| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the LoopInfo class that is used to identify natural loops | 
 | // and determine the loop depth of various nodes of the CFG.  Note that the | 
 | // loops identified may actually be several natural loops that share the same | 
 | // header node... not just a single natural loop. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Analysis/LoopIterator.h" | 
 | #include "llvm/Assembly/Writer.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | // Always verify loopinfo if expensive checking is enabled. | 
 | #ifdef XDEBUG | 
 | static bool VerifyLoopInfo = true; | 
 | #else | 
 | static bool VerifyLoopInfo = false; | 
 | #endif | 
 | static cl::opt<bool,true> | 
 | VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), | 
 |                 cl::desc("Verify loop info (time consuming)")); | 
 |  | 
 | char LoopInfo::ID = 0; | 
 | INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTree) | 
 | INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true) | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Loop implementation | 
 | // | 
 |  | 
 | /// isLoopInvariant - Return true if the specified value is loop invariant | 
 | /// | 
 | bool Loop::isLoopInvariant(Value *V) const { | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) | 
 |     return !contains(I); | 
 |   return true;  // All non-instructions are loop invariant | 
 | } | 
 |  | 
 | /// hasLoopInvariantOperands - Return true if all the operands of the | 
 | /// specified instruction are loop invariant. | 
 | bool Loop::hasLoopInvariantOperands(Instruction *I) const { | 
 |   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
 |     if (!isLoopInvariant(I->getOperand(i))) | 
 |       return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// makeLoopInvariant - If the given value is an instruciton inside of the | 
 | /// loop and it can be hoisted, do so to make it trivially loop-invariant. | 
 | /// Return true if the value after any hoisting is loop invariant. This | 
 | /// function can be used as a slightly more aggressive replacement for | 
 | /// isLoopInvariant. | 
 | /// | 
 | /// If InsertPt is specified, it is the point to hoist instructions to. | 
 | /// If null, the terminator of the loop preheader is used. | 
 | /// | 
 | bool Loop::makeLoopInvariant(Value *V, bool &Changed, | 
 |                              Instruction *InsertPt) const { | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) | 
 |     return makeLoopInvariant(I, Changed, InsertPt); | 
 |   return true;  // All non-instructions are loop-invariant. | 
 | } | 
 |  | 
 | /// makeLoopInvariant - If the given instruction is inside of the | 
 | /// loop and it can be hoisted, do so to make it trivially loop-invariant. | 
 | /// Return true if the instruction after any hoisting is loop invariant. This | 
 | /// function can be used as a slightly more aggressive replacement for | 
 | /// isLoopInvariant. | 
 | /// | 
 | /// If InsertPt is specified, it is the point to hoist instructions to. | 
 | /// If null, the terminator of the loop preheader is used. | 
 | /// | 
 | bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, | 
 |                              Instruction *InsertPt) const { | 
 |   // Test if the value is already loop-invariant. | 
 |   if (isLoopInvariant(I)) | 
 |     return true; | 
 |   if (!I->isSafeToSpeculativelyExecute()) | 
 |     return false; | 
 |   if (I->mayReadFromMemory()) | 
 |     return false; | 
 |   // The landingpad instruction is immobile. | 
 |   if (isa<LandingPadInst>(I)) | 
 |     return false; | 
 |   // Determine the insertion point, unless one was given. | 
 |   if (!InsertPt) { | 
 |     BasicBlock *Preheader = getLoopPreheader(); | 
 |     // Without a preheader, hoisting is not feasible. | 
 |     if (!Preheader) | 
 |       return false; | 
 |     InsertPt = Preheader->getTerminator(); | 
 |   } | 
 |   // Don't hoist instructions with loop-variant operands. | 
 |   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
 |     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) | 
 |       return false; | 
 |  | 
 |   // Hoist. | 
 |   I->moveBefore(InsertPt); | 
 |   Changed = true; | 
 |   return true; | 
 | } | 
 |  | 
 | /// getCanonicalInductionVariable - Check to see if the loop has a canonical | 
 | /// induction variable: an integer recurrence that starts at 0 and increments | 
 | /// by one each time through the loop.  If so, return the phi node that | 
 | /// corresponds to it. | 
 | /// | 
 | /// The IndVarSimplify pass transforms loops to have a canonical induction | 
 | /// variable. | 
 | /// | 
 | PHINode *Loop::getCanonicalInductionVariable() const { | 
 |   BasicBlock *H = getHeader(); | 
 |  | 
 |   BasicBlock *Incoming = 0, *Backedge = 0; | 
 |   pred_iterator PI = pred_begin(H); | 
 |   assert(PI != pred_end(H) && | 
 |          "Loop must have at least one backedge!"); | 
 |   Backedge = *PI++; | 
 |   if (PI == pred_end(H)) return 0;  // dead loop | 
 |   Incoming = *PI++; | 
 |   if (PI != pred_end(H)) return 0;  // multiple backedges? | 
 |  | 
 |   if (contains(Incoming)) { | 
 |     if (contains(Backedge)) | 
 |       return 0; | 
 |     std::swap(Incoming, Backedge); | 
 |   } else if (!contains(Backedge)) | 
 |     return 0; | 
 |  | 
 |   // Loop over all of the PHI nodes, looking for a canonical indvar. | 
 |   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { | 
 |     PHINode *PN = cast<PHINode>(I); | 
 |     if (ConstantInt *CI = | 
 |         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) | 
 |       if (CI->isNullValue()) | 
 |         if (Instruction *Inc = | 
 |             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) | 
 |           if (Inc->getOpcode() == Instruction::Add && | 
 |                 Inc->getOperand(0) == PN) | 
 |             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) | 
 |               if (CI->equalsInt(1)) | 
 |                 return PN; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// getTripCount - Return a loop-invariant LLVM value indicating the number of | 
 | /// times the loop will be executed.  Note that this means that the backedge | 
 | /// of the loop executes N-1 times.  If the trip-count cannot be determined, | 
 | /// this returns null. | 
 | /// | 
 | /// The IndVarSimplify pass transforms loops to have a form that this | 
 | /// function easily understands. | 
 | /// | 
 | Value *Loop::getTripCount() const { | 
 |   // Canonical loops will end with a 'cmp ne I, V', where I is the incremented | 
 |   // canonical induction variable and V is the trip count of the loop. | 
 |   PHINode *IV = getCanonicalInductionVariable(); | 
 |   if (IV == 0 || IV->getNumIncomingValues() != 2) return 0; | 
 |  | 
 |   bool P0InLoop = contains(IV->getIncomingBlock(0)); | 
 |   Value *Inc = IV->getIncomingValue(!P0InLoop); | 
 |   BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop); | 
 |  | 
 |   if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) | 
 |     if (BI->isConditional()) { | 
 |       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { | 
 |         if (ICI->getOperand(0) == Inc) { | 
 |           if (BI->getSuccessor(0) == getHeader()) { | 
 |             if (ICI->getPredicate() == ICmpInst::ICMP_NE) | 
 |               return ICI->getOperand(1); | 
 |           } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { | 
 |             return ICI->getOperand(1); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /// getSmallConstantTripCount - Returns the trip count of this loop as a | 
 | /// normal unsigned value, if possible. Returns 0 if the trip count is unknown | 
 | /// or not constant. Will also return 0 if the trip count is very large | 
 | /// (>= 2^32) | 
 | unsigned Loop::getSmallConstantTripCount() const { | 
 |   Value* TripCount = this->getTripCount(); | 
 |   if (TripCount) { | 
 |     if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) { | 
 |       // Guard against huge trip counts. | 
 |       if (TripCountC->getValue().getActiveBits() <= 32) { | 
 |         return (unsigned)TripCountC->getZExtValue(); | 
 |       } | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// getSmallConstantTripMultiple - Returns the largest constant divisor of the | 
 | /// trip count of this loop as a normal unsigned value, if possible. This | 
 | /// means that the actual trip count is always a multiple of the returned | 
 | /// value (don't forget the trip count could very well be zero as well!). | 
 | /// | 
 | /// Returns 1 if the trip count is unknown or not guaranteed to be the | 
 | /// multiple of a constant (which is also the case if the trip count is simply | 
 | /// constant, use getSmallConstantTripCount for that case), Will also return 1 | 
 | /// if the trip count is very large (>= 2^32). | 
 | unsigned Loop::getSmallConstantTripMultiple() const { | 
 |   Value* TripCount = this->getTripCount(); | 
 |   // This will hold the ConstantInt result, if any | 
 |   ConstantInt *Result = NULL; | 
 |   if (TripCount) { | 
 |     // See if the trip count is constant itself | 
 |     Result = dyn_cast<ConstantInt>(TripCount); | 
 |     // if not, see if it is a multiplication | 
 |     if (!Result) | 
 |       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) { | 
 |         switch (BO->getOpcode()) { | 
 |         case BinaryOperator::Mul: | 
 |           Result = dyn_cast<ConstantInt>(BO->getOperand(1)); | 
 |           break; | 
 |         case BinaryOperator::Shl: | 
 |           if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) | 
 |             if (CI->getValue().getActiveBits() <= 5) | 
 |               return 1u << CI->getZExtValue(); | 
 |           break; | 
 |         default: | 
 |           break; | 
 |         } | 
 |       } | 
 |   } | 
 |   // Guard against huge trip counts. | 
 |   if (Result && Result->getValue().getActiveBits() <= 32) { | 
 |     return (unsigned)Result->getZExtValue(); | 
 |   } else { | 
 |     return 1; | 
 |   } | 
 | } | 
 |  | 
 | /// isLCSSAForm - Return true if the Loop is in LCSSA form | 
 | bool Loop::isLCSSAForm(DominatorTree &DT) const { | 
 |   // Sort the blocks vector so that we can use binary search to do quick | 
 |   // lookups. | 
 |   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end()); | 
 |  | 
 |   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { | 
 |     BasicBlock *BB = *BI; | 
 |     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) | 
 |       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; | 
 |            ++UI) { | 
 |         User *U = *UI; | 
 |         BasicBlock *UserBB = cast<Instruction>(U)->getParent(); | 
 |         if (PHINode *P = dyn_cast<PHINode>(U)) | 
 |           UserBB = P->getIncomingBlock(UI); | 
 |  | 
 |         // Check the current block, as a fast-path, before checking whether | 
 |         // the use is anywhere in the loop.  Most values are used in the same | 
 |         // block they are defined in.  Also, blocks not reachable from the | 
 |         // entry are special; uses in them don't need to go through PHIs. | 
 |         if (UserBB != BB && | 
 |             !LoopBBs.count(UserBB) && | 
 |             DT.isReachableFromEntry(UserBB)) | 
 |           return false; | 
 |       } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// isLoopSimplifyForm - Return true if the Loop is in the form that | 
 | /// the LoopSimplify form transforms loops to, which is sometimes called | 
 | /// normal form. | 
 | bool Loop::isLoopSimplifyForm() const { | 
 |   // Normal-form loops have a preheader, a single backedge, and all of their | 
 |   // exits have all their predecessors inside the loop. | 
 |   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); | 
 | } | 
 |  | 
 | /// hasDedicatedExits - Return true if no exit block for the loop | 
 | /// has a predecessor that is outside the loop. | 
 | bool Loop::hasDedicatedExits() const { | 
 |   // Sort the blocks vector so that we can use binary search to do quick | 
 |   // lookups. | 
 |   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); | 
 |   // Each predecessor of each exit block of a normal loop is contained | 
 |   // within the loop. | 
 |   SmallVector<BasicBlock *, 4> ExitBlocks; | 
 |   getExitBlocks(ExitBlocks); | 
 |   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) | 
 |     for (pred_iterator PI = pred_begin(ExitBlocks[i]), | 
 |          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) | 
 |       if (!LoopBBs.count(*PI)) | 
 |         return false; | 
 |   // All the requirements are met. | 
 |   return true; | 
 | } | 
 |  | 
 | /// getUniqueExitBlocks - Return all unique successor blocks of this loop. | 
 | /// These are the blocks _outside of the current loop_ which are branched to. | 
 | /// This assumes that loop exits are in canonical form. | 
 | /// | 
 | void | 
 | Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { | 
 |   assert(hasDedicatedExits() && | 
 |          "getUniqueExitBlocks assumes the loop has canonical form exits!"); | 
 |  | 
 |   // Sort the blocks vector so that we can use binary search to do quick | 
 |   // lookups. | 
 |   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end()); | 
 |   std::sort(LoopBBs.begin(), LoopBBs.end()); | 
 |  | 
 |   SmallVector<BasicBlock *, 32> switchExitBlocks; | 
 |  | 
 |   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { | 
 |  | 
 |     BasicBlock *current = *BI; | 
 |     switchExitBlocks.clear(); | 
 |  | 
 |     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { | 
 |       // If block is inside the loop then it is not a exit block. | 
 |       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) | 
 |         continue; | 
 |  | 
 |       pred_iterator PI = pred_begin(*I); | 
 |       BasicBlock *firstPred = *PI; | 
 |  | 
 |       // If current basic block is this exit block's first predecessor | 
 |       // then only insert exit block in to the output ExitBlocks vector. | 
 |       // This ensures that same exit block is not inserted twice into | 
 |       // ExitBlocks vector. | 
 |       if (current != firstPred) | 
 |         continue; | 
 |  | 
 |       // If a terminator has more then two successors, for example SwitchInst, | 
 |       // then it is possible that there are multiple edges from current block | 
 |       // to one exit block. | 
 |       if (std::distance(succ_begin(current), succ_end(current)) <= 2) { | 
 |         ExitBlocks.push_back(*I); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // In case of multiple edges from current block to exit block, collect | 
 |       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of | 
 |       // duplicate edges. | 
 |       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) | 
 |           == switchExitBlocks.end()) { | 
 |         switchExitBlocks.push_back(*I); | 
 |         ExitBlocks.push_back(*I); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one | 
 | /// block, return that block. Otherwise return null. | 
 | BasicBlock *Loop::getUniqueExitBlock() const { | 
 |   SmallVector<BasicBlock *, 8> UniqueExitBlocks; | 
 |   getUniqueExitBlocks(UniqueExitBlocks); | 
 |   if (UniqueExitBlocks.size() == 1) | 
 |     return UniqueExitBlocks[0]; | 
 |   return 0; | 
 | } | 
 |  | 
 | void Loop::dump() const { | 
 |   print(dbgs()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // UnloopUpdater implementation | 
 | // | 
 |  | 
 | namespace { | 
 | /// Find the new parent loop for all blocks within the "unloop" whose last | 
 | /// backedges has just been removed. | 
 | class UnloopUpdater { | 
 |   Loop *Unloop; | 
 |   LoopInfo *LI; | 
 |  | 
 |   LoopBlocksDFS DFS; | 
 |  | 
 |   // Map unloop's immediate subloops to their nearest reachable parents. Nested | 
 |   // loops within these subloops will not change parents. However, an immediate | 
 |   // subloop's new parent will be the nearest loop reachable from either its own | 
 |   // exits *or* any of its nested loop's exits. | 
 |   DenseMap<Loop*, Loop*> SubloopParents; | 
 |  | 
 |   // Flag the presence of an irreducible backedge whose destination is a block | 
 |   // directly contained by the original unloop. | 
 |   bool FoundIB; | 
 |  | 
 | public: | 
 |   UnloopUpdater(Loop *UL, LoopInfo *LInfo) : | 
 |     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} | 
 |  | 
 |   void updateBlockParents(); | 
 |  | 
 |   void removeBlocksFromAncestors(); | 
 |  | 
 |   void updateSubloopParents(); | 
 |  | 
 | protected: | 
 |   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); | 
 | }; | 
 | } // end anonymous namespace | 
 |  | 
 | /// updateBlockParents - Update the parent loop for all blocks that are directly | 
 | /// contained within the original "unloop". | 
 | void UnloopUpdater::updateBlockParents() { | 
 |   if (Unloop->getNumBlocks()) { | 
 |     // Perform a post order CFG traversal of all blocks within this loop, | 
 |     // propagating the nearest loop from sucessors to predecessors. | 
 |     LoopBlocksTraversal Traversal(DFS, LI); | 
 |     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), | 
 |            POE = Traversal.end(); POI != POE; ++POI) { | 
 |  | 
 |       Loop *L = LI->getLoopFor(*POI); | 
 |       Loop *NL = getNearestLoop(*POI, L); | 
 |  | 
 |       if (NL != L) { | 
 |         // For reducible loops, NL is now an ancestor of Unloop. | 
 |         assert((NL != Unloop && (!NL || NL->contains(Unloop))) && | 
 |                "uninitialized successor"); | 
 |         LI->changeLoopFor(*POI, NL); | 
 |       } | 
 |       else { | 
 |         // Or the current block is part of a subloop, in which case its parent | 
 |         // is unchanged. | 
 |         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); | 
 |       } | 
 |     } | 
 |   } | 
 |   // Each irreducible loop within the unloop induces a round of iteration using | 
 |   // the DFS result cached by Traversal. | 
 |   bool Changed = FoundIB; | 
 |   for (unsigned NIters = 0; Changed; ++NIters) { | 
 |     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); | 
 |  | 
 |     // Iterate over the postorder list of blocks, propagating the nearest loop | 
 |     // from successors to predecessors as before. | 
 |     Changed = false; | 
 |     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), | 
 |            POE = DFS.endPostorder(); POI != POE; ++POI) { | 
 |  | 
 |       Loop *L = LI->getLoopFor(*POI); | 
 |       Loop *NL = getNearestLoop(*POI, L); | 
 |       if (NL != L) { | 
 |         assert(NL != Unloop && (!NL || NL->contains(Unloop)) && | 
 |                "uninitialized successor"); | 
 |         LI->changeLoopFor(*POI, NL); | 
 |         Changed = true; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below | 
 | /// their new parents. | 
 | void UnloopUpdater::removeBlocksFromAncestors() { | 
 |   // Remove unloop's blocks from all ancestors below their new parents. | 
 |   for (Loop::block_iterator BI = Unloop->block_begin(), | 
 |          BE = Unloop->block_end(); BI != BE; ++BI) { | 
 |     Loop *NewParent = LI->getLoopFor(*BI); | 
 |     // If this block is an immediate subloop, remove all blocks (including | 
 |     // nested subloops) from ancestors below the new parent loop. | 
 |     // Otherwise, if this block is in a nested subloop, skip it. | 
 |     if (SubloopParents.count(NewParent)) | 
 |       NewParent = SubloopParents[NewParent]; | 
 |     else if (Unloop->contains(NewParent)) | 
 |       continue; | 
 |  | 
 |     // Remove blocks from former Ancestors except Unloop itself which will be | 
 |     // deleted. | 
 |     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != NewParent; | 
 |          OldParent = OldParent->getParentLoop()) { | 
 |       assert(OldParent && "new loop is not an ancestor of the original"); | 
 |       OldParent->removeBlockFromLoop(*BI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// updateSubloopParents - Update the parent loop for all subloops directly | 
 | /// nested within unloop. | 
 | void UnloopUpdater::updateSubloopParents() { | 
 |   while (!Unloop->empty()) { | 
 |     Loop *Subloop = *llvm::prior(Unloop->end()); | 
 |     Unloop->removeChildLoop(llvm::prior(Unloop->end())); | 
 |  | 
 |     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); | 
 |     if (SubloopParents[Subloop]) | 
 |       SubloopParents[Subloop]->addChildLoop(Subloop); | 
 |     else | 
 |       LI->addTopLevelLoop(Subloop); | 
 |   } | 
 | } | 
 |  | 
 | /// getNearestLoop - Return the nearest parent loop among this block's | 
 | /// successors. If a successor is a subloop header, consider its parent to be | 
 | /// the nearest parent of the subloop's exits. | 
 | /// | 
 | /// For subloop blocks, simply update SubloopParents and return NULL. | 
 | Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { | 
 |  | 
 |   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and | 
 |   // is considered uninitialized. | 
 |   Loop *NearLoop = BBLoop; | 
 |  | 
 |   Loop *Subloop = 0; | 
 |   if (NearLoop != Unloop && Unloop->contains(NearLoop)) { | 
 |     Subloop = NearLoop; | 
 |     // Find the subloop ancestor that is directly contained within Unloop. | 
 |     while (Subloop->getParentLoop() != Unloop) { | 
 |       Subloop = Subloop->getParentLoop(); | 
 |       assert(Subloop && "subloop is not an ancestor of the original loop"); | 
 |     } | 
 |     // Get the current nearest parent of the Subloop exits, initially Unloop. | 
 |     if (!SubloopParents.count(Subloop)) | 
 |       SubloopParents[Subloop] = Unloop; | 
 |     NearLoop = SubloopParents[Subloop]; | 
 |   } | 
 |  | 
 |   succ_iterator I = succ_begin(BB), E = succ_end(BB); | 
 |   if (I == E) { | 
 |     assert(!Subloop && "subloop blocks must have a successor"); | 
 |     NearLoop = 0; // unloop blocks may now exit the function. | 
 |   } | 
 |   for (; I != E; ++I) { | 
 |     if (*I == BB) | 
 |       continue; // self loops are uninteresting | 
 |  | 
 |     Loop *L = LI->getLoopFor(*I); | 
 |     if (L == Unloop) { | 
 |       // This successor has not been processed. This path must lead to an | 
 |       // irreducible backedge. | 
 |       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); | 
 |       FoundIB = true; | 
 |     } | 
 |     if (L != Unloop && Unloop->contains(L)) { | 
 |       // Successor is in a subloop. | 
 |       if (Subloop) | 
 |         continue; // Branching within subloops. Ignore it. | 
 |  | 
 |       // BB branches from the original into a subloop header. | 
 |       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); | 
 |  | 
 |       // Get the current nearest parent of the Subloop's exits. | 
 |       L = SubloopParents[L]; | 
 |       // L could be Unloop if the only exit was an irreducible backedge. | 
 |     } | 
 |     if (L == Unloop) { | 
 |       continue; | 
 |     } | 
 |     // Handle critical edges from Unloop into a sibling loop. | 
 |     if (L && !L->contains(Unloop)) { | 
 |       L = L->getParentLoop(); | 
 |     } | 
 |     // Remember the nearest parent loop among successors or subloop exits. | 
 |     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) | 
 |       NearLoop = L; | 
 |   } | 
 |   if (Subloop) { | 
 |     SubloopParents[Subloop] = NearLoop; | 
 |     return BBLoop; | 
 |   } | 
 |   return NearLoop; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // LoopInfo implementation | 
 | // | 
 | bool LoopInfo::runOnFunction(Function &) { | 
 |   releaseMemory(); | 
 |   LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update | 
 |   return false; | 
 | } | 
 |  | 
 | /// updateUnloop - The last backedge has been removed from a loop--now the | 
 | /// "unloop". Find a new parent for the blocks contained within unloop and | 
 | /// update the loop tree. We don't necessarily have valid dominators at this | 
 | /// point, but LoopInfo is still valid except for the removal of this loop. | 
 | /// | 
 | /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without | 
 | /// checking first is illegal. | 
 | void LoopInfo::updateUnloop(Loop *Unloop) { | 
 |  | 
 |   // First handle the special case of no parent loop to simplify the algorithm. | 
 |   if (!Unloop->getParentLoop()) { | 
 |     // Since BBLoop had no parent, Unloop blocks are no longer in a loop. | 
 |     for (Loop::block_iterator I = Unloop->block_begin(), | 
 |          E = Unloop->block_end(); I != E; ++I) { | 
 |  | 
 |       // Don't reparent blocks in subloops. | 
 |       if (getLoopFor(*I) != Unloop) | 
 |         continue; | 
 |  | 
 |       // Blocks no longer have a parent but are still referenced by Unloop until | 
 |       // the Unloop object is deleted. | 
 |       LI.changeLoopFor(*I, 0); | 
 |     } | 
 |  | 
 |     // Remove the loop from the top-level LoopInfo object. | 
 |     for (LoopInfo::iterator I = LI.begin();; ++I) { | 
 |       assert(I != LI.end() && "Couldn't find loop"); | 
 |       if (*I == Unloop) { | 
 |         LI.removeLoop(I); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // Move all of the subloops to the top-level. | 
 |     while (!Unloop->empty()) | 
 |       LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end()))); | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   // Update the parent loop for all blocks within the loop. Blocks within | 
 |   // subloops will not change parents. | 
 |   UnloopUpdater Updater(Unloop, this); | 
 |   Updater.updateBlockParents(); | 
 |  | 
 |   // Remove blocks from former ancestor loops. | 
 |   Updater.removeBlocksFromAncestors(); | 
 |  | 
 |   // Add direct subloops as children in their new parent loop. | 
 |   Updater.updateSubloopParents(); | 
 |  | 
 |   // Remove unloop from its parent loop. | 
 |   Loop *ParentLoop = Unloop->getParentLoop(); | 
 |   for (Loop::iterator I = ParentLoop->begin();; ++I) { | 
 |     assert(I != ParentLoop->end() && "Couldn't find loop"); | 
 |     if (*I == Unloop) { | 
 |       ParentLoop->removeChildLoop(I); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LoopInfo::verifyAnalysis() const { | 
 |   // LoopInfo is a FunctionPass, but verifying every loop in the function | 
 |   // each time verifyAnalysis is called is very expensive. The | 
 |   // -verify-loop-info option can enable this. In order to perform some | 
 |   // checking by default, LoopPass has been taught to call verifyLoop | 
 |   // manually during loop pass sequences. | 
 |  | 
 |   if (!VerifyLoopInfo) return; | 
 |  | 
 |   DenseSet<const Loop*> Loops; | 
 |   for (iterator I = begin(), E = end(); I != E; ++I) { | 
 |     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); | 
 |     (*I)->verifyLoopNest(&Loops); | 
 |   } | 
 |  | 
 |   // Verify that blocks are mapped to valid loops. | 
 |   // | 
 |   // FIXME: With an up-to-date DFS (see LoopIterator.h) and DominatorTree, we | 
 |   // could also verify that the blocks are still in the correct loops. | 
 |   for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(), | 
 |          E = LI.BBMap.end(); I != E; ++I) { | 
 |     assert(Loops.count(I->second) && "orphaned loop"); | 
 |     assert(I->second->contains(I->first) && "orphaned block"); | 
 |   } | 
 | } | 
 |  | 
 | void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   AU.addRequired<DominatorTree>(); | 
 | } | 
 |  | 
 | void LoopInfo::print(raw_ostream &OS, const Module*) const { | 
 |   LI.print(OS); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // LoopBlocksDFS implementation | 
 | // | 
 |  | 
 | /// Traverse the loop blocks and store the DFS result. | 
 | /// Useful for clients that just want the final DFS result and don't need to | 
 | /// visit blocks during the initial traversal. | 
 | void LoopBlocksDFS::perform(LoopInfo *LI) { | 
 |   LoopBlocksTraversal Traversal(*this, LI); | 
 |   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), | 
 |          POE = Traversal.end(); POI != POE; ++POI) ; | 
 | } |