| //===- Loads.cpp - Local load analysis ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines simple local analyses for load instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Statepoint.h" |
| |
| using namespace llvm; |
| |
| static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) { |
| if (const MaybeAlign PA = Base->getPointerAlignment(DL)) |
| return *PA; |
| Type *const Ty = Base->getType()->getPointerElementType(); |
| if (!Ty->isSized()) |
| return None; |
| return Align(DL.getABITypeAlignment(Ty)); |
| } |
| |
| static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, |
| const DataLayout &DL) { |
| if (MaybeAlign BA = getBaseAlign(Base, DL)) { |
| const APInt APBaseAlign(Offset.getBitWidth(), BA->value()); |
| const APInt APAlign(Offset.getBitWidth(), Alignment.value()); |
| assert(APAlign.isPowerOf2() && "must be a power of 2!"); |
| return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1)); |
| } |
| return false; |
| } |
| |
| /// Test if V is always a pointer to allocated and suitably aligned memory for |
| /// a simple load or store. |
| static bool isDereferenceableAndAlignedPointer( |
| const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, |
| const Instruction *CtxI, const DominatorTree *DT, |
| SmallPtrSetImpl<const Value *> &Visited) { |
| // Already visited? Bail out, we've likely hit unreachable code. |
| if (!Visited.insert(V).second) |
| return false; |
| |
| // Note that it is not safe to speculate into a malloc'd region because |
| // malloc may return null. |
| |
| // bitcast instructions are no-ops as far as dereferenceability is concerned. |
| if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) |
| return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment, |
| Size, DL, CtxI, DT, Visited); |
| |
| bool CheckForNonNull = false; |
| APInt KnownDerefBytes(Size.getBitWidth(), |
| V->getPointerDereferenceableBytes(DL, CheckForNonNull)); |
| if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size)) |
| if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { |
| // As we recursed through GEPs to get here, we've incrementally checked |
| // that each step advanced by a multiple of the alignment. If our base is |
| // properly aligned, then the original offset accessed must also be. |
| Type *Ty = V->getType(); |
| assert(Ty->isSized() && "must be sized"); |
| APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); |
| return isAligned(V, Offset, Alignment, DL); |
| } |
| |
| // For GEPs, determine if the indexing lands within the allocated object. |
| if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { |
| const Value *Base = GEP->getPointerOperand(); |
| |
| APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); |
| if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || |
| !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) |
| .isMinValue()) |
| return false; |
| |
| // If the base pointer is dereferenceable for Offset+Size bytes, then the |
| // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base |
| // pointer is aligned to Align bytes, and the Offset is divisible by Align |
| // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also |
| // aligned to Align bytes. |
| |
| // Offset and Size may have different bit widths if we have visited an |
| // addrspacecast, so we can't do arithmetic directly on the APInt values. |
| return isDereferenceableAndAlignedPointer( |
| Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, |
| CtxI, DT, Visited); |
| } |
| |
| // For gc.relocate, look through relocations |
| if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) |
| return isDereferenceableAndAlignedPointer( |
| RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited); |
| |
| if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) |
| return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, |
| Size, DL, CtxI, DT, Visited); |
| |
| if (const auto *Call = dyn_cast<CallBase>(V)) |
| if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) |
| return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, |
| DT, Visited); |
| |
| // If we don't know, assume the worst. |
| return false; |
| } |
| |
| bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, |
| const APInt &Size, |
| const DataLayout &DL, |
| const Instruction *CtxI, |
| const DominatorTree *DT) { |
| // Note: At the moment, Size can be zero. This ends up being interpreted as |
| // a query of whether [Base, V] is dereferenceable and V is aligned (since |
| // that's what the implementation happened to do). It's unclear if this is |
| // the desired semantic, but at least SelectionDAG does exercise this case. |
| |
| SmallPtrSet<const Value *, 32> Visited; |
| return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, |
| Visited); |
| } |
| |
| bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, |
| MaybeAlign MA, |
| const DataLayout &DL, |
| const Instruction *CtxI, |
| const DominatorTree *DT) { |
| if (!Ty->isSized()) |
| return false; |
| |
| // When dereferenceability information is provided by a dereferenceable |
| // attribute, we know exactly how many bytes are dereferenceable. If we can |
| // determine the exact offset to the attributed variable, we can use that |
| // information here. |
| |
| // Require ABI alignment for loads without alignment specification |
| const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); |
| APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), |
| DL.getTypeStoreSize(Ty)); |
| return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, |
| DT); |
| } |
| |
| bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, |
| const DataLayout &DL, |
| const Instruction *CtxI, |
| const DominatorTree *DT) { |
| return isDereferenceableAndAlignedPointer(V, Ty, Align::None(), DL, CtxI, DT); |
| } |
| |
| /// Test if A and B will obviously have the same value. |
| /// |
| /// This includes recognizing that %t0 and %t1 will have the same |
| /// value in code like this: |
| /// \code |
| /// %t0 = getelementptr \@a, 0, 3 |
| /// store i32 0, i32* %t0 |
| /// %t1 = getelementptr \@a, 0, 3 |
| /// %t2 = load i32* %t1 |
| /// \endcode |
| /// |
| static bool AreEquivalentAddressValues(const Value *A, const Value *B) { |
| // Test if the values are trivially equivalent. |
| if (A == B) |
| return true; |
| |
| // Test if the values come from identical arithmetic instructions. |
| // Use isIdenticalToWhenDefined instead of isIdenticalTo because |
| // this function is only used when one address use dominates the |
| // other, which means that they'll always either have the same |
| // value or one of them will have an undefined value. |
| if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || |
| isa<GetElementPtrInst>(A)) |
| if (const Instruction *BI = dyn_cast<Instruction>(B)) |
| if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) |
| return true; |
| |
| // Otherwise they may not be equivalent. |
| return false; |
| } |
| |
| bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, |
| ScalarEvolution &SE, |
| DominatorTree &DT) { |
| auto &DL = LI->getModule()->getDataLayout(); |
| Value *Ptr = LI->getPointerOperand(); |
| |
| APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), |
| DL.getTypeStoreSize(LI->getType())); |
| const Align Alignment = DL.getValueOrABITypeAlignment( |
| MaybeAlign(LI->getAlignment()), LI->getType()); |
| |
| Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); |
| |
| // If given a uniform (i.e. non-varying) address, see if we can prove the |
| // access is safe within the loop w/o needing predication. |
| if (L->isLoopInvariant(Ptr)) |
| return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, |
| HeaderFirstNonPHI, &DT); |
| |
| // Otherwise, check to see if we have a repeating access pattern where we can |
| // prove that all accesses are well aligned and dereferenceable. |
| auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); |
| if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) |
| return false; |
| auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); |
| if (!Step) |
| return false; |
| // TODO: generalize to access patterns which have gaps |
| if (Step->getAPInt() != EltSize) |
| return false; |
| |
| // TODO: If the symbolic trip count has a small bound (max count), we might |
| // be able to prove safety. |
| auto TC = SE.getSmallConstantTripCount(L); |
| if (!TC) |
| return false; |
| |
| const APInt AccessSize = TC * EltSize; |
| |
| auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); |
| if (!StartS) |
| return false; |
| assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); |
| Value *Base = StartS->getValue(); |
| |
| // For the moment, restrict ourselves to the case where the access size is a |
| // multiple of the requested alignment and the base is aligned. |
| // TODO: generalize if a case found which warrants |
| if (EltSize.urem(Alignment.value()) != 0) |
| return false; |
| return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, |
| HeaderFirstNonPHI, &DT); |
| } |
| |
| /// Check if executing a load of this pointer value cannot trap. |
| /// |
| /// If DT and ScanFrom are specified this method performs context-sensitive |
| /// analysis and returns true if it is safe to load immediately before ScanFrom. |
| /// |
| /// If it is not obviously safe to load from the specified pointer, we do |
| /// a quick local scan of the basic block containing \c ScanFrom, to determine |
| /// if the address is already accessed. |
| /// |
| /// This uses the pointee type to determine how many bytes need to be safe to |
| /// load from the pointer. |
| bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size, |
| const DataLayout &DL, |
| Instruction *ScanFrom, |
| const DominatorTree *DT) { |
| // Zero alignment means that the load has the ABI alignment for the target |
| const Align Alignment = |
| DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType()); |
| |
| // If DT is not specified we can't make context-sensitive query |
| const Instruction* CtxI = DT ? ScanFrom : nullptr; |
| if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT)) |
| return true; |
| |
| if (!ScanFrom) |
| return false; |
| |
| if (Size.getBitWidth() > 64) |
| return false; |
| const uint64_t LoadSize = Size.getZExtValue(); |
| |
| // Otherwise, be a little bit aggressive by scanning the local block where we |
| // want to check to see if the pointer is already being loaded or stored |
| // from/to. If so, the previous load or store would have already trapped, |
| // so there is no harm doing an extra load (also, CSE will later eliminate |
| // the load entirely). |
| BasicBlock::iterator BBI = ScanFrom->getIterator(), |
| E = ScanFrom->getParent()->begin(); |
| |
| // We can at least always strip pointer casts even though we can't use the |
| // base here. |
| V = V->stripPointerCasts(); |
| |
| while (BBI != E) { |
| --BBI; |
| |
| // If we see a free or a call which may write to memory (i.e. which might do |
| // a free) the pointer could be marked invalid. |
| if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && |
| !isa<DbgInfoIntrinsic>(BBI)) |
| return false; |
| |
| Value *AccessedPtr; |
| MaybeAlign MaybeAccessedAlign; |
| if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { |
| // Ignore volatile loads. The execution of a volatile load cannot |
| // be used to prove an address is backed by regular memory; it can, |
| // for example, point to an MMIO register. |
| if (LI->isVolatile()) |
| continue; |
| AccessedPtr = LI->getPointerOperand(); |
| MaybeAccessedAlign = MaybeAlign(LI->getAlignment()); |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { |
| // Ignore volatile stores (see comment for loads). |
| if (SI->isVolatile()) |
| continue; |
| AccessedPtr = SI->getPointerOperand(); |
| MaybeAccessedAlign = MaybeAlign(SI->getAlignment()); |
| } else |
| continue; |
| |
| Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); |
| |
| const Align AccessedAlign = |
| DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy); |
| if (AccessedAlign < Alignment) |
| continue; |
| |
| // Handle trivial cases. |
| if (AccessedPtr == V && |
| LoadSize <= DL.getTypeStoreSize(AccessedTy)) |
| return true; |
| |
| if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && |
| LoadSize <= DL.getTypeStoreSize(AccessedTy)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment, |
| const DataLayout &DL, |
| Instruction *ScanFrom, |
| const DominatorTree *DT) { |
| APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); |
| return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT); |
| } |
| |
| /// DefMaxInstsToScan - the default number of maximum instructions |
| /// to scan in the block, used by FindAvailableLoadedValue(). |
| /// FindAvailableLoadedValue() was introduced in r60148, to improve jump |
| /// threading in part by eliminating partially redundant loads. |
| /// At that point, the value of MaxInstsToScan was already set to '6' |
| /// without documented explanation. |
| cl::opt<unsigned> |
| llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, |
| cl::desc("Use this to specify the default maximum number of instructions " |
| "to scan backward from a given instruction, when searching for " |
| "available loaded value")); |
| |
| Value *llvm::FindAvailableLoadedValue(LoadInst *Load, |
| BasicBlock *ScanBB, |
| BasicBlock::iterator &ScanFrom, |
| unsigned MaxInstsToScan, |
| AliasAnalysis *AA, bool *IsLoad, |
| unsigned *NumScanedInst) { |
| // Don't CSE load that is volatile or anything stronger than unordered. |
| if (!Load->isUnordered()) |
| return nullptr; |
| |
| return FindAvailablePtrLoadStore( |
| Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, |
| ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); |
| } |
| |
| Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, |
| bool AtLeastAtomic, BasicBlock *ScanBB, |
| BasicBlock::iterator &ScanFrom, |
| unsigned MaxInstsToScan, |
| AliasAnalysis *AA, bool *IsLoadCSE, |
| unsigned *NumScanedInst) { |
| if (MaxInstsToScan == 0) |
| MaxInstsToScan = ~0U; |
| |
| const DataLayout &DL = ScanBB->getModule()->getDataLayout(); |
| Value *StrippedPtr = Ptr->stripPointerCasts(); |
| |
| while (ScanFrom != ScanBB->begin()) { |
| // We must ignore debug info directives when counting (otherwise they |
| // would affect codegen). |
| Instruction *Inst = &*--ScanFrom; |
| if (isa<DbgInfoIntrinsic>(Inst)) |
| continue; |
| |
| // Restore ScanFrom to expected value in case next test succeeds |
| ScanFrom++; |
| |
| if (NumScanedInst) |
| ++(*NumScanedInst); |
| |
| // Don't scan huge blocks. |
| if (MaxInstsToScan-- == 0) |
| return nullptr; |
| |
| --ScanFrom; |
| // If this is a load of Ptr, the loaded value is available. |
| // (This is true even if the load is volatile or atomic, although |
| // those cases are unlikely.) |
| if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) |
| if (AreEquivalentAddressValues( |
| LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && |
| CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { |
| |
| // We can value forward from an atomic to a non-atomic, but not the |
| // other way around. |
| if (LI->isAtomic() < AtLeastAtomic) |
| return nullptr; |
| |
| if (IsLoadCSE) |
| *IsLoadCSE = true; |
| return LI; |
| } |
| |
| // Try to get the store size for the type. |
| auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); |
| // If this is a store through Ptr, the value is available! |
| // (This is true even if the store is volatile or atomic, although |
| // those cases are unlikely.) |
| if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && |
| CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), |
| AccessTy, DL)) { |
| |
| // We can value forward from an atomic to a non-atomic, but not the |
| // other way around. |
| if (SI->isAtomic() < AtLeastAtomic) |
| return nullptr; |
| |
| if (IsLoadCSE) |
| *IsLoadCSE = false; |
| return SI->getOperand(0); |
| } |
| |
| // If both StrippedPtr and StorePtr reach all the way to an alloca or |
| // global and they are different, ignore the store. This is a trivial form |
| // of alias analysis that is important for reg2mem'd code. |
| if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && |
| (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && |
| StrippedPtr != StorePtr) |
| continue; |
| |
| // If we have alias analysis and it says the store won't modify the loaded |
| // value, ignore the store. |
| if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) |
| continue; |
| |
| // Otherwise the store that may or may not alias the pointer, bail out. |
| ++ScanFrom; |
| return nullptr; |
| } |
| |
| // If this is some other instruction that may clobber Ptr, bail out. |
| if (Inst->mayWriteToMemory()) { |
| // If alias analysis claims that it really won't modify the load, |
| // ignore it. |
| if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) |
| continue; |
| |
| // May modify the pointer, bail out. |
| ++ScanFrom; |
| return nullptr; |
| } |
| } |
| |
| // Got to the start of the block, we didn't find it, but are done for this |
| // block. |
| return nullptr; |
| } |