RetTy, |
| PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); |
| MsanMetadataPtrForStoreN = M.getOrInsertFunction( |
| "__msan_metadata_ptr_for_store_n", RetTy, |
| PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); |
| |
| // Functions for poisoning and unpoisoning memory. |
| MsanPoisonAllocaFn = |
| M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), |
| IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); |
| MsanUnpoisonAllocaFn = M.getOrInsertFunction( |
| "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); |
| } |
| |
| static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { |
| return M.getOrInsertGlobal(Name, Ty, [&] { |
| return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, |
| nullptr, Name, nullptr, |
| GlobalVariable::InitialExecTLSModel); |
| }); |
| } |
| |
| /// Insert declarations for userspace-specific functions and globals. |
| void MemorySanitizer::createUserspaceApi(Module &M) { |
| IRBuilder<> IRB(*C); |
| // Create the callback. |
| // FIXME: this function should have "Cold" calling conv, |
| // which is not yet implemented. |
| StringRef WarningFnName = Recover ? "__msan_warning" |
| : "__msan_warning_noreturn"; |
| WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); |
| |
| // Create the global TLS variables. |
| RetvalTLS = |
| getOrInsertGlobal(M, "__msan_retval_tls", |
| ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); |
| |
| RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); |
| |
| ParamTLS = |
| getOrInsertGlobal(M, "__msan_param_tls", |
| ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); |
| |
| ParamOriginTLS = |
| getOrInsertGlobal(M, "__msan_param_origin_tls", |
| ArrayType::get(OriginTy, kParamTLSSize / 4)); |
| |
| VAArgTLS = |
| getOrInsertGlobal(M, "__msan_va_arg_tls", |
| ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); |
| |
| VAArgOriginTLS = |
| getOrInsertGlobal(M, "__msan_va_arg_origin_tls", |
| ArrayType::get(OriginTy, kParamTLSSize / 4)); |
| |
| VAArgOverflowSizeTLS = |
| getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); |
| OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); |
| |
| for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
| AccessSizeIndex++) { |
| unsigned AccessSize = 1 << AccessSizeIndex; |
| std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); |
| MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( |
| FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), |
| IRB.getInt32Ty()); |
| |
| FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); |
| MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( |
| FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), |
| IRB.getInt8PtrTy(), IRB.getInt32Ty()); |
| } |
| |
| MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( |
| "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, |
| IRB.getInt8PtrTy(), IntptrTy); |
| MsanPoisonStackFn = |
| M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), |
| IRB.getInt8PtrTy(), IntptrTy); |
| } |
| |
| /// Insert extern declaration of runtime-provided functions and globals. |
| void MemorySanitizer::initializeCallbacks(Module &M) { |
| // Only do this once. |
| if (CallbacksInitialized) |
| return; |
| |
| IRBuilder<> IRB(*C); |
| // Initialize callbacks that are common for kernel and userspace |
| // instrumentation. |
| MsanChainOriginFn = M.getOrInsertFunction( |
| "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); |
| MemmoveFn = M.getOrInsertFunction( |
| "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt8PtrTy(), IntptrTy); |
| MemcpyFn = M.getOrInsertFunction( |
| "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IntptrTy); |
| MemsetFn = M.getOrInsertFunction( |
| "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), |
| IntptrTy); |
| // We insert an empty inline asm after __msan_report* to avoid callback merge. |
| EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), |
| StringRef(""), StringRef(""), |
| /*hasSideEffects=*/true); |
| |
| MsanInstrumentAsmStoreFn = |
| M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), |
| PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); |
| |
| if (CompileKernel) { |
| createKernelApi(M); |
| } else { |
| createUserspaceApi(M); |
| } |
| CallbacksInitialized = true; |
| } |
| |
| FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, |
| int size) { |
| FunctionCallee *Fns = |
| isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; |
| switch (size) { |
| case 1: |
| return Fns[0]; |
| case 2: |
| return Fns[1]; |
| case 4: |
| return Fns[2]; |
| case 8: |
| return Fns[3]; |
| default: |
| return nullptr; |
| } |
| } |
| |
| /// Module-level initialization. |
| /// |
| /// inserts a call to __msan_init to the module's constructor list. |
| void MemorySanitizer::initializeModule(Module &M) { |
| auto &DL = M.getDataLayout(); |
| |
| bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; |
| bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; |
| // Check the overrides first |
| if (ShadowPassed || OriginPassed) { |
| CustomMapParams.AndMask = ClAndMask; |
| CustomMapParams.XorMask = ClXorMask; |
| CustomMapParams.ShadowBase = ClShadowBase; |
| CustomMapParams.OriginBase = ClOriginBase; |
| MapParams = &CustomMapParams; |
| } else { |
| Triple TargetTriple(M.getTargetTriple()); |
| switch (TargetTriple.getOS()) { |
| case Triple::FreeBSD: |
| switch (TargetTriple.getArch()) { |
| case Triple::x86_64: |
| MapParams = FreeBSD_X86_MemoryMapParams.bits64; |
| break; |
| case Triple::x86: |
| MapParams = FreeBSD_X86_MemoryMapParams.bits32; |
| break; |
| default: |
| report_fatal_error("unsupported architecture"); |
| } |
| break; |
| case Triple::NetBSD: |
| switch (TargetTriple.getArch()) { |
| case Triple::x86_64: |
| MapParams = NetBSD_X86_MemoryMapParams.bits64; |
| break; |
| default: |
| report_fatal_error("unsupported architecture"); |
| } |
| break; |
| case Triple::Linux: |
| switch (TargetTriple.getArch()) { |
| case Triple::x86_64: |
| MapParams = Linux_X86_MemoryMapParams.bits64; |
| break; |
| case Triple::x86: |
| MapParams = Linux_X86_MemoryMapParams.bits32; |
| break; |
| case Triple::mips64: |
| case Triple::mips64el: |
| MapParams = Linux_MIPS_MemoryMapParams.bits64; |
| break; |
| case Triple::ppc64: |
| case Triple::ppc64le: |
| MapParams = Linux_PowerPC_MemoryMapParams.bits64; |
| break; |
| case Triple::aarch64: |
| case Triple::aarch64_be: |
| MapParams = Linux_ARM_MemoryMapParams.bits64; |
| break; |
| default: |
| report_fatal_error("unsupported architecture"); |
| } |
| break; |
| default: |
| report_fatal_error("unsupported operating system"); |
| } |
| } |
| |
| C = &(M.getContext()); |
| IRBuilder<> IRB(*C); |
| IntptrTy = IRB.getIntPtrTy(DL); |
| OriginTy = IRB.getInt32Ty(); |
| |
| ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); |
| OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); |
| |
| if (!CompileKernel) { |
| if (TrackOrigins) |
| M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { |
| return new GlobalVariable( |
| M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, |
| IRB.getInt32(TrackOrigins), "__msan_track_origins"); |
| }); |
| |
| if (Recover) |
| M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { |
| return new GlobalVariable(M, IRB.getInt32Ty(), true, |
| GlobalValue::WeakODRLinkage, |
| IRB.getInt32(Recover), "__msan_keep_going"); |
| }); |
| } |
| } |
| |
| bool MemorySanitizerLegacyPass::doInitialization(Module &M) { |
| if (!Options.Kernel) |
| insertModuleCtor(M); |
| MSan.emplace(M, Options); |
| return true; |
| } |
| |
| namespace { |
| |
| /// A helper class that handles instrumentation of VarArg |
| /// functions on a particular platform. |
| /// |
| /// Implementations are expected to insert the instrumentation |
| /// necessary to propagate argument shadow through VarArg function |
| /// calls. Visit* methods are called during an InstVisitor pass over |
| /// the function, and should avoid creating new basic blocks. A new |
| /// instance of this class is created for each instrumented function. |
| struct VarArgHelper { |
| virtual ~VarArgHelper() = default; |
| |
| /// Visit a CallSite. |
| virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; |
| |
| /// Visit a va_start call. |
| virtual void visitVAStartInst(VAStartInst &I) = 0; |
| |
| /// Visit a va_copy call. |
| virtual void visitVACopyInst(VACopyInst &I) = 0; |
| |
| /// Finalize function instrumentation. |
| /// |
| /// This method is called after visiting all interesting (see above) |
| /// instructions in a function. |
| virtual void finalizeInstrumentation() = 0; |
| }; |
| |
| struct MemorySanitizerVisitor; |
| |
| } // end anonymous namespace |
| |
| static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, |
| MemorySanitizerVisitor &Visitor); |
| |
| static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { |
| if (TypeSize <= 8) return 0; |
| return Log2_32_Ceil((TypeSize + 7) / 8); |
| } |
| |
| namespace { |
| |
| /// This class does all the work for a given function. Store and Load |
| /// instructions store and load corresponding shadow and origin |
| /// values. Most instructions propagate shadow from arguments to their |
| /// return values. Certain instructions (most importantly, BranchInst) |
| /// test their argument shadow and print reports (with a runtime call) if it's |
| /// non-zero. |
| struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { |
| Function &F; |
| MemorySanitizer &MS; |
| SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; |
| ValueMap<Value*, Value*> ShadowMap, OriginMap; |
| std::unique_ptr<VarArgHelper> VAHelper; |
| const TargetLibraryInfo *TLI; |
| BasicBlock *ActualFnStart; |
| |
| // The following flags disable parts of MSan instrumentation based on |
| // blacklist contents and command-line options. |
| bool InsertChecks; |
| bool PropagateShadow; |
| bool PoisonStack; |
| bool PoisonUndef; |
| bool CheckReturnValue; |
| |
| struct ShadowOriginAndInsertPoint { |
| Value *Shadow; |
| Value *Origin; |
| Instruction *OrigIns; |
| |
| ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) |
| : Shadow(S), Origin(O), OrigIns(I) {} |
| }; |
| SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; |
| bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; |
| SmallSet<AllocaInst *, 16> AllocaSet; |
| SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; |
| SmallVector<StoreInst *, 16> StoreList; |
| |
| MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, |
| const TargetLibraryInfo &TLI) |
| : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { |
| bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); |
| InsertChecks = SanitizeFunction; |
| PropagateShadow = SanitizeFunction; |
| PoisonStack = SanitizeFunction && ClPoisonStack; |
| PoisonUndef = SanitizeFunction && ClPoisonUndef; |
| // FIXME: Consider using SpecialCaseList to specify a list of functions that |
| // must always return fully initialized values. For now, we hardcode "main". |
| CheckReturnValue = SanitizeFunction && (F.getName() == "main"); |
| |
| MS.initializeCallbacks(*F.getParent()); |
| if (MS.CompileKernel) |
| ActualFnStart = insertKmsanPrologue(F); |
| else |
| ActualFnStart = &F.getEntryBlock(); |
| |
| LLVM_DEBUG(if (!InsertChecks) dbgs() |
| << "MemorySanitizer is not inserting checks into '" |
| << F.getName() << "'\n"); |
| } |
| |
| Value *updateOrigin(Value *V, IRBuilder<> &IRB) { |
| if (MS.TrackOrigins <= 1) return V; |
| return IRB.CreateCall(MS.MsanChainOriginFn, V); |
| } |
| |
| Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); |
| if (IntptrSize == kOriginSize) return Origin; |
| assert(IntptrSize == kOriginSize * 2); |
| Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); |
| return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); |
| } |
| |
| /// Fill memory range with the given origin value. |
| void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, |
| unsigned Size, Align Alignment) { |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| const Align IntptrAlignment = Align(DL.getABITypeAlignment(MS.IntptrTy)); |
| unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); |
| assert(IntptrAlignment >= kMinOriginAlignment); |
| assert(IntptrSize >= kOriginSize); |
| |
| unsigned Ofs = 0; |
| Align CurrentAlignment = Alignment; |
| if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { |
| Value *IntptrOrigin = originToIntptr(IRB, Origin); |
| Value *IntptrOriginPtr = |
| IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); |
| for (unsigned i = 0; i < Size / IntptrSize; ++i) { |
| Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) |
| : IntptrOriginPtr; |
| IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment.value()); |
| Ofs += IntptrSize / kOriginSize; |
| CurrentAlignment = IntptrAlignment; |
| } |
| } |
| |
| for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { |
| Value *GEP = |
| i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; |
| IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment.value()); |
| CurrentAlignment = kMinOriginAlignment; |
| } |
| } |
| |
| void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, |
| Value *OriginPtr, Align Alignment, bool AsCall) { |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); |
| unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); |
| if (Shadow->getType()->isAggregateType()) { |
| paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, |
| OriginAlignment); |
| } else { |
| Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); |
| if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { |
| if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) |
| paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, |
| OriginAlignment); |
| return; |
| } |
| |
| unsigned TypeSizeInBits = |
| DL.getTypeSizeInBits(ConvertedShadow->getType()); |
| unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); |
| if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { |
| FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; |
| Value *ConvertedShadow2 = IRB.CreateZExt( |
| ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); |
| IRB.CreateCall(Fn, {ConvertedShadow2, |
| IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), |
| Origin}); |
| } else { |
| Value *Cmp = IRB.CreateICmpNE( |
| ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); |
| Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); |
| IRBuilder<> IRBNew(CheckTerm); |
| paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, |
| OriginAlignment); |
| } |
| } |
| } |
| |
| void materializeStores(bool InstrumentWithCalls) { |
| for (StoreInst *SI : StoreList) { |
| IRBuilder<> IRB(SI); |
| Value *Val = SI->getValueOperand(); |
| Value *Addr = SI->getPointerOperand(); |
| Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); |
| Value *ShadowPtr, *OriginPtr; |
| Type *ShadowTy = Shadow->getType(); |
| const Align Alignment = assumeAligned(SI->getAlignment()); |
| const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); |
| std::tie(ShadowPtr, OriginPtr) = |
| getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); |
| |
| StoreInst *NewSI = |
| IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment.value()); |
| LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); |
| (void)NewSI; |
| |
| if (SI->isAtomic()) |
| SI->setOrdering(addReleaseOrdering(SI->getOrdering())); |
| |
| if (MS.TrackOrigins && !SI->isAtomic()) |
| storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, |
| OriginAlignment, InstrumentWithCalls); |
| } |
| } |
| |
| /// Helper function to insert a warning at IRB's current insert point. |
| void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { |
| if (!Origin) |
| Origin = (Value *)IRB.getInt32(0); |
| if (MS.CompileKernel) { |
| IRB.CreateCall(MS.WarningFn, Origin); |
| } else { |
| if (MS.TrackOrigins) { |
| IRB.CreateStore(Origin, MS.OriginTLS); |
| } |
| IRB.CreateCall(MS.WarningFn, {}); |
| } |
| IRB.CreateCall(MS.EmptyAsm, {}); |
| // FIXME: Insert UnreachableInst if !MS.Recover? |
| // This may invalidate some of the following checks and needs to be done |
| // at the very end. |
| } |
| |
| void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, |
| bool AsCall) { |
| IRBuilder<> IRB(OrigIns); |
| LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); |
| Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); |
| LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); |
| |
| if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { |
| if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { |
| insertWarningFn(IRB, Origin); |
| } |
| return; |
| } |
| |
| const DataLayout &DL = OrigIns->getModule()->getDataLayout(); |
| |
| unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); |
| unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); |
| if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { |
| FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; |
| Value *ConvertedShadow2 = |
| IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); |
| IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin |
| ? Origin |
| : (Value *)IRB.getInt32(0)}); |
| } else { |
| Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, |
| getCleanShadow(ConvertedShadow), "_mscmp"); |
| Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| Cmp, OrigIns, |
| /* Unreachable */ !MS.Recover, MS.ColdCallWeights); |
| |
| IRB.SetInsertPoint(CheckTerm); |
| insertWarningFn(IRB, Origin); |
| LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); |
| } |
| } |
| |
| void materializeChecks(bool InstrumentWithCalls) { |
| for (const auto &ShadowData : InstrumentationList) { |
| Instruction *OrigIns = ShadowData.OrigIns; |
| Value *Shadow = ShadowData.Shadow; |
| Value *Origin = ShadowData.Origin; |
| materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); |
| } |
| LLVM_DEBUG(dbgs() << "DONE:\n" << F); |
| } |
| |
| BasicBlock *insertKmsanPrologue(Function &F) { |
| BasicBlock *ret = |
| SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); |
| IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); |
| Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); |
| Constant *Zero = IRB.getInt32(0); |
| MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, |
| {Zero, IRB.getInt32(0)}, "param_shadow"); |
| MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, |
| {Zero, IRB.getInt32(1)}, "retval_shadow"); |
| MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, |
| {Zero, IRB.getInt32(2)}, "va_arg_shadow"); |
| MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, |
| {Zero, IRB.getInt32(3)}, "va_arg_origin"); |
| MS.VAArgOverflowSizeTLS = |
| IRB.CreateGEP(MS.MsanContextStateTy, ContextState, |
| {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); |
| MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, |
| {Zero, IRB.getInt32(5)}, "param_origin"); |
| MS.RetvalOriginTLS = |
| IRB.CreateGEP(MS.MsanContextStateTy, ContextState, |
| {Zero, IRB.getInt32(6)}, "retval_origin"); |
| return ret; |
| } |
| |
| /// Add MemorySanitizer instrumentation to a function. |
| bool runOnFunction() { |
| // In the presence of unreachable blocks, we may see Phi nodes with |
| // incoming nodes from such blocks. Since InstVisitor skips unreachable |
| // blocks, such nodes will not have any shadow value associated with them. |
| // It's easier to remove unreachable blocks than deal with missing shadow. |
| removeUnreachableBlocks(F); |
| |
| // Iterate all BBs in depth-first order and create shadow instructions |
| // for all instructions (where applicable). |
| // For PHI nodes we create dummy shadow PHIs which will be finalized later. |
| for (BasicBlock *BB : depth_first(ActualFnStart)) |
| visit(*BB); |
| |
| // Finalize PHI nodes. |
| for (PHINode *PN : ShadowPHINodes) { |
| PHINode *PNS = cast<PHINode>(getShadow(PN)); |
| PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; |
| size_t NumValues = PN->getNumIncomingValues(); |
| for (size_t v = 0; v < NumValues; v++) { |
| PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); |
| if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); |
| } |
| } |
| |
| VAHelper->finalizeInstrumentation(); |
| |
| // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to |
| // instrumenting only allocas. |
| if (InstrumentLifetimeStart) { |
| for (auto Item : LifetimeStartList) { |
| instrumentAlloca(*Item.second, Item.first); |
| AllocaSet.erase(Item.second); |
| } |
| } |
| // Poison the allocas for which we didn't instrument the corresponding |
| // lifetime intrinsics. |
| for (AllocaInst *AI : AllocaSet) |
| instrumentAlloca(*AI); |
| |
| bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && |
| InstrumentationList.size() + StoreList.size() > |
| (unsigned)ClInstrumentationWithCallThreshold; |
| |
| // Insert shadow value checks. |
| materializeChecks(InstrumentWithCalls); |
| |
| // Delayed instrumentation of StoreInst. |
| // This may not add new address checks. |
| materializeStores(InstrumentWithCalls); |
| |
| return true; |
| } |
| |
| /// Compute the shadow type that corresponds to a given Value. |
| Type *getShadowTy(Value *V) { |
| return getShadowTy(V->getType()); |
| } |
| |
| /// Compute the shadow type that corresponds to a given Type. |
| Type *getShadowTy(Type *OrigTy) { |
| if (!OrigTy->isSized()) { |
| return nullptr; |
| } |
| // For integer type, shadow is the same as the original type. |
| // This may return weird-sized types like i1. |
| if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) |
| return IT; |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { |
| uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); |
| return VectorType::get(IntegerType::get(*MS.C, EltSize), |
| VT->getNumElements()); |
| } |
| if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { |
| return ArrayType::get(getShadowTy(AT->getElementType()), |
| AT->getNumElements()); |
| } |
| if (StructType *ST = dyn_cast<StructType>(OrigTy)) { |
| SmallVector<Type*, 4> Elements; |
| for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) |
| Elements.push_back(getShadowTy(ST->getElementType(i))); |
| StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); |
| LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); |
| return Res; |
| } |
| uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); |
| return IntegerType::get(*MS.C, TypeSize); |
| } |
| |
| /// Flatten a vector type. |
| Type *getShadowTyNoVec(Type *ty) { |
| if (VectorType *vt = dyn_cast<VectorType>(ty)) |
| return IntegerType::get(*MS.C, vt->getBitWidth()); |
| return ty; |
| } |
| |
| /// Convert a shadow value to it's flattened variant. |
| Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { |
| Type *Ty = V->getType(); |
| Type *NoVecTy = getShadowTyNoVec(Ty); |
| if (Ty == NoVecTy) return V; |
| return IRB.CreateBitCast(V, NoVecTy); |
| } |
| |
| /// Compute the integer shadow offset that corresponds to a given |
| /// application address. |
| /// |
| /// Offset = (Addr & ~AndMask) ^ XorMask |
| Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { |
| Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); |
| |
| uint64_t AndMask = MS.MapParams->AndMask; |
| if (AndMask) |
| OffsetLong = |
| IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); |
| |
| uint64_t XorMask = MS.MapParams->XorMask; |
| if (XorMask) |
| OffsetLong = |
| IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); |
| return OffsetLong; |
| } |
| |
| /// Compute the shadow and origin addresses corresponding to a given |
| /// application address. |
| /// |
| /// Shadow = ShadowBase + Offset |
| /// Origin = (OriginBase + Offset) & ~3ULL |
| std::pair<Value *, Value *> |
| getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, |
| MaybeAlign Alignment) { |
| Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); |
| Value *ShadowLong = ShadowOffset; |
| uint64_t ShadowBase = MS.MapParams->ShadowBase; |
| if (ShadowBase != 0) { |
| ShadowLong = |
| IRB.CreateAdd(ShadowLong, |
| ConstantInt::get(MS.IntptrTy, ShadowBase)); |
| } |
| Value *ShadowPtr = |
| IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); |
| Value *OriginPtr = nullptr; |
| if (MS.TrackOrigins) { |
| Value *OriginLong = ShadowOffset; |
| uint64_t OriginBase = MS.MapParams->OriginBase; |
| if (OriginBase != 0) |
| OriginLong = IRB.CreateAdd(OriginLong, |
| ConstantInt::get(MS.IntptrTy, OriginBase)); |
| if (!Alignment || *Alignment < kMinOriginAlignment) { |
| uint64_t Mask = kMinOriginAlignment.value() - 1; |
| OriginLong = |
| IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); |
| } |
| OriginPtr = |
| IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); |
| } |
| return std::make_pair(ShadowPtr, OriginPtr); |
| } |
| |
| std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, |
| IRBuilder<> &IRB, |
| Type *ShadowTy, |
| bool isStore) { |
| Value *ShadowOriginPtrs; |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| int Size = DL.getTypeStoreSize(ShadowTy); |
| |
| FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); |
| Value *AddrCast = |
| IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); |
| if (Getter) { |
| ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); |
| } else { |
| Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); |
| ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN |
| : MS.MsanMetadataPtrForLoadN, |
| {AddrCast, SizeVal}); |
| } |
| Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); |
| ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); |
| Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); |
| |
| return std::make_pair(ShadowPtr, OriginPtr); |
| } |
| |
| std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, |
| Type *ShadowTy, |
| MaybeAlign Alignment, |
| bool isStore) { |
| if (MS.CompileKernel) |
| return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); |
| return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); |
| } |
| |
| /// Compute the shadow address for a given function argument. |
| /// |
| /// Shadow = ParamTLS+ArgOffset. |
| Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, |
| int ArgOffset) { |
| Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); |
| if (ArgOffset) |
| Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); |
| return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), |
| "_msarg"); |
| } |
| |
| /// Compute the origin address for a given function argument. |
| Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, |
| int ArgOffset) { |
| if (!MS.TrackOrigins) |
| return nullptr; |
| Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); |
| if (ArgOffset) |
| Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); |
| return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), |
| "_msarg_o"); |
| } |
| |
| /// Compute the shadow address for a retval. |
| Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { |
| return IRB.CreatePointerCast(MS.RetvalTLS, |
| PointerType::get(getShadowTy(A), 0), |
| "_msret"); |
| } |
| |
| /// Compute the origin address for a retval. |
| Value *getOriginPtrForRetval(IRBuilder<> &IRB) { |
| // We keep a single origin for the entire retval. Might be too optimistic. |
| return MS.RetvalOriginTLS; |
| } |
| |
| /// Set SV to be the shadow value for V. |
| void setShadow(Value *V, Value *SV) { |
| assert(!ShadowMap.count(V) && "Values may only have one shadow"); |
| ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); |
| } |
| |
| /// Set Origin to be the origin value for V. |
| void setOrigin(Value *V, Value *Origin) { |
| if (!MS.TrackOrigins) return; |
| assert(!OriginMap.count(V) && "Values may only have one origin"); |
| LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); |
| OriginMap[V] = Origin; |
| } |
| |
| Constant *getCleanShadow(Type *OrigTy) { |
| Type *ShadowTy = getShadowTy(OrigTy); |
| if (!ShadowTy) |
| return nullptr; |
| return Constant::getNullValue(ShadowTy); |
| } |
| |
| /// Create a clean shadow value for a given value. |
| /// |
| /// Clean shadow (all zeroes) means all bits of the value are defined |
| /// (initialized). |
| Constant *getCleanShadow(Value *V) { |
| return getCleanShadow(V->getType()); |
| } |
| |
| /// Create a dirty shadow of a given shadow type. |
| Constant *getPoisonedShadow(Type *ShadowTy) { |
| assert(ShadowTy); |
| if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) |
| return Constant::getAllOnesValue(ShadowTy); |
| if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { |
| SmallVector<Constant *, 4> Vals(AT->getNumElements(), |
| getPoisonedShadow(AT->getElementType())); |
| return ConstantArray::get(AT, Vals); |
| } |
| if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { |
| SmallVector<Constant *, 4> Vals; |
| for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) |
| Vals.push_back(getPoisonedShadow(ST->getElementType(i))); |
| return ConstantStruct::get(ST, Vals); |
| } |
| llvm_unreachable("Unexpected shadow type"); |
| } |
| |
| /// Create a dirty shadow for a given value. |
| Constant *getPoisonedShadow(Value *V) { |
| Type *ShadowTy = getShadowTy(V); |
| if (!ShadowTy) |
| return nullptr; |
| return getPoisonedShadow(ShadowTy); |
| } |
| |
| /// Create a clean (zero) origin. |
| Value *getCleanOrigin() { |
| return Constant::getNullValue(MS.OriginTy); |
| } |
| |
| /// Get the shadow value for a given Value. |
| /// |
| /// This function either returns the value set earlier with setShadow, |
| /// or extracts if from ParamTLS (for function arguments). |
| Value *getShadow(Value *V) { |
| if (!PropagateShadow) return getCleanShadow(V); |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| if (I->getMetadata("nosanitize")) |
| return getCleanShadow(V); |
| // For instructions the shadow is already stored in the map. |
| Value *Shadow = ShadowMap[V]; |
| if (!Shadow) { |
| LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); |
| (void)I; |
| assert(Shadow && "No shadow for a value"); |
| } |
| return Shadow; |
| } |
| if (UndefValue *U = dyn_cast<UndefValue>(V)) { |
| Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); |
| LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); |
| (void)U; |
| return AllOnes; |
| } |
| if (Argument *A = dyn_cast<Argument>(V)) { |
| // For arguments we compute the shadow on demand and store it in the map. |
| Value **ShadowPtr = &ShadowMap[V]; |
| if (*ShadowPtr) |
| return *ShadowPtr; |
| Function *F = A->getParent(); |
| IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); |
| unsigned ArgOffset = 0; |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| for (auto &FArg : F->args()) { |
| if (!FArg.getType()->isSized()) { |
| LLVM_DEBUG(dbgs() << "Arg is not sized\n"); |
| continue; |
| } |
| unsigned Size = |
| FArg.hasByValAttr() |
| ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) |
| : DL.getTypeAllocSize(FArg.getType()); |
| if (A == &FArg) { |
| bool Overflow = ArgOffset + Size > kParamTLSSize; |
| Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); |
| if (FArg.hasByValAttr()) { |
| // ByVal pointer itself has clean shadow. We copy the actual |
| // argument shadow to the underlying memory. |
| // Figure out maximal valid memcpy alignment. |
| const Align ArgAlign = DL.getValueOrABITypeAlignment( |
| MaybeAlign(FArg.getParamAlignment()), |
| A->getType()->getPointerElementType()); |
| Value *CpShadowPtr = |
| getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, |
| /*isStore*/ true) |
| .first; |
| // TODO(glider): need to copy origins. |
| if (Overflow) { |
| // ParamTLS overflow. |
| EntryIRB.CreateMemSet( |
| CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), |
| Size, ArgAlign); |
| } else { |
| const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); |
| Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, |
| CopyAlign, Size); |
| LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); |
| (void)Cpy; |
| } |
| *ShadowPtr = getCleanShadow(V); |
| } else { |
| if (Overflow) { |
| // ParamTLS overflow. |
| *ShadowPtr = getCleanShadow(V); |
| } else { |
| *ShadowPtr = EntryIRB.CreateAlignedLoad( |
| getShadowTy(&FArg), Base, kShadowTLSAlignment.value()); |
| } |
| } |
| LLVM_DEBUG(dbgs() |
| << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); |
| if (MS.TrackOrigins && !Overflow) { |
| Value *OriginPtr = |
| getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); |
| setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); |
| } else { |
| setOrigin(A, getCleanOrigin()); |
| } |
| } |
| ArgOffset += alignTo(Size, kShadowTLSAlignment); |
| } |
| assert(*ShadowPtr && "Could not find shadow for an argument"); |
| return *ShadowPtr; |
| } |
| // For everything else the shadow is zero. |
| return getCleanShadow(V); |
| } |
| |
| /// Get the shadow for i-th argument of the instruction I. |
| Value *getShadow(Instruction *I, int i) { |
| return getShadow(I->getOperand(i)); |
| } |
| |
| /// Get the origin for a value. |
| Value *getOrigin(Value *V) { |
| if (!MS.TrackOrigins) return nullptr; |
| if (!PropagateShadow) return getCleanOrigin(); |
| if (isa<Constant>(V)) return getCleanOrigin(); |
| assert((isa<Instruction>(V) || isa<Argument>(V)) && |
| "Unexpected value type in getOrigin()"); |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| if (I->getMetadata("nosanitize")) |
| return getCleanOrigin(); |
| } |
| Value *Origin = OriginMap[V]; |
| assert(Origin && "Missing origin"); |
| return Origin; |
| } |
| |
| /// Get the origin for i-th argument of the instruction I. |
| Value *getOrigin(Instruction *I, int i) { |
| return getOrigin(I->getOperand(i)); |
| } |
| |
| /// Remember the place where a shadow check should be inserted. |
| /// |
| /// This location will be later instrumented with a check that will print a |
| /// UMR warning in runtime if the shadow value is not 0. |
| void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { |
| assert(Shadow); |
| if (!InsertChecks) return; |
| #ifndef NDEBUG |
| Type *ShadowTy = Shadow->getType(); |
| assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && |
| "Can only insert checks for integer and vector shadow types"); |
| #endif |
| InstrumentationList.push_back( |
| ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); |
| } |
| |
| /// Remember the place where a shadow check should be inserted. |
| /// |
| /// This location will be later instrumented with a check that will print a |
| /// UMR warning in runtime if the value is not fully defined. |
| void insertShadowCheck(Value *Val, Instruction *OrigIns) { |
| assert(Val); |
| Value *Shadow, *Origin; |
| if (ClCheckConstantShadow) { |
| Shadow = getShadow(Val); |
| if (!Shadow) return; |
| Origin = getOrigin(Val); |
| } else { |
| Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); |
| if (!Shadow) return; |
| Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); |
| } |
| insertShadowCheck(Shadow, Origin, OrigIns); |
| } |
| |
| AtomicOrdering addReleaseOrdering(AtomicOrdering a) { |
| switch (a) { |
| case AtomicOrdering::NotAtomic: |
| return AtomicOrdering::NotAtomic; |
| case AtomicOrdering::Unordered: |
| case AtomicOrdering::Monotonic: |
| case AtomicOrdering::Release: |
| return AtomicOrdering::Release; |
| case AtomicOrdering::Acquire: |
| case AtomicOrdering::AcquireRelease: |
| return AtomicOrdering::AcquireRelease; |
| case AtomicOrdering::SequentiallyConsistent: |
| return AtomicOrdering::SequentiallyConsistent; |
| } |
| llvm_unreachable("Unknown ordering"); |
| } |
| |
| AtomicOrdering addAcquireOrdering(AtomicOrdering a) { |
| switch (a) { |
| case AtomicOrdering::NotAtomic: |
| return AtomicOrdering::NotAtomic; |
| case AtomicOrdering::Unordered: |
| case AtomicOrdering::Monotonic: |
| case AtomicOrdering::Acquire: |
| return AtomicOrdering::Acquire; |
| case AtomicOrdering::Release: |
| case AtomicOrdering::AcquireRelease: |
| return AtomicOrdering::AcquireRelease; |
| case AtomicOrdering::SequentiallyConsistent: |
| return AtomicOrdering::SequentiallyConsistent; |
| } |
| llvm_unreachable("Unknown ordering"); |
| } |
| |
| // ------------------- Visitors. |
| using InstVisitor<MemorySanitizerVisitor>::visit; |
| void visit(Instruction &I) { |
| if (!I.getMetadata("nosanitize")) |
| InstVisitor<MemorySanitizerVisitor>::visit(I); |
| } |
| |
| /// Instrument LoadInst |
| /// |
| /// Loads the corresponding shadow and (optionally) origin. |
| /// Optionally, checks that the load address is fully defined. |
| void visitLoadInst(LoadInst &I) { |
| assert(I.getType()->isSized() && "Load type must have size"); |
| assert(!I.getMetadata("nosanitize")); |
| IRBuilder<> IRB(I.getNextNode()); |
| Type *ShadowTy = getShadowTy(&I); |
| Value *Addr = I.getPointerOperand(); |
| Value *ShadowPtr = nullptr, *OriginPtr = nullptr; |
| const Align Alignment = assumeAligned(I.getAlignment()); |
| if (PropagateShadow) { |
| std::tie(ShadowPtr, OriginPtr) = |
| getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| setShadow(&I, IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, |
| Alignment.value(), "_msld")); |
| } else { |
| setShadow(&I, getCleanShadow(&I)); |
| } |
| |
| if (ClCheckAccessAddress) |
| insertShadowCheck(I.getPointerOperand(), &I); |
| |
| if (I.isAtomic()) |
| I.setOrdering(addAcquireOrdering(I.getOrdering())); |
| |
| if (MS.TrackOrigins) { |
| if (PropagateShadow) { |
| const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); |
| setOrigin(&I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, |
| OriginAlignment.value())); |
| } else { |
| setOrigin(&I, getCleanOrigin()); |
| } |
| } |
| } |
| |
| /// Instrument StoreInst |
| /// |
| /// Stores the corresponding shadow and (optionally) origin. |
| /// Optionally, checks that the store address is fully defined. |
| void visitStoreInst(StoreInst &I) { |
| StoreList.push_back(&I); |
| if (ClCheckAccessAddress) |
| insertShadowCheck(I.getPointerOperand(), &I); |
| } |
| |
| void handleCASOrRMW(Instruction &I) { |
| assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); |
| |
| IRBuilder<> IRB(&I); |
| Value *Addr = I.getOperand(0); |
| Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align::None(), |
| /*isStore*/ true) |
| .first; |
| |
| if (ClCheckAccessAddress) |
| insertShadowCheck(Addr, &I); |
| |
| // Only test the conditional argument of cmpxchg instruction. |
| // The other argument can potentially be uninitialized, but we can not |
| // detect this situation reliably without possible false positives. |
| if (isa<AtomicCmpXchgInst>(I)) |
| insertShadowCheck(I.getOperand(1), &I); |
| |
| IRB.CreateStore(getCleanShadow(&I), ShadowPtr); |
| |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| } |
| |
| void visitAtomicRMWInst(AtomicRMWInst &I) { |
| handleCASOrRMW(I); |
| I.setOrdering(addReleaseOrdering(I.getOrdering())); |
| } |
| |
| void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { |
| handleCASOrRMW(I); |
| I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); |
| } |
| |
| // Vector manipulation. |
| void visitExtractElementInst(ExtractElementInst &I) { |
| insertShadowCheck(I.getOperand(1), &I); |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), |
| "_msprop")); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void visitInsertElementInst(InsertElementInst &I) { |
| insertShadowCheck(I.getOperand(2), &I); |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), |
| I.getOperand(2), "_msprop")); |
| setOriginForNaryOp(I); |
| } |
| |
| void visitShuffleVectorInst(ShuffleVectorInst &I) { |
| insertShadowCheck(I.getOperand(2), &I); |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), |
| I.getOperand(2), "_msprop")); |
| setOriginForNaryOp(I); |
| } |
| |
| // Casts. |
| void visitSExtInst(SExtInst &I) { |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void visitZExtInst(ZExtInst &I) { |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void visitTruncInst(TruncInst &I) { |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void visitBitCastInst(BitCastInst &I) { |
| // Special case: if this is the bitcast (there is exactly 1 allowed) between |
| // a musttail call and a ret, don't instrument. New instructions are not |
| // allowed after a musttail call. |
| if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) |
| if (CI->isMustTailCall()) |
| return; |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void visitPtrToIntInst(PtrToIntInst &I) { |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, |
| "_msprop_ptrtoint")); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void visitIntToPtrInst(IntToPtrInst &I) { |
| IRBuilder<> IRB(&I); |
| setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, |
| "_msprop_inttoptr")); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } |
| void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } |
| void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } |
| void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } |
| void visitFPExtInst(CastInst& I) { handleShadowOr(I); } |
| void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } |
| |
| /// Propagate shadow for bitwise AND. |
| /// |
| /// This code is exact, i.e. if, for example, a bit in the left argument |
| /// is defined and 0, then neither the value not definedness of the |
| /// corresponding bit in B don't affect the resulting shadow. |
| void visitAnd(BinaryOperator &I) { |
| IRBuilder<> IRB(&I); |
| // "And" of 0 and a poisoned value results in unpoisoned value. |
| // 1&1 => 1; 0&1 => 0; p&1 => p; |
| // 1&0 => 0; 0&0 => 0; p&0 => 0; |
| // 1&p => p; 0&p => 0; p&p => p; |
| // S = (S1 & S2) | (V1 & S2) | (S1 & V2) |
| Value *S1 = getShadow(&I, 0); |
| Value *S2 = getShadow(&I, 1); |
| Value *V1 = I.getOperand(0); |
| Value *V2 = I.getOperand(1); |
| if (V1->getType() != S1->getType()) { |
| V1 = IRB.CreateIntCast(V1, S1->getType(), false); |
| V2 = IRB.CreateIntCast(V2, S2->getType(), false); |
| } |
| Value *S1S2 = IRB.CreateAnd(S1, S2); |
| Value *V1S2 = IRB.CreateAnd(V1, S2); |
| Value *S1V2 = IRB.CreateAnd(S1, V2); |
| setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); |
| setOriginForNaryOp(I); |
| } |
| |
| void visitOr(BinaryOperator &I) { |
| IRBuilder<> IRB(&I); |
| // "Or" of 1 and a poisoned value results in unpoisoned value. |
| // 1|1 => 1; 0|1 => 1; p|1 => 1; |
| // 1|0 => 1; 0|0 => 0; p|0 => p; |
| // 1|p => 1; 0|p => p; p|p => p; |
| // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) |
| Value *S1 = getShadow(&I, 0); |
| Value *S2 = getShadow(&I, 1); |
| Value *V1 = IRB.CreateNot(I.getOperand(0)); |
| Value *V2 = IRB.CreateNot(I.getOperand(1)); |
| if (V1->getType() != S1->getType()) { |
| V1 = IRB.CreateIntCast(V1, S1->getType(), false); |
| V2 = IRB.CreateIntCast(V2, S2->getType(), false); |
| } |
| Value *S1S2 = IRB.CreateAnd(S1, S2); |
| Value *V1S2 = IRB.CreateAnd(V1, S2); |
| Value *S1V2 = IRB.CreateAnd(S1, V2); |
| setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); |
| setOriginForNaryOp(I); |
| } |
| |
| /// Default propagation of shadow and/or origin. |
| /// |
| /// This class implements the general case of shadow propagation, used in all |
| /// cases where we don't know and/or don't care about what the operation |
| /// actually does. It converts all input shadow values to a common type |
| /// (extending or truncating as necessary), and bitwise OR's them. |
| /// |
| /// This is much cheaper than inserting checks (i.e. requiring inputs to be |
| /// fully initialized), and less prone to false positives. |
| /// |
| /// This class also implements the general case of origin propagation. For a |
| /// Nary operation, result origin is set to the origin of an argument that is |
| /// not entirely initialized. If there is more than one such arguments, the |
| /// rightmost of them is picked. It does not matter which one is picked if all |
| /// arguments are initialized. |
| template <bool CombineShadow> |
| class Combiner { |
| Value *Shadow = nullptr; |
| Value *Origin = nullptr; |
| IRBuilder<> &IRB; |
| MemorySanitizerVisitor *MSV; |
| |
| public: |
| Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) |
| : IRB(IRB), MSV(MSV) {} |
| |
| /// Add a pair of shadow and origin values to the mix. |
| Combiner &Add(Value *OpShadow, Value *OpOrigin) { |
| if (CombineShadow) { |
| assert(OpShadow); |
| if (!Shadow) |
| Shadow = OpShadow; |
| else { |
| OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); |
| Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); |
| } |
| } |
| |
| if (MSV->MS.TrackOrigins) { |
| assert(OpOrigin); |
| if (!Origin) { |
| Origin = OpOrigin; |
| } else { |
| Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); |
| // No point in adding something that might result in 0 origin value. |
| if (!ConstOrigin || !ConstOrigin->isNullValue()) { |
| Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); |
| Value *Cond = |
| IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); |
| Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); |
| } |
| } |
| } |
| return *this; |
| } |
| |
| /// Add an application value to the mix. |
| Combiner &Add(Value *V) { |
| Value *OpShadow = MSV->getShadow(V); |
| Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; |
| return Add(OpShadow, OpOrigin); |
| } |
| |
| /// Set the current combined values as the given instruction's shadow |
| /// and origin. |
| void Done(Instruction *I) { |
| if (CombineShadow) { |
| assert(Shadow); |
| Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); |
| MSV->setShadow(I, Shadow); |
| } |
| if (MSV->MS.TrackOrigins) { |
| assert(Origin); |
| MSV->setOrigin(I, Origin); |
| } |
| } |
| }; |
| |
| using ShadowAndOriginCombiner = Combiner<true>; |
| using OriginCombiner = Combiner<false>; |
| |
| /// Propagate origin for arbitrary operation. |
| void setOriginForNaryOp(Instruction &I) { |
| if (!MS.TrackOrigins) return; |
| IRBuilder<> IRB(&I); |
| OriginCombiner OC(this, IRB); |
| for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) |
| OC.Add(OI->get()); |
| OC.Done(&I); |
| } |
| |
| size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { |
| assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && |
| "Vector of pointers is not a valid shadow type"); |
| return Ty->isVectorTy() ? |
| Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : |
| Ty->getPrimitiveSizeInBits(); |
| } |
| |
| /// Cast between two shadow types, extending or truncating as |
| /// necessary. |
| Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, |
| bool Signed = false) { |
| Type *srcTy = V->getType(); |
| size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); |
| size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); |
| if (srcSizeInBits > 1 && dstSizeInBits == 1) |
| return IRB.CreateICmpNE(V, getCleanShadow(V)); |
| |
| if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) |
| return IRB.CreateIntCast(V, dstTy, Signed); |
| if (dstTy->isVectorTy() && srcTy->isVectorTy() && |
| dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) |
| return IRB.CreateIntCast(V, dstTy, Signed); |
| Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); |
| Value *V2 = |
| IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); |
| return IRB.CreateBitCast(V2, dstTy); |
| // TODO: handle struct types. |
| } |
| |
| /// Cast an application value to the type of its own shadow. |
| Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { |
| Type *ShadowTy = getShadowTy(V); |
| if (V->getType() == ShadowTy) |
| return V; |
| if (V->getType()->isPtrOrPtrVectorTy()) |
| return IRB.CreatePtrToInt(V, ShadowTy); |
| else |
| return IRB.CreateBitCast(V, ShadowTy); |
| } |
| |
| /// Propagate shadow for arbitrary operation. |
| void handleShadowOr(Instruction &I) { |
| IRBuilder<> IRB(&I); |
| ShadowAndOriginCombiner SC(this, IRB); |
| for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) |
| SC.Add(OI->get()); |
| SC.Done(&I); |
| } |
| |
| void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } |
| |
| // Handle multiplication by constant. |
| // |
| // Handle a special case of multiplication by constant that may have one or |
| // more zeros in the lower bits. This makes corresponding number of lower bits |
| // of the result zero as well. We model it by shifting the other operand |
| // shadow left by the required number of bits. Effectively, we transform |
| // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). |
| // We use multiplication by 2**N instead of shift to cover the case of |
| // multiplication by 0, which may occur in some elements of a vector operand. |
| void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, |
| Value *OtherArg) { |
| Constant *ShadowMul; |
| Type *Ty = ConstArg->getType(); |
| if (Ty->isVectorTy()) { |
| unsigned NumElements = Ty->getVectorNumElements(); |
| Type *EltTy = Ty->getSequentialElementType(); |
| SmallVector<Constant *, 16> Elements; |
| for (unsigned Idx = 0; Idx < NumElements; ++Idx) { |
| if (ConstantInt *Elt = |
| dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { |
| const APInt &V = Elt->getValue(); |
| APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); |
| Elements.push_back(ConstantInt::get(EltTy, V2)); |
| } else { |
| Elements.push_back(ConstantInt::get(EltTy, 1)); |
| } |
| } |
| ShadowMul = ConstantVector::get(Elements); |
| } else { |
| if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { |
| const APInt &V = Elt->getValue(); |
| APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); |
| ShadowMul = ConstantInt::get(Ty, V2); |
| } else { |
| ShadowMul = ConstantInt::get(Ty, 1); |
| } |
| } |
| |
| IRBuilder<> IRB(&I); |
| setShadow(&I, |
| IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); |
| setOrigin(&I, getOrigin(OtherArg)); |
| } |
| |
| void visitMul(BinaryOperator &I) { |
| Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); |
| Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); |
| if (constOp0 && !constOp1) |
| handleMulByConstant(I, constOp0, I.getOperand(1)); |
| else if (constOp1 && !constOp0) |
| handleMulByConstant(I, constOp1, I.getOperand(0)); |
| else |
| handleShadowOr(I); |
| } |
| |
| void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } |
| void visitFSub(BinaryOperator &I) { handleShadowOr(I); } |
| void visitFMul(BinaryOperator &I) { handleShadowOr(I); } |
| void visitAdd(BinaryOperator &I) { handleShadowOr(I); } |
| void visitSub(BinaryOperator &I) { handleShadowOr(I); } |
| void visitXor(BinaryOperator &I) { handleShadowOr(I); } |
| |
| void handleIntegerDiv(Instruction &I) { |
| IRBuilder<> IRB(&I); |
| // Strict on the second argument. |
| insertShadowCheck(I.getOperand(1), &I); |
| setShadow(&I, getShadow(&I, 0)); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } |
| void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } |
| void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } |
| void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } |
| |
| // Floating point division is side-effect free. We can not require that the |
| // divisor is fully initialized and must propagate shadow. See PR37523. |
| void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } |
| void visitFRem(BinaryOperator &I) { handleShadowOr(I); } |
| |
| /// Instrument == and != comparisons. |
| /// |
| /// Sometimes the comparison result is known even if some of the bits of the |
| /// arguments are not. |
| void handleEqualityComparison(ICmpInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *A = I.getOperand(0); |
| Value *B = I.getOperand(1); |
| Value *Sa = getShadow(A); |
| Value *Sb = getShadow(B); |
| |
| // Get rid of pointers and vectors of pointers. |
| // For ints (and vectors of ints), types of A and Sa match, |
| // and this is a no-op. |
| A = IRB.CreatePointerCast(A, Sa->getType()); |
| B = IRB.CreatePointerCast(B, Sb->getType()); |
| |
| // A == B <==> (C = A^B) == 0 |
| // A != B <==> (C = A^B) != 0 |
| // Sc = Sa | Sb |
| Value *C = IRB.CreateXor(A, B); |
| Value *Sc = IRB.CreateOr(Sa, Sb); |
| // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) |
| // Result is defined if one of the following is true |
| // * there is a defined 1 bit in C |
| // * C is fully defined |
| // Si = !(C & ~Sc) && Sc |
| Value *Zero = Constant::getNullValue(Sc->getType()); |
| Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); |
| Value *Si = |
| IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), |
| IRB.CreateICmpEQ( |
| IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); |
| Si->setName("_msprop_icmp"); |
| setShadow(&I, Si); |
| setOriginForNaryOp(I); |
| } |
| |
| /// Build the lowest possible value of V, taking into account V's |
| /// uninitialized bits. |
| Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, |
| bool isSigned) { |
| if (isSigned) { |
| // Split shadow into sign bit and other bits. |
| Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); |
| Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); |
| // Maximise the undefined shadow bit, minimize other undefined bits. |
| return |
| IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); |
| } else { |
| // Minimize undefined bits. |
| return IRB.CreateAnd(A, IRB.CreateNot(Sa)); |
| } |
| } |
| |
| /// Build the highest possible value of V, taking into account V's |
| /// uninitialized bits. |
| Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, |
| bool isSigned) { |
| if (isSigned) { |
| // Split shadow into sign bit and other bits. |
| Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); |
| Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); |
| // Minimise the undefined shadow bit, maximise other undefined bits. |
| return |
| IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); |
| } else { |
| // Maximize undefined bits. |
| return IRB.CreateOr(A, Sa); |
| } |
| } |
| |
| /// Instrument relational comparisons. |
| /// |
| /// This function does exact shadow propagation for all relational |
| /// comparisons of integers, pointers and vectors of those. |
| /// FIXME: output seems suboptimal when one of the operands is a constant |
| void handleRelationalComparisonExact(ICmpInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *A = I.getOperand(0); |
| Value *B = I.getOperand(1); |
| Value *Sa = getShadow(A); |
| Value *Sb = getShadow(B); |
| |
| // Get rid of pointers and vectors of pointers. |
| // For ints (and vectors of ints), types of A and Sa match, |
| // and this is a no-op. |
| A = IRB.CreatePointerCast(A, Sa->getType()); |
| B = IRB.CreatePointerCast(B, Sb->getType()); |
| |
| // Let [a0, a1] be the interval of possible values of A, taking into account |
| // its undefined bits. Let [b0, b1] be the interval of possible values of B. |
| // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). |
| bool IsSigned = I.isSigned(); |
| Value *S1 = IRB.CreateICmp(I.getPredicate(), |
| getLowestPossibleValue(IRB, A, Sa, IsSigned), |
| getHighestPossibleValue(IRB, B, Sb, IsSigned)); |
| Value *S2 = IRB.CreateICmp(I.getPredicate(), |
| getHighestPossibleValue(IRB, A, Sa, IsSigned), |
| getLowestPossibleValue(IRB, B, Sb, IsSigned)); |
| Value *Si = IRB.CreateXor(S1, S2); |
| setShadow(&I, Si); |
| setOriginForNaryOp(I); |
| } |
| |
| /// Instrument signed relational comparisons. |
| /// |
| /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest |
| /// bit of the shadow. Everything else is delegated to handleShadowOr(). |
| void handleSignedRelationalComparison(ICmpInst &I) { |
| Constant *constOp; |
| Value *op = nullptr; |
| CmpInst::Predicate pre; |
| if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { |
| op = I.getOperand(0); |
| pre = I.getPredicate(); |
| } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { |
| op = I.getOperand(1); |
| pre = I.getSwappedPredicate(); |
| } else { |
| handleShadowOr(I); |
| return; |
| } |
| |
| if ((constOp->isNullValue() && |
| (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || |
| (constOp->isAllOnesValue() && |
| (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { |
| IRBuilder<> IRB(&I); |
| Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), |
| "_msprop_icmp_s"); |
| setShadow(&I, Shadow); |
| setOrigin(&I, getOrigin(op)); |
| } else { |
| handleShadowOr(I); |
| } |
| } |
| |
| void visitICmpInst(ICmpInst &I) { |
| if (!ClHandleICmp) { |
| handleShadowOr(I); |
| return; |
| } |
| if (I.isEquality()) { |
| handleEqualityComparison(I); |
| return; |
| } |
| |
| assert(I.isRelational()); |
| if (ClHandleICmpExact) { |
| handleRelationalComparisonExact(I); |
| return; |
| } |
| if (I.isSigned()) { |
| handleSignedRelationalComparison(I); |
| return; |
| } |
| |
| assert(I.isUnsigned()); |
| if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { |
| handleRelationalComparisonExact(I); |
| return; |
| } |
| |
| handleShadowOr(I); |
| } |
| |
| void visitFCmpInst(FCmpInst &I) { |
| handleShadowOr(I); |
| } |
| |
| void handleShift(BinaryOperator &I) { |
| IRBuilder<> IRB(&I); |
| // If any of the S2 bits are poisoned, the whole thing is poisoned. |
| // Otherwise perform the same shift on S1. |
| Value *S1 = getShadow(&I, 0); |
| Value *S2 = getShadow(&I, 1); |
| Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), |
| S2->getType()); |
| Value *V2 = I.getOperand(1); |
| Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); |
| setShadow(&I, IRB.CreateOr(Shift, S2Conv)); |
| setOriginForNaryOp(I); |
| } |
| |
| void visitShl(BinaryOperator &I) { handleShift(I); } |
| void visitAShr(BinaryOperator &I) { handleShift(I); } |
| void visitLShr(BinaryOperator &I) { handleShift(I); } |
| |
| /// Instrument llvm.memmove |
| /// |
| /// At this point we don't know if llvm.memmove will be inlined or not. |
| /// If we don't instrument it and it gets inlined, |
| /// our interceptor will not kick in and we will lose the memmove. |
| /// If we instrument the call here, but it does not get inlined, |
| /// we will memove the shadow twice: which is bad in case |
| /// of overlapping regions. So, we simply lower the intrinsic to a call. |
| /// |
| /// Similar situation exists for memcpy and memset. |
| void visitMemMoveInst(MemMoveInst &I) { |
| IRBuilder<> IRB(&I); |
| IRB.CreateCall( |
| MS.MemmoveFn, |
| {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); |
| I.eraseFromParent(); |
| } |
| |
| // Similar to memmove: avoid copying shadow twice. |
| // This is somewhat unfortunate as it may slowdown small constant memcpys. |
| // FIXME: consider doing manual inline for small constant sizes and proper |
| // alignment. |
| void visitMemCpyInst(MemCpyInst &I) { |
| IRBuilder<> IRB(&I); |
| IRB.CreateCall( |
| MS.MemcpyFn, |
| {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); |
| I.eraseFromParent(); |
| } |
| |
| // Same as memcpy. |
| void visitMemSetInst(MemSetInst &I) { |
| IRBuilder<> IRB(&I); |
| IRB.CreateCall( |
| MS.MemsetFn, |
| {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), |
| IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); |
| I.eraseFromParent(); |
| } |
| |
| void visitVAStartInst(VAStartInst &I) { |
| VAHelper->visitVAStartInst(I); |
| } |
| |
| void visitVACopyInst(VACopyInst &I) { |
| VAHelper->visitVACopyInst(I); |
| } |
| |
| /// Handle vector store-like intrinsics. |
| /// |
| /// Instrument intrinsics that look like a simple SIMD store: writes memory, |
| /// has 1 pointer argument and 1 vector argument, returns void. |
| bool handleVectorStoreIntrinsic(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Value* Addr = I.getArgOperand(0); |
| Value *Shadow = getShadow(&I, 1); |
| Value *ShadowPtr, *OriginPtr; |
| |
| // We don't know the pointer alignment (could be unaligned SSE store!). |
| // Have to assume to worst case. |
| std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( |
| Addr, IRB, Shadow->getType(), Align::None(), /*isStore*/ true); |
| IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); |
| |
| if (ClCheckAccessAddress) |
| insertShadowCheck(Addr, &I); |
| |
| // FIXME: factor out common code from materializeStores |
| if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); |
| return true; |
| } |
| |
| /// Handle vector load-like intrinsics. |
| /// |
| /// Instrument intrinsics that look like a simple SIMD load: reads memory, |
| /// has 1 pointer argument, returns a vector. |
| bool handleVectorLoadIntrinsic(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *Addr = I.getArgOperand(0); |
| |
| Type *ShadowTy = getShadowTy(&I); |
| Value *ShadowPtr = nullptr, *OriginPtr = nullptr; |
| if (PropagateShadow) { |
| // We don't know the pointer alignment (could be unaligned SSE load!). |
| // Have to assume to worst case. |
| const Align Alignment = Align::None(); |
| std::tie(ShadowPtr, OriginPtr) = |
| getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| setShadow(&I, IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, |
| Alignment.value(), "_msld")); |
| } else { |
| setShadow(&I, getCleanShadow(&I)); |
| } |
| |
| if (ClCheckAccessAddress) |
| insertShadowCheck(Addr, &I); |
| |
| if (MS.TrackOrigins) { |
| if (PropagateShadow) |
| setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); |
| else |
| setOrigin(&I, getCleanOrigin()); |
| } |
| return true; |
| } |
| |
| /// Handle (SIMD arithmetic)-like intrinsics. |
| /// |
| /// Instrument intrinsics with any number of arguments of the same type, |
| /// equal to the return type. The type should be simple (no aggregates or |
| /// pointers; vectors are fine). |
| /// Caller guarantees that this intrinsic does not access memory. |
| bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { |
| Type *RetTy = I.getType(); |
| if (!(RetTy->isIntOrIntVectorTy() || |
| RetTy->isFPOrFPVectorTy() || |
| RetTy->isX86_MMXTy())) |
| return false; |
| |
| unsigned NumArgOperands = I.getNumArgOperands(); |
| |
| for (unsigned i = 0; i < NumArgOperands; ++i) { |
| Type *Ty = I.getArgOperand(i)->getType(); |
| if (Ty != RetTy) |
| return false; |
| } |
| |
| IRBuilder<> IRB(&I); |
| ShadowAndOriginCombiner SC(this, IRB); |
| for (unsigned i = 0; i < NumArgOperands; ++i) |
| SC.Add(I.getArgOperand(i)); |
| SC.Done(&I); |
| |
| return true; |
| } |
| |
| /// Heuristically instrument unknown intrinsics. |
| /// |
| /// The main purpose of this code is to do something reasonable with all |
| /// random intrinsics we might encounter, most importantly - SIMD intrinsics. |
| /// We recognize several classes of intrinsics by their argument types and |
| /// ModRefBehaviour and apply special intrumentation when we are reasonably |
| /// sure that we know what the intrinsic does. |
| /// |
| /// We special-case intrinsics where this approach fails. See llvm.bswap |
| /// handling as an example of that. |
| bool handleUnknownIntrinsic(IntrinsicInst &I) { |
| unsigned NumArgOperands = I.getNumArgOperands(); |
| if (NumArgOperands == 0) |
| return false; |
| |
| if (NumArgOperands == 2 && |
| I.getArgOperand(0)->getType()->isPointerTy() && |
| I.getArgOperand(1)->getType()->isVectorTy() && |
| I.getType()->isVoidTy() && |
| !I.onlyReadsMemory()) { |
| // This looks like a vector store. |
| return handleVectorStoreIntrinsic(I); |
| } |
| |
| if (NumArgOperands == 1 && |
| I.getArgOperand(0)->getType()->isPointerTy() && |
| I.getType()->isVectorTy() && |
| I.onlyReadsMemory()) { |
| // This looks like a vector load. |
| return handleVectorLoadIntrinsic(I); |
| } |
| |
| if (I.doesNotAccessMemory()) |
| if (maybeHandleSimpleNomemIntrinsic(I)) |
| return true; |
| |
| // FIXME: detect and handle SSE maskstore/maskload |
| return false; |
| } |
| |
| void handleInvariantGroup(IntrinsicInst &I) { |
| setShadow(&I, getShadow(&I, 0)); |
| setOrigin(&I, getOrigin(&I, 0)); |
| } |
| |
| void handleLifetimeStart(IntrinsicInst &I) { |
| if (!PoisonStack) |
| return; |
| DenseMap<Value *, AllocaInst *> AllocaForValue; |
| AllocaInst *AI = |
| llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); |
| if (!AI) |
| InstrumentLifetimeStart = false; |
| LifetimeStartList.push_back(std::make_pair(&I, AI)); |
| } |
| |
| void handleBswap(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *Op = I.getArgOperand(0); |
| Type *OpType = Op->getType(); |
| Function *BswapFunc = Intrinsic::getDeclaration( |
| F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); |
| setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); |
| setOrigin(&I, getOrigin(Op)); |
| } |
| |
| // Instrument vector convert instrinsic. |
| // |
| // This function instruments intrinsics like cvtsi2ss: |
| // %Out = int_xxx_cvtyyy(%ConvertOp) |
| // or |
| // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) |
| // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same |
| // number \p Out elements, and (if has 2 arguments) copies the rest of the |
| // elements from \p CopyOp. |
| // In most cases conversion involves floating-point value which may trigger a |
| // hardware exception when not fully initialized. For this reason we require |
| // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. |
| // We copy the shadow of \p CopyOp[NumUsedElements:] to \p |
| // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always |
| // return a fully initialized value. |
| void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { |
| IRBuilder<> IRB(&I); |
| Value *CopyOp, *ConvertOp; |
| |
| switch (I.getNumArgOperands()) { |
| case 3: |
| assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); |
| LLVM_FALLTHROUGH; |
| case 2: |
| CopyOp = I.getArgOperand(0); |
| ConvertOp = I.getArgOperand(1); |
| break; |
| case 1: |
| ConvertOp = I.getArgOperand(0); |
| CopyOp = nullptr; |
| break; |
| default: |
| llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); |
| } |
| |
| // The first *NumUsedElements* elements of ConvertOp are converted to the |
| // same number of output elements. The rest of the output is copied from |
| // CopyOp, or (if not available) filled with zeroes. |
| // Combine shadow for elements of ConvertOp that are used in this operation, |
| // and insert a check. |
| // FIXME: consider propagating shadow of ConvertOp, at least in the case of |
| // int->any conversion. |
| Value *ConvertShadow = getShadow(ConvertOp); |
| Value *AggShadow = nullptr; |
| if (ConvertOp->getType()->isVectorTy()) { |
| AggShadow = IRB.CreateExtractElement( |
| ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); |
| for (int i = 1; i < NumUsedElements; ++i) { |
| Value *MoreShadow = IRB.CreateExtractElement( |
| ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); |
| AggShadow = IRB.CreateOr(AggShadow, MoreShadow); |
| } |
| } else { |
| AggShadow = ConvertShadow; |
| } |
| assert(AggShadow->getType()->isIntegerTy()); |
| insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); |
| |
| // Build result shadow by zero-filling parts of CopyOp shadow that come from |
| // ConvertOp. |
| if (CopyOp) { |
| assert(CopyOp->getType() == I.getType()); |
| assert(CopyOp->getType()->isVectorTy()); |
| Value *ResultShadow = getShadow(CopyOp); |
| Type *EltTy = ResultShadow->getType()->getVectorElementType(); |
| for (int i = 0; i < NumUsedElements; ++i) { |
| ResultShadow = IRB.CreateInsertElement( |
| ResultShadow, ConstantInt::getNullValue(EltTy), |
| ConstantInt::get(IRB.getInt32Ty(), i)); |
| } |
| setShadow(&I, ResultShadow); |
| setOrigin(&I, getOrigin(CopyOp)); |
| } else { |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| } |
| } |
| |
| // Given a scalar or vector, extract lower 64 bits (or less), and return all |
| // zeroes if it is zero, and all ones otherwise. |
| Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { |
| if (S->getType()->isVectorTy()) |
| S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); |
| assert(S->getType()->getPrimitiveSizeInBits() <= 64); |
| Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); |
| return CreateShadowCast(IRB, S2, T, /* Signed */ true); |
| } |
| |
| // Given a vector, extract its first element, and return all |
| // zeroes if it is zero, and all ones otherwise. |
| Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { |
| Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); |
| Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); |
| return CreateShadowCast(IRB, S2, T, /* Signed */ true); |
| } |
| |
| Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { |
| Type *T = S->getType(); |
| assert(T->isVectorTy()); |
| Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); |
| return IRB.CreateSExt(S2, T); |
| } |
| |
| // Instrument vector shift instrinsic. |
| // |
| // This function instruments intrinsics like int_x86_avx2_psll_w. |
| // Intrinsic shifts %In by %ShiftSize bits. |
| // %ShiftSize may be a vector. In that case the lower 64 bits determine shift |
| // size, and the rest is ignored. Behavior is defined even if shift size is |
| // greater than register (or field) width. |
| void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { |
| assert(I.getNumArgOperands() == 2); |
| IRBuilder<> IRB(&I); |
| // If any of the S2 bits are poisoned, the whole thing is poisoned. |
| // Otherwise perform the same shift on S1. |
| Value *S1 = getShadow(&I, 0); |
| Value *S2 = getShadow(&I, 1); |
| Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) |
| : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); |
| Value *V1 = I.getOperand(0); |
| Value *V2 = I.getOperand(1); |
| Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), |
| {IRB.CreateBitCast(S1, V1->getType()), V2}); |
| Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); |
| setShadow(&I, IRB.CreateOr(Shift, S2Conv)); |
| setOriginForNaryOp(I); |
| } |
| |
| // Get an X86_MMX-sized vector type. |
| Type *getMMXVectorTy(unsigned EltSizeInBits) { |
| const unsigned X86_MMXSizeInBits = 64; |
| assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && |
| "Illegal MMX vector element size"); |
| return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), |
| X86_MMXSizeInBits / EltSizeInBits); |
| } |
| |
| // Returns a signed counterpart for an (un)signed-saturate-and-pack |
| // intrinsic. |
| Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { |
| switch (id) { |
| case Intrinsic::x86_sse2_packsswb_128: |
| case Intrinsic::x86_sse2_packuswb_128: |
| return Intrinsic::x86_sse2_packsswb_128; |
| |
| case Intrinsic::x86_sse2_packssdw_128: |
| case Intrinsic::x86_sse41_packusdw: |
| return Intrinsic::x86_sse2_packssdw_128; |
| |
| case Intrinsic::x86_avx2_packsswb: |
| case Intrinsic::x86_avx2_packuswb: |
| return Intrinsic::x86_avx2_packsswb; |
| |
| case Intrinsic::x86_avx2_packssdw: |
| case Intrinsic::x86_avx2_packusdw: |
| return Intrinsic::x86_avx2_packssdw; |
| |
| case Intrinsic::x86_mmx_packsswb: |
| case Intrinsic::x86_mmx_packuswb: |
| return Intrinsic::x86_mmx_packsswb; |
| |
| case Intrinsic::x86_mmx_packssdw: |
| return Intrinsic::x86_mmx_packssdw; |
| default: |
| llvm_unreachable("unexpected intrinsic id"); |
| } |
| } |
| |
| // Instrument vector pack instrinsic. |
| // |
| // This function instruments intrinsics like x86_mmx_packsswb, that |
| // packs elements of 2 input vectors into half as many bits with saturation. |
| // Shadow is propagated with the signed variant of the same intrinsic applied |
| // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). |
| // EltSizeInBits is used only for x86mmx arguments. |
| void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { |
| assert(I.getNumArgOperands() == 2); |
| bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); |
| IRBuilder<> IRB(&I); |
| Value *S1 = getShadow(&I, 0); |
| Value *S2 = getShadow(&I, 1); |
| assert(isX86_MMX || S1->getType()->isVectorTy()); |
| |
| // SExt and ICmpNE below must apply to individual elements of input vectors. |
| // In case of x86mmx arguments, cast them to appropriate vector types and |
| // back. |
| Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); |
| if (isX86_MMX) { |
| S1 = IRB.CreateBitCast(S1, T); |
| S2 = IRB.CreateBitCast(S2, T); |
| } |
| Value *S1_ext = IRB.CreateSExt( |
| IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); |
| Value *S2_ext = IRB.CreateSExt( |
| IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); |
| if (isX86_MMX) { |
| Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); |
| S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); |
| S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); |
| } |
| |
| Function *ShadowFn = Intrinsic::getDeclaration( |
| F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); |
| |
| Value *S = |
| IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); |
| if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); |
| setShadow(&I, S); |
| setOriginForNaryOp(I); |
| } |
| |
| // Instrument sum-of-absolute-differencies intrinsic. |
| void handleVectorSadIntrinsic(IntrinsicInst &I) { |
| const unsigned SignificantBitsPerResultElement = 16; |
| bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); |
| Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); |
| unsigned ZeroBitsPerResultElement = |
| ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; |
| |
| IRBuilder<> IRB(&I); |
| Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); |
| S = IRB.CreateBitCast(S, ResTy); |
| S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), |
| ResTy); |
| S = IRB.CreateLShr(S, ZeroBitsPerResultElement); |
| S = IRB.CreateBitCast(S, getShadowTy(&I)); |
| setShadow(&I, S); |
| setOriginForNaryOp(I); |
| } |
| |
| // Instrument multiply-add intrinsic. |
| void handleVectorPmaddIntrinsic(IntrinsicInst &I, |
| unsigned EltSizeInBits = 0) { |
| bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); |
| Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); |
| IRBuilder<> IRB(&I); |
| Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); |
| S = IRB.CreateBitCast(S, ResTy); |
| S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), |
| ResTy); |
| S = IRB.CreateBitCast(S, getShadowTy(&I)); |
| setShadow(&I, S); |
| setOriginForNaryOp(I); |
| } |
| |
| // Instrument compare-packed intrinsic. |
| // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or |
| // all-ones shadow. |
| void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Type *ResTy = getShadowTy(&I); |
| Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); |
| Value *S = IRB.CreateSExt( |
| IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); |
| setShadow(&I, S); |
| setOriginForNaryOp(I); |
| } |
| |
| // Instrument compare-scalar intrinsic. |
| // This handles both cmp* intrinsics which return the result in the first |
| // element of a vector, and comi* which return the result as i32. |
| void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); |
| Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); |
| setShadow(&I, S); |
| setOriginForNaryOp(I); |
| } |
| |
| void handleStmxcsr(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Value* Addr = I.getArgOperand(0); |
| Type *Ty = IRB.getInt32Ty(); |
| Value *ShadowPtr = |
| getShadowOriginPtr(Addr, IRB, Ty, Align::None(), /*isStore*/ true) |
| .first; |
| |
| IRB.CreateStore(getCleanShadow(Ty), |
| IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); |
| |
| if (ClCheckAccessAddress) |
| insertShadowCheck(Addr, &I); |
| } |
| |
| void handleLdmxcsr(IntrinsicInst &I) { |
| if (!InsertChecks) return; |
| |
| IRBuilder<> IRB(&I); |
| Value *Addr = I.getArgOperand(0); |
| Type *Ty = IRB.getInt32Ty(); |
| const Align Alignment = Align::None(); |
| Value *ShadowPtr, *OriginPtr; |
| std::tie(ShadowPtr, OriginPtr) = |
| getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); |
| |
| if (ClCheckAccessAddress) |
| insertShadowCheck(Addr, &I); |
| |
| Value *Shadow = |
| IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment.value(), "_ldmxcsr"); |
| Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) |
| : getCleanOrigin(); |
| insertShadowCheck(Shadow, Origin, &I); |
| } |
| |
| void handleMaskedStore(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *V = I.getArgOperand(0); |
| Value *Addr = I.getArgOperand(1); |
| const MaybeAlign Alignment( |
| cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); |
| Value *Mask = I.getArgOperand(3); |
| Value *Shadow = getShadow(V); |
| |
| Value *ShadowPtr; |
| Value *OriginPtr; |
| std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( |
| Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); |
| |
| if (ClCheckAccessAddress) { |
| insertShadowCheck(Addr, &I); |
| // Uninitialized mask is kind of like uninitialized address, but not as |
| // scary. |
| insertShadowCheck(Mask, &I); |
| } |
| |
| IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment ? Alignment->value() : 0, |
| Mask); |
| |
| if (MS.TrackOrigins) { |
| auto &DL = F.getParent()->getDataLayout(); |
| paintOrigin(IRB, getOrigin(V), OriginPtr, |
| DL.getTypeStoreSize(Shadow->getType()), |
| llvm::max(Alignment, kMinOriginAlignment)); |
| } |
| } |
| |
| bool handleMaskedLoad(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *Addr = I.getArgOperand(0); |
| const MaybeAlign Alignment( |
| cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); |
| Value *Mask = I.getArgOperand(2); |
| Value *PassThru = I.getArgOperand(3); |
| |
| Type *ShadowTy = getShadowTy(&I); |
| Value *ShadowPtr, *OriginPtr; |
| if (PropagateShadow) { |
| std::tie(ShadowPtr, OriginPtr) = |
| getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| setShadow(&I, IRB.CreateMaskedLoad( |
| ShadowPtr, Alignment ? Alignment->value() : 0, Mask, |
| getShadow(PassThru), "_msmaskedld")); |
| } else { |
| setShadow(&I, getCleanShadow(&I)); |
| } |
| |
| if (ClCheckAccessAddress) { |
| insertShadowCheck(Addr, &I); |
| insertShadowCheck(Mask, &I); |
| } |
| |
| if (MS.TrackOrigins) { |
| if (PropagateShadow) { |
| // Choose between PassThru's and the loaded value's origins. |
| Value *MaskedPassThruShadow = IRB.CreateAnd( |
| getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); |
| |
| Value *Acc = IRB.CreateExtractElement( |
| MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); |
| for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; |
| ++i) { |
| Value *More = IRB.CreateExtractElement( |
| MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); |
| Acc = IRB.CreateOr(Acc, More); |
| } |
| |
| Value *Origin = IRB.CreateSelect( |
| IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), |
| getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); |
| |
| setOrigin(&I, Origin); |
| } else { |
| setOrigin(&I, getCleanOrigin()); |
| } |
| } |
| return true; |
| } |
| |
| // Instrument BMI / BMI2 intrinsics. |
| // All of these intrinsics are Z = I(X, Y) |
| // where the types of all operands and the result match, and are either i32 or i64. |
| // The following instrumentation happens to work for all of them: |
| // Sz = I(Sx, Y) | (sext (Sy != 0)) |
| void handleBmiIntrinsic(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Type *ShadowTy = getShadowTy(&I); |
| |
| // If any bit of the mask operand is poisoned, then the whole thing is. |
| Value *SMask = getShadow(&I, 1); |
| SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), |
| ShadowTy); |
| // Apply the same intrinsic to the shadow of the first operand. |
| Value *S = IRB.CreateCall(I.getCalledFunction(), |
| {getShadow(&I, 0), I.getOperand(1)}); |
| S = IRB.CreateOr(SMask, S); |
| setShadow(&I, S); |
| setOriginForNaryOp(I); |
| } |
| |
| Constant *getPclmulMask(IRBuilder<> &IRB, unsigned Width, bool OddElements) { |
| SmallVector<Constant *, 8> Mask; |
| for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { |
| Constant *C = ConstantInt::get(IRB.getInt32Ty(), X); |
| Mask.push_back(C); |
| Mask.push_back(C); |
| } |
| return ConstantVector::get(Mask); |
| } |
| |
| // Instrument pclmul intrinsics. |
| // These intrinsics operate either on odd or on even elements of the input |
| // vectors, depending on the constant in the 3rd argument, ignoring the rest. |
| // Replace the unused elements with copies of the used ones, ex: |
| // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) |
| // or |
| // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) |
| // and then apply the usual shadow combining logic. |
| void handlePclmulIntrinsic(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Type *ShadowTy = getShadowTy(&I); |
| unsigned Width = I.getArgOperand(0)->getType()->getVectorNumElements(); |
| assert(isa<ConstantInt>(I.getArgOperand(2)) && |
| "pclmul 3rd operand must be a constant"); |
| unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); |
| Value *Shuf0 = |
| IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), |
| getPclmulMask(IRB, Width, Imm & 0x01)); |
| Value *Shuf1 = |
| IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), |
| getPclmulMask(IRB, Width, Imm & 0x10)); |
| ShadowAndOriginCombiner SOC(this, IRB); |
| SOC.Add(Shuf0, getOrigin(&I, 0)); |
| SOC.Add(Shuf1, getOrigin(&I, 1)); |
| SOC.Done(&I); |
| } |
| |
| // Instrument mm*_sd|ss intrinsics |
| void handleUnarySdSsIntrinsic(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| unsigned Width = |
| cast<VectorType>(I.getArgOperand(0)->getType())->getNumElements(); |
| Value *First = getShadow(&I, 0); |
| Value *Second = getShadow(&I, 1); |
| // First element of second operand, remaining elements of first operand |
| SmallVector<uint32_t, 16> Mask; |
| Mask.push_back(Width); |
| for (uint32_t i = 1; i < Width; i++) { |
| Mask.push_back(i); |
| } |
| Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); |
| |
| setShadow(&I, Shadow); |
| setOriginForNaryOp(I); |
| } |
| |
| void handleBinarySdSsIntrinsic(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| unsigned Width = |
| cast<VectorType>(I.getArgOperand(0)->getType())->getNumElements(); |
| Value *First = getShadow(&I, 0); |
| Value *Second = getShadow(&I, 1); |
| Value *OrShadow = IRB.CreateOr(First, Second); |
| // First element of both OR'd together, remaining elements of first operand |
| SmallVector<uint32_t, 16> Mask; |
| Mask.push_back(Width); |
| for (uint32_t i = 1; i < Width; i++) { |
| Mask.push_back(i); |
| } |
| Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); |
| |
| setShadow(&I, Shadow); |
| setOriginForNaryOp(I); |
| } |
| |
| void visitIntrinsicInst(IntrinsicInst &I) { |
| switch (I.getIntrinsicID()) { |
| case Intrinsic::lifetime_start: |
| handleLifetimeStart(I); |
| break; |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: |
| handleInvariantGroup(I); |
| break; |
| case Intrinsic::bswap: |
| handleBswap(I); |
| break; |
| case Intrinsic::masked_store: |
| handleMaskedStore(I); |
| break; |
| case Intrinsic::masked_load: |
| handleMaskedLoad(I); |
| break; |
| case Intrinsic::x86_sse_stmxcsr: |
| handleStmxcsr(I); |
| break; |
| case Intrinsic::x86_sse_ldmxcsr: |
| handleLdmxcsr(I); |
| break; |
| case Intrinsic::x86_avx512_vcvtsd2usi64: |
| case Intrinsic::x86_avx512_vcvtsd2usi32: |
| case Intrinsic::x86_avx512_vcvtss2usi64: |
| case Intrinsic::x86_avx512_vcvtss2usi32: |
| case Intrinsic::x86_avx512_cvttss2usi64: |
| case Intrinsic::x86_avx512_cvttss2usi: |
| case Intrinsic::x86_avx512_cvttsd2usi64: |
| case Intrinsic::x86_avx512_cvttsd2usi: |
| case Intrinsic::x86_avx512_cvtusi2ss: |
| case Intrinsic::x86_avx512_cvtusi642sd: |
| case Intrinsic::x86_avx512_cvtusi642ss: |
| case Intrinsic::x86_sse2_cvtsd2si64: |
| case Intrinsic::x86_sse2_cvtsd2si: |
| case Intrinsic::x86_sse2_cvtsd2ss: |
| case Intrinsic::x86_sse2_cvttsd2si64: |
| case Intrinsic::x86_sse2_cvttsd2si: |
| case Intrinsic::x86_sse_cvtss2si64: |
| case Intrinsic::x86_sse_cvtss2si: |
| case Intrinsic::x86_sse_cvttss2si64: |
| case Intrinsic::x86_sse_cvttss2si: |
| handleVectorConvertIntrinsic(I, 1); |
| break; |
| case Intrinsic::x86_sse_cvtps2pi: |
| case Intrinsic::x86_sse_cvttps2pi: |
| handleVectorConvertIntrinsic(I, 2); |
| break; |
| |
| case Intrinsic::x86_avx512_psll_w_512: |
| case Intrinsic::x86_avx512_psll_d_512: |
| case Intrinsic::x86_avx512_psll_q_512: |
| case Intrinsic::x86_avx512_pslli_w_512: |
| case Intrinsic::x86_avx512_pslli_d_512: |
| case Intrinsic::x86_avx512_pslli_q_512: |
| case Intrinsic::x86_avx512_psrl_w_512: |
| case Intrinsic::x86_avx512_psrl_d_512: |
| case Intrinsic::x86_avx512_psrl_q_512: |
| case Intrinsic::x86_avx512_psra_w_512: |
| case Intrinsic::x86_avx512_psra_d_512: |
| case Intrinsic::x86_avx512_psra_q_512: |
| case Intrinsic::x86_avx512_psrli_w_512: |
| case Intrinsic::x86_avx512_psrli_d_512: |
| case Intrinsic::x86_avx512_psrli_q_512: |
| case Intrinsic::x86_avx512_psrai_w_512: |
| case Intrinsic::x86_avx512_psrai_d_512: |
| case Intrinsic::x86_avx512_psrai_q_512: |
| case Intrinsic::x86_avx512_psra_q_256: |
| case Intrinsic::x86_avx512_psra_q_128: |
| case Intrinsic::x86_avx512_psrai_q_256: |
| case Intrinsic::x86_avx512_psrai_q_128: |
| case Intrinsic::x86_avx2_psll_w: |
| case Intrinsic::x86_avx2_psll_d: |
| case Intrinsic::x86_avx2_psll_q: |
| case Intrinsic::x86_avx2_pslli_w: |
| case Intrinsic::x86_avx2_pslli_d: |
| case Intrinsic::x86_avx2_pslli_q: |
| case Intrinsic::x86_avx2_psrl_w: |
| case Intrinsic::x86_avx2_psrl_d: |
| case Intrinsic::x86_avx2_psrl_q: |
| case Intrinsic::x86_avx2_psra_w: |
| case Intrinsic::x86_avx2_psra_d: |
| case Intrinsic::x86_avx2_psrli_w: |
| case Intrinsic::x86_avx2_psrli_d: |
| case Intrinsic::x86_avx2_psrli_q: |
| case Intrinsic::x86_avx2_psrai_w: |
| case Intrinsic::x86_avx2_psrai_d: |
| case Intrinsic::x86_sse2_psll_w: |
| case Intrinsic::x86_sse2_psll_d: |
| case Intrinsic::x86_sse2_psll_q: |
| case Intrinsic::x86_sse2_pslli_w: |
| case Intrinsic::x86_sse2_pslli_d: |
| case Intrinsic::x86_sse2_pslli_q: |
| case Intrinsic::x86_sse2_psrl_w: |
| case Intrinsic::x86_sse2_psrl_d: |
| case Intrinsic::x86_sse2_psrl_q: |
| case Intrinsic::x86_sse2_psra_w: |
| case Intrinsic::x86_sse2_psra_d: |
| case Intrinsic::x86_sse2_psrli_w: |
| case Intrinsic::x86_sse2_psrli_d: |
| case Intrinsic::x86_sse2_psrli_q: |
| case Intrinsic::x86_sse2_psrai_w: |
| case Intrinsic::x86_sse2_psrai_d: |
| case Intrinsic::x86_mmx_psll_w: |
| case Intrinsic::x86_mmx_psll_d: |
| case Intrinsic::x86_mmx_psll_q: |
| case Intrinsic::x86_mmx_pslli_w: |
| case Intrinsic::x86_mmx_pslli_d: |
| case Intrinsic::x86_mmx_pslli_q: |
| case Intrinsic::x86_mmx_psrl_w: |
| case Intrinsic::x86_mmx_psrl_d: |
| case Intrinsic::x86_mmx_psrl_q: |
| case Intrinsic::x86_mmx_psra_w: |
| case Intrinsic::x86_mmx_psra_d: |
| case Intrinsic::x86_mmx_psrli_w: |
| case Intrinsic::x86_mmx_psrli_d: |
| case Intrinsic::x86_mmx_psrli_q: |
| case Intrinsic::x86_mmx_psrai_w: |
| case Intrinsic::x86_mmx_psrai_d: |
| handleVectorShiftIntrinsic(I, /* Variable */ false); |
| break; |
| case Intrinsic::x86_avx2_psllv_d: |
| case Intrinsic::x86_avx2_psllv_d_256: |
| case Intrinsic::x86_avx512_psllv_d_512: |
| case Intrinsic::x86_avx2_psllv_q: |
| case Intrinsic::x86_avx2_psllv_q_256: |
| case Intrinsic::x86_avx512_psllv_q_512: |
| case Intrinsic::x86_avx2_psrlv_d: |
| case Intrinsic::x86_avx2_psrlv_d_256: |
| case Intrinsic::x86_avx512_psrlv_d_512: |
| case Intrinsic::x86_avx2_psrlv_q: |
| case Intrinsic::x86_avx2_psrlv_q_256: |
| case Intrinsic::x86_avx512_psrlv_q_512: |
| case Intrinsic::x86_avx2_psrav_d: |
| case Intrinsic::x86_avx2_psrav_d_256: |
| case Intrinsic::x86_avx512_psrav_d_512: |
| case Intrinsic::x86_avx512_psrav_q_128: |
| case Intrinsic::x86_avx512_psrav_q_256: |
| case Intrinsic::x86_avx512_psrav_q_512: |
| handleVectorShiftIntrinsic(I, /* Variable */ true); |
| break; |
| |
| case Intrinsic::x86_sse2_packsswb_128: |
| case Intrinsic::x86_sse2_packssdw_128: |
| case Intrinsic::x86_sse2_packuswb_128: |
| case Intrinsic::x86_sse41_packusdw: |
| case Intrinsic::x86_avx2_packsswb: |
| case Intrinsic::x86_avx2_packssdw: |
| case Intrinsic::x86_avx2_packuswb: |
| case Intrinsic::x86_avx2_packusdw: |
| handleVectorPackIntrinsic(I); |
| break; |
| |
| case Intrinsic::x86_mmx_packsswb: |
| case Intrinsic::x86_mmx_packuswb: |
| handleVectorPackIntrinsic(I, 16); |
| break; |
| |
| case Intrinsic::x86_mmx_packssdw: |
| handleVectorPackIntrinsic(I, 32); |
| break; |
| |
| case Intrinsic::x86_mmx_psad_bw: |
| case Intrinsic::x86_sse2_psad_bw: |
| case Intrinsic::x86_avx2_psad_bw: |
| handleVectorSadIntrinsic(I); |
| break; |
| |
| case Intrinsic::x86_sse2_pmadd_wd: |
| case Intrinsic::x86_avx2_pmadd_wd: |
| case Intrinsic::x86_ssse3_pmadd_ub_sw_128: |
| case Intrinsic::x86_avx2_pmadd_ub_sw: |
| handleVectorPmaddIntrinsic(I); |
| break; |
| |
| case Intrinsic::x86_ssse3_pmadd_ub_sw: |
| handleVectorPmaddIntrinsic(I, 8); |
| break; |
| |
| case Intrinsic::x86_mmx_pmadd_wd: |
| handleVectorPmaddIntrinsic(I, 16); |
| break; |
| |
| case Intrinsic::x86_sse_cmp_ss: |
| case Intrinsic::x86_sse2_cmp_sd: |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| case Intrinsic::x86_sse2_comilt_sd: |
| case Intrinsic::x86_sse2_comile_sd: |
| case Intrinsic::x86_sse2_comigt_sd: |
| case Intrinsic::x86_sse2_comige_sd: |
| case Intrinsic::x86_sse2_comineq_sd: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| case Intrinsic::x86_sse2_ucomineq_sd: |
| handleVectorCompareScalarIntrinsic(I); |
| break; |
| |
| case Intrinsic::x86_sse_cmp_ps: |
| case Intrinsic::x86_sse2_cmp_pd: |
| // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function |
| // generates reasonably looking IR that fails in the backend with "Do not |
| // know how to split the result of this operator!". |
| handleVectorComparePackedIntrinsic(I); |
| break; |
| |
| case Intrinsic::x86_bmi_bextr_32: |
| case Intrinsic::x86_bmi_bextr_64: |
| case Intrinsic::x86_bmi_bzhi_32: |
| case Intrinsic::x86_bmi_bzhi_64: |
| case Intrinsic::x86_bmi_pdep_32: |
| case Intrinsic::x86_bmi_pdep_64: |
| case Intrinsic::x86_bmi_pext_32: |
| case Intrinsic::x86_bmi_pext_64: |
| handleBmiIntrinsic(I); |
| break; |
| |
| case Intrinsic::x86_pclmulqdq: |
| case Intrinsic::x86_pclmulqdq_256: |
| case Intrinsic::x86_pclmulqdq_512: |
| handlePclmulIntrinsic(I); |
| break; |
| |
| case Intrinsic::x86_sse41_round_sd: |
| case Intrinsic::x86_sse41_round_ss: |
| handleUnarySdSsIntrinsic(I); |
| break; |
| case Intrinsic::x86_sse2_max_sd: |
| case Intrinsic::x86_sse_max_ss: |
| case Intrinsic::x86_sse2_min_sd: |
| case Intrinsic::x86_sse_min_ss: |
| handleBinarySdSsIntrinsic(I); |
| break; |
| |
| case Intrinsic::is_constant: |
| // The result of llvm.is.constant() is always defined. |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| break; |
| |
| default: |
| if (!handleUnknownIntrinsic(I)) |
| visitInstruction(I); |
| break; |
| } |
| } |
| |
| void visitCallSite(CallSite CS) { |
| Instruction &I = *CS.getInstruction(); |
| assert(!I.getMetadata("nosanitize")); |
| assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) && |
| "Unknown type of CallSite"); |
| if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) { |
| // For inline asm (either a call to asm function, or callbr instruction), |
| // do the usual thing: check argument shadow and mark all outputs as |
| // clean. Note that any side effects of the inline asm that are not |
| // immediately visible in its constraints are not handled. |
| if (ClHandleAsmConservative && MS.CompileKernel) |
| visitAsmInstruction(I); |
| else |
| visitInstruction(I); |
| return; |
| } |
| if (CS.isCall()) { |
| CallInst *Call = cast<CallInst>(&I); |
| assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); |
| |
| // We are going to insert code that relies on the fact that the callee |
| // will become a non-readonly function after it is instrumented by us. To |
| // prevent this code from being optimized out, mark that function |
| // non-readonly in advance. |
| if (Function *Func = Call->getCalledFunction()) { |
| // Clear out readonly/readnone attributes. |
| AttrBuilder B; |
| B.addAttribute(Attribute::ReadOnly) |
| .addAttribute(Attribute::ReadNone) |
| .addAttribute(Attribute::WriteOnly) |
| .addAttribute(Attribute::ArgMemOnly) |
| .addAttribute(Attribute::Speculatable); |
| Func->removeAttributes(AttributeList::FunctionIndex, B); |
| } |
| |
| maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); |
| } |
| IRBuilder<> IRB(&I); |
| |
| unsigned ArgOffset = 0; |
| LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); |
| for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); |
| ArgIt != End; ++ArgIt) { |
| Value *A = *ArgIt; |
| unsigned i = ArgIt - CS.arg_begin(); |
| if (!A->getType()->isSized()) { |
| LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); |
| continue; |
| } |
| unsigned Size = 0; |
| Value *Store = nullptr; |
| // Compute the Shadow for arg even if it is ByVal, because |
| // in that case getShadow() will copy the actual arg shadow to |
| // __msan_param_tls. |
| Value *ArgShadow = getShadow(A); |
| Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); |
| LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A |
| << " Shadow: " << *ArgShadow << "\n"); |
| bool ArgIsInitialized = false; |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| if (CS.paramHasAttr(i, Attribute::ByVal)) { |
| assert(A->getType()->isPointerTy() && |
| "ByVal argument is not a pointer!"); |
| Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); |
| if (ArgOffset + Size > kParamTLSSize) break; |
| const MaybeAlign ParamAlignment(CS.getParamAlignment(i)); |
| MaybeAlign Alignment = llvm::None; |
| if (ParamAlignment) |
| Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); |
| Value *AShadowPtr = |
| getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, |
| /*isStore*/ false) |
| .first; |
| |
| Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, |
| Alignment, Size); |
| // TODO(glider): need to copy origins. |
| } else { |
| Size = DL.getTypeAllocSize(A->getType()); |
| if (ArgOffset + Size > kParamTLSSize) break; |
| Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, |
| kShadowTLSAlignment.value()); |
| Constant *Cst = dyn_cast<Constant>(ArgShadow); |
| if (Cst && Cst->isNullValue()) ArgIsInitialized = true; |
| } |
| if (MS.TrackOrigins && !ArgIsInitialized) |
| IRB.CreateStore(getOrigin(A), |
| getOriginPtrForArgument(A, IRB, ArgOffset)); |
| (void)Store; |
| assert(Size != 0 && Store != nullptr); |
| LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); |
| ArgOffset += alignTo(Size, 8); |
| } |
| LLVM_DEBUG(dbgs() << " done with call args\n"); |
| |
| FunctionType *FT = CS.getFunctionType(); |
| if (FT->isVarArg()) { |
| VAHelper->visitCallSite(CS, IRB); |
| } |
| |
| // Now, get the shadow for the RetVal. |
| if (!I.getType()->isSized()) return; |
| // Don't emit the epilogue for musttail call returns. |
| if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; |
| IRBuilder<> IRBBefore(&I); |
| // Until we have full dynamic coverage, make sure the retval shadow is 0. |
| Value *Base = getShadowPtrForRetval(&I, IRBBefore); |
| IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, |
| kShadowTLSAlignment.value()); |
| BasicBlock::iterator NextInsn; |
| if (CS.isCall()) { |
| NextInsn = ++I.getIterator(); |
| assert(NextInsn != I.getParent()->end()); |
| } else { |
| BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); |
| if (!NormalDest->getSinglePredecessor()) { |
| // FIXME: this case is tricky, so we are just conservative here. |
| // Perhaps we need to split the edge between this BB and NormalDest, |
| // but a naive attempt to use SplitEdge leads to a crash. |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| return; |
| } |
| // FIXME: NextInsn is likely in a basic block that has not been visited yet. |
| // Anything inserted there will be instrumented by MSan later! |
| NextInsn = NormalDest->getFirstInsertionPt(); |
| assert(NextInsn != NormalDest->end() && |
| "Could not find insertion point for retval shadow load"); |
| } |
| IRBuilder<> IRBAfter(&*NextInsn); |
| Value *RetvalShadow = IRBAfter.CreateAlignedLoad( |
| getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter), |
| kShadowTLSAlignment.value(), "_msret"); |
| setShadow(&I, RetvalShadow); |
| if (MS.TrackOrigins) |
| setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy, |
| getOriginPtrForRetval(IRBAfter))); |
| } |
| |
| bool isAMustTailRetVal(Value *RetVal) { |
| if (auto *I = dyn_cast<BitCastInst>(RetVal)) { |
| RetVal = I->getOperand(0); |
| } |
| if (auto *I = dyn_cast<CallInst>(RetVal)) { |
| return I->isMustTailCall(); |
| } |
| return false; |
| } |
| |
| void visitReturnInst(ReturnInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *RetVal = I.getReturnValue(); |
| if (!RetVal) return; |
| // Don't emit the epilogue for musttail call returns. |
| if (isAMustTailRetVal(RetVal)) return; |
| Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); |
| if (CheckReturnValue) { |
| insertShadowCheck(RetVal, &I); |
| Value *Shadow = getCleanShadow(RetVal); |
| IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment.value()); |
| } else { |
| Value *Shadow = getShadow(RetVal); |
| IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment.value()); |
| if (MS.TrackOrigins) |
| IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); |
| } |
| } |
| |
| void visitPHINode(PHINode &I) { |
| IRBuilder<> IRB(&I); |
| if (!PropagateShadow) { |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| return; |
| } |
| |
| ShadowPHINodes.push_back(&I); |
| setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), |
| "_msphi_s")); |
| if (MS.TrackOrigins) |
| setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), |
| "_msphi_o")); |
| } |
| |
| Value *getLocalVarDescription(AllocaInst &I) { |
| SmallString<2048> StackDescriptionStorage; |
| raw_svector_ostream StackDescription(StackDescriptionStorage); |
| // We create a string with a description of the stack allocation and |
| // pass it into __msan_set_alloca_origin. |
| // It will be printed by the run-time if stack-originated UMR is found. |
| // The first 4 bytes of the string are set to '----' and will be replaced |
| // by __msan_va_arg_overflow_size_tls at the first call. |
| StackDescription << "----" << I.getName() << "@" << F.getName(); |
| return createPrivateNonConstGlobalForString(*F.getParent(), |
| StackDescription.str()); |
| } |
| |
| void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { |
| if (PoisonStack && ClPoisonStackWithCall) { |
| IRB.CreateCall(MS.MsanPoisonStackFn, |
| {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); |
| } else { |
| Value *ShadowBase, *OriginBase; |
| std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( |
| &I, IRB, IRB.getInt8Ty(), Align::None(), /*isStore*/ true); |
| |
| Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); |
| IRB.CreateMemSet(ShadowBase, PoisonValue, Len, |
| MaybeAlign(I.getAlignment())); |
| } |
| |
| if (PoisonStack && MS.TrackOrigins) { |
| Value *Descr = getLocalVarDescription(I); |
| IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, |
| {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, |
| IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), |
| IRB.CreatePointerCast(&F, MS.IntptrTy)}); |
| } |
| } |
| |
| void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { |
| Value *Descr = getLocalVarDescription(I); |
| if (PoisonStack) { |
| IRB.CreateCall(MS.MsanPoisonAllocaFn, |
| {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, |
| IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); |
| } else { |
| IRB.CreateCall(MS.MsanUnpoisonAllocaFn, |
| {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); |
| } |
| } |
| |
| void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { |
| if (!InsPoint) |
| InsPoint = &I; |
| IRBuilder<> IRB(InsPoint->getNextNode()); |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); |
| Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); |
| if (I.isArrayAllocation()) |
| Len = IRB.CreateMul(Len, I.getArraySize()); |
| |
| if (MS.CompileKernel) |
| poisonAllocaKmsan(I, IRB, Len); |
| else |
| poisonAllocaUserspace(I, IRB, Len); |
| } |
| |
| void visitAllocaInst(AllocaInst &I) { |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| // We'll get to this alloca later unless it's poisoned at the corresponding |
| // llvm.lifetime.start. |
| AllocaSet.insert(&I); |
| } |
| |
| void visitSelectInst(SelectInst& I) { |
| IRBuilder<> IRB(&I); |
| // a = select b, c, d |
| Value *B = I.getCondition(); |
| Value *C = I.getTrueValue(); |
| Value *D = I.getFalseValue(); |
| Value *Sb = getShadow(B); |
| Value *Sc = getShadow(C); |
| Value *Sd = getShadow(D); |
| |
| // Result shadow if condition shadow is 0. |
| Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); |
| Value *Sa1; |
| if (I.getType()->isAggregateType()) { |
| // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do |
| // an extra "select". This results in much more compact IR. |
| // Sa = select Sb, poisoned, (select b, Sc, Sd) |
| Sa1 = getPoisonedShadow(getShadowTy(I.getType())); |
| } else { |
| // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] |
| // If Sb (condition is poisoned), look for bits in c and d that are equal |
| // and both unpoisoned. |
| // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. |
| |
| // Cast arguments to shadow-compatible type. |
| C = CreateAppToShadowCast(IRB, C); |
| D = CreateAppToShadowCast(IRB, D); |
| |
| // Result shadow if condition shadow is 1. |
| Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); |
| } |
| Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); |
| setShadow(&I, Sa); |
| if (MS.TrackOrigins) { |
| // Origins are always i32, so any vector conditions must be flattened. |
| // FIXME: consider tracking vector origins for app vectors? |
| if (B->getType()->isVectorTy()) { |
| Type *FlatTy = getShadowTyNoVec(B->getType()); |
| B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), |
| ConstantInt::getNullValue(FlatTy)); |
| Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), |
| ConstantInt::getNullValue(FlatTy)); |
| } |
| // a = select b, c, d |
| // Oa = Sb ? Ob : (b ? Oc : Od) |
| setOrigin( |
| &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), |
| IRB.CreateSelect(B, getOrigin(I.getTrueValue()), |
| getOrigin(I.getFalseValue())))); |
| } |
| } |
| |
| void visitLandingPadInst(LandingPadInst &I) { |
| // Do nothing. |
| // See https://github.com/google/sanitizers/issues/504 |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| } |
| |
| void visitCatchSwitchInst(CatchSwitchInst &I) { |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| } |
| |
| void visitFuncletPadInst(FuncletPadInst &I) { |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| } |
| |
| void visitGetElementPtrInst(GetElementPtrInst &I) { |
| handleShadowOr(I); |
| } |
| |
| void visitExtractValueInst(ExtractValueInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *Agg = I.getAggregateOperand(); |
| LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); |
| Value *AggShadow = getShadow(Agg); |
| LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); |
| Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); |
| LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); |
| setShadow(&I, ResShadow); |
| setOriginForNaryOp(I); |
| } |
| |
| void visitInsertValueInst(InsertValueInst &I) { |
| IRBuilder<> IRB(&I); |
| LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); |
| Value *AggShadow = getShadow(I.getAggregateOperand()); |
| Value *InsShadow = getShadow(I.getInsertedValueOperand()); |
| LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); |
| LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); |
| Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); |
| LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); |
| setShadow(&I, Res); |
| setOriginForNaryOp(I); |
| } |
| |
| void dumpInst(Instruction &I) { |
| if (CallInst *CI = dyn_cast<CallInst>(&I)) { |
| errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; |
| } else { |
| errs() << "ZZZ " << I.getOpcodeName() << "\n"; |
| } |
| errs() << "QQQ " << I << "\n"; |
| } |
| |
| void visitResumeInst(ResumeInst &I) { |
| LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); |
| // Nothing to do here. |
| } |
| |
| void visitCleanupReturnInst(CleanupReturnInst &CRI) { |
| LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); |
| // Nothing to do here. |
| } |
| |
| void visitCatchReturnInst(CatchReturnInst &CRI) { |
| LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); |
| // Nothing to do here. |
| } |
| |
| void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, |
| const DataLayout &DL, bool isOutput) { |
| // For each assembly argument, we check its value for being initialized. |
| // If the argument is a pointer, we assume it points to a single element |
| // of the corresponding type (or to a 8-byte word, if the type is unsized). |
| // Each such pointer is instrumented with a call to the runtime library. |
| Type *OpType = Operand->getType(); |
| // Check the operand value itself. |
| insertShadowCheck(Operand, &I); |
| if (!OpType->isPointerTy() || !isOutput) { |
| assert(!isOutput); |
| return; |
| } |
| Type *ElType = OpType->getPointerElementType(); |
| if (!ElType->isSized()) |
| return; |
| int Size = DL.getTypeStoreSize(ElType); |
| Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); |
| Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); |
| IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); |
| } |
| |
| /// Get the number of output arguments returned by pointers. |
| int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { |
| int NumRetOutputs = 0; |
| int NumOutputs = 0; |
| Type *RetTy = cast<Value>(CB)->getType(); |
| if (!RetTy->isVoidTy()) { |
| // Register outputs are returned via the CallInst return value. |
| auto *ST = dyn_cast<StructType>(RetTy); |
| if (ST) |
| NumRetOutputs = ST->getNumElements(); |
| else |
| NumRetOutputs = 1; |
| } |
| InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); |
| for (size_t i = 0, n = Constraints.size(); i < n; i++) { |
| InlineAsm::ConstraintInfo Info = Constraints[i]; |
| switch (Info.Type) { |
| case InlineAsm::isOutput: |
| NumOutputs++; |
| break; |
| default: |
| break; |
| } |
| } |
| return NumOutputs - NumRetOutputs; |
| } |
| |
| void visitAsmInstruction(Instruction &I) { |
| // Conservative inline assembly handling: check for poisoned shadow of |
| // asm() arguments, then unpoison the result and all the memory locations |
| // pointed to by those arguments. |
| // An inline asm() statement in C++ contains lists of input and output |
| // arguments used by the assembly code. These are mapped to operands of the |
| // CallInst as follows: |
| // - nR register outputs ("=r) are returned by value in a single structure |
| // (SSA value of the CallInst); |
| // - nO other outputs ("=m" and others) are returned by pointer as first |
| // nO operands of the CallInst; |
| // - nI inputs ("r", "m" and others) are passed to CallInst as the |
| // remaining nI operands. |
| // The total number of asm() arguments in the source is nR+nO+nI, and the |
| // corresponding CallInst has nO+nI+1 operands (the last operand is the |
| // function to be called). |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| CallBase *CB = cast<CallBase>(&I); |
| IRBuilder<> IRB(&I); |
| InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue()); |
| int OutputArgs = getNumOutputArgs(IA, CB); |
| // The last operand of a CallInst is the function itself. |
| int NumOperands = CB->getNumOperands() - 1; |
| |
| // Check input arguments. Doing so before unpoisoning output arguments, so |
| // that we won't overwrite uninit values before checking them. |
| for (int i = OutputArgs; i < NumOperands; i++) { |
| Value *Operand = CB->getOperand(i); |
| instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); |
| } |
| // Unpoison output arguments. This must happen before the actual InlineAsm |
| // call, so that the shadow for memory published in the asm() statement |
| // remains valid. |
| for (int i = 0; i < OutputArgs; i++) { |
| Value *Operand = CB->getOperand(i); |
| instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); |
| } |
| |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| } |
| |
| void visitInstruction(Instruction &I) { |
| // Everything else: stop propagating and check for poisoned shadow. |
| if (ClDumpStrictInstructions) |
| dumpInst(I); |
| LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); |
| for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { |
| Value *Operand = I.getOperand(i); |
| if (Operand->getType()->isSized()) |
| insertShadowCheck(Operand, &I); |
| } |
| setShadow(&I, getCleanShadow(&I)); |
| setOrigin(&I, getCleanOrigin()); |
| } |
| }; |
| |
| /// AMD64-specific implementation of VarArgHelper. |
| struct VarArgAMD64Helper : public VarArgHelper { |
| // An unfortunate workaround for asymmetric lowering of va_arg stuff. |
| // See a comment in visitCallSite for more details. |
| static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 |
| static const unsigned AMD64FpEndOffsetSSE = 176; |
| // If SSE is disabled, fp_offset in va_list is zero. |
| static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; |
| |
| unsigned AMD64FpEndOffset; |
| Function &F; |
| MemorySanitizer &MS; |
| MemorySanitizerVisitor &MSV; |
| Value *VAArgTLSCopy = nullptr; |
| Value *VAArgTLSOriginCopy = nullptr; |
| Value *VAArgOverflowSize = nullptr; |
| |
| SmallVector<CallInst*, 16> VAStartInstrumentationList; |
| |
| enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; |
| |
| VarArgAMD64Helper(Function &F, MemorySanitizer &MS, |
| MemorySanitizerVisitor &MSV) |
| : F(F), MS(MS), MSV(MSV) { |
| AMD64FpEndOffset = AMD64FpEndOffsetSSE; |
| for (const auto &Attr : F.getAttributes().getFnAttributes()) { |
| if (Attr.isStringAttribute() && |
| (Attr.getKindAsString() == "target-features")) { |
| if (Attr.getValueAsString().contains("-sse")) |
| AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; |
| break; |
| } |
| } |
| } |
| |
| ArgKind classifyArgument(Value* arg) { |
| // A very rough approximation of X86_64 argument classification rules. |
| Type *T = arg->getType(); |
| if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) |
| return AK_FloatingPoint; |
| if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) |
| return AK_GeneralPurpose; |
| if (T->isPointerTy()) |
| return AK_GeneralPurpose; |
| return AK_Memory; |
| } |
| |
| // For VarArg functions, store the argument shadow in an ABI-specific format |
| // that corresponds to va_list layout. |
| // We do this because Clang lowers va_arg in the frontend, and this pass |
| // only sees the low level code that deals with va_list internals. |
| // A much easier alternative (provided that Clang emits va_arg instructions) |
| // would have been to associate each live instance of va_list with a copy of |
| // MSanParamTLS, and extract shadow on va_arg() call in the argument list |
| // order. |
| void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { |
| unsigned GpOffset = 0; |
| unsigned FpOffset = AMD64GpEndOffset; |
| unsigned OverflowOffset = AMD64FpEndOffset; |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); |
| ArgIt != End; ++ArgIt) { |
| Value *A = *ArgIt; |
| unsigned ArgNo = CS.getArgumentNo(ArgIt); |
| bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); |
| bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); |
| if (IsByVal) { |
| // ByVal arguments always go to the overflow area. |
| // Fixed arguments passed through the overflow area will be stepped |
| // over by va_start, so don't count them towards the offset. |
| if (IsFixed) |
| continue; |
| assert(A->getType()->isPointerTy()); |
| Type *RealTy = A->getType()->getPointerElementType(); |
| uint64_t ArgSize = DL.getTypeAllocSize(RealTy); |
| Value *ShadowBase = getShadowPtrForVAArgument( |
| RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); |
| Value *OriginBase = nullptr; |
| if (MS.TrackOrigins) |
| OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); |
| OverflowOffset += alignTo(ArgSize, 8); |
| if (!ShadowBase) |
| continue; |
| Value *ShadowPtr, *OriginPtr; |
| std::tie(ShadowPtr, OriginPtr) = |
| MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, |
| /*isStore*/ false); |
| |
| IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, |
| kShadowTLSAlignment, ArgSize); |
| if (MS.TrackOrigins) |
| IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, |
| kShadowTLSAlignment, ArgSize); |
| } else { |
| ArgKind AK = classifyArgument(A); |
| if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) |
| AK = AK_Memory; |
| if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) |
| AK = AK_Memory; |
| Value *ShadowBase, *OriginBase = nullptr; |
| switch (AK) { |
| case AK_GeneralPurpose: |
| ShadowBase = |
| getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); |
| if (MS.TrackOrigins) |
| OriginBase = |
| getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); |
| GpOffset += 8; |
| break; |
| case AK_FloatingPoint: |
| ShadowBase = |
| getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); |
| if (MS.TrackOrigins) |
| OriginBase = |
| getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); |
| FpOffset += 16; |
| break; |
| case AK_Memory: |
| if (IsFixed) |
| continue; |
| uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); |
| ShadowBase = |
| getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); |
| if (MS.TrackOrigins) |
| OriginBase = |
| getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); |
| OverflowOffset += alignTo(ArgSize, 8); |
| } |
| // Take fixed arguments into account for GpOffset and FpOffset, |
| // but don't actually store shadows for them. |
| // TODO(glider): don't call get*PtrForVAArgument() for them. |
| if (IsFixed) |
| continue; |
| if (!ShadowBase) |
| continue; |
| Value *Shadow = MSV.getShadow(A); |
| IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment.value()); |
| if (MS.TrackOrigins) { |
| Value *Origin = MSV.getOrigin(A); |
| unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); |
| MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, |
| std::max(kShadowTLSAlignment, kMinOriginAlignment)); |
| } |
| } |
| } |
| Constant *OverflowSize = |
| ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); |
| IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); |
| } |
| |
| /// Compute the shadow address for a given va_arg. |
| Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, |
| unsigned ArgOffset, unsigned ArgSize) { |
| // Make sure we don't overflow __msan_va_arg_tls. |
| if (ArgOffset + ArgSize > kParamTLSSize) |
| return nullptr; |
| Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); |
| Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); |
| return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), |
| "_msarg_va_s"); |
| } |
| |
| /// Compute the origin address for a given va_arg. |
| Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { |
| Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); |
| // getOriginPtrForVAArgument() is always called after |
| // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never |
| // overflow. |
| Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); |
| return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), |
| "_msarg_va_o"); |
| } |
| |
| void unpoisonVAListTagForInst(IntrinsicInst &I) { |
| IRBuilder<> IRB(&I); |
| Value *VAListTag = I.getArgOperand(0); |
| Value *ShadowPtr, *OriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(ShadowPtr, OriginPtr) = |
| MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, |
| /*isStore*/ true); |
| |
| // Unpoison the whole __va_list_tag. |
| // FIXME: magic ABI constants. |
| IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), |
| /* size */ 24, Alignment, false); |
| // We shouldn't need to zero out the origins, as they're only checked for |
| // nonzero shadow. |
| } |
| |
| void visitVAStartInst(VAStartInst &I) override { |
| if (F.getCallingConv() == CallingConv::Win64) |
| return; |
| VAStartInstrumentationList.push_back(&I); |
| unpoisonVAListTagForInst(I); |
| } |
| |
| void visitVACopyInst(VACopyInst &I) override { |
| if (F.getCallingConv() == CallingConv::Win64) return; |
| unpoisonVAListTagForInst(I); |
| } |
| |
| void finalizeInstrumentation() override { |
| assert(!VAArgOverflowSize && !VAArgTLSCopy && |
| "finalizeInstrumentation called twice"); |
| if (!VAStartInstrumentationList.empty()) { |
| // If there is a va_start in this function, make a backup copy of |
| // va_arg_tls somewhere in the function entry block. |
| IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); |
| VAArgOverflowSize = |
| IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); |
| Value *CopySize = |
| IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), |
| VAArgOverflowSize); |
| VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); |
| IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); |
| if (MS.TrackOrigins) { |
| VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); |
| IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, |
| Align(8), CopySize); |
| } |
| } |
| |
| // Instrument va_start. |
| // Copy va_list shadow from the backup copy of the TLS contents. |
| for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { |
| CallInst *OrigInst = VAStartInstrumentationList[i]; |
| IRBuilder<> IRB(OrigInst->getNextNode()); |
| Value *VAListTag = OrigInst->getArgOperand(0); |
| |
| Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); |
| Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( |
| IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), |
| ConstantInt::get(MS.IntptrTy, 16)), |
| PointerType::get(RegSaveAreaPtrTy, 0)); |
| Value *RegSaveAreaPtr = |
| IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); |
| Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| const Align Alignment = Align(16); |
| std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = |
| MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), |
| Alignment, /*isStore*/ true); |
| IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, |
| AMD64FpEndOffset); |
| if (MS.TrackOrigins) |
| IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, |
| Alignment, AMD64FpEndOffset); |
| Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); |
| Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( |
| IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), |
| ConstantInt::get(MS.IntptrTy, 8)), |
| PointerType::get(OverflowArgAreaPtrTy, 0)); |
| Value *OverflowArgAreaPtr = |
| IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); |
| Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; |
| std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = |
| MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), |
| Alignment, /*isStore*/ true); |
| Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, |
| AMD64FpEndOffset); |
| IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, |
| VAArgOverflowSize); |
| if (MS.TrackOrigins) { |
| SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, |
| AMD64FpEndOffset); |
| IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, |
| VAArgOverflowSize); |
| } |
| } |
| } |
| }; |
| |
| /// MIPS64-specific implementation of VarArgHelper. |
| struct VarArgMIPS64Helper : public VarArgHelper { |
| Function &F; |
| MemorySanitizer &MS; |
| MemorySanitizerVisitor &MSV; |
| Value *VAArgTLSCopy = nullptr; |
| Value *VAArgSize = nullptr; |
| |
| SmallVector<CallInst*, 16> VAStartInstrumentationList; |
| |
| VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, |
| MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} |
| |
| void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { |
| unsigned VAArgOffset = 0; |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| for (CallSite::arg_iterator ArgIt = CS.arg_begin() + |
| CS.getFunctionType()->getNumParams(), End = CS.arg_end(); |
| ArgIt != End; ++ArgIt) { |
| Triple TargetTriple(F.getParent()->getTargetTriple()); |
| Value *A = *ArgIt; |
| Value *Base; |
| uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); |
| if (TargetTriple.getArch() == Triple::mips64) { |
| // Adjusting the shadow for argument with size < 8 to match the placement |
| // of bits in big endian system |
| if (ArgSize < 8) |
| VAArgOffset += (8 - ArgSize); |
| } |
| Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); |
| VAArgOffset += ArgSize; |
| VAArgOffset = alignTo(VAArgOffset, 8); |
| if (!Base) |
| continue; |
| IRB.CreateAlignedStore(MSV.getShadow(A), Base, |
| kShadowTLSAlignment.value()); |
| } |
| |
| Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); |
| // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| // a new class member i.e. it is the total size of all VarArgs. |
| IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); |
| } |
| |
| /// Compute the shadow address for a given va_arg. |
| Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, |
| unsigned ArgOffset, unsigned ArgSize) { |
| // Make sure we don't overflow __msan_va_arg_tls. |
| if (ArgOffset + ArgSize > kParamTLSSize) |
| return nullptr; |
| Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); |
| Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); |
| return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), |
| "_msarg"); |
| } |
| |
| void visitVAStartInst(VAStartInst &I) override { |
| IRBuilder<> IRB(&I); |
| VAStartInstrumentationList.push_back(&I); |
| Value *VAListTag = I.getArgOperand(0); |
| Value *ShadowPtr, *OriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( |
| VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
| IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), |
| /* size */ 8, Alignment, false); |
| } |
| |
| void visitVACopyInst(VACopyInst &I) override { |
| IRBuilder<> IRB(&I); |
| VAStartInstrumentationList.push_back(&I); |
| Value *VAListTag = I.getArgOperand(0); |
| Value *ShadowPtr, *OriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( |
| VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
| IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), |
| /* size */ 8, Alignment, false); |
| } |
| |
| void finalizeInstrumentation() override { |
| assert(!VAArgSize && !VAArgTLSCopy && |
| "finalizeInstrumentation called twice"); |
| IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); |
| VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); |
| Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), |
| VAArgSize); |
| |
| if (!VAStartInstrumentationList.empty()) { |
| // If there is a va_start in this function, make a backup copy of |
| // va_arg_tls somewhere in the function entry block. |
| VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); |
| IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); |
| } |
| |
| // Instrument va_start. |
| // Copy va_list shadow from the backup copy of the TLS contents. |
| for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { |
| CallInst *OrigInst = VAStartInstrumentationList[i]; |
| IRBuilder<> IRB(OrigInst->getNextNode()); |
| Value *VAListTag = OrigInst->getArgOperand(0); |
| Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); |
| Value *RegSaveAreaPtrPtr = |
| IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), |
| PointerType::get(RegSaveAreaPtrTy, 0)); |
| Value *RegSaveAreaPtr = |
| IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); |
| Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = |
| MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), |
| Alignment, /*isStore*/ true); |
| IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, |
| CopySize); |
| } |
| } |
| }; |
| |
| /// AArch64-specific implementation of VarArgHelper. |
| struct VarArgAArch64Helper : public VarArgHelper { |
| static const unsigned kAArch64GrArgSize = 64; |
| static const unsigned kAArch64VrArgSize = 128; |
| |
| static const unsigned AArch64GrBegOffset = 0; |
| static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; |
| // Make VR space aligned to 16 bytes. |
| static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; |
| static const unsigned AArch64VrEndOffset = AArch64VrBegOffset |
| + kAArch64VrArgSize; |
| static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; |
| |
| Function &F; |
| MemorySanitizer &MS; |
| MemorySanitizerVisitor &MSV; |
| Value *VAArgTLSCopy = nullptr; |
| Value *VAArgOverflowSize = nullptr; |
| |
| SmallVector<CallInst*, 16> VAStartInstrumentationList; |
| |
| enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; |
| |
| VarArgAArch64Helper(Function &F, MemorySanitizer &MS, |
| MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} |
| |
| ArgKind classifyArgument(Value* arg) { |
| Type *T = arg->getType(); |
| if (T->isFPOrFPVectorTy()) |
| return AK_FloatingPoint; |
| if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) |
| || (T->isPointerTy())) |
| return AK_GeneralPurpose; |
| return AK_Memory; |
| } |
| |
| // The instrumentation stores the argument shadow in a non ABI-specific |
| // format because it does not know which argument is named (since Clang, |
| // like x86_64 case, lowers the va_args in the frontend and this pass only |
| // sees the low level code that deals with va_list internals). |
| // The first seven GR registers are saved in the first 56 bytes of the |
| // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then |
| // the remaining arguments. |
| // Using constant offset within the va_arg TLS array allows fast copy |
| // in the finalize instrumentation. |
| void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { |
| unsigned GrOffset = AArch64GrBegOffset; |
| unsigned VrOffset = AArch64VrBegOffset; |
| unsigned OverflowOffset = AArch64VAEndOffset; |
| |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); |
| ArgIt != End; ++ArgIt) { |
| Value *A = *ArgIt; |
| unsigned ArgNo = CS.getArgumentNo(ArgIt); |
| bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); |
| ArgKind AK = classifyArgument(A); |
| if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) |
| AK = AK_Memory; |
| if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) |
| AK = AK_Memory; |
| Value *Base; |
| switch (AK) { |
| case AK_GeneralPurpose: |
| Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); |
| GrOffset += 8; |
| break; |
| case AK_FloatingPoint: |
| Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); |
| VrOffset += 16; |
| break; |
| case AK_Memory: |
| // Don't count fixed arguments in the overflow area - va_start will |
| // skip right over them. |
| if (IsFixed) |
| continue; |
| uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); |
| Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, |
| alignTo(ArgSize, 8)); |
| OverflowOffset += alignTo(ArgSize, 8); |
| break; |
| } |
| // Count Gp/Vr fixed arguments to their respective offsets, but don't |
| // bother to actually store a shadow. |
| if (IsFixed) |
| continue; |
| if (!Base) |
| continue; |
| IRB.CreateAlignedStore(MSV.getShadow(A), Base, |
| kShadowTLSAlignment.value()); |
| } |
| Constant *OverflowSize = |
| ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); |
| IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); |
| } |
| |
| /// Compute the shadow address for a given va_arg. |
| Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, |
| unsigned ArgOffset, unsigned ArgSize) { |
| // Make sure we don't overflow __msan_va_arg_tls. |
| if (ArgOffset + ArgSize > kParamTLSSize) |
| return nullptr; |
| Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); |
| Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); |
| return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), |
| "_msarg"); |
| } |
| |
| void visitVAStartInst(VAStartInst &I) override { |
| IRBuilder<> IRB(&I); |
| VAStartInstrumentationList.push_back(&I); |
| Value *VAListTag = I.getArgOperand(0); |
| Value *ShadowPtr, *OriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( |
| VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
| IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), |
| /* size */ 32, Alignment, false); |
| } |
| |
| void visitVACopyInst(VACopyInst &I) override { |
| IRBuilder<> IRB(&I); |
| VAStartInstrumentationList.push_back(&I); |
| Value *VAListTag = I.getArgOperand(0); |
| Value *ShadowPtr, *OriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( |
| VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
| IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), |
| /* size */ 32, Alignment, false); |
| } |
| |
| // Retrieve a va_list field of 'void*' size. |
| Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { |
| Value *SaveAreaPtrPtr = |
| IRB.CreateIntToPtr( |
| IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), |
| ConstantInt::get(MS.IntptrTy, offset)), |
| Type::getInt64PtrTy(*MS.C)); |
| return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); |
| } |
| |
| // Retrieve a va_list field of 'int' size. |
| Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { |
| Value *SaveAreaPtr = |
| IRB.CreateIntToPtr( |
| IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), |
| ConstantInt::get(MS.IntptrTy, offset)), |
| Type::getInt32PtrTy(*MS.C)); |
| Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); |
| return IRB.CreateSExt(SaveArea32, MS.IntptrTy); |
| } |
| |
| void finalizeInstrumentation() override { |
| assert(!VAArgOverflowSize && !VAArgTLSCopy && |
| "finalizeInstrumentation called twice"); |
| if (!VAStartInstrumentationList.empty()) { |
| // If there is a va_start in this function, make a backup copy of |
| // va_arg_tls somewhere in the function entry block. |
| IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); |
| VAArgOverflowSize = |
| IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); |
| Value *CopySize = |
| IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), |
| VAArgOverflowSize); |
| VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); |
| IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); |
| } |
| |
| Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); |
| Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); |
| |
| // Instrument va_start, copy va_list shadow from the backup copy of |
| // the TLS contents. |
| for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { |
| CallInst *OrigInst = VAStartInstrumentationList[i]; |
| IRBuilder<> IRB(OrigInst->getNextNode()); |
| |
| Value *VAListTag = OrigInst->getArgOperand(0); |
| |
| // The variadic ABI for AArch64 creates two areas to save the incoming |
| // argument registers (one for 64-bit general register xn-x7 and another |
| // for 128-bit FP/SIMD vn-v7). |
| // We need then to propagate the shadow arguments on both regions |
| // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. |
| // The remaning arguments are saved on shadow for 'va::stack'. |
| // One caveat is it requires only to propagate the non-named arguments, |
| // however on the call site instrumentation 'all' the arguments are |
| // saved. So to copy the shadow values from the va_arg TLS array |
| // we need to adjust the offset for both GR and VR fields based on |
| // the __{gr,vr}_offs value (since they are stores based on incoming |
| // named arguments). |
| |
| // Read the stack pointer from the va_list. |
| Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); |
| |
| // Read both the __gr_top and __gr_off and add them up. |
| Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); |
| Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); |
| |
| Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); |
| |
| // Read both the __vr_top and __vr_off and add them up. |
| Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); |
| Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); |
| |
| Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); |
| |
| // It does not know how many named arguments is being used and, on the |
| // callsite all the arguments were saved. Since __gr_off is defined as |
| // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic |
| // argument by ignoring the bytes of shadow from named arguments. |
| Value *GrRegSaveAreaShadowPtrOff = |
| IRB.CreateAdd(GrArgSize, GrOffSaveArea); |
| |
| Value *GrRegSaveAreaShadowPtr = |
| MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), |
| Align(8), /*isStore*/ true) |
| .first; |
| |
| Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, |
| GrRegSaveAreaShadowPtrOff); |
| Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); |
| |
| IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), |
| GrCopySize); |
| |
| // Again, but for FP/SIMD values. |
| Value *VrRegSaveAreaShadowPtrOff = |
| IRB.CreateAdd(VrArgSize, VrOffSaveArea); |
| |
| Value *VrRegSaveAreaShadowPtr = |
| MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), |
| Align(8), /*isStore*/ true) |
| .first; |
| |
| Value *VrSrcPtr = IRB.CreateInBoundsGEP( |
| IRB.getInt8Ty(), |
| IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, |
| IRB.getInt32(AArch64VrBegOffset)), |
| VrRegSaveAreaShadowPtrOff); |
| Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); |
| |
| IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), |
| VrCopySize); |
| |
| // And finally for remaining arguments. |
| Value *StackSaveAreaShadowPtr = |
| MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), |
| Align(16), /*isStore*/ true) |
| .first; |
| |
| Value *StackSrcPtr = |
| IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, |
| IRB.getInt32(AArch64VAEndOffset)); |
| |
| IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, |
| Align(16), VAArgOverflowSize); |
| } |
| } |
| }; |
| |
| /// PowerPC64-specific implementation of VarArgHelper. |
| struct VarArgPowerPC64Helper : public VarArgHelper { |
| Function &F; |
| MemorySanitizer &MS; |
| MemorySanitizerVisitor &MSV; |
| Value *VAArgTLSCopy = nullptr; |
| Value *VAArgSize = nullptr; |
| |
| SmallVector<CallInst*, 16> VAStartInstrumentationList; |
| |
| VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, |
| MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} |
| |
| void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { |
| // For PowerPC, we need to deal with alignment of stack arguments - |
| // they are mostly aligned to 8 bytes, but vectors and i128 arrays |
| // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, |
| // and QPX vectors are aligned to 32 bytes. For that reason, we |
| // compute current offset from stack pointer (which is always properly |
| // aligned), and offset for the first vararg, then subtract them. |
| unsigned VAArgBase; |
| Triple TargetTriple(F.getParent()->getTargetTriple()); |
| // Parameter save area starts at 48 bytes from frame pointer for ABIv1, |
| // and 32 bytes for ABIv2. This is usually determined by target |
| // endianness, but in theory could be overriden by function attribute. |
| // For simplicity, we ignore it here (it'd only matter for QPX vectors). |
| if (TargetTriple.getArch() == Triple::ppc64) |
| VAArgBase = 48; |
| else |
| VAArgBase = 32; |
| unsigned VAArgOffset = VAArgBase; |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); |
| ArgIt != End; ++ArgIt) { |
| Value *A = *ArgIt; |
| unsigned ArgNo = CS.getArgumentNo(ArgIt); |
| bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); |
| bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); |
| if (IsByVal) { |
| assert(A->getType()->isPointerTy()); |
| Type *RealTy = A->getType()->getPointerElementType(); |
| uint64_t ArgSize = DL.getTypeAllocSize(RealTy); |
| uint64_t ArgAlign = CS.getParamAlignment(ArgNo); |
| if (ArgAlign < 8) |
| ArgAlign = 8; |
| VAArgOffset = alignTo(VAArgOffset, ArgAlign); |
| if (!IsFixed) { |
| Value *Base = getShadowPtrForVAArgument( |
| RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); |
| if (Base) { |
| Value *AShadowPtr, *AOriginPtr; |
| std::tie(AShadowPtr, AOriginPtr) = |
| MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), |
| kShadowTLSAlignment, /*isStore*/ false); |
| |
| IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, |
| kShadowTLSAlignment, ArgSize); |
| } |
| } |
| VAArgOffset += alignTo(ArgSize, 8); |
| } else { |
| Value *Base; |
| uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); |
| uint64_t ArgAlign = 8; |
| if (A->getType()->isArrayTy()) { |
| // Arrays are aligned to element size, except for long double |
| // arrays, which are aligned to 8 bytes. |
| Type *ElementTy = A->getType()->getArrayElementType(); |
| if (!ElementTy->isPPC_FP128Ty()) |
| ArgAlign = DL.getTypeAllocSize(ElementTy); |
| } else if (A->getType()->isVectorTy()) { |
| // Vectors are naturally aligned. |
| ArgAlign = DL.getTypeAllocSize(A->getType()); |
| } |
| if (ArgAlign < 8) |
| ArgAlign = 8; |
| VAArgOffset = alignTo(VAArgOffset, ArgAlign); |
| if (DL.isBigEndian()) { |
| // Adjusting the shadow for argument with size < 8 to match the placement |
| // of bits in big endian system |
| if (ArgSize < 8) |
| VAArgOffset += (8 - ArgSize); |
| } |
| if (!IsFixed) { |
| Base = getShadowPtrForVAArgument(A->getType(), IRB, |
| VAArgOffset - VAArgBase, ArgSize); |
| if (Base) |
| IRB.CreateAlignedStore(MSV.getShadow(A), Base, |
| kShadowTLSAlignment.value()); |
| } |
| VAArgOffset += ArgSize; |
| VAArgOffset = alignTo(VAArgOffset, 8); |
| } |
| if (IsFixed) |
| VAArgBase = VAArgOffset; |
| } |
| |
| Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), |
| VAArgOffset - VAArgBase); |
| // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| // a new class member i.e. it is the total size of all VarArgs. |
| IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); |
| } |
| |
| /// Compute the shadow address for a given va_arg. |
| Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, |
| unsigned ArgOffset, unsigned ArgSize) { |
| // Make sure we don't overflow __msan_va_arg_tls. |
| if (ArgOffset + ArgSize > kParamTLSSize) |
| return nullptr; |
| Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); |
| Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); |
| return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), |
| "_msarg"); |
| } |
| |
| void visitVAStartInst(VAStartInst &I) override { |
| IRBuilder<> IRB(&I); |
| VAStartInstrumentationList.push_back(&I); |
| Value *VAListTag = I.getArgOperand(0); |
| Value *ShadowPtr, *OriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( |
| VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
| IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), |
| /* size */ 8, Alignment, false); |
| } |
| |
| void visitVACopyInst(VACopyInst &I) override { |
| IRBuilder<> IRB(&I); |
| Value *VAListTag = I.getArgOperand(0); |
| Value *ShadowPtr, *OriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( |
| VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
| // Unpoison the whole __va_list_tag. |
| // FIXME: magic ABI constants. |
| IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), |
| /* size */ 8, Alignment, false); |
| } |
| |
| void finalizeInstrumentation() override { |
| assert(!VAArgSize && !VAArgTLSCopy && |
| "finalizeInstrumentation called twice"); |
| IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); |
| VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); |
| Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), |
| VAArgSize); |
| |
| if (!VAStartInstrumentationList.empty()) { |
| // If there is a va_start in this function, make a backup copy of |
| // va_arg_tls somewhere in the function entry block. |
| VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); |
| IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); |
| } |
| |
| // Instrument va_start. |
| // Copy va_list shadow from the backup copy of the TLS contents. |
| for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { |
| CallInst *OrigInst = VAStartInstrumentationList[i]; |
| IRBuilder<> IRB(OrigInst->getNextNode()); |
| Value *VAListTag = OrigInst->getArgOperand(0); |
| Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); |
| Value *RegSaveAreaPtrPtr = |
| IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), |
| PointerType::get(RegSaveAreaPtrTy, 0)); |
| Value *RegSaveAreaPtr = |
| IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); |
| Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| const Align Alignment = Align(8); |
| std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = |
| MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), |
| Alignment, /*isStore*/ true); |
| IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, |
| CopySize); |
| } |
| } |
| }; |
| |
| /// A no-op implementation of VarArgHelper. |
| struct VarArgNoOpHelper : public VarArgHelper { |
| VarArgNoOpHelper(Function &F, MemorySanitizer &MS, |
| MemorySanitizerVisitor &MSV) {} |
| |
| void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} |
| |
| void visitVAStartInst(VAStartInst &I) override {} |
| |
| void visitVACopyInst(VACopyInst &I) override {} |
| |
| void finalizeInstrumentation() override {} |
| }; |
| |
| } // end anonymous namespace |
| |
| static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, |
| MemorySanitizerVisitor &Visitor) { |
| // VarArg handling is only implemented on AMD64. False positives are possible |
| // on other platforms. |
| Triple TargetTriple(Func.getParent()->getTargetTriple()); |
| if (TargetTriple.getArch() == Triple::x86_64) |
| return new VarArgAMD64Helper(Func, Msan, Visitor); |
| else if (TargetTriple.isMIPS64()) |
| return new VarArgMIPS64Helper(Func, Msan, Visitor); |
| else if (TargetTriple.getArch() == Triple::aarch64) |
| return new VarArgAArch64Helper(Func, Msan, Visitor); |
| else if (TargetTriple.getArch() == Triple::ppc64 || |
| TargetTriple.getArch() == Triple::ppc64le) |
| return new VarArgPowerPC64Helper(Func, Msan, Visitor); |
| else |
| return new VarArgNoOpHelper(Func, Msan, Visitor); |
| } |
| |
| bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { |
| if (!CompileKernel && F.getName() == kMsanModuleCtorName) |
| return false; |
| |
| MemorySanitizerVisitor Visitor(F, *this, TLI); |
| |
| // Clear out readonly/readnone attributes. |
| AttrBuilder B; |
| B.addAttribute(Attribute::ReadOnly) |
| .addAttribute(Attribute::ReadNone) |
| .addAttribute(Attribute::WriteOnly) |
| .addAttribute(Attribute::ArgMemOnly) |
| .addAttribute(Attribute::Speculatable); |
| F.removeAttributes(AttributeList::FunctionIndex, B); |
| |
| return Visitor.runOnFunction(); |
| } |