| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "Assert.hpp" |
| #include "Coroutine.hpp" |
| #include "Print.hpp" |
| #include "Reactor.hpp" |
| |
| #include "gtest/gtest.h" |
| |
| #include <array> |
| #include <cmath> |
| #include <filesystem> |
| #include <fstream> |
| #include <thread> |
| #include <tuple> |
| |
| using namespace rr; |
| |
| using float4 = float[4]; |
| using int4 = int[4]; |
| |
| static std::string testName() |
| { |
| auto info = ::testing::UnitTest::GetInstance()->current_test_info(); |
| return std::string{ info->test_suite_name() } + "_" + info->name(); |
| } |
| |
| int reference(int *p, int y) |
| { |
| int x = p[-1]; |
| int z = 4; |
| |
| for(int i = 0; i < 10; i++) |
| { |
| z += (2 << i) - (i / 3); |
| } |
| |
| int sum = x + y + z; |
| |
| return sum; |
| } |
| |
| TEST(ReactorUnitTests, Sample) |
| { |
| FunctionT<int(int *, int)> function; |
| { |
| Pointer<Int> p = function.Arg<0>(); |
| Int x = p[-1]; |
| Int y = function.Arg<1>(); |
| Int z = 4; |
| |
| For(Int i = 0, i < 10, i++) |
| { |
| z += (2 << i) - (i / 3); |
| } |
| |
| Float4 v; |
| v.z = As<Float>(z); |
| z = As<Int>(Float(Float4(v.xzxx).y)); |
| |
| Int sum = x + y + z; |
| |
| Return(sum); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int one[2] = { 1, 0 }; |
| int result = routine(&one[1], 2); |
| EXPECT_EQ(result, reference(&one[1], 2)); |
| } |
| |
| // This test demonstrates the use of a 'trampoline', where a routine calls |
| // a static function which then generates another routine during the execution |
| // of the first routine. Also note the code generated for the second routine |
| // depends on a parameter passed to the first routine. |
| TEST(ReactorUnitTests, Trampoline) |
| { |
| using SecondaryFunc = int(int, int); |
| |
| static auto generateSecondary = [](int upDown) { |
| FunctionT<SecondaryFunc> secondary; |
| { |
| Int x = secondary.Arg<0>(); |
| Int y = secondary.Arg<1>(); |
| Int r; |
| |
| if(upDown > 0) |
| { |
| r = x + y; |
| } |
| else if(upDown < 0) |
| { |
| r = x - y; |
| } |
| else |
| { |
| r = 0; |
| } |
| |
| Return(r); |
| } |
| |
| static auto routine = secondary((testName() + "_secondary").c_str()); |
| return routine.getEntry(); |
| }; |
| |
| using SecondaryGeneratorFunc = SecondaryFunc *(*)(int); |
| SecondaryGeneratorFunc secondaryGenerator = (SecondaryGeneratorFunc)generateSecondary; |
| |
| using PrimaryFunc = int(int, int, int); |
| |
| FunctionT<PrimaryFunc> primary; |
| { |
| Int x = primary.Arg<0>(); |
| Int y = primary.Arg<1>(); |
| Int z = primary.Arg<2>(); |
| |
| Pointer<Byte> secondary = Call(secondaryGenerator, z); |
| Int r = Call<SecondaryFunc>(secondary, x, y); |
| |
| Return(r); |
| } |
| |
| auto routine = primary((testName() + "_primary").c_str()); |
| |
| int result = routine(100, 20, -3); |
| EXPECT_EQ(result, 80); |
| } |
| |
| TEST(ReactorUnitTests, Uninitialized) |
| { |
| #if __has_feature(memory_sanitizer) |
| // Building the static C++ code with MemorySanitizer enabled does not |
| // automatically enable MemorySanitizer instrumentation for Reactor |
| // routines. False positives can also be prevented by unpoisoning all |
| // memory writes. This Pragma ensures proper instrumentation is enabled. |
| Pragma(MemorySanitizerInstrumentation, true); |
| #endif |
| |
| FunctionT<int()> function; |
| { |
| Int a; |
| Int z = 4; |
| Int q; |
| Int c; |
| Int p; |
| Bool b; |
| |
| q += q; |
| |
| If(b) |
| { |
| c = p; |
| } |
| |
| Return(a + z + q + c); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| if(!__has_feature(memory_sanitizer)) |
| { |
| int result = routine(); |
| EXPECT_EQ(result, result); // Anything is fine, just don't crash |
| } |
| else |
| { |
| // Optimizations may turn the conditional If() in the Reactor code |
| // into a conditional move or arithmetic operations, which would not |
| // trigger a MemorySanitizer error. However, in that case the equals |
| // operator below should trigger it before the abort is reached. |
| EXPECT_DEATH( |
| { |
| int result = routine(); |
| if(result == 0) abort(); |
| }, |
| "MemorySanitizer: use-of-uninitialized-value"); |
| } |
| |
| Pragma(MemorySanitizerInstrumentation, false); |
| } |
| |
| TEST(ReactorUnitTests, Unreachable) |
| { |
| FunctionT<int(int)> function; |
| { |
| Int a = function.Arg<0>(); |
| Int z = 4; |
| |
| Return(a + z); |
| |
| // Code beyond this point is unreachable but should not cause any |
| // compilation issues. |
| |
| z += a; |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(16); |
| EXPECT_EQ(result, 20); |
| } |
| |
| // Stopping in the middle of a `Function<>` is supported and should not affect |
| // subsequent complete ones. |
| TEST(ReactorUnitTests, UnfinishedFunction) |
| { |
| do |
| { |
| FunctionT<int(int)> function; |
| { |
| Int a = function.Arg<0>(); |
| Int z = 4; |
| |
| if((true)) break; // Terminate do-while early. |
| |
| Return(a + z); |
| } |
| } while(true); |
| |
| FunctionT<int(int)> function; |
| { |
| Int a = function.Arg<0>(); |
| Int z = 4; |
| |
| Return(a - z); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(16); |
| EXPECT_EQ(result, 12); |
| } |
| |
| // Deriving from `Function<>` and using Reactor variables as members can be a |
| // convenient way to 'name' function arguments and compose complex functions |
| // with helper methods. This test checks the interactions between the lifetime |
| // of the `Function<>` and the variables belonging to the derived class. |
| struct FunctionMembers : FunctionT<int(int)> |
| { |
| FunctionMembers() |
| : level(Arg<0>()) |
| { |
| For(Int i = 0, i < 3, i++) |
| { |
| pourSomeMore(); |
| } |
| |
| Return(level); |
| } |
| |
| void pourSomeMore() |
| { |
| level += 2; |
| } |
| |
| Int level; |
| }; |
| |
| TEST(ReactorUnitTests, FunctionMembers) |
| { |
| FunctionMembers function; |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(3); |
| EXPECT_EQ(result, 9); |
| } |
| |
| // This test excercises modifying the value of a local variable through a |
| // pointer to it. |
| TEST(ReactorUnitTests, VariableAddress) |
| { |
| FunctionT<int(int)> function; |
| { |
| Int a = function.Arg<0>(); |
| Int z = 0; |
| Pointer<Int> p = &z; |
| *p = 4; |
| |
| Return(a + z); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(16); |
| EXPECT_EQ(result, 20); |
| } |
| |
| // This test exercises taking the address of a local varible at the end of a |
| // loop and modifying its value through the pointer in the second iteration. |
| TEST(ReactorUnitTests, LateVariableAddress) |
| { |
| FunctionT<int(void)> function; |
| { |
| Pointer<Int> p = nullptr; |
| Int a = 0; |
| |
| While(a == 0) |
| { |
| If(p != Pointer<Int>(nullptr)) |
| { |
| *p = 1; |
| } |
| |
| p = &a; |
| } |
| |
| Return(a); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 1); |
| } |
| |
| // This test checks that the value of a local variable which has been modified |
| // though a pointer is correct at the point before its address is (statically) |
| // obtained. |
| TEST(ReactorUnitTests, LoadAfterIndirectStore) |
| { |
| FunctionT<int(void)> function; |
| { |
| Pointer<Int> p = nullptr; |
| Int a = 0; |
| Int b = 0; |
| |
| While(a == 0) |
| { |
| If(p != Pointer<Int>(nullptr)) |
| { |
| *p = 1; |
| } |
| |
| // `a` must be loaded from memory here, despite not statically knowing |
| // yet that its address will be taken below. |
| b = a + 5; |
| |
| p = &a; |
| } |
| |
| Return(b); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 6); |
| } |
| |
| // This test checks that variables statically accessed after a Return statement |
| // are still loaded, modified, and stored correctly. |
| TEST(ReactorUnitTests, LoopAfterReturn) |
| { |
| FunctionT<int(void)> function; |
| { |
| Int min = 100; |
| Int max = 200; |
| |
| If(min > max) |
| { |
| Return(5); |
| } |
| |
| While(min < max) |
| { |
| min++; |
| } |
| |
| Return(7); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 7); |
| } |
| |
| TEST(ReactorUnitTests, ConstantPointer) |
| { |
| int c = 44; |
| |
| FunctionT<int()> function; |
| { |
| Int x = *Pointer<Int>(ConstantPointer(&c)); |
| |
| Return(x); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 44); |
| } |
| |
| // This test excercises the Optimizer::eliminateLoadsFollowingSingleStore() optimization pass. |
| // The three load operations for `y` should get eliminated. |
| TEST(ReactorUnitTests, EliminateLoadsFollowingSingleStore) |
| { |
| FunctionT<int(int)> function; |
| { |
| Int x = function.Arg<0>(); |
| |
| Int y; |
| Int z; |
| |
| // This branch materializes the variables. |
| If(x != 0) // TODO(b/179922668): Support If(x) |
| { |
| y = x; |
| z = y + y + y; |
| } |
| |
| Return(z); |
| } |
| |
| Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { |
| EXPECT_EQ(report->allocas, 2); |
| EXPECT_EQ(report->loads, 2); |
| EXPECT_EQ(report->stores, 2); |
| }); |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(11); |
| EXPECT_EQ(result, 33); |
| } |
| |
| // This test excercises the Optimizer::propagateAlloca() optimization pass. |
| // The pointer variable should not get stored to / loaded from memory. |
| TEST(ReactorUnitTests, PropagateAlloca) |
| { |
| FunctionT<int(int)> function; |
| { |
| Int b = function.Arg<0>(); |
| |
| Int a = 22; |
| Pointer<Int> p; |
| |
| // This branch materializes both `a` and `p`, and ensures single basic block |
| // optimizations don't also eliminate the pointer store and load. |
| If(b != 0) // TODO(b/179922668): Support If(b) |
| { |
| p = &a; |
| } |
| |
| Return(Int(*p)); // TODO(b/179694472): Support Return(*p) |
| } |
| |
| Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { |
| EXPECT_EQ(report->allocas, 1); |
| EXPECT_EQ(report->loads, 1); |
| EXPECT_EQ(report->stores, 1); |
| }); |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(true); |
| EXPECT_EQ(result, 22); |
| } |
| |
| // Corner case for Optimizer::propagateAlloca(). It should not replace loading of `p` |
| // with the addres of `a`, since it also got the address of `b` assigned. |
| TEST(ReactorUnitTests, PointerToPointer) |
| { |
| FunctionT<int()> function; |
| { |
| Int a = 444; |
| Int b = 555; |
| |
| Pointer<Int> p = &a; |
| Pointer<Pointer<Int>> pp = &p; |
| p = &b; |
| |
| Return(Int(*Pointer<Int>(*pp))); // TODO(b/179694472): Support **pp |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 555); |
| } |
| |
| // Corner case for Optimizer::propagateAlloca(). It should not replace loading of `p[i]` |
| // with any of the addresses of the `a`, `b`, or `c`. |
| TEST(ReactorUnitTests, ArrayOfPointersToLocals) |
| { |
| FunctionT<int(int)> function; |
| { |
| Int i = function.Arg<0>(); |
| |
| Int a = 111; |
| Int b = 222; |
| Int c = 333; |
| |
| Array<Pointer<Int>, 3> p; |
| p[0] = &a; |
| p[1] = &b; |
| p[2] = &c; |
| |
| Return(Int(*Pointer<Int>(p[i]))); // TODO(b/179694472): Support *p[i] |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(1); |
| EXPECT_EQ(result, 222); |
| } |
| |
| TEST(ReactorUnitTests, ModifyLocalThroughPointer) |
| { |
| FunctionT<int(void)> function; |
| { |
| Int a = 1; |
| |
| Pointer<Int> p = &a; |
| Pointer<Pointer<Int>> pp = &p; |
| |
| Pointer<Int> q = *pp; |
| *q = 3; |
| |
| Return(a); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 3); |
| } |
| |
| TEST(ReactorUnitTests, ScalarReplacementOfArray) |
| { |
| FunctionT<int(void)> function; |
| { |
| Array<Int, 2> a; |
| a[0] = 1; |
| a[1] = 2; |
| |
| Return(a[0] + a[1]); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 3); |
| } |
| |
| TEST(ReactorUnitTests, CArray) |
| { |
| FunctionT<int(void)> function; |
| { |
| Int a[2]; |
| a[0] = 1; |
| a[1] = 2; |
| |
| auto x = a[0]; |
| a[0] = a[1]; |
| a[1] = x; |
| |
| Return(a[0] + a[1]); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 3); |
| } |
| |
| // SRoA should replace the array elements with scalars, which in turn enables |
| // eliminating all loads and stores. |
| TEST(ReactorUnitTests, ReactorArray) |
| { |
| FunctionT<int(void)> function; |
| { |
| Array<Int, 2> a; |
| a[0] = 1; |
| a[1] = 2; |
| |
| Int x = a[0]; |
| a[0] = a[1]; |
| a[1] = x; |
| |
| Return(a[0] + a[1]); |
| } |
| |
| Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { |
| EXPECT_EQ(report->allocas, 0); |
| EXPECT_EQ(report->loads, 0); |
| EXPECT_EQ(report->stores, 0); |
| }); |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 3); |
| } |
| |
| // Excercises the optimizeSingleBasicBlockLoadsStores optimization pass. |
| TEST(ReactorUnitTests, StoresInMultipleBlocks) |
| { |
| FunctionT<int(int)> function; |
| { |
| Int b = function.Arg<0>(); |
| |
| Int a = 13; |
| |
| If(b != 0) // TODO(b/179922668): Support If(b) |
| { |
| a = 4; |
| a = a + 3; |
| } |
| Else |
| { |
| a = 6; |
| a = a + 5; |
| } |
| |
| Return(a); |
| } |
| |
| Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { |
| EXPECT_EQ(report->allocas, 1); |
| EXPECT_EQ(report->loads, 1); |
| EXPECT_EQ(report->stores, 3); |
| }); |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(true); |
| EXPECT_EQ(result, 7); |
| } |
| |
| // This is similar to the LoadAfterIndirectStore test except that the indirect |
| // store is preceded by a direct store. The subsequent load should not be replaced |
| // by the value written by the direct store. |
| TEST(ReactorUnitTests, StoreBeforeIndirectStore) |
| { |
| FunctionT<int(int)> function; |
| { |
| // Int b = function.Arg<0>(); |
| |
| Int b; |
| Pointer<Int> p = &b; |
| Int a = 13; |
| |
| For(Int i = 0, i < 2, i++) |
| { |
| a = 10; |
| |
| *p = 4; |
| |
| // This load of `a` should not be replaced by the 10 written above, since |
| // in the second iteration `p` points to `a` and writes 4. |
| b = a; |
| |
| p = &a; |
| } |
| |
| Return(b); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(true); |
| EXPECT_EQ(result, 4); |
| } |
| |
| TEST(ReactorUnitTests, AssertTrue) |
| { |
| FunctionT<int()> function; |
| { |
| Int a = 3; |
| Int b = 5; |
| |
| Assert(a < b); |
| |
| Return(a + b); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| EXPECT_EQ(result, 8); |
| } |
| |
| TEST(ReactorUnitTests, AssertFalse) |
| { |
| FunctionT<int()> function; |
| { |
| Int a = 3; |
| Int b = 5; |
| |
| Assert(a == b); |
| |
| Return(a + b); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| #ifndef NDEBUG |
| # if !defined(__APPLE__) |
| const char *stderrRegex = "AssertFalse"; // stderr should contain the assert's expression, file:line, and function |
| # else |
| const char *stderrRegex = ""; // TODO(b/156389924): On macOS an stderr redirect can cause googletest to fail the capture |
| # endif |
| |
| EXPECT_DEATH( |
| { |
| int result = routine(); |
| EXPECT_NE(result, result); // We should never reach this |
| }, |
| stderrRegex); |
| #else |
| int result = routine(); |
| EXPECT_EQ(result, 8); |
| #endif |
| } |
| |
| TEST(ReactorUnitTests, SubVectorLoadStore) |
| { |
| FunctionT<int(void *, void *)> function; |
| { |
| Pointer<Byte> in = function.Arg<0>(); |
| Pointer<Byte> out = function.Arg<1>(); |
| |
| *Pointer<Int4>(out + 16 * 0) = *Pointer<Int4>(in + 16 * 0); |
| *Pointer<Short4>(out + 16 * 1) = *Pointer<Short4>(in + 16 * 1); |
| *Pointer<Byte8>(out + 16 * 2) = *Pointer<Byte8>(in + 16 * 2); |
| *Pointer<Byte4>(out + 16 * 3) = *Pointer<Byte4>(in + 16 * 3); |
| *Pointer<Short2>(out + 16 * 4) = *Pointer<Short2>(in + 16 * 4); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int8_t in[16 * 5] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| 17, 18, 19, 20, 21, 22, 23, 24, 0, 0, 0, 0, 0, 0, 0, 0, |
| 25, 26, 27, 28, 29, 30, 31, 32, 0, 0, 0, 0, 0, 0, 0, 0, |
| 33, 34, 35, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 37, 38, 39, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| int8_t out[16 * 5] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; |
| |
| routine(in, out); |
| |
| for(int row = 0; row < 5; row++) |
| { |
| for(int col = 0; col < 16; col++) |
| { |
| int i = row * 16 + col; |
| |
| if(in[i] == 0) |
| { |
| EXPECT_EQ(out[i], -1) << "Row " << row << " column " << col << " not left untouched."; |
| } |
| else |
| { |
| EXPECT_EQ(out[i], in[i]) << "Row " << row << " column " << col << " not equal to input."; |
| } |
| } |
| } |
| } |
| |
| TEST(ReactorUnitTests, VectorConstant) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Int4>(out + 16 * 0) = Int4(0x04030201, 0x08070605, 0x0C0B0A09, 0x100F0E0D); |
| *Pointer<Short4>(out + 16 * 1) = Short4(0x1211, 0x1413, 0x1615, 0x1817); |
| *Pointer<Byte8>(out + 16 * 2) = Byte8(0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20); |
| *Pointer<Int2>(out + 16 * 3) = Int2(0x24232221, 0x28272625); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int8_t out[16 * 4] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; |
| |
| int8_t exp[16 * 4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| 17, 18, 19, 20, 21, 22, 23, 24, -1, -1, -1, -1, -1, -1, -1, -1, |
| 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1, -1, -1, -1, |
| 33, 34, 35, 36, 37, 38, 39, 40, -1, -1, -1, -1, -1, -1, -1, -1 }; |
| |
| routine(out); |
| |
| for(int row = 0; row < 4; row++) |
| { |
| for(int col = 0; col < 16; col++) |
| { |
| int i = row * 16 + col; |
| |
| EXPECT_EQ(out[i], exp[i]); |
| } |
| } |
| } |
| |
| TEST(ReactorUnitTests, Concatenate) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Int4>(out + 16 * 0) = Int4(Int2(0x04030201, 0x08070605), Int2(0x0C0B0A09, 0x100F0E0D)); |
| *Pointer<Short8>(out + 16 * 1) = Short8(Short4(0x0201, 0x0403, 0x0605, 0x0807), Short4(0x0A09, 0x0C0B, 0x0E0D, 0x100F)); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int8_t ref[16 * 5] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; |
| |
| int8_t out[16 * 5] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; |
| |
| routine(out); |
| |
| for(int row = 0; row < 2; row++) |
| { |
| for(int col = 0; col < 16; col++) |
| { |
| int i = row * 16 + col; |
| |
| EXPECT_EQ(out[i], ref[i]) << "Row " << row << " column " << col << " not equal to reference."; |
| } |
| } |
| } |
| |
| TEST(ReactorUnitTests, Cast) |
| { |
| FunctionT<void(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| Int4 c = Int4(0x01020304, 0x05060708, 0x09101112, 0x13141516); |
| *Pointer<Short4>(out + 16 * 0) = Short4(c); |
| *Pointer<Byte4>(out + 16 * 1 + 0) = Byte4(c); |
| *Pointer<Byte4>(out + 16 * 1 + 4) = Byte4(As<Byte8>(c)); |
| *Pointer<Byte4>(out + 16 * 1 + 8) = Byte4(As<Short4>(c)); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int out[2][4]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0x07080304); |
| EXPECT_EQ(out[0][1], 0x15161112); |
| |
| EXPECT_EQ(out[1][0], 0x16120804); |
| EXPECT_EQ(out[1][1], 0x01020304); |
| EXPECT_EQ(out[1][2], 0x06080204); |
| } |
| |
| static uint16_t swizzleCode4(int i) |
| { |
| auto x = (i >> 0) & 0x03; |
| auto y = (i >> 2) & 0x03; |
| auto z = (i >> 4) & 0x03; |
| auto w = (i >> 6) & 0x03; |
| return static_cast<uint16_t>((x << 12) | (y << 8) | (z << 4) | (w << 0)); |
| } |
| |
| TEST(ReactorUnitTests, Swizzle4) |
| { |
| FunctionT<void(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| for(int i = 0; i < 256; i++) |
| { |
| *Pointer<Float4>(out + 16 * i) = Swizzle(Float4(1.0f, 2.0f, 3.0f, 4.0f), swizzleCode4(i)); |
| } |
| |
| for(int i = 0; i < 256; i++) |
| { |
| *Pointer<Float4>(out + 16 * (256 + i)) = ShuffleLowHigh(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f), swizzleCode4(i)); |
| } |
| |
| *Pointer<Float4>(out + 16 * (512 + 0)) = UnpackLow(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f)); |
| *Pointer<Float4>(out + 16 * (512 + 1)) = UnpackHigh(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f)); |
| *Pointer<Int2>(out + 16 * (512 + 2)) = UnpackLow(Short4(1, 2, 3, 4), Short4(5, 6, 7, 8)); |
| *Pointer<Int2>(out + 16 * (512 + 3)) = UnpackHigh(Short4(1, 2, 3, 4), Short4(5, 6, 7, 8)); |
| *Pointer<Short4>(out + 16 * (512 + 4)) = UnpackLow(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(9, 10, 11, 12, 13, 14, 15, 16)); |
| *Pointer<Short4>(out + 16 * (512 + 5)) = UnpackHigh(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(9, 10, 11, 12, 13, 14, 15, 16)); |
| |
| for(int i = 0; i < 256; i++) |
| { |
| *Pointer<Short4>(out + 16 * (512 + 6) + (8 * i)) = |
| Swizzle(Short4(1, 2, 3, 4), swizzleCode4(i)); |
| } |
| |
| for(int i = 0; i < 256; i++) |
| { |
| *Pointer<Int4>(out + 16 * (512 + 6 + i) + (8 * 256)) = |
| Swizzle(Int4(1, 2, 3, 4), swizzleCode4(i)); |
| } |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| struct |
| { |
| float f[256 + 256 + 2][4]; |
| int i[388][4]; |
| } out; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| for(int i = 0; i < 256; i++) |
| { |
| EXPECT_EQ(out.f[i][0], float((i >> 0) & 0x03) + 1.0f); |
| EXPECT_EQ(out.f[i][1], float((i >> 2) & 0x03) + 1.0f); |
| EXPECT_EQ(out.f[i][2], float((i >> 4) & 0x03) + 1.0f); |
| EXPECT_EQ(out.f[i][3], float((i >> 6) & 0x03) + 1.0f); |
| } |
| |
| for(int i = 0; i < 256; i++) |
| { |
| EXPECT_EQ(out.f[256 + i][0], float((i >> 0) & 0x03) + 1.0f); |
| EXPECT_EQ(out.f[256 + i][1], float((i >> 2) & 0x03) + 1.0f); |
| EXPECT_EQ(out.f[256 + i][2], float((i >> 4) & 0x03) + 5.0f); |
| EXPECT_EQ(out.f[256 + i][3], float((i >> 6) & 0x03) + 5.0f); |
| } |
| |
| EXPECT_EQ(out.f[512 + 0][0], 1.0f); |
| EXPECT_EQ(out.f[512 + 0][1], 5.0f); |
| EXPECT_EQ(out.f[512 + 0][2], 2.0f); |
| EXPECT_EQ(out.f[512 + 0][3], 6.0f); |
| |
| EXPECT_EQ(out.f[512 + 1][0], 3.0f); |
| EXPECT_EQ(out.f[512 + 1][1], 7.0f); |
| EXPECT_EQ(out.f[512 + 1][2], 4.0f); |
| EXPECT_EQ(out.f[512 + 1][3], 8.0f); |
| |
| EXPECT_EQ(out.i[0][0], 0x00050001); |
| EXPECT_EQ(out.i[0][1], 0x00060002); |
| EXPECT_EQ(out.i[0][2], 0x00000000); |
| EXPECT_EQ(out.i[0][3], 0x00000000); |
| |
| EXPECT_EQ(out.i[1][0], 0x00070003); |
| EXPECT_EQ(out.i[1][1], 0x00080004); |
| EXPECT_EQ(out.i[1][2], 0x00000000); |
| EXPECT_EQ(out.i[1][3], 0x00000000); |
| |
| EXPECT_EQ(out.i[2][0], 0x0A020901); |
| EXPECT_EQ(out.i[2][1], 0x0C040B03); |
| EXPECT_EQ(out.i[2][2], 0x00000000); |
| EXPECT_EQ(out.i[2][3], 0x00000000); |
| |
| EXPECT_EQ(out.i[3][0], 0x0E060D05); |
| EXPECT_EQ(out.i[3][1], 0x10080F07); |
| EXPECT_EQ(out.i[3][2], 0x00000000); |
| EXPECT_EQ(out.i[3][3], 0x00000000); |
| |
| for(int i = 0; i < 256; i++) |
| { |
| EXPECT_EQ(out.i[4 + i / 2][0 + (i % 2) * 2] & 0xFFFF, |
| ((i >> 0) & 0x03) + 1); |
| EXPECT_EQ(out.i[4 + i / 2][0 + (i % 2) * 2] >> 16, |
| ((i >> 2) & 0x03) + 1); |
| EXPECT_EQ(out.i[4 + i / 2][1 + (i % 2) * 2] & 0xFFFF, |
| ((i >> 4) & 0x03) + 1); |
| EXPECT_EQ(out.i[4 + i / 2][1 + (i % 2) * 2] >> 16, |
| ((i >> 6) & 0x03) + 1); |
| } |
| |
| for(int i = 0; i < 256; i++) |
| { |
| EXPECT_EQ(out.i[132 + i][0], ((i >> 0) & 0x03) + 1); |
| EXPECT_EQ(out.i[132 + i][1], ((i >> 2) & 0x03) + 1); |
| EXPECT_EQ(out.i[132 + i][2], ((i >> 4) & 0x03) + 1); |
| EXPECT_EQ(out.i[132 + i][3], ((i >> 6) & 0x03) + 1); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Swizzle) |
| { |
| FunctionT<void(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| Int4 c = Int4(0x01020304, 0x05060708, 0x09101112, 0x13141516); |
| *Pointer<Byte16>(out + 16 * 0) = Swizzle(As<Byte16>(c), 0xFEDCBA9876543210ull); |
| *Pointer<Byte8>(out + 16 * 1) = Swizzle(As<Byte8>(c), 0x76543210u); |
| *Pointer<UShort8>(out + 16 * 2) = Swizzle(As<UShort8>(c), 0x76543210u); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int out[3][4]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0x16151413); |
| EXPECT_EQ(out[0][1], 0x12111009); |
| EXPECT_EQ(out[0][2], 0x08070605); |
| EXPECT_EQ(out[0][3], 0x04030201); |
| |
| EXPECT_EQ(out[1][0], 0x08070605); |
| EXPECT_EQ(out[1][1], 0x04030201); |
| |
| EXPECT_EQ(out[2][0], 0x15161314); |
| EXPECT_EQ(out[2][1], 0x11120910); |
| EXPECT_EQ(out[2][2], 0x07080506); |
| EXPECT_EQ(out[2][3], 0x03040102); |
| } |
| |
| TEST(ReactorUnitTests, Shuffle) |
| { |
| // |select| is [0aaa:0bbb:0ccc:0ddd] where |aaa|, |bbb|, |ccc| |
| // and |ddd| are 7-bit selection indices. For a total (1 << 12) |
| // possibilities. |
| const int kSelectRange = 1 << 12; |
| |
| // Unfortunately, testing the whole kSelectRange results in a test |
| // that is far too slow to run, because LLVM spends exponentially more |
| // time optimizing the function below as the number of test cases |
| // increases. |
| // |
| // To work-around the problem, only test a subset of the range by |
| // skipping every kRangeIncrement value. |
| // |
| // Set this value to 1 if you want to test the whole implementation, |
| // which will take a little less than 2 minutes on a fast workstation. |
| // |
| // The default value here takes about 1390ms, which is a little more than |
| // what the Swizzle test takes (993 ms) on my machine. A non-power-of-2 |
| // value ensures a better spread over possible values. |
| const int kRangeIncrement = 11; |
| |
| auto rangeIndexToSelect = [](int i) { |
| return static_cast<unsigned short>( |
| (((i >> 9) & 7) << 0) | |
| (((i >> 6) & 7) << 4) | |
| (((i >> 3) & 7) << 8) | |
| (((i >> 0) & 7) << 12)); |
| }; |
| |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| for(int i = 0; i < kSelectRange; i += kRangeIncrement) |
| { |
| unsigned short select = rangeIndexToSelect(i); |
| |
| *Pointer<Float4>(out + 16 * i) = Shuffle(Float4(1.0f, 2.0f, 3.0f, 4.0f), |
| Float4(5.0f, 6.0f, 7.0f, 8.0f), |
| select); |
| |
| *Pointer<Int4>(out + (kSelectRange + i) * 16) = Shuffle(Int4(10, 11, 12, 13), |
| Int4(14, 15, 16, 17), |
| select); |
| |
| *Pointer<UInt4>(out + (2 * kSelectRange + i) * 16) = Shuffle(UInt4(100, 101, 102, 103), |
| UInt4(104, 105, 106, 107), |
| select); |
| } |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| struct |
| { |
| float f[kSelectRange][4]; |
| int i[kSelectRange][4]; |
| unsigned u[kSelectRange][4]; |
| } out; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| for(int i = 0; i < kSelectRange; i += kRangeIncrement) |
| { |
| EXPECT_EQ(out.f[i][0], float(1.0f + (i & 7))); |
| EXPECT_EQ(out.f[i][1], float(1.0f + ((i >> 3) & 7))); |
| EXPECT_EQ(out.f[i][2], float(1.0f + ((i >> 6) & 7))); |
| EXPECT_EQ(out.f[i][3], float(1.0f + ((i >> 9) & 7))); |
| } |
| |
| for(int i = 0; i < kSelectRange; i += kRangeIncrement) |
| { |
| EXPECT_EQ(out.i[i][0], int(10 + (i & 7))); |
| EXPECT_EQ(out.i[i][1], int(10 + ((i >> 3) & 7))); |
| EXPECT_EQ(out.i[i][2], int(10 + ((i >> 6) & 7))); |
| EXPECT_EQ(out.i[i][3], int(10 + ((i >> 9) & 7))); |
| } |
| |
| for(int i = 0; i < kSelectRange; i += kRangeIncrement) |
| { |
| EXPECT_EQ(out.u[i][0], unsigned(100 + (i & 7))); |
| EXPECT_EQ(out.u[i][1], unsigned(100 + ((i >> 3) & 7))); |
| EXPECT_EQ(out.u[i][2], unsigned(100 + ((i >> 6) & 7))); |
| EXPECT_EQ(out.u[i][3], unsigned(100 + ((i >> 9) & 7))); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Broadcast) |
| { |
| FunctionT<int()> function; |
| { |
| Int4 i = 2; |
| Int j = 3 + i.x; |
| Int4 k = i * 7; |
| |
| Return(k.z - j); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| |
| EXPECT_EQ(result, 9); |
| } |
| |
| TEST(ReactorUnitTests, Branching) |
| { |
| FunctionT<int()> function; |
| { |
| Int x = 0; |
| |
| For(Int i = 0, i < 8, i++) |
| { |
| If(i < 2) |
| { |
| x += 1; |
| } |
| Else If(i < 4) |
| { |
| x += 10; |
| } |
| Else If(i < 6) |
| { |
| x += 100; |
| } |
| Else |
| { |
| x += 1000; |
| } |
| |
| For(Int i = 0, i < 5, i++) |
| x += 10000; |
| } |
| |
| For(Int i = 0, i < 10, i++) for(int i = 0; i < 10; i++) |
| For(Int i = 0, i < 10, i++) |
| { |
| x += 1000000; |
| } |
| |
| For(Int i = 0, i < 2, i++) |
| If(x == 1000402222) |
| { |
| If(x != 1000402222) |
| x += 1000000000; |
| } |
| Else |
| x = -5; |
| |
| Return(x); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int result = routine(); |
| |
| EXPECT_EQ(result, 1000402222); |
| } |
| |
| TEST(ReactorUnitTests, FMulAdd) |
| { |
| Function<Void(Pointer<Float4>, Pointer<Float4>, Pointer<Float4>, Pointer<Float4>)> function; |
| { |
| Pointer<Float4> r = function.Arg<0>(); |
| Pointer<Float4> x = function.Arg<1>(); |
| Pointer<Float4> y = function.Arg<2>(); |
| Pointer<Float4> z = function.Arg<3>(); |
| |
| *r = MulAdd(*x, *y, *z); |
| } |
| |
| auto routine = function(testName().c_str()); |
| auto callable = (void (*)(float4 *, float4 *, float4 *, float4 *))routine->getEntry(); |
| |
| float x[] = { 0.0f, 2.0f, 4.0f, 1.00000011920929f }; |
| float y[] = { 0.0f, 3.0f, 0.0f, 53400708.0f }; |
| float z[] = { 0.0f, 0.0f, 7.0f, -53400708.0f }; |
| |
| for(size_t i = 0; i < std::size(x); i++) |
| { |
| float4 x_in = { x[i], x[i], x[i], x[i] }; |
| float4 y_in = { y[i], y[i], y[i], y[i] }; |
| float4 z_in = { z[i], z[i], z[i], z[i] }; |
| float4 r_out; |
| |
| callable(&r_out, &x_in, &y_in, &z_in); |
| |
| // Possible results |
| float fma = fmaf(x[i], y[i], z[i]); |
| float mul_add = x[i] * y[i] + z[i]; |
| |
| // If the backend and the CPU support FMA instructions, we assume MulAdd to use |
| // them. Otherwise it may behave as a multiplication followed by an addition. |
| if(rr::Caps::fmaIsFast()) |
| { |
| EXPECT_FLOAT_EQ(r_out[0], fma); |
| } |
| else if(r_out[0] != fma) |
| { |
| EXPECT_FLOAT_EQ(r_out[0], mul_add); |
| } |
| } |
| } |
| |
| TEST(ReactorUnitTests, FMA) |
| { |
| Function<Void(Pointer<Float4>, Pointer<Float4>, Pointer<Float4>, Pointer<Float4>)> function; |
| { |
| Pointer<Float4> r = function.Arg<0>(); |
| Pointer<Float4> x = function.Arg<1>(); |
| Pointer<Float4> y = function.Arg<2>(); |
| Pointer<Float4> z = function.Arg<3>(); |
| |
| *r = FMA(*x, *y, *z); |
| } |
| |
| auto routine = function(testName().c_str()); |
| auto callable = (void (*)(float4 *, float4 *, float4 *, float4 *))routine->getEntry(); |
| |
| float x[] = { 0.0f, 2.0f, 4.0f, 1.00000011920929f }; |
| float y[] = { 0.0f, 3.0f, 0.0f, 53400708.0f }; |
| float z[] = { 0.0f, 0.0f, 7.0f, -53400708.0f }; |
| |
| for(size_t i = 0; i < std::size(x); i++) |
| { |
| float4 x_in = { x[i], x[i], x[i], x[i] }; |
| float4 y_in = { y[i], y[i], y[i], y[i] }; |
| float4 z_in = { z[i], z[i], z[i], z[i] }; |
| float4 r_out; |
| |
| callable(&r_out, &x_in, &y_in, &z_in); |
| |
| float expected = fmaf(x[i], y[i], z[i]); |
| EXPECT_FLOAT_EQ(r_out[0], expected); |
| } |
| } |
| |
| TEST(ReactorUnitTests, FAbs) |
| { |
| Function<Void(Pointer<Float4>, Pointer<Float4>)> function; |
| { |
| Pointer<Float4> x = function.Arg<0>(); |
| Pointer<Float4> y = function.Arg<1>(); |
| |
| *y = Abs(*x); |
| } |
| |
| auto routine = function(testName().c_str()); |
| auto callable = (void (*)(float4 *, float4 *))routine->getEntry(); |
| |
| float input[] = { 1.0f, -1.0f, -0.0f, 0.0f }; |
| |
| for(float x : input) |
| { |
| float4 v_in = { x, x, x, x }; |
| float4 v_out; |
| |
| callable(&v_in, &v_out); |
| |
| float expected = fabs(x); |
| EXPECT_FLOAT_EQ(v_out[0], expected); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Abs) |
| { |
| Function<Void(Pointer<Int4>, Pointer<Int4>)> function; |
| { |
| Pointer<Int4> x = function.Arg<0>(); |
| Pointer<Int4> y = function.Arg<1>(); |
| |
| *y = Abs(*x); |
| } |
| |
| auto routine = function(testName().c_str()); |
| auto callable = (void (*)(int4 *, int4 *))routine->getEntry(); |
| |
| int input[] = { 1, -1, 0, (int)0x80000000 }; |
| |
| for(int x : input) |
| { |
| int4 v_in = { x, x, x, x }; |
| int4 v_out; |
| |
| callable(&v_in, &v_out); |
| |
| float expected = abs(x); |
| EXPECT_EQ(v_out[0], expected); |
| } |
| } |
| |
| TEST(ReactorUnitTests, MinMax) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Float4>(out + 16 * 0) = Min(Float4(1.0f, 0.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); |
| *Pointer<Float4>(out + 16 * 1) = Max(Float4(1.0f, 0.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); |
| |
| *Pointer<Int4>(out + 16 * 2) = Min(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); |
| *Pointer<Int4>(out + 16 * 3) = Max(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); |
| *Pointer<UInt4>(out + 16 * 4) = Min(UInt4(1, 0, -1, -0), UInt4(0, 1, 0, +0)); |
| *Pointer<UInt4>(out + 16 * 5) = Max(UInt4(1, 0, -1, -0), UInt4(0, 1, 0, +0)); |
| |
| *Pointer<Short4>(out + 16 * 6) = Min(Short4(1, 0, -1, -0), Short4(0, 1, 0, +0)); |
| *Pointer<Short4>(out + 16 * 7) = Max(Short4(1, 0, -1, -0), Short4(0, 1, 0, +0)); |
| *Pointer<UShort4>(out + 16 * 8) = Min(UShort4(1, 0, -1, -0), UShort4(0, 1, 0, +0)); |
| *Pointer<UShort4>(out + 16 * 9) = Max(UShort4(1, 0, -1, -0), UShort4(0, 1, 0, +0)); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int out[10][4]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0x00000000u); |
| EXPECT_EQ(out[0][1], 0x00000000u); |
| EXPECT_EQ(out[0][2], 0x00000000u); |
| EXPECT_EQ(out[0][3], 0x80000000u); |
| |
| EXPECT_EQ(out[1][0], 0x3F800000u); |
| EXPECT_EQ(out[1][1], 0x3F800000u); |
| EXPECT_EQ(out[1][2], 0x00000000u); |
| EXPECT_EQ(out[1][3], 0x80000000u); |
| |
| EXPECT_EQ(out[2][0], 0x00000000u); |
| EXPECT_EQ(out[2][1], 0x00000000u); |
| EXPECT_EQ(out[2][2], 0xFFFFFFFFu); |
| EXPECT_EQ(out[2][3], 0x00000000u); |
| |
| EXPECT_EQ(out[3][0], 0x00000001u); |
| EXPECT_EQ(out[3][1], 0x00000001u); |
| EXPECT_EQ(out[3][2], 0x00000000u); |
| EXPECT_EQ(out[3][3], 0x00000000u); |
| |
| EXPECT_EQ(out[4][0], 0x00000000u); |
| EXPECT_EQ(out[4][1], 0x00000000u); |
| EXPECT_EQ(out[4][2], 0x00000000u); |
| EXPECT_EQ(out[4][3], 0x00000000u); |
| |
| EXPECT_EQ(out[5][0], 0x00000001u); |
| EXPECT_EQ(out[5][1], 0x00000001u); |
| EXPECT_EQ(out[5][2], 0xFFFFFFFFu); |
| EXPECT_EQ(out[5][3], 0x00000000u); |
| |
| EXPECT_EQ(out[6][0], 0x00000000u); |
| EXPECT_EQ(out[6][1], 0x0000FFFFu); |
| EXPECT_EQ(out[6][2], 0x00000000u); |
| EXPECT_EQ(out[6][3], 0x00000000u); |
| |
| EXPECT_EQ(out[7][0], 0x00010001u); |
| EXPECT_EQ(out[7][1], 0x00000000u); |
| EXPECT_EQ(out[7][2], 0x00000000u); |
| EXPECT_EQ(out[7][3], 0x00000000u); |
| |
| EXPECT_EQ(out[8][0], 0x00000000u); |
| EXPECT_EQ(out[8][1], 0x00000000u); |
| EXPECT_EQ(out[8][2], 0x00000000u); |
| EXPECT_EQ(out[8][3], 0x00000000u); |
| |
| EXPECT_EQ(out[9][0], 0x00010001u); |
| EXPECT_EQ(out[9][1], 0x0000FFFFu); |
| EXPECT_EQ(out[9][2], 0x00000000u); |
| EXPECT_EQ(out[9][3], 0x00000000u); |
| } |
| |
| TEST(ReactorUnitTests, NotNeg) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Int>(out + 16 * 0) = ~Int(0x55555555); |
| *Pointer<Short>(out + 16 * 1) = ~Short(0x5555); |
| *Pointer<Int4>(out + 16 * 2) = ~Int4(0x55555555, 0xAAAAAAAA, 0x00000000, 0xFFFFFFFF); |
| *Pointer<Short4>(out + 16 * 3) = ~Short4(0x5555, 0xAAAA, 0x0000, 0xFFFF); |
| |
| *Pointer<Int>(out + 16 * 4) = -Int(0x55555555); |
| *Pointer<Short>(out + 16 * 5) = -Short(0x5555); |
| *Pointer<Int4>(out + 16 * 6) = -Int4(0x55555555, 0xAAAAAAAA, 0x00000000, 0xFFFFFFFF); |
| *Pointer<Short4>(out + 16 * 7) = -Short4(0x5555, 0xAAAA, 0x0000, 0xFFFF); |
| |
| *Pointer<Float4>(out + 16 * 8) = -Float4(1.0f, -1.0f, 0.0f, -0.0f); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int out[10][4]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0xAAAAAAAAu); |
| EXPECT_EQ(out[0][1], 0x00000000u); |
| EXPECT_EQ(out[0][2], 0x00000000u); |
| EXPECT_EQ(out[0][3], 0x00000000u); |
| |
| EXPECT_EQ(out[1][0], 0x0000AAAAu); |
| EXPECT_EQ(out[1][1], 0x00000000u); |
| EXPECT_EQ(out[1][2], 0x00000000u); |
| EXPECT_EQ(out[1][3], 0x00000000u); |
| |
| EXPECT_EQ(out[2][0], 0xAAAAAAAAu); |
| EXPECT_EQ(out[2][1], 0x55555555u); |
| EXPECT_EQ(out[2][2], 0xFFFFFFFFu); |
| EXPECT_EQ(out[2][3], 0x00000000u); |
| |
| EXPECT_EQ(out[3][0], 0x5555AAAAu); |
| EXPECT_EQ(out[3][1], 0x0000FFFFu); |
| EXPECT_EQ(out[3][2], 0x00000000u); |
| EXPECT_EQ(out[3][3], 0x00000000u); |
| |
| EXPECT_EQ(out[4][0], 0xAAAAAAABu); |
| EXPECT_EQ(out[4][1], 0x00000000u); |
| EXPECT_EQ(out[4][2], 0x00000000u); |
| EXPECT_EQ(out[4][3], 0x00000000u); |
| |
| EXPECT_EQ(out[5][0], 0x0000AAABu); |
| EXPECT_EQ(out[5][1], 0x00000000u); |
| EXPECT_EQ(out[5][2], 0x00000000u); |
| EXPECT_EQ(out[5][3], 0x00000000u); |
| |
| EXPECT_EQ(out[6][0], 0xAAAAAAABu); |
| EXPECT_EQ(out[6][1], 0x55555556u); |
| EXPECT_EQ(out[6][2], 0x00000000u); |
| EXPECT_EQ(out[6][3], 0x00000001u); |
| |
| EXPECT_EQ(out[7][0], 0x5556AAABu); |
| EXPECT_EQ(out[7][1], 0x00010000u); |
| EXPECT_EQ(out[7][2], 0x00000000u); |
| EXPECT_EQ(out[7][3], 0x00000000u); |
| |
| EXPECT_EQ(out[8][0], 0xBF800000u); |
| EXPECT_EQ(out[8][1], 0x3F800000u); |
| EXPECT_EQ(out[8][2], 0x80000000u); |
| EXPECT_EQ(out[8][3], 0x00000000u); |
| } |
| |
| TEST(ReactorUnitTests, RoundInt) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Int4>(out + 0) = RoundInt(Float4(3.1f, 3.6f, -3.1f, -3.6f)); |
| *Pointer<Int4>(out + 16) = RoundIntClamped(Float4(2147483648.0f, -2147483648.0f, 2147483520, -2147483520)); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int out[2][4]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 3); |
| EXPECT_EQ(out[0][1], 4); |
| EXPECT_EQ(out[0][2], -3); |
| EXPECT_EQ(out[0][3], -4); |
| |
| // x86 returns 0x80000000 for values which cannot be represented in a 32-bit |
| // integer, but RoundIntClamped() clamps to ensure a positive value for |
| // positive input. ARM saturates to the largest representable integers. |
| EXPECT_GE(out[1][0], 2147483520); |
| EXPECT_LT(out[1][1], -2147483647); |
| EXPECT_EQ(out[1][2], 2147483520); |
| EXPECT_EQ(out[1][3], -2147483520); |
| } |
| |
| TEST(ReactorUnitTests, FPtoUI) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<UInt>(out + 0) = UInt(Float(0xF0000000u)); |
| *Pointer<UInt>(out + 4) = UInt(Float(0xC0000000u)); |
| *Pointer<UInt>(out + 8) = UInt(Float(0x00000001u)); |
| *Pointer<UInt>(out + 12) = UInt(Float(0xF000F000u)); |
| |
| *Pointer<UInt4>(out + 16) = UInt4(Float4(0xF0000000u, 0x80000000u, 0x00000000u, 0xCCCC0000u)); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int out[2][4]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0xF0000000u); |
| EXPECT_EQ(out[0][1], 0xC0000000u); |
| EXPECT_EQ(out[0][2], 0x00000001u); |
| EXPECT_EQ(out[0][3], 0xF000F000u); |
| |
| EXPECT_EQ(out[1][0], 0xF0000000u); |
| EXPECT_EQ(out[1][1], 0x80000000u); |
| EXPECT_EQ(out[1][2], 0x00000000u); |
| EXPECT_EQ(out[1][3], 0xCCCC0000u); |
| } |
| |
| TEST(ReactorUnitTests, VectorCompare) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Int4>(out + 16 * 0) = CmpEQ(Float4(1.0f, 1.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); |
| *Pointer<Int4>(out + 16 * 1) = CmpEQ(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); |
| *Pointer<Byte8>(out + 16 * 2) = CmpEQ(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); |
| |
| *Pointer<Int4>(out + 16 * 3) = CmpNLT(Float4(1.0f, 1.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); |
| *Pointer<Int4>(out + 16 * 4) = CmpNLT(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); |
| *Pointer<Byte8>(out + 16 * 5) = CmpGT(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int out[6][4]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0x00000000u); |
| EXPECT_EQ(out[0][1], 0xFFFFFFFFu); |
| EXPECT_EQ(out[0][2], 0xFFFFFFFFu); |
| EXPECT_EQ(out[0][3], 0xFFFFFFFFu); |
| |
| EXPECT_EQ(out[1][0], 0x00000000u); |
| EXPECT_EQ(out[1][1], 0x00000000u); |
| EXPECT_EQ(out[1][2], 0x00000000u); |
| EXPECT_EQ(out[1][3], 0xFFFFFFFFu); |
| |
| EXPECT_EQ(out[2][0], 0xFF000000u); |
| EXPECT_EQ(out[2][1], 0x00000000u); |
| |
| EXPECT_EQ(out[3][0], 0xFFFFFFFFu); |
| EXPECT_EQ(out[3][1], 0xFFFFFFFFu); |
| EXPECT_EQ(out[3][2], 0xFFFFFFFFu); |
| EXPECT_EQ(out[3][3], 0xFFFFFFFFu); |
| |
| EXPECT_EQ(out[4][0], 0xFFFFFFFFu); |
| EXPECT_EQ(out[4][1], 0x00000000u); |
| EXPECT_EQ(out[4][2], 0x00000000u); |
| EXPECT_EQ(out[4][3], 0xFFFFFFFFu); |
| |
| EXPECT_EQ(out[5][0], 0x00000000u); |
| EXPECT_EQ(out[5][1], 0xFFFFFFFFu); |
| } |
| |
| TEST(ReactorUnitTests, SaturatedAddAndSubtract) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Byte8>(out + 8 * 0) = |
| AddSat(Byte8(1, 2, 3, 4, 5, 6, 7, 8), |
| Byte8(7, 6, 5, 4, 3, 2, 1, 0)); |
| *Pointer<Byte8>(out + 8 * 1) = |
| AddSat(Byte8(0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE), |
| Byte8(7, 6, 5, 4, 3, 2, 1, 0)); |
| *Pointer<Byte8>(out + 8 * 2) = |
| SubSat(Byte8(1, 2, 3, 4, 5, 6, 7, 8), |
| Byte8(7, 6, 5, 4, 3, 2, 1, 0)); |
| |
| *Pointer<SByte8>(out + 8 * 3) = |
| AddSat(SByte8(1, 2, 3, 4, 5, 6, 7, 8), |
| SByte8(7, 6, 5, 4, 3, 2, 1, 0)); |
| *Pointer<SByte8>(out + 8 * 4) = |
| AddSat(SByte8(0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E), |
| SByte8(7, 6, 5, 4, 3, 2, 1, 0)); |
| *Pointer<SByte8>(out + 8 * 5) = |
| AddSat(SByte8(0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88), |
| SByte8(-7, -6, -5, -4, -3, -2, -1, -0)); |
| *Pointer<SByte8>(out + 8 * 6) = |
| SubSat(SByte8(0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88), |
| SByte8(7, 6, 5, 4, 3, 2, 1, 0)); |
| |
| *Pointer<Short4>(out + 8 * 7) = |
| AddSat(Short4(1, 2, 3, 4), Short4(3, 2, 1, 0)); |
| *Pointer<Short4>(out + 8 * 8) = |
| AddSat(Short4(0x7FFE, 0x7FFE, 0x7FFE, 0x7FFE), |
| Short4(3, 2, 1, 0)); |
| *Pointer<Short4>(out + 8 * 9) = |
| AddSat(Short4(0x8001, 0x8002, 0x8003, 0x8004), |
| Short4(-3, -2, -1, -0)); |
| *Pointer<Short4>(out + 8 * 10) = |
| SubSat(Short4(0x8001, 0x8002, 0x8003, 0x8004), |
| Short4(3, 2, 1, 0)); |
| |
| *Pointer<UShort4>(out + 8 * 11) = |
| AddSat(UShort4(1, 2, 3, 4), UShort4(3, 2, 1, 0)); |
| *Pointer<UShort4>(out + 8 * 12) = |
| AddSat(UShort4(0xFFFE, 0xFFFE, 0xFFFE, 0xFFFE), |
| UShort4(3, 2, 1, 0)); |
| *Pointer<UShort4>(out + 8 * 13) = |
| SubSat(UShort4(1, 2, 3, 4), UShort4(3, 2, 1, 0)); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int out[14][2]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0x08080808u); |
| EXPECT_EQ(out[0][1], 0x08080808u); |
| |
| EXPECT_EQ(out[1][0], 0xFFFFFFFFu); |
| EXPECT_EQ(out[1][1], 0xFEFFFFFFu); |
| |
| EXPECT_EQ(out[2][0], 0x00000000u); |
| EXPECT_EQ(out[2][1], 0x08060402u); |
| |
| EXPECT_EQ(out[3][0], 0x08080808u); |
| EXPECT_EQ(out[3][1], 0x08080808u); |
| |
| EXPECT_EQ(out[4][0], 0x7F7F7F7Fu); |
| EXPECT_EQ(out[4][1], 0x7E7F7F7Fu); |
| |
| EXPECT_EQ(out[5][0], 0x80808080u); |
| EXPECT_EQ(out[5][1], 0x88868482u); |
| |
| EXPECT_EQ(out[6][0], 0x80808080u); |
| EXPECT_EQ(out[6][1], 0x88868482u); |
| |
| EXPECT_EQ(out[7][0], 0x00040004u); |
| EXPECT_EQ(out[7][1], 0x00040004u); |
| |
| EXPECT_EQ(out[8][0], 0x7FFF7FFFu); |
| EXPECT_EQ(out[8][1], 0x7FFE7FFFu); |
| |
| EXPECT_EQ(out[9][0], 0x80008000u); |
| EXPECT_EQ(out[9][1], 0x80048002u); |
| |
| EXPECT_EQ(out[10][0], 0x80008000u); |
| EXPECT_EQ(out[10][1], 0x80048002u); |
| |
| EXPECT_EQ(out[11][0], 0x00040004u); |
| EXPECT_EQ(out[11][1], 0x00040004u); |
| |
| EXPECT_EQ(out[12][0], 0xFFFFFFFFu); |
| EXPECT_EQ(out[12][1], 0xFFFEFFFFu); |
| |
| EXPECT_EQ(out[13][0], 0x00000000u); |
| EXPECT_EQ(out[13][1], 0x00040002u); |
| } |
| |
| TEST(ReactorUnitTests, Unpack) |
| { |
| FunctionT<int(void *, void *)> function; |
| { |
| Pointer<Byte> in = function.Arg<0>(); |
| Pointer<Byte> out = function.Arg<1>(); |
| |
| Byte4 test_byte_a = *Pointer<Byte4>(in + 4 * 0); |
| Byte4 test_byte_b = *Pointer<Byte4>(in + 4 * 1); |
| |
| *Pointer<Short4>(out + 8 * 0) = |
| Unpack(test_byte_a, test_byte_b); |
| |
| *Pointer<Short4>(out + 8 * 1) = Unpack(test_byte_a); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int in[1][2]; |
| unsigned int out[2][2]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| in[0][0] = 0xABCDEF12u; |
| in[0][1] = 0x34567890u; |
| |
| routine(&in, &out); |
| |
| EXPECT_EQ(out[0][0], 0x78EF9012u); |
| EXPECT_EQ(out[0][1], 0x34AB56CDu); |
| |
| EXPECT_EQ(out[1][0], 0xEFEF1212u); |
| EXPECT_EQ(out[1][1], 0xABABCDCDu); |
| } |
| |
| TEST(ReactorUnitTests, Pack) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<SByte8>(out + 8 * 0) = |
| PackSigned(Short4(-1, -2, 1, 2), |
| Short4(3, 4, -3, -4)); |
| |
| *Pointer<Byte8>(out + 8 * 1) = |
| PackUnsigned(Short4(-1, -2, 1, 2), |
| Short4(3, 4, -3, -4)); |
| |
| *Pointer<Short8>(out + 8 * 2) = |
| PackSigned(Int4(-1, -2, 1, 2), |
| Int4(3, 4, -3, -4)); |
| |
| *Pointer<UShort8>(out + 8 * 4) = |
| PackUnsigned(Int4(-1, -2, 1, 2), |
| Int4(3, 4, -3, -4)); |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int out[6][2]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0x0201FEFFu); |
| EXPECT_EQ(out[0][1], 0xFCFD0403u); |
| |
| EXPECT_EQ(out[1][0], 0x02010000u); |
| EXPECT_EQ(out[1][1], 0x00000403u); |
| |
| EXPECT_EQ(out[2][0], 0xFFFEFFFFu); |
| EXPECT_EQ(out[2][1], 0x00020001u); |
| |
| EXPECT_EQ(out[3][0], 0x00040003u); |
| EXPECT_EQ(out[3][1], 0xFFFCFFFDu); |
| |
| EXPECT_EQ(out[4][0], 0x00000000u); |
| EXPECT_EQ(out[4][1], 0x00020001u); |
| |
| EXPECT_EQ(out[5][0], 0x00040003u); |
| EXPECT_EQ(out[5][1], 0x00000000u); |
| } |
| |
| TEST(ReactorUnitTests, MulHigh) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Short4>(out + 16 * 0) = |
| MulHigh(Short4(0x01AA, 0x02DD, 0x03EE, 0xF422), |
| Short4(0x01BB, 0x02CC, 0x03FF, 0xF411)); |
| *Pointer<UShort4>(out + 16 * 1) = |
| MulHigh(UShort4(0x01AA, 0x02DD, 0x03EE, 0xF422), |
| UShort4(0x01BB, 0x02CC, 0x03FF, 0xF411)); |
| |
| *Pointer<Int4>(out + 16 * 2) = |
| MulHigh(Int4(0x000001AA, 0x000002DD, 0xC8000000, 0xF8000000), |
| Int4(0x000001BB, 0x84000000, 0x000003EE, 0xD7000000)); |
| *Pointer<UInt4>(out + 16 * 3) = |
| MulHigh(UInt4(0x000001AAu, 0x000002DDu, 0xC8000000u, 0xD8000000u), |
| UInt4(0x000001BBu, 0x84000000u, 0x000003EEu, 0xD7000000u)); |
| |
| *Pointer<Int4>(out + 16 * 4) = |
| MulHigh(Int4(0x7FFFFFFF, 0x7FFFFFFF, 0x80008000, 0xFFFFFFFF), |
| Int4(0x7FFFFFFF, 0x80000000, 0x80008000, 0xFFFFFFFF)); |
| *Pointer<UInt4>(out + 16 * 5) = |
| MulHigh(UInt4(0x7FFFFFFFu, 0x7FFFFFFFu, 0x80008000u, 0xFFFFFFFFu), |
| UInt4(0x7FFFFFFFu, 0x80000000u, 0x80008000u, 0xFFFFFFFFu)); |
| |
| // (U)Short8 variants currently unimplemented. |
| |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int out[6][4]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0x00080002u); |
| EXPECT_EQ(out[0][1], 0x008D000Fu); |
| |
| EXPECT_EQ(out[1][0], 0x00080002u); |
| EXPECT_EQ(out[1][1], 0xE8C0000Fu); |
| |
| EXPECT_EQ(out[2][0], 0x00000000u); |
| EXPECT_EQ(out[2][1], 0xFFFFFE9Cu); |
| EXPECT_EQ(out[2][2], 0xFFFFFF23u); |
| EXPECT_EQ(out[2][3], 0x01480000u); |
| |
| EXPECT_EQ(out[3][0], 0x00000000u); |
| EXPECT_EQ(out[3][1], 0x00000179u); |
| EXPECT_EQ(out[3][2], 0x00000311u); |
| EXPECT_EQ(out[3][3], 0xB5680000u); |
| |
| EXPECT_EQ(out[4][0], 0x3FFFFFFFu); |
| EXPECT_EQ(out[4][1], 0xC0000000u); |
| EXPECT_EQ(out[4][2], 0x3FFF8000u); |
| EXPECT_EQ(out[4][3], 0x00000000u); |
| |
| EXPECT_EQ(out[5][0], 0x3FFFFFFFu); |
| EXPECT_EQ(out[5][1], 0x3FFFFFFFu); |
| EXPECT_EQ(out[5][2], 0x40008000u); |
| EXPECT_EQ(out[5][3], 0xFFFFFFFEu); |
| } |
| |
| TEST(ReactorUnitTests, MulAdd) |
| { |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> out = function.Arg<0>(); |
| |
| *Pointer<Int2>(out + 8 * 0) = |
| MulAdd(Short4(0x1aa, 0x2dd, 0x3ee, 0xF422), |
| Short4(0x1bb, 0x2cc, 0x3ff, 0xF411)); |
| |
| // (U)Short8 variant is mentioned but unimplemented |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| unsigned int out[1][2]; |
| |
| memset(&out, 0, sizeof(out)); |
| |
| routine(&out); |
| |
| EXPECT_EQ(out[0][0], 0x000AE34Au); |
| EXPECT_EQ(out[0][1], 0x009D5254u); |
| } |
| |
| TEST(ReactorUnitTests, PointersEqual) |
| { |
| FunctionT<int(void *, void *)> function; |
| { |
| Pointer<Byte> ptrA = function.Arg<0>(); |
| Pointer<Byte> ptrB = function.Arg<1>(); |
| If(ptrA == ptrB) |
| { |
| Return(1); |
| } |
| Else |
| { |
| Return(0); |
| } |
| } |
| |
| auto routine = function(testName().c_str()); |
| int *a = reinterpret_cast<int *>(uintptr_t(0x0000000000000000)); |
| int *b = reinterpret_cast<int *>(uintptr_t(0x00000000F0000000)); |
| int *c = reinterpret_cast<int *>(uintptr_t(0xF000000000000000)); |
| EXPECT_EQ(routine(&a, &a), 1); |
| EXPECT_EQ(routine(&b, &b), 1); |
| EXPECT_EQ(routine(&c, &c), 1); |
| |
| EXPECT_EQ(routine(&a, &b), 0); |
| EXPECT_EQ(routine(&b, &a), 0); |
| EXPECT_EQ(routine(&b, &c), 0); |
| EXPECT_EQ(routine(&c, &b), 0); |
| EXPECT_EQ(routine(&c, &a), 0); |
| EXPECT_EQ(routine(&a, &c), 0); |
| } |
| |
| TEST(ReactorUnitTests, Args_2Mixed) |
| { |
| // 2 mixed type args |
| FunctionT<float(int, float)> function; |
| { |
| Int a = function.Arg<0>(); |
| Float b = function.Arg<1>(); |
| Return(Float(a) + b); |
| } |
| |
| if(auto routine = function(testName().c_str())) |
| { |
| float result = routine(1, 2.f); |
| EXPECT_EQ(result, 3.f); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Args_4Mixed) |
| { |
| // 4 mixed type args (max register allocation on Windows) |
| FunctionT<float(int, float, int, float)> function; |
| { |
| Int a = function.Arg<0>(); |
| Float b = function.Arg<1>(); |
| Int c = function.Arg<2>(); |
| Float d = function.Arg<3>(); |
| Return(Float(a) + b + Float(c) + d); |
| } |
| |
| if(auto routine = function(testName().c_str())) |
| { |
| float result = routine(1, 2.f, 3, 4.f); |
| EXPECT_EQ(result, 10.f); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Args_5Mixed) |
| { |
| // 5 mixed type args (5th spills over to stack on Windows) |
| FunctionT<float(int, float, int, float, int)> function; |
| { |
| Int a = function.Arg<0>(); |
| Float b = function.Arg<1>(); |
| Int c = function.Arg<2>(); |
| Float d = function.Arg<3>(); |
| Int e = function.Arg<4>(); |
| Return(Float(a) + b + Float(c) + d + Float(e)); |
| } |
| |
| if(auto routine = function(testName().c_str())) |
| { |
| float result = routine(1, 2.f, 3, 4.f, 5); |
| EXPECT_EQ(result, 15.f); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Args_GreaterThan5Mixed) |
| { |
| // >5 mixed type args |
| FunctionT<float(int, float, int, float, int, float, int, float, int, float)> function; |
| { |
| Int a = function.Arg<0>(); |
| Float b = function.Arg<1>(); |
| Int c = function.Arg<2>(); |
| Float d = function.Arg<3>(); |
| Int e = function.Arg<4>(); |
| Float f = function.Arg<5>(); |
| Int g = function.Arg<6>(); |
| Float h = function.Arg<7>(); |
| Int i = function.Arg<8>(); |
| Float j = function.Arg<9>(); |
| Return(Float(a) + b + Float(c) + d + Float(e) + f + Float(g) + h + Float(i) + j); |
| } |
| |
| if(auto routine = function(testName().c_str())) |
| { |
| float result = routine(1, 2.f, 3, 4.f, 5, 6.f, 7, 8.f, 9, 10.f); |
| EXPECT_EQ(result, 55.f); |
| } |
| } |
| |
| // This test was written because on Windows with Subzero, we would get a crash when executing a function |
| // with a large number of local variables. The problem was that on Windows, 4K pages are allocated as |
| // needed for the stack whenever an access is made in a "guard page", at which point the page is committed, |
| // and the next 4K page becomes the guard page. If a stack access is made that's beyond the guard page, |
| // a regular page fault occurs. To fix this, Subzero (and any compiler) now emits a call to __chkstk with |
| // the stack size in EAX, so that it can probe the stack in 4K increments up to that size, committing the |
| // required pages. See https://docs.microsoft.com/en-us/windows/win32/devnotes/-win32-chkstk. |
| TEST(ReactorUnitTests, LargeStack) |
| { |
| // An empirically large enough value to access outside the guard pages |
| constexpr int ArrayByteSize = 24 * 1024; |
| constexpr int ArraySize = ArrayByteSize / sizeof(int32_t); |
| |
| FunctionT<void(int32_t * v)> function; |
| { |
| // Allocate a stack array large enough that writing to the first element will reach beyond |
| // the guard page. |
| Array<Int, ArraySize> largeStackArray; |
| for(int i = 0; i < ArraySize; ++i) |
| { |
| largeStackArray[i] = i; |
| } |
| |
| Pointer<Int> in = function.Arg<0>(); |
| for(int i = 0; i < ArraySize; ++i) |
| { |
| in[i] = largeStackArray[i]; |
| } |
| } |
| |
| // LLVM takes very long to generate this routine when O2 optimizations are enabled. Disable for now. |
| // TODO(b/174031014): Remove this once we fix LLVM taking so long. |
| ScopedPragma O0(OptimizationLevel, 0); |
| |
| auto routine = function(testName().c_str()); |
| |
| std::array<int32_t, ArraySize> v; |
| |
| // Run this in a thread, so that we get the default reserved stack size (8K on Win64). |
| std::thread t([&] { |
| routine(v.data()); |
| }); |
| t.join(); |
| |
| for(int i = 0; i < ArraySize; ++i) |
| { |
| EXPECT_EQ(v[i], i); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Call) |
| { |
| struct Class |
| { |
| static int Callback(Class *p, int i, float f) |
| { |
| p->i = i; |
| p->f = f; |
| return i + int(f); |
| } |
| |
| int i = 0; |
| float f = 0.0f; |
| }; |
| |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> c = function.Arg<0>(); |
| auto res = Call(Class::Callback, c, 10, 20.0f); |
| Return(res); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| Class c; |
| int res = routine(&c); |
| EXPECT_EQ(res, 30); |
| EXPECT_EQ(c.i, 10); |
| EXPECT_EQ(c.f, 20.0f); |
| } |
| |
| TEST(ReactorUnitTests, CallMemberFunction) |
| { |
| struct Class |
| { |
| int Callback(int argI, float argF) |
| { |
| i = argI; |
| f = argF; |
| return i + int(f); |
| } |
| |
| int i = 0; |
| float f = 0.0f; |
| }; |
| |
| Class c; |
| |
| FunctionT<int()> function; |
| { |
| auto res = Call(&Class::Callback, &c, 10, 20.0f); |
| Return(res); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int res = routine(); |
| EXPECT_EQ(res, 30); |
| EXPECT_EQ(c.i, 10); |
| EXPECT_EQ(c.f, 20.0f); |
| } |
| |
| TEST(ReactorUnitTests, CallMemberFunctionIndirect) |
| { |
| struct Class |
| { |
| int Callback(int argI, float argF) |
| { |
| i = argI; |
| f = argF; |
| return i + int(f); |
| } |
| |
| int i = 0; |
| float f = 0.0f; |
| }; |
| |
| FunctionT<int(void *)> function; |
| { |
| Pointer<Byte> c = function.Arg<0>(); |
| auto res = Call(&Class::Callback, c, 10, 20.0f); |
| Return(res); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| Class c; |
| int res = routine(&c); |
| EXPECT_EQ(res, 30); |
| EXPECT_EQ(c.i, 10); |
| EXPECT_EQ(c.f, 20.0f); |
| } |
| |
| TEST(ReactorUnitTests, CallImplicitCast) |
| { |
| struct Class |
| { |
| static void Callback(Class *c, const char *s) |
| { |
| c->str = s; |
| } |
| std::string str; |
| }; |
| |
| FunctionT<void(Class * c, const char *s)> function; |
| { |
| Pointer<Byte> c = function.Arg<0>(); |
| Pointer<Byte> s = function.Arg<1>(); |
| Call(Class::Callback, c, s); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| Class c; |
| routine(&c, "hello world"); |
| EXPECT_EQ(c.str, "hello world"); |
| } |
| |
| TEST(ReactorUnitTests, CallBoolReturnFunction) |
| { |
| struct Class |
| { |
| static bool IsEven(int a) |
| { |
| return a % 2 == 0; |
| } |
| }; |
| |
| FunctionT<int(int)> function; |
| { |
| Int a = function.Arg<0>(); |
| Bool res = Call(Class::IsEven, a); |
| If(res) |
| { |
| Return(1); |
| } |
| Return(0); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| for(int i = 0; i < 10; ++i) |
| { |
| EXPECT_EQ(routine(i), i % 2 == 0); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Call_Args4) |
| { |
| struct Class |
| { |
| static int Func(int a, int b, int c, int d) |
| { |
| return a + b + c + d; |
| } |
| }; |
| |
| { |
| FunctionT<int()> function; |
| { |
| auto res = Call(Class::Func, 1, 2, 3, 4); |
| Return(res); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int res = routine(); |
| EXPECT_EQ(res, 1 + 2 + 3 + 4); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Call_Args5) |
| { |
| struct Class |
| { |
| static int Func(int a, int b, int c, int d, int e) |
| { |
| return a + b + c + d + e; |
| } |
| }; |
| |
| { |
| FunctionT<int()> function; |
| { |
| auto res = Call(Class::Func, 1, 2, 3, 4, 5); |
| Return(res); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int res = routine(); |
| EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Call_ArgsMany) |
| { |
| struct Class |
| { |
| static int Func(int a, int b, int c, int d, int e, int f, int g, int h) |
| { |
| return a + b + c + d + e + f + g + h; |
| } |
| }; |
| |
| { |
| FunctionT<int()> function; |
| { |
| auto res = Call(Class::Func, 1, 2, 3, 4, 5, 6, 7, 8); |
| Return(res); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int res = routine(); |
| EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Call_ArgsMixed) |
| { |
| struct Class |
| { |
| static int Func(int a, float b, int *c, float *d, int e, float f, int *g, float *h) |
| { |
| return a + b + *c + *d + e + f + *g + *h; |
| } |
| }; |
| |
| { |
| FunctionT<int()> function; |
| { |
| Int c(3); |
| Float d(4); |
| Int g(7); |
| Float h(8); |
| auto res = Call(Class::Func, 1, 2.f, &c, &d, 5, 6.f, &g, &h); |
| Return(res); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int res = routine(); |
| EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Call_ArgsPointer) |
| { |
| struct Class |
| { |
| static int Func(int *a) |
| { |
| return *a; |
| } |
| }; |
| |
| { |
| FunctionT<int()> function; |
| { |
| Int a(12345); |
| auto res = Call(Class::Func, &a); |
| Return(res); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int res = routine(); |
| EXPECT_EQ(res, 12345); |
| } |
| } |
| |
| TEST(ReactorUnitTests, CallExternalCallRoutine) |
| { |
| // routine1 calls Class::Func, passing it a pointer to routine2, and Class::Func calls routine2 |
| |
| auto routine2 = [] { |
| FunctionT<float(float, int)> function; |
| { |
| Float a = function.Arg<0>(); |
| Int b = function.Arg<1>(); |
| Return(a + Float(b)); |
| } |
| return function("%s2", testName().c_str()); |
| }(); |
| |
| struct Class |
| { |
| static float Func(void *p, float a, int b) |
| { |
| auto funcToCall = reinterpret_cast<float (*)(float, int)>(p); |
| return funcToCall(a, b); |
| } |
| }; |
| |
| auto routine1 = [] { |
| FunctionT<float(void *, float, int)> function; |
| { |
| Pointer<Byte> funcToCall = function.Arg<0>(); |
| Float a = function.Arg<1>(); |
| Int b = function.Arg<2>(); |
| Float result = Call(Class::Func, funcToCall, a, b); |
| Return(result); |
| } |
| return function(testName().c_str()); |
| }(); |
| |
| float result = routine1((void *)routine2.getEntry(), 12.f, 13); |
| EXPECT_EQ(result, 25.f); |
| } |
| |
| // Check that a complex generated function which utilizes all 8 or 16 XMM |
| // registers computes the correct result. |
| // (Note that due to MSC's lack of support for inline assembly in x64, |
| // this test does not actually check that the register contents are |
| // preserved, just that the generated function computes the correct value. |
| // It's necessary to inspect the registers in a debugger to actually verify.) |
| TEST(ReactorUnitTests, PreserveXMMRegisters) |
| { |
| FunctionT<void(void *, void *)> function; |
| { |
| Pointer<Byte> in = function.Arg<0>(); |
| Pointer<Byte> out = function.Arg<1>(); |
| |
| Float4 a = *Pointer<Float4>(in + 16 * 0); |
| Float4 b = *Pointer<Float4>(in + 16 * 1); |
| Float4 c = *Pointer<Float4>(in + 16 * 2); |
| Float4 d = *Pointer<Float4>(in + 16 * 3); |
| Float4 e = *Pointer<Float4>(in + 16 * 4); |
| Float4 f = *Pointer<Float4>(in + 16 * 5); |
| Float4 g = *Pointer<Float4>(in + 16 * 6); |
| Float4 h = *Pointer<Float4>(in + 16 * 7); |
| Float4 i = *Pointer<Float4>(in + 16 * 8); |
| Float4 j = *Pointer<Float4>(in + 16 * 9); |
| Float4 k = *Pointer<Float4>(in + 16 * 10); |
| Float4 l = *Pointer<Float4>(in + 16 * 11); |
| Float4 m = *Pointer<Float4>(in + 16 * 12); |
| Float4 n = *Pointer<Float4>(in + 16 * 13); |
| Float4 o = *Pointer<Float4>(in + 16 * 14); |
| Float4 p = *Pointer<Float4>(in + 16 * 15); |
| |
| Float4 ab = a + b; |
| Float4 cd = c + d; |
| Float4 ef = e + f; |
| Float4 gh = g + h; |
| Float4 ij = i + j; |
| Float4 kl = k + l; |
| Float4 mn = m + n; |
| Float4 op = o + p; |
| |
| Float4 abcd = ab + cd; |
| Float4 efgh = ef + gh; |
| Float4 ijkl = ij + kl; |
| Float4 mnop = mn + op; |
| |
| Float4 abcdefgh = abcd + efgh; |
| Float4 ijklmnop = ijkl + mnop; |
| Float4 sum = abcdefgh + ijklmnop; |
| *Pointer<Float4>(out) = sum; |
| Return(); |
| } |
| |
| auto routine = function(testName().c_str()); |
| assert(routine); |
| |
| float input[64] = { 1.0f, 0.0f, 0.0f, 0.0f, |
| -1.0f, 1.0f, -1.0f, 0.0f, |
| 1.0f, 2.0f, -2.0f, 0.0f, |
| -1.0f, 3.0f, -3.0f, 0.0f, |
| 1.0f, 4.0f, -4.0f, 0.0f, |
| -1.0f, 5.0f, -5.0f, 0.0f, |
| 1.0f, 6.0f, -6.0f, 0.0f, |
| -1.0f, 7.0f, -7.0f, 0.0f, |
| 1.0f, 8.0f, -8.0f, 0.0f, |
| -1.0f, 9.0f, -9.0f, 0.0f, |
| 1.0f, 10.0f, -10.0f, 0.0f, |
| -1.0f, 11.0f, -11.0f, 0.0f, |
| 1.0f, 12.0f, -12.0f, 0.0f, |
| -1.0f, 13.0f, -13.0f, 0.0f, |
| 1.0f, 14.0f, -14.0f, 0.0f, |
| -1.0f, 15.0f, -15.0f, 0.0f }; |
| |
| float result[4]; |
| |
| routine(input, result); |
| |
| EXPECT_EQ(result[0], 0.0f); |
| EXPECT_EQ(result[1], 120.0f); |
| EXPECT_EQ(result[2], -120.0f); |
| EXPECT_EQ(result[3], 0.0f); |
| } |
| |
| template<typename T> |
| class CToReactorTCastTest : public ::testing::Test |
| { |
| public: |
| using CType = typename std::tuple_element<0, T>::type; |
| using ReactorType = typename std::tuple_element<1, T>::type; |
| }; |
| |
| using CToReactorTCastTestTypes = ::testing::Types< // Subset of types that can be used as arguments. |
| // std::pair<bool, Bool>, FIXME(capn): Not supported as argument type by Subzero. |
| // std::pair<uint8_t, Byte>, FIXME(capn): Not supported as argument type by Subzero. |
| // std::pair<int8_t, SByte>, FIXME(capn): Not supported as argument type by Subzero. |
| // std::pair<int16_t, Short>, FIXME(capn): Not supported as argument type by Subzero. |
| // std::pair<uint16_t, UShort>, FIXME(capn): Not supported as argument type by Subzero. |
| std::pair<int, Int>, |
| std::pair<unsigned int, UInt>, |
| std::pair<float, Float>>; |
| |
| TYPED_TEST_SUITE(CToReactorTCastTest, CToReactorTCastTestTypes); |
| |
| TYPED_TEST(CToReactorTCastTest, Casts) |
| { |
| using CType = typename TestFixture::CType; |
| using ReactorType = typename TestFixture::ReactorType; |
| |
| std::shared_ptr<Routine> routine; |
| |
| { |
| Function<Int(ReactorType)> function; |
| { |
| ReactorType a = function.template Arg<0>(); |
| ReactorType b = CType{}; |
| RValue<ReactorType> c = RValue<ReactorType>(CType{}); |
| Bool same = (a == b) && (a == c); |
| Return(IfThenElse(same, Int(1), Int(0))); // TODO: Ability to use Bools as return values. |
| } |
| |
| routine = function(testName().c_str()); |
| |
| auto callable = (int (*)(CType))routine->getEntry(); |
| CType in = {}; |
| EXPECT_EQ(callable(in), 1); |
| } |
| } |
| |
| template<typename T> |
| class GEPTest : public ::testing::Test |
| { |
| public: |
| using CType = typename std::tuple_element<0, T>::type; |
| using ReactorType = typename std::tuple_element<1, T>::type; |
| }; |
| |
| using GEPTestTypes = ::testing::Types< |
| std::pair<bool, Bool>, |
| std::pair<int8_t, Byte>, |
| std::pair<int8_t, SByte>, |
| std::pair<int8_t[4], Byte4>, |
| std::pair<int8_t[4], SByte4>, |
| std::pair<int8_t[8], Byte8>, |
| std::pair<int8_t[8], SByte8>, |
| std::pair<int8_t[16], Byte16>, |
| std::pair<int8_t[16], SByte16>, |
| std::pair<int16_t, Short>, |
| std::pair<int16_t, UShort>, |
| std::pair<int16_t[2], Short2>, |
| std::pair<int16_t[2], UShort2>, |
| std::pair<int16_t[4], Short4>, |
| std::pair<int16_t[4], UShort4>, |
| std::pair<int16_t[8], Short8>, |
| std::pair<int16_t[8], UShort8>, |
| std::pair<int, Int>, |
| std::pair<int, UInt>, |
| std::pair<int[2], Int2>, |
| std::pair<int[2], UInt2>, |
| std::pair<int[4], Int4>, |
| std::pair<int[4], UInt4>, |
| std::pair<int64_t, Long>, |
| std::pair<int16_t, Half>, |
| std::pair<float, Float>, |
| std::pair<float[2], Float2>, |
| std::pair<float[4], Float4>>; |
| |
| TYPED_TEST_SUITE(GEPTest, GEPTestTypes); |
| |
| TYPED_TEST(GEPTest, PtrOffsets) |
| { |
| using CType = typename TestFixture::CType; |
| using ReactorType = typename TestFixture::ReactorType; |
| |
| std::shared_ptr<Routine> routine; |
| |
| { |
| Function<Pointer<ReactorType>(Pointer<ReactorType>, Int)> function; |
| { |
| Pointer<ReactorType> pointer = function.template Arg<0>(); |
| Int index = function.template Arg<1>(); |
| Return(&pointer[index]); |
| } |
| |
| routine = function(testName().c_str()); |
| |
| auto callable = (CType * (*)(CType *, unsigned int)) routine->getEntry(); |
| |
| union PtrInt |
| { |
| CType *p; |
| size_t i; |
| }; |
| |
| PtrInt base; |
| base.i = 0x10000; |
| |
| for(int i = 0; i < 5; i++) |
| { |
| PtrInt reference; |
| reference.p = &base.p[i]; |
| |
| PtrInt result; |
| result.p = callable(base.p, i); |
| |
| auto expect = reference.i - base.i; |
| auto got = result.i - base.i; |
| |
| EXPECT_EQ(got, expect) << "i:" << i; |
| } |
| } |
| } |
| |
| static const std::vector<int> fibonacci = { |
| 0, |
| 1, |
| 1, |
| 2, |
| 3, |
| 5, |
| 8, |
| 13, |
| 21, |
| 34, |
| 55, |
| 89, |
| 144, |
| 233, |
| 377, |
| 610, |
| 987, |
| 1597, |
| 2584, |
| 4181, |
| 6765, |
| 10946, |
| 17711, |
| 28657, |
| 46368, |
| 75025, |
| 121393, |
| 196418, |
| 317811, |
| }; |
| |
| TEST(ReactorUnitTests, Fibonacci) |
| { |
| FunctionT<int(int)> function; |
| { |
| Int n = function.Arg<0>(); |
| Int current = 0; |
| Int next = 1; |
| For(Int i = 0, i < n, i++) |
| { |
| auto tmp = current + next; |
| current = next; |
| next = tmp; |
| } |
| Return(current); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| for(size_t i = 0; i < fibonacci.size(); i++) |
| { |
| EXPECT_EQ(routine(i), fibonacci[i]); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Coroutines_Fibonacci) |
| { |
| if(!rr::Caps::coroutinesSupported()) |
| { |
| SUCCEED() << "Coroutines not supported"; |
| return; |
| } |
| |
| Coroutine<int()> function; |
| { |
| Yield(Int(0)); |
| Yield(Int(1)); |
| Int current = 1; |
| Int next = 1; |
| While(true) |
| { |
| Yield(next); |
| auto tmp = current + next; |
| current = next; |
| next = tmp; |
| } |
| } |
| function.finalize(testName().c_str()); |
| |
| auto coroutine = function(); |
| |
| for(size_t i = 0; i < fibonacci.size(); i++) |
| { |
| int out = 0; |
| EXPECT_EQ(coroutine->await(out), true); |
| EXPECT_EQ(out, fibonacci[i]); |
| } |
| } |
| |
| TEST(ReactorUnitTests, Coroutines_Parameters) |
| { |
| if(!rr::Caps::coroutinesSupported()) |
| { |
| SUCCEED() << "Coroutines not supported"; |
| return; |
| } |
| |
| Coroutine<uint8_t(uint8_t * data, int count)> function; |
| { |
| Pointer<Byte> data = function.Arg<0>(); |
| Int count = function.Arg<1>(); |
| |
| For(Int i = 0, i < count, i++) |
| { |
| Yield(data[i]); |
| } |
| } |
| function.finalize(testName().c_str()); |
| |
| uint8_t data[] = { 10, 20, 30 }; |
| auto coroutine = function(&data[0], 3); |
| |
| uint8_t out = 0; |
| EXPECT_EQ(coroutine->await(out), true); |
| EXPECT_EQ(out, 10); |
| out = 0; |
| EXPECT_EQ(coroutine->await(out), true); |
| EXPECT_EQ(out, 20); |
| out = 0; |
| EXPECT_EQ(coroutine->await(out), true); |
| EXPECT_EQ(out, 30); |
| out = 99; |
| EXPECT_EQ(coroutine->await(out), false); |
| EXPECT_EQ(out, 99); |
| EXPECT_EQ(coroutine->await(out), false); |
| EXPECT_EQ(out, 99); |
| } |
| |
| // This test was written because Subzero's handling of vector types |
| // failed when more than one function is generated, as is the case |
| // with coroutines. |
| TEST(ReactorUnitTests, Coroutines_Vectors) |
| { |
| if(!rr::Caps::coroutinesSupported()) |
| { |
| SUCCEED() << "Coroutines not supported"; |
| return; |
| } |
| |
| Coroutine<int()> function; |
| { |
| Int4 a{ 1, 2, 3, 4 }; |
| Yield(rr::Extract(a, 2)); |
| Int4 b{ 5, 6, 7, 8 }; |
| Yield(rr::Extract(b, 1)); |
| Int4 c{ 9, 10, 11, 12 }; |
| Yield(rr::Extract(c, 1)); |
| } |
| function.finalize(testName().c_str()); |
| |
| auto coroutine = function(); |
| |
| int out; |
| coroutine->await(out); |
| EXPECT_EQ(out, 3); |
| coroutine->await(out); |
| EXPECT_EQ(out, 6); |
| coroutine->await(out); |
| EXPECT_EQ(out, 10); |
| } |
| |
| // This test was written to make sure a coroutine without a Yield() |
| // works correctly, by executing like a regular function with no |
| // return (the return type is ignored). |
| // We also run it twice to ensure per instance and/or global state |
| // is properly cleaned up in between. |
| TEST(ReactorUnitTests, Coroutines_NoYield) |
| { |
| if(!rr::Caps::coroutinesSupported()) |
| { |
| SUCCEED() << "Coroutines not supported"; |
| return; |
| } |
| |
| for(int i = 0; i < 2; ++i) |
| { |
| Coroutine<int()> function; |
| { |
| Int a; |
| a = 4; |
| } |
| function.finalize(testName().c_str()); |
| |
| auto coroutine = function(); |
| int out; |
| EXPECT_EQ(coroutine->await(out), false); |
| } |
| } |
| |
| // Test generating one coroutine, and executing it on multiple threads. This makes |
| // sure the implementation manages per-call instance data correctly. |
| TEST(ReactorUnitTests, Coroutines_Parallel) |
| { |
| if(!rr::Caps::coroutinesSupported()) |
| { |
| SUCCEED() << "Coroutines not supported"; |
| return; |
| } |
| |
| Coroutine<int()> function; |
| { |
| Yield(Int(0)); |
| Yield(Int(1)); |
| Int current = 1; |
| Int next = 1; |
| While(true) |
| { |
| Yield(next); |
| auto tmp = current + next; |
| current = next; |
| next = tmp; |
| } |
| } |
| |
| // Must call on same thread that creates the coroutine |
| function.finalize(testName().c_str()); |
| |
| std::vector<std::thread> threads; |
| const size_t numThreads = 100; |
| |
| for(size_t t = 0; t < numThreads; ++t) |
| { |
| threads.emplace_back([&] { |
| auto coroutine = function(); |
| |
| for(size_t i = 0; i < fibonacci.size(); i++) |
| { |
| int out = 0; |
| EXPECT_EQ(coroutine->await(out), true); |
| EXPECT_EQ(out, fibonacci[i]); |
| } |
| }); |
| } |
| |
| for(auto &t : threads) |
| { |
| t.join(); |
| } |
| } |
| |
| template<typename TestFuncType, typename RefFuncType, typename TestValueType> |
| struct IntrinsicTestParams |
| { |
| std::function<TestFuncType> testFunc; // Function we're testing (Reactor) |
| std::function<RefFuncType> refFunc; // Reference function to test against (C) |
| std::vector<TestValueType> testValues; // Values to input to functions |
| }; |
| |
| using IntrinsicTestParams_Float = IntrinsicTestParams<RValue<Float>(RValue<Float>), float(float), float>; |
| using IntrinsicTestParams_Float4 = IntrinsicTestParams<RValue<Float4>(RValue<Float4>), float(float), float>; |
| using IntrinsicTestParams_Float4_Float4 = IntrinsicTestParams<RValue<Float4>(RValue<Float4>, RValue<Float4>), float(float, float), std::pair<float, float>>; |
| |
| // TODO(b/147818976): Each function has its own precision requirements for Vulkan, sometimes broken down |
| // by input range. These are currently validated by deqp, but we can improve our own tests as well. |
| // See https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html#spirvenv-precision-operation |
| constexpr double INTRINSIC_PRECISION = 1e-4; |
| |
| struct IntrinsicTest_Float : public testing::TestWithParam<IntrinsicTestParams_Float> |
| { |
| void test() |
| { |
| FunctionT<float(float)> function; |
| { |
| Return(GetParam().testFunc((Float(function.Arg<0>())))); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| for(auto &&v : GetParam().testValues) |
| { |
| SCOPED_TRACE(v); |
| EXPECT_NEAR(routine(v), GetParam().refFunc(v), INTRINSIC_PRECISION); |
| } |
| } |
| }; |
| |
| // TODO: Move to Reactor.hpp |
| template<> |
| struct rr::CToReactor<int[4]> |
| { |
| using type = Int4; |
| static Int4 cast(float[4]); |
| }; |
| |
| // Value type wrapper around a <type>[4] (i.e. float4, int4) |
| template<typename T> |
| struct type4_value |
| { |
| using E = typename std::remove_pointer_t<std::decay_t<T>>; |
| |
| type4_value() = default; |
| explicit type4_value(E rep) |
| : v{ rep, rep, rep, rep } |
| {} |
| type4_value(E x, E y, E z, E w) |
| : v{ x, y, z, w } |
| {} |
| |
| bool operator==(const type4_value &rhs) const |
| { |
| return std::equal(std::begin(v), std::end(v), rhs.v); |
| } |
| |
| // For gtest printing |
| friend std::ostream &operator<<(std::ostream &os, const type4_value &value) |
| { |
| return os << "[" << value.v[0] << ", " << value.v[1] << ", " << value.v[2] << ", " << value.v[3] << "]"; |
| } |
| |
| T v; |
| }; |
| |
| using float4_value = type4_value<float4>; |
| using int4_value = type4_value<int4>; |
| |
| // Invoke a void(type4_value<T>*) routine on &v.v, returning wrapped result in v |
| template<typename RoutineType, typename T> |
| type4_value<T> invokeRoutine(RoutineType &routine, type4_value<T> v) |
| { |
| routine(&v.v); |
| return v; |
| } |
| |
| // Invoke a void(type4_value<T>*, type4_value<T>*) routine on &v1.v, &v2.v returning wrapped result in v1 |
| template<typename RoutineType, typename T> |
| type4_value<T> invokeRoutine(RoutineType &routine, type4_value<T> v1, type4_value<T> v2) |
| { |
| routine(&v1.v, &v2.v); |
| return v1; |
| } |
| |
| struct IntrinsicTest_Float4 : public testing::TestWithParam<IntrinsicTestParams_Float4> |
| { |
| void test() |
| { |
| FunctionT<void(float4 *)> function; |
| { |
| Pointer<Float4> a = function.Arg<0>(); |
| *a = GetParam().testFunc(*a); |
| Return(); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| for(auto &&v : GetParam().testValues) |
| { |
| SCOPED_TRACE(v); |
| float4_value result = invokeRoutine(routine, float4_value{ v }); |
| float4_value expected = float4_value{ GetParam().refFunc(v) }; |
| EXPECT_NEAR(result.v[0], expected.v[0], INTRINSIC_PRECISION); |
| EXPECT_NEAR(result.v[1], expected.v[1], INTRINSIC_PRECISION); |
| EXPECT_NEAR(result.v[2], expected.v[2], INTRINSIC_PRECISION); |
| EXPECT_NEAR(result.v[3], expected.v[3], INTRINSIC_PRECISION); |
| } |
| } |
| }; |
| |
| struct IntrinsicTest_Float4_Float4 : public testing::TestWithParam<IntrinsicTestParams_Float4_Float4> |
| { |
| void test() |
| { |
| FunctionT<void(float4 *, float4 *)> function; |
| { |
| Pointer<Float4> a = function.Arg<0>(); |
| Pointer<Float4> b = function.Arg<1>(); |
| *a = GetParam().testFunc(*a, *b); |
| Return(); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| for(auto &&v : GetParam().testValues) |
| { |
| SCOPED_TRACE(v); |
| float4_value result = invokeRoutine(routine, float4_value{ v.first }, float4_value{ v.second }); |
| float4_value expected = float4_value{ GetParam().refFunc(v.first, v.second) }; |
| EXPECT_NEAR(result.v[0], expected.v[0], INTRINSIC_PRECISION); |
| EXPECT_NEAR(result.v[1], expected.v[1], INTRINSIC_PRECISION); |
| EXPECT_NEAR(result.v[2], expected.v[2], INTRINSIC_PRECISION); |
| EXPECT_NEAR(result.v[3], expected.v[3], INTRINSIC_PRECISION); |
| } |
| } |
| }; |
| |
| // clang-format off |
| INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float, IntrinsicTest_Float, testing::Values( |
| IntrinsicTestParams_Float{ [](Float v) { return rr::Exp2(v); }, exp2f, {0.f, 1.f, 123.f} }, |
| IntrinsicTestParams_Float{ [](Float v) { return rr::Log2(v); }, log2f, {1.f, 123.f} }, |
| IntrinsicTestParams_Float{ [](Float v) { return rr::Sqrt(v); }, sqrtf, {0.f, 1.f, 123.f} } |
| )); |
| // clang-format on |
| |
| // TODO(b/149110874) Use coshf/sinhf when we've implemented SpirV versions at the SpirV level |
| float vulkan_sinhf(float a) |
| { |
| return ((expf(a) - expf(-a)) / 2); |
| } |
| float vulkan_coshf(float a) |
| { |
| return ((expf(a) + expf(-a)) / 2); |
| } |
| |
| // clang-format off |
| constexpr float PI = 3.141592653589793f; |
| INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float4, IntrinsicTest_Float4, testing::Values( |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sin(v); }, sinf, {0.f, 1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Cos(v); }, cosf, {0.f, 1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Tan(v); }, tanf, {0.f, 1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Asin(v); }, asinf, {0.f, 1.f, -1.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Acos(v); }, acosf, {0.f, 1.f, -1.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Atan(v); }, atanf, {0.f, 1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sinh(v); }, vulkan_sinhf, {0.f, 1.f, PI} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Cosh(v); }, vulkan_coshf, {0.f, 1.f, PI} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Tanh(v); }, tanhf, {0.f, 1.f, PI} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Asinh(v); }, asinhf, {0.f, 1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Acosh(v); }, acoshf, { 1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Atanh(v); }, atanhf, {0.f, 0.9999f, -0.9999f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Exp(v); }, expf, {0.f, 1.f, PI} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Log(v); }, logf, {1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Exp2(v); }, exp2f, {0.f, 1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Log2(v); }, log2f, {1.f, PI, 123.f} }, |
| IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sqrt(v); }, sqrtf, {0.f, 1.f, PI, 123.f} } |
| )); |
| // clang-format on |
| |
| // clang-format off |
| INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float4_Float4, IntrinsicTest_Float4_Float4, testing::Values( |
| IntrinsicTestParams_Float4_Float4{ [](RValue<Float4> v1, RValue<Float4> v2) { return Atan2(v1, v2); }, atan2f, { {0.f, 0.f}, {0.f, -1.f}, {-1.f, 0.f}, {123.f, 123.f} } }, |
| IntrinsicTestParams_Float4_Float4{ [](RValue<Float4> v1, RValue<Float4> v2) { return Pow(v1, v2); }, powf, { {1.f, 0.f}, {1.f, -1.f}, {-1.f, 0.f} } } |
| )); |
| // clang-format on |
| |
| TEST_P(IntrinsicTest_Float, Test) |
| { |
| test(); |
| } |
| TEST_P(IntrinsicTest_Float4, Test) |
| { |
| test(); |
| } |
| TEST_P(IntrinsicTest_Float4_Float4, Test) |
| { |
| test(); |
| } |
| |
| TEST(ReactorUnitTests, Intrinsics_Ctlz) |
| { |
| // ctlz: counts number of leading zeros |
| |
| { |
| Function<UInt(UInt x)> function; |
| { |
| UInt x = function.Arg<0>(); |
| Return(rr::Ctlz(x, false)); |
| } |
| auto routine = function(testName().c_str()); |
| auto callable = (uint32_t(*)(uint32_t))routine->getEntry(); |
| |
| for(uint32_t i = 0; i < 31; ++i) |
| { |
| uint32_t result = callable(1 << i); |
| EXPECT_EQ(result, 31 - i); |
| } |
| |
| // Input 0 should return 32 for isZeroUndef == false |
| { |
| uint32_t result = callable(0); |
| EXPECT_EQ(result, 32u); |
| } |
| } |
| |
| { |
| Function<Void(Pointer<UInt4>, UInt x)> function; |
| { |
| Pointer<UInt4> out = function.Arg<0>(); |
| UInt x = function.Arg<1>(); |
| *out = rr::Ctlz(UInt4(x), false); |
| } |
| auto routine = function(testName().c_str()); |
| auto callable = (void (*)(uint32_t *, uint32_t))routine->getEntry(); |
| |
| uint32_t x[4]; |
| |
| for(uint32_t i = 0; i < 31; ++i) |
| { |
| callable(x, 1 << i); |
| EXPECT_EQ(x[0], 31 - i); |
| EXPECT_EQ(x[1], 31 - i); |
| EXPECT_EQ(x[2], 31 - i); |
| EXPECT_EQ(x[3], 31 - i); |
| } |
| |
| // Input 0 should return 32 for isZeroUndef == false |
| { |
| callable(x, 0); |
| EXPECT_EQ(x[0], 32u); |
| EXPECT_EQ(x[1], 32u); |
| EXPECT_EQ(x[2], 32u); |
| EXPECT_EQ(x[3], 32u); |
| } |
| } |
| } |
| |
| TEST(ReactorUnitTests, Intrinsics_Cttz) |
| { |
| // cttz: counts number of trailing zeros |
| |
| { |
| Function<UInt(UInt x)> function; |
| { |
| UInt x = function.Arg<0>(); |
| Return(rr::Cttz(x, false)); |
| } |
| auto routine = function(testName().c_str()); |
| auto callable = (uint32_t(*)(uint32_t))routine->getEntry(); |
| |
| for(uint32_t i = 0; i < 31; ++i) |
| { |
| uint32_t result = callable(1 << i); |
| EXPECT_EQ(result, i); |
| } |
| |
| // Input 0 should return 32 for isZeroUndef == false |
| { |
| uint32_t result = callable(0); |
| EXPECT_EQ(result, 32u); |
| } |
| } |
| |
| { |
| Function<Void(Pointer<UInt4>, UInt x)> function; |
| { |
| Pointer<UInt4> out = function.Arg<0>(); |
| UInt x = function.Arg<1>(); |
| *out = rr::Cttz(UInt4(x), false); |
| } |
| auto routine = function(testName().c_str()); |
| auto callable = (void (*)(uint32_t *, uint32_t))routine->getEntry(); |
| |
| uint32_t x[4]; |
| |
| for(uint32_t i = 0; i < 31; ++i) |
| { |
| callable(x, 1 << i); |
| EXPECT_EQ(x[0], i); |
| EXPECT_EQ(x[1], i); |
| EXPECT_EQ(x[2], i); |
| EXPECT_EQ(x[3], i); |
| } |
| |
| // Input 0 should return 32 for isZeroUndef == false |
| { |
| callable(x, 0); |
| EXPECT_EQ(x[0], 32u); |
| EXPECT_EQ(x[1], 32u); |
| EXPECT_EQ(x[2], 32u); |
| EXPECT_EQ(x[3], 32u); |
| } |
| } |
| } |
| |
| TEST(ReactorUnitTests, ExtractFromRValue) |
| { |
| Function<Void(Pointer<Int4> values, Pointer<Int4> result)> function; |
| { |
| Pointer<Int4> vIn = function.Arg<0>(); |
| Pointer<Int4> resultIn = function.Arg<1>(); |
| |
| RValue<Int4> v = *vIn; |
| |
| Int4 result(678); |
| |
| If(Extract(v, 0) == 42) |
| { |
| result = Insert(result, 1, 0); |
| } |
| |
| If(Extract(v, 1) == 42) |
| { |
| result = Insert(result, 1, 1); |
| } |
| |
| *resultIn = result; |
| |
| Return(); |
| } |
| |
| auto routine = function(testName().c_str()); |
| auto entry = (void (*)(int *, int *))routine->getEntry(); |
| |
| int v[4] = { 42, 42, 42, 42 }; |
| int result[4] = { 99, 99, 99, 99 }; |
| entry(v, result); |
| EXPECT_EQ(result[0], 1); |
| EXPECT_EQ(result[1], 1); |
| EXPECT_EQ(result[2], 678); |
| EXPECT_EQ(result[3], 678); |
| } |
| |
| TEST(ReactorUnitTests, AddAtomic) |
| { |
| FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; |
| { |
| Pointer<UInt> p = function.Arg<0>(); |
| UInt a = function.Arg<1>(); |
| UInt r = rr::AddAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 123; |
| uint32_t y = 456; |
| uint32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, 123u); |
| EXPECT_EQ(x, 579u); |
| } |
| |
| TEST(ReactorUnitTests, SubAtomic) |
| { |
| FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; |
| { |
| Pointer<UInt> p = function.Arg<0>(); |
| UInt a = function.Arg<1>(); |
| UInt r = rr::SubAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 456; |
| uint32_t y = 123; |
| uint32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, 456u); |
| EXPECT_EQ(x, 333u); |
| } |
| |
| TEST(ReactorUnitTests, AndAtomic) |
| { |
| FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; |
| { |
| Pointer<UInt> p = function.Arg<0>(); |
| UInt a = function.Arg<1>(); |
| UInt r = rr::AndAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 0b1111'0000; |
| uint32_t y = 0b1010'1100; |
| uint32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, 0b1111'0000u); |
| EXPECT_EQ(x, 0b1010'0000u); |
| } |
| |
| TEST(ReactorUnitTests, OrAtomic) |
| { |
| FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; |
| { |
| Pointer<UInt> p = function.Arg<0>(); |
| UInt a = function.Arg<1>(); |
| UInt r = rr::OrAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 0b1111'0000; |
| uint32_t y = 0b1010'1100; |
| uint32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, 0b1111'0000u); |
| EXPECT_EQ(x, 0b1111'1100u); |
| } |
| |
| TEST(ReactorUnitTests, XorAtomic) |
| { |
| FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; |
| { |
| Pointer<UInt> p = function.Arg<0>(); |
| UInt a = function.Arg<1>(); |
| UInt r = rr::XorAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 0b1111'0000; |
| uint32_t y = 0b1010'1100; |
| uint32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, 0b1111'0000u); |
| EXPECT_EQ(x, 0b0101'1100u); |
| } |
| |
| TEST(ReactorUnitTests, MinAtomic) |
| { |
| { |
| FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; |
| { |
| Pointer<UInt> p = function.Arg<0>(); |
| UInt a = function.Arg<1>(); |
| UInt r = rr::MinAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 123; |
| uint32_t y = 100; |
| uint32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, 123u); |
| EXPECT_EQ(x, 100u); |
| } |
| |
| { |
| FunctionT<int32_t(int32_t * p, int32_t a)> function; |
| { |
| Pointer<Int> p = function.Arg<0>(); |
| Int a = function.Arg<1>(); |
| Int r = rr::MinAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| int32_t x = -123; |
| int32_t y = -200; |
| int32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, -123); |
| EXPECT_EQ(x, -200); |
| } |
| } |
| |
| TEST(ReactorUnitTests, MaxAtomic) |
| { |
| { |
| FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; |
| { |
| Pointer<UInt> p = function.Arg<0>(); |
| UInt a = function.Arg<1>(); |
| UInt r = rr::MaxAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 123; |
| uint32_t y = 100; |
| uint32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, 123u); |
| EXPECT_EQ(x, 123u); |
| } |
| |
| { |
| FunctionT<int32_t(int32_t * p, int32_t a)> function; |
| { |
| Pointer<Int> p = function.Arg<0>(); |
| Int a = function.Arg<1>(); |
| Int r = rr::MaxAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| int32_t x = -123; |
| int32_t y = -200; |
| int32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, -123); |
| EXPECT_EQ(x, -123); |
| } |
| } |
| |
| TEST(ReactorUnitTests, ExchangeAtomic) |
| { |
| FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; |
| { |
| Pointer<UInt> p = function.Arg<0>(); |
| UInt a = function.Arg<1>(); |
| UInt r = rr::ExchangeAtomic(p, a, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 123; |
| uint32_t y = 456; |
| uint32_t prevX = routine(&x, y); |
| EXPECT_EQ(prevX, 123u); |
| EXPECT_EQ(x, y); |
| } |
| |
| TEST(ReactorUnitTests, CompareExchangeAtomic) |
| { |
| FunctionT<uint32_t(uint32_t * x, uint32_t y, uint32_t compare)> function; |
| { |
| Pointer<UInt> x = function.Arg<0>(); |
| UInt y = function.Arg<1>(); |
| UInt compare = function.Arg<2>(); |
| UInt r = rr::CompareExchangeAtomic(x, y, compare, std::memory_order_relaxed, std::memory_order_relaxed); |
| Return(r); |
| } |
| |
| auto routine = function(testName().c_str()); |
| uint32_t x = 123; |
| uint32_t y = 456; |
| uint32_t compare = 123; |
| uint32_t prevX = routine(&x, y, compare); |
| EXPECT_EQ(prevX, 123u); |
| EXPECT_EQ(x, y); |
| |
| x = 123; |
| y = 456; |
| compare = 456; |
| prevX = routine(&x, y, compare); |
| EXPECT_EQ(prevX, 123u); |
| EXPECT_EQ(x, 123u); |
| } |
| |
| TEST(ReactorUnitTests, SRem) |
| { |
| FunctionT<void(int4 *, int4 *)> function; |
| { |
| Pointer<Int4> a = function.Arg<0>(); |
| Pointer<Int4> b = function.Arg<1>(); |
| *a = *a % *b; |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| int4_value result = invokeRoutine(routine, int4_value{ 10, 11, 12, 13 }, int4_value{ 3, 3, 3, 3 }); |
| int4_value expected = int4_value{ 10 % 3, 11 % 3, 12 % 3, 13 % 3 }; |
| EXPECT_FLOAT_EQ(result.v[0], expected.v[0]); |
| EXPECT_FLOAT_EQ(result.v[1], expected.v[1]); |
| EXPECT_FLOAT_EQ(result.v[2], expected.v[2]); |
| EXPECT_FLOAT_EQ(result.v[3], expected.v[3]); |
| } |
| |
| TEST(ReactorUnitTests, FRem) |
| { |
| FunctionT<void(float4 *, float4 *)> function; |
| { |
| Pointer<Float4> a = function.Arg<0>(); |
| Pointer<Float4> b = function.Arg<1>(); |
| *a = *a % *b; |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| float4_value result = invokeRoutine(routine, float4_value{ 10.1f, 11.2f, 12.3f, 13.4f }, float4_value{ 3.f, 3.f, 3.f, 3.f }); |
| float4_value expected = float4_value{ fmodf(10.1f, 3.f), fmodf(11.2f, 3.f), fmodf(12.3f, 3.f), fmodf(13.4f, 3.f) }; |
| EXPECT_FLOAT_EQ(result.v[0], expected.v[0]); |
| EXPECT_FLOAT_EQ(result.v[1], expected.v[1]); |
| EXPECT_FLOAT_EQ(result.v[2], expected.v[2]); |
| EXPECT_FLOAT_EQ(result.v[3], expected.v[3]); |
| } |
| |
| // Subzero's load instruction assumes that a Constant ptr value is an offset, rather than an absolute |
| // pointer, and would fail during codegen. This was fixed by casting the constant to a non-const |
| // variable, and loading from it instead. This test makes sure this works. |
| TEST(ReactorUnitTests, LoadFromConstantData) |
| { |
| const int value = 123; |
| |
| FunctionT<int()> function; |
| { |
| auto p = Pointer<Int>{ ConstantData(&value, sizeof(value)) }; |
| Int v = *p; |
| Return(v); |
| } |
| |
| const int result = function(testName().c_str())(); |
| EXPECT_EQ(result, value); |
| } |
| |
| TEST(ReactorUnitTests, Multithreaded_Function) |
| { |
| constexpr int numThreads = 8; |
| constexpr int numLoops = 16; |
| |
| auto threads = std::unique_ptr<std::thread[]>(new std::thread[numThreads]); |
| auto results = std::unique_ptr<int[]>(new int[numThreads * numLoops]); |
| |
| for(int t = 0; t < numThreads; t++) |
| { |
| auto threadFunc = [&](int t) { |
| for(int l = 0; l < numLoops; l++) |
| { |
| FunctionT<int(int, int)> function; |
| { |
| Int a = function.Arg<0>(); |
| Int b = function.Arg<1>(); |
| Return((a << 16) | b); |
| } |
| |
| auto f = function("%s_thread%d_loop%d", testName().c_str(), t, l); |
| results[t * numLoops + l] = f(t, l); |
| } |
| }; |
| threads[t] = std::thread(threadFunc, t); |
| } |
| |
| for(int t = 0; t < numThreads; t++) |
| { |
| threads[t].join(); |
| } |
| |
| for(int t = 0; t < numThreads; t++) |
| { |
| for(int l = 0; l < numLoops; l++) |
| { |
| auto expect = (t << 16) | l; |
| auto result = results[t * numLoops + l]; |
| EXPECT_EQ(result, expect); |
| } |
| } |
| } |
| |
| TEST(ReactorUnitTests, Multithreaded_Coroutine) |
| { |
| if(!rr::Caps::coroutinesSupported()) |
| { |
| SUCCEED() << "Coroutines not supported"; |
| return; |
| } |
| |
| constexpr int numThreads = 8; |
| constexpr int numLoops = 16; |
| |
| struct Result |
| { |
| bool yieldReturns[3]; |
| int yieldValues[3]; |
| }; |
| |
| auto threads = std::unique_ptr<std::thread[]>(new std::thread[numThreads]); |
| auto results = std::unique_ptr<Result[]>(new Result[numThreads * numLoops]); |
| |
| for(int t = 0; t < numThreads; t++) |
| { |
| auto threadFunc = [&](int t) { |
| for(int l = 0; l < numLoops; l++) |
| { |
| Coroutine<int(int, int)> function; |
| { |
| Int a = function.Arg<0>(); |
| Int b = function.Arg<1>(); |
| Yield(a); |
| Yield(b); |
| } |
| function.finalize((testName() + "_thread" + std::to_string(t) + "_loop" + std::to_string(l)).c_str()); |
| |
| auto coroutine = function(t, l); |
| |
| auto &result = results[t * numLoops + l]; |
| result = {}; |
| result.yieldReturns[0] = coroutine->await(result.yieldValues[0]); |
| result.yieldReturns[1] = coroutine->await(result.yieldValues[1]); |
| result.yieldReturns[2] = coroutine->await(result.yieldValues[2]); |
| } |
| }; |
| threads[t] = std::thread(threadFunc, t); |
| } |
| |
| for(int t = 0; t < numThreads; t++) |
| { |
| threads[t].join(); |
| } |
| |
| for(int t = 0; t < numThreads; t++) |
| { |
| for(int l = 0; l < numLoops; l++) |
| { |
| auto const &result = results[t * numLoops + l]; |
| EXPECT_EQ(result.yieldReturns[0], true); |
| EXPECT_EQ(result.yieldValues[0], t); |
| EXPECT_EQ(result.yieldReturns[1], true); |
| EXPECT_EQ(result.yieldValues[1], l); |
| EXPECT_EQ(result.yieldReturns[2], false); |
| EXPECT_EQ(result.yieldValues[2], 0); |
| } |
| } |
| } |
| |
| // For gtest printing of pairs |
| namespace std { |
| template<typename T, typename U> |
| std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &value) |
| { |
| return os << "{ " << value.first << ", " << value.second << " }"; |
| } |
| } // namespace std |
| |
| class StdOutCapture |
| { |
| public: |
| ~StdOutCapture() |
| { |
| stopIfCapturing(); |
| } |
| |
| void start() |
| { |
| stopIfCapturing(); |
| capturing = true; |
| testing::internal::CaptureStdout(); |
| } |
| |
| std::string stop() |
| { |
| assert(capturing); |
| capturing = false; |
| return testing::internal::GetCapturedStdout(); |
| } |
| |
| private: |
| void stopIfCapturing() |
| { |
| if(capturing) |
| { |
| // This stops the capture |
| testing::internal::GetCapturedStdout(); |
| } |
| } |
| |
| bool capturing = false; |
| }; |
| |
| std::vector<std::string> split(const std::string &s) |
| { |
| std::vector<std::string> result; |
| std::istringstream iss(s); |
| for(std::string line; std::getline(iss, line);) |
| { |
| result.push_back(line); |
| } |
| return result; |
| } |
| |
| TEST(ReactorUnitTests, PrintPrimitiveTypes) |
| { |
| #if defined(ENABLE_RR_PRINT) && !defined(ENABLE_RR_EMIT_PRINT_LOCATION) |
| FunctionT<void()> function; |
| { |
| bool b(true); |
| int8_t i8(-1); |
| uint8_t ui8(1); |
| int16_t i16(-1); |
| uint16_t ui16(1); |
| int32_t i32(-1); |
| uint32_t ui32(1); |
| int64_t i64(-1); |
| uint64_t ui64(1); |
| float f(1); |
| double d(2); |
| const char *cstr = "const char*"; |
| std::string str = "std::string"; |
| int *p = nullptr; |
| |
| RR_WATCH(b); |
| RR_WATCH(i8); |
| RR_WATCH(ui8); |
| RR_WATCH(i16); |
| RR_WATCH(ui16); |
| RR_WATCH(i32); |
| RR_WATCH(ui32); |
| RR_WATCH(i64); |
| RR_WATCH(ui64); |
| RR_WATCH(f); |
| RR_WATCH(d); |
| RR_WATCH(cstr); |
| RR_WATCH(str); |
| RR_WATCH(p); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| char pNullptr[64]; |
| snprintf(pNullptr, sizeof(pNullptr), " p: %p", nullptr); |
| |
| const char *expected[] = { |
| " b: true", |
| " i8: -1", |
| " ui8: 1", |
| " i16: -1", |
| " ui16: 1", |
| " i32: -1", |
| " ui32: 1", |
| " i64: -1", |
| " ui64: 1", |
| " f: 1.000000", |
| " d: 2.000000", |
| " cstr: const char*", |
| " str: std::string", |
| pNullptr, |
| }; |
| constexpr size_t expectedSize = sizeof(expected) / sizeof(expected[0]); |
| |
| StdOutCapture capture; |
| capture.start(); |
| routine(); |
| auto output = split(capture.stop()); |
| for(size_t i = 0, j = 1; i < expectedSize; ++i, j += 2) |
| { |
| ASSERT_EQ(expected[i], output[j]); |
| } |
| |
| #endif |
| } |
| |
| TEST(ReactorUnitTests, PrintReactorTypes) |
| { |
| #if defined(ENABLE_RR_PRINT) && !defined(ENABLE_RR_EMIT_PRINT_LOCATION) |
| FunctionT<void()> function; |
| { |
| Bool b(true); |
| Int i(-1); |
| Int2 i2(-1, -2); |
| Int4 i4(-1, -2, -3, -4); |
| UInt ui(1); |
| UInt2 ui2(1, 2); |
| UInt4 ui4(1, 2, 3, 4); |
| Short s(-1); |
| Short4 s4(-1, -2, -3, -4); |
| UShort us(1); |
| UShort4 us4(1, 2, 3, 4); |
| Float f(1); |
| Float4 f4(1, 2, 3, 4); |
| Long l(i); |
| Pointer<Int> pi = nullptr; |
| RValue<Int> rvi = i; |
| Byte by('a'); |
| Byte4 by4(i4); |
| |
| RR_WATCH(b); |
| RR_WATCH(i); |
| RR_WATCH(i2); |
| RR_WATCH(i4); |
| RR_WATCH(ui); |
| RR_WATCH(ui2); |
| RR_WATCH(ui4); |
| RR_WATCH(s); |
| RR_WATCH(s4); |
| RR_WATCH(us); |
| RR_WATCH(us4); |
| RR_WATCH(f); |
| RR_WATCH(f4); |
| RR_WATCH(l); |
| RR_WATCH(pi); |
| RR_WATCH(rvi); |
| RR_WATCH(by); |
| RR_WATCH(by4); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| char piNullptr[64]; |
| snprintf(piNullptr, sizeof(piNullptr), " pi: %p", nullptr); |
| |
| const char *expected[] = { |
| " b: true", |
| " i: -1", |
| " i2: [-1, -2]", |
| " i4: [-1, -2, -3, -4]", |
| " ui: 1", |
| " ui2: [1, 2]", |
| " ui4: [1, 2, 3, 4]", |
| " s: -1", |
| " s4: [-1, -2, -3, -4]", |
| " us: 1", |
| " us4: [1, 2, 3, 4]", |
| " f: 1.000000", |
| " f4: [1.000000, 2.000000, 3.000000, 4.000000]", |
| " l: -1", |
| piNullptr, |
| " rvi: -1", |
| " by: 97", |
| " by4: [255, 254, 253, 252]", |
| }; |
| constexpr size_t expectedSize = sizeof(expected) / sizeof(expected[0]); |
| |
| StdOutCapture capture; |
| capture.start(); |
| routine(); |
| auto output = split(capture.stop()); |
| for(size_t i = 0, j = 1; i < expectedSize; ++i, j += 2) |
| { |
| ASSERT_EQ(expected[i], output[j]); |
| } |
| |
| #endif |
| } |
| |
| // Test constant <op> variable |
| template<typename T, typename Func> |
| T Arithmetic_LhsConstArg(T arg1, T arg2, Func f) |
| { |
| using ReactorT = CToReactorT<T>; |
| |
| FunctionT<T(T)> function; |
| { |
| ReactorT lhs = arg1; |
| ReactorT rhs = function.template Arg<0>(); |
| ReactorT result = f(lhs, rhs); |
| Return(result); |
| } |
| |
| auto routine = function(testName().c_str()); |
| return routine(arg2); |
| } |
| |
| // Test variable <op> constant |
| template<typename T, typename Func> |
| T Arithmetic_RhsConstArg(T arg1, T arg2, Func f) |
| { |
| using ReactorT = CToReactorT<T>; |
| |
| FunctionT<T(T)> function; |
| { |
| ReactorT lhs = function.template Arg<0>(); |
| ReactorT rhs = arg2; |
| ReactorT result = f(lhs, rhs); |
| Return(result); |
| } |
| |
| auto routine = function(testName().c_str()); |
| return routine(arg1); |
| } |
| |
| // Test constant <op> constant |
| template<typename T, typename Func> |
| T Arithmetic_TwoConstArgs(T arg1, T arg2, Func f) |
| { |
| using ReactorT = CToReactorT<T>; |
| |
| FunctionT<T()> function; |
| { |
| ReactorT lhs = arg1; |
| ReactorT rhs = arg2; |
| ReactorT result = f(lhs, rhs); |
| Return(result); |
| } |
| |
| auto routine = function(testName().c_str()); |
| return routine(); |
| } |
| |
| template<typename T, typename Func> |
| void Arithmetic_ConstArgs(T arg1, T arg2, T expected, Func f) |
| { |
| SCOPED_TRACE(std::to_string(arg1) + " <op> " + std::to_string(arg2) + " = " + std::to_string(expected)); |
| T result{}; |
| result = Arithmetic_LhsConstArg(arg1, arg2, std::forward<Func>(f)); |
| EXPECT_EQ(result, expected); |
| result = Arithmetic_RhsConstArg(arg1, arg2, std::forward<Func>(f)); |
| EXPECT_EQ(result, expected); |
| result = Arithmetic_TwoConstArgs(arg1, arg2, std::forward<Func>(f)); |
| EXPECT_EQ(result, expected); |
| } |
| |
| // Test that we generate valid code for when one or both args to arithmetic operations |
| // are constant. In particular, we want to validate the case for two const args, as |
| // often lowered instructions do not support this case. |
| TEST(ReactorUnitTests, Arithmetic_ConstantArgs) |
| { |
| Arithmetic_ConstArgs(2, 3, 5, [](auto c1, auto c2) { return c1 + c2; }); |
| Arithmetic_ConstArgs(5, 3, 2, [](auto c1, auto c2) { return c1 - c2; }); |
| Arithmetic_ConstArgs(2, 3, 6, [](auto c1, auto c2) { return c1 * c2; }); |
| Arithmetic_ConstArgs(6, 3, 2, [](auto c1, auto c2) { return c1 / c2; }); |
| Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0xA0A0, [](auto c1, auto c2) { return c1 & c2; }); |
| Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0xFAFA, [](auto c1, auto c2) { return c1 | c2; }); |
| Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0x5A5A, [](auto c1, auto c2) { return c1 ^ c2; }); |
| |
| Arithmetic_ConstArgs(2.f, 3.f, 5.f, [](auto c1, auto c2) { return c1 + c2; }); |
| Arithmetic_ConstArgs(5.f, 3.f, 2.f, [](auto c1, auto c2) { return c1 - c2; }); |
| Arithmetic_ConstArgs(2.f, 3.f, 6.f, [](auto c1, auto c2) { return c1 * c2; }); |
| Arithmetic_ConstArgs(6.f, 3.f, 2.f, [](auto c1, auto c2) { return c1 / c2; }); |
| } |
| |
| // Test for Subzero bad code-gen that was fixed in swiftshader-cl/50008 |
| // This tests the case of copying enough arguments to local variables so that the locals |
| // get spilled to the stack when no more registers remain, and making sure these copies |
| // are generated correctly. Without the aforementioned fix, this fails 100% on Windows x86. |
| TEST(ReactorUnitTests, SpillLocalCopiesOfArgs) |
| { |
| struct Helpers |
| { |
| static bool True() { return true; } |
| }; |
| |
| const int numLoops = 5; // 2 should be enough, but loop more to make sure |
| |
| FunctionT<int(int, int, int, int, int, int, int, int, int, int, int, int)> function; |
| { |
| Int result = 0; |
| Int a1 = function.Arg<0>(); |
| Int a2 = function.Arg<1>(); |
| Int a3 = function.Arg<2>(); |
| Int a4 = function.Arg<3>(); |
| Int a5 = function.Arg<4>(); |
| Int a6 = function.Arg<5>(); |
| Int a7 = function.Arg<6>(); |
| Int a8 = function.Arg<7>(); |
| Int a9 = function.Arg<8>(); |
| Int a10 = function.Arg<9>(); |
| Int a11 = function.Arg<10>(); |
| Int a12 = function.Arg<11>(); |
| |
| for(int i = 0; i < numLoops; ++i) |
| { |
| // Copy all arguments to locals so that Ice::LocalVariableSplitter::handleSimpleVarAssign |
| // creates Variable copies of arguments. We loop so that we create enough of these so |
| // that some spill over to the stack. |
| Int i1 = a1; |
| Int i2 = a2; |
| Int i3 = a3; |
| Int i4 = a4; |
| Int i5 = a5; |
| Int i6 = a6; |
| Int i7 = a7; |
| Int i8 = a8; |
| Int i9 = a9; |
| Int i10 = a10; |
| Int i11 = a11; |
| Int i12 = a12; |
| |
| // Forcibly materialize all variables so that Ice::Variable instances are created for each |
| // local; otherwise, Reactor r-value optimizations kick in, and the locals are elided. |
| Variable::materializeAll(); |
| |
| // We also need to create a separate block that uses the variables declared above |
| // so that rr::optimize() doesn't optimize them out when attempting to eliminate stores |
| // followed by a load in the same block. |
| If(Call(Helpers::True)) |
| { |
| result += (i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12); |
| } |
| } |
| |
| Return(result); |
| } |
| |
| auto routine = function(testName().c_str()); |
| int result = routine(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); |
| int expected = numLoops * (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12); |
| EXPECT_EQ(result, expected); |
| } |
| |
| #if defined(ENABLE_RR_EMIT_ASM_FILE) |
| TEST(ReactorUnitTests, EmitAsm) |
| { |
| // Only supported by LLVM for now |
| if(Caps::backendName().find("LLVM") == std::string::npos) return; |
| |
| namespace fs = std::filesystem; |
| |
| FunctionT<int(void)> function; |
| { |
| Int sum; |
| For(Int i = 0, i < 10, i++) |
| { |
| sum += i; |
| } |
| Return(sum); |
| } |
| |
| auto routine = function(testName().c_str()); |
| |
| // Returns path to first match of filename in current directory |
| auto findFile = [](const std::string filename) -> fs::path { |
| for(auto &p : fs::directory_iterator(".")) |
| { |
| if(!p.is_regular_file()) |
| continue; |
| auto currFilename = p.path().filename().string(); |
| auto index = currFilename.find(testName()); |
| if(index != std::string::npos) |
| { |
| return p.path(); |
| } |
| } |
| return {}; |
| }; |
| |
| fs::path path = findFile(testName()); |
| EXPECT_FALSE(path.empty()); |
| |
| // Make sure an asm file was created |
| std::ifstream fin(path); |
| EXPECT_TRUE(fin); |
| |
| // Make sure address of routine is in the file |
| auto findAddressInFile = [](std::ifstream &fin, size_t address) { |
| std::string addressString = [&] { |
| std::stringstream addressSS; |
| addressSS << "0x" << std::uppercase << std::hex << address; |
| return addressSS.str(); |
| }(); |
| |
| std::string token; |
| while(fin >> token) |
| { |
| if(token.find(addressString) != std::string::npos) |
| return true; |
| } |
| return false; |
| }; |
| |
| size_t address = reinterpret_cast<size_t>(routine.getEntry()); |
| EXPECT_TRUE(findAddressInFile(fin, address)); |
| |
| // Delete the file in case subsequent runs generate one with a different sequence number |
| fin.close(); |
| std::filesystem::remove(path); |
| } |
| #endif |
| |
| //////////////////////////////// |
| // Trait compile time checks. // |
| //////////////////////////////// |
| |
| // Assert CToReactorT resolves to expected types. |
| static_assert(std::is_same<CToReactorT<void>, Void>::value, ""); |
| static_assert(std::is_same<CToReactorT<bool>, Bool>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint8_t>, Byte>::value, ""); |
| static_assert(std::is_same<CToReactorT<int8_t>, SByte>::value, ""); |
| static_assert(std::is_same<CToReactorT<int16_t>, Short>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint16_t>, UShort>::value, ""); |
| static_assert(std::is_same<CToReactorT<int32_t>, Int>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint64_t>, Long>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint32_t>, UInt>::value, ""); |
| static_assert(std::is_same<CToReactorT<float>, Float>::value, ""); |
| |
| // Assert CToReactorT for known pointer types resolves to expected types. |
| static_assert(std::is_same<CToReactorT<void *>, Pointer<Byte>>::value, ""); |
| static_assert(std::is_same<CToReactorT<bool *>, Pointer<Bool>>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint8_t *>, Pointer<Byte>>::value, ""); |
| static_assert(std::is_same<CToReactorT<int8_t *>, Pointer<SByte>>::value, ""); |
| static_assert(std::is_same<CToReactorT<int16_t *>, Pointer<Short>>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint16_t *>, Pointer<UShort>>::value, ""); |
| static_assert(std::is_same<CToReactorT<int32_t *>, Pointer<Int>>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint64_t *>, Pointer<Long>>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint32_t *>, Pointer<UInt>>::value, ""); |
| static_assert(std::is_same<CToReactorT<float *>, Pointer<Float>>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint16_t **>, Pointer<Pointer<UShort>>>::value, ""); |
| static_assert(std::is_same<CToReactorT<uint16_t ***>, Pointer<Pointer<Pointer<UShort>>>>::value, ""); |
| |
| // Assert CToReactorT for unknown pointer types resolves to Pointer<Byte>. |
| struct S |
| {}; |
| static_assert(std::is_same<CToReactorT<S *>, Pointer<Byte>>::value, ""); |
| static_assert(std::is_same<CToReactorT<S **>, Pointer<Pointer<Byte>>>::value, ""); |
| static_assert(std::is_same<CToReactorT<S ***>, Pointer<Pointer<Pointer<Byte>>>>::value, ""); |
| |
| // Assert IsRValue<> resolves true for RValue<> types. |
| static_assert(IsRValue<RValue<Void>>::value, ""); |
| static_assert(IsRValue<RValue<Bool>>::value, ""); |
| static_assert(IsRValue<RValue<Byte>>::value, ""); |
| static_assert(IsRValue<RValue<SByte>>::value, ""); |
| static_assert(IsRValue<RValue<Short>>::value, ""); |
| static_assert(IsRValue<RValue<UShort>>::value, ""); |
| static_assert(IsRValue<RValue<Int>>::value, ""); |
| static_assert(IsRValue<RValue<Long>>::value, ""); |
| static_assert(IsRValue<RValue<UInt>>::value, ""); |
| static_assert(IsRValue<RValue<Float>>::value, ""); |
| |
| // Assert IsLValue<> resolves true for LValue types. |
| static_assert(IsLValue<Bool>::value, ""); |
| static_assert(IsLValue<Byte>::value, ""); |
| static_assert(IsLValue<SByte>::value, ""); |
| static_assert(IsLValue<Short>::value, ""); |
| static_assert(IsLValue<UShort>::value, ""); |
| static_assert(IsLValue<Int>::value, ""); |
| static_assert(IsLValue<Long>::value, ""); |
| static_assert(IsLValue<UInt>::value, ""); |
| static_assert(IsLValue<Float>::value, ""); |
| |
| // Assert IsReference<> resolves true for Reference types. |
| static_assert(IsReference<Reference<Bool>>::value, ""); |
| static_assert(IsReference<Reference<Byte>>::value, ""); |
| static_assert(IsReference<Reference<SByte>>::value, ""); |
| static_assert(IsReference<Reference<Short>>::value, ""); |
| static_assert(IsReference<Reference<UShort>>::value, ""); |
| static_assert(IsReference<Reference<Int>>::value, ""); |
| static_assert(IsReference<Reference<Long>>::value, ""); |
| static_assert(IsReference<Reference<UInt>>::value, ""); |
| static_assert(IsReference<Reference<Float>>::value, ""); |
| |
| // Assert IsRValue<> resolves false for LValue types. |
| static_assert(!IsRValue<Void>::value, ""); |
| static_assert(!IsRValue<Bool>::value, ""); |
| static_assert(!IsRValue<Byte>::value, ""); |
| static_assert(!IsRValue<SByte>::value, ""); |
| static_assert(!IsRValue<Short>::value, ""); |
| static_assert(!IsRValue<UShort>::value, ""); |
| static_assert(!IsRValue<Int>::value, ""); |
| static_assert(!IsRValue<Long>::value, ""); |
| static_assert(!IsRValue<UInt>::value, ""); |
| static_assert(!IsRValue<Float>::value, ""); |
| |
| // Assert IsRValue<> resolves false for Reference types. |
| static_assert(!IsRValue<Reference<Void>>::value, ""); |
| static_assert(!IsRValue<Reference<Bool>>::value, ""); |
| static_assert(!IsRValue<Reference<Byte>>::value, ""); |
| static_assert(!IsRValue<Reference<SByte>>::value, ""); |
| static_assert(!IsRValue<Reference<Short>>::value, ""); |
| static_assert(!IsRValue<Reference<UShort>>::value, ""); |
| static_assert(!IsRValue<Reference<Int>>::value, ""); |
| static_assert(!IsRValue<Reference<Long>>::value, ""); |
| static_assert(!IsRValue<Reference<UInt>>::value, ""); |
| static_assert(!IsRValue<Reference<Float>>::value, ""); |
| |
| // Assert IsRValue<> resolves false for C types. |
| static_assert(!IsRValue<void>::value, ""); |
| static_assert(!IsRValue<bool>::value, ""); |
| static_assert(!IsRValue<uint8_t>::value, ""); |
| static_assert(!IsRValue<int8_t>::value, ""); |
| static_assert(!IsRValue<int16_t>::value, ""); |
| static_assert(!IsRValue<uint16_t>::value, ""); |
| static_assert(!IsRValue<int32_t>::value, ""); |
| static_assert(!IsRValue<uint64_t>::value, ""); |
| static_assert(!IsRValue<uint32_t>::value, ""); |
| static_assert(!IsRValue<float>::value, ""); |
| |
| // Assert IsLValue<> resolves false for RValue<> types. |
| static_assert(!IsLValue<RValue<Void>>::value, ""); |
| static_assert(!IsLValue<RValue<Bool>>::value, ""); |
| static_assert(!IsLValue<RValue<Byte>>::value, ""); |
| static_assert(!IsLValue<RValue<SByte>>::value, ""); |
| static_assert(!IsLValue<RValue<Short>>::value, ""); |
| static_assert(!IsLValue<RValue<UShort>>::value, ""); |
| static_assert(!IsLValue<RValue<Int>>::value, ""); |
| static_assert(!IsLValue<RValue<Long>>::value, ""); |
| static_assert(!IsLValue<RValue<UInt>>::value, ""); |
| static_assert(!IsLValue<RValue<Float>>::value, ""); |
| |
| // Assert IsLValue<> resolves false for Void type. |
| static_assert(!IsLValue<Void>::value, ""); |
| |
| // Assert IsLValue<> resolves false for Reference<> types. |
| static_assert(!IsLValue<Reference<Void>>::value, ""); |
| static_assert(!IsLValue<Reference<Bool>>::value, ""); |
| static_assert(!IsLValue<Reference<Byte>>::value, ""); |
| static_assert(!IsLValue<Reference<SByte>>::value, ""); |
| static_assert(!IsLValue<Reference<Short>>::value, ""); |
| static_assert(!IsLValue<Reference<UShort>>::value, ""); |
| static_assert(!IsLValue<Reference<Int>>::value, ""); |
| static_assert(!IsLValue<Reference<Long>>::value, ""); |
| static_assert(!IsLValue<Reference<UInt>>::value, ""); |
| static_assert(!IsLValue<Reference<Float>>::value, ""); |
| |
| // Assert IsLValue<> resolves false for C types. |
| static_assert(!IsLValue<void>::value, ""); |
| static_assert(!IsLValue<bool>::value, ""); |
| static_assert(!IsLValue<uint8_t>::value, ""); |
| static_assert(!IsLValue<int8_t>::value, ""); |
| static_assert(!IsLValue<int16_t>::value, ""); |
| static_assert(!IsLValue<uint16_t>::value, ""); |
| static_assert(!IsLValue<int32_t>::value, ""); |
| static_assert(!IsLValue<uint64_t>::value, ""); |
| static_assert(!IsLValue<uint32_t>::value, ""); |
| static_assert(!IsLValue<float>::value, ""); |
| |
| // Assert IsDefined<> resolves true for RValue<> types. |
| static_assert(IsDefined<RValue<Void>>::value, ""); |
| static_assert(IsDefined<RValue<Bool>>::value, ""); |
| static_assert(IsDefined<RValue<Byte>>::value, ""); |
| static_assert(IsDefined<RValue<SByte>>::value, ""); |
| static_assert(IsDefined<RValue<Short>>::value, ""); |
| static_assert(IsDefined<RValue<UShort>>::value, ""); |
| static_assert(IsDefined<RValue<Int>>::value, ""); |
| static_assert(IsDefined<RValue<Long>>::value, ""); |
| static_assert(IsDefined<RValue<UInt>>::value, ""); |
| static_assert(IsDefined<RValue<Float>>::value, ""); |
| |
| // Assert IsDefined<> resolves true for LValue types. |
| static_assert(IsDefined<Void>::value, ""); |
| static_assert(IsDefined<Bool>::value, ""); |
| static_assert(IsDefined<Byte>::value, ""); |
| static_assert(IsDefined<SByte>::value, ""); |
| static_assert(IsDefined<Short>::value, ""); |
| static_assert(IsDefined<UShort>::value, ""); |
| static_assert(IsDefined<Int>::value, ""); |
| static_assert(IsDefined<Long>::value, ""); |
| static_assert(IsDefined<UInt>::value, ""); |
| static_assert(IsDefined<Float>::value, ""); |
| |
| // Assert IsDefined<> resolves true for Reference<> types. |
| static_assert(IsDefined<Reference<Bool>>::value, ""); |
| static_assert(IsDefined<Reference<Byte>>::value, ""); |
| static_assert(IsDefined<Reference<SByte>>::value, ""); |
| static_assert(IsDefined<Reference<Short>>::value, ""); |
| static_assert(IsDefined<Reference<UShort>>::value, ""); |
| static_assert(IsDefined<Reference<Int>>::value, ""); |
| static_assert(IsDefined<Reference<Long>>::value, ""); |
| static_assert(IsDefined<Reference<UInt>>::value, ""); |
| static_assert(IsDefined<Reference<Float>>::value, ""); |
| |
| // Assert IsDefined<> resolves true for C types. |
| static_assert(IsDefined<void>::value, ""); |
| static_assert(IsDefined<bool>::value, ""); |
| static_assert(IsDefined<uint8_t>::value, ""); |
| static_assert(IsDefined<int8_t>::value, ""); |
| static_assert(IsDefined<int16_t>::value, ""); |
| static_assert(IsDefined<uint16_t>::value, ""); |
| static_assert(IsDefined<int32_t>::value, ""); |
| static_assert(IsDefined<uint64_t>::value, ""); |
| static_assert(IsDefined<uint32_t>::value, ""); |
| static_assert(IsDefined<float>::value, ""); |