blob: bf2a3fabfa6153b3247e0e70574176674f72db4d [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkBuffer.hpp"
#include "VkBufferView.hpp"
#include "VkCommandBuffer.hpp"
#include "VkCommandPool.hpp"
#include "VkConfig.hpp"
#include "VkDebugUtilsMessenger.hpp"
#include "VkDescriptorPool.hpp"
#include "VkDescriptorSetLayout.hpp"
#include "VkDescriptorUpdateTemplate.hpp"
#include "VkDestroy.hpp"
#include "VkDevice.hpp"
#include "VkDeviceMemory.hpp"
#include "VkEvent.hpp"
#include "VkFence.hpp"
#include "VkFramebuffer.hpp"
#include "VkGetProcAddress.hpp"
#include "VkImage.hpp"
#include "VkImageView.hpp"
#include "VkInstance.hpp"
#include "VkPhysicalDevice.hpp"
#include "VkPipeline.hpp"
#include "VkPipelineCache.hpp"
#include "VkPipelineLayout.hpp"
#include "VkQueryPool.hpp"
#include "VkQueue.hpp"
#include "VkRenderPass.hpp"
#include "VkSampler.hpp"
#include "VkSemaphore.hpp"
#include "VkShaderModule.hpp"
#include "VkStringify.hpp"
#include "VkTimelineSemaphore.hpp"
#include "Reactor/Nucleus.hpp"
#include "System/CPUID.hpp"
#include "System/Debug.hpp"
#include "WSI/HeadlessSurfaceKHR.hpp"
#include "WSI/VkSwapchainKHR.hpp"
#if defined(VK_USE_PLATFORM_METAL_EXT) || defined(VK_USE_PLATFORM_MACOS_MVK)
# include "WSI/MetalSurface.hpp"
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
# include "WSI/XcbSurfaceKHR.hpp"
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
# include "WSI/XlibSurfaceKHR.hpp"
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
# include "WSI/WaylandSurfaceKHR.hpp"
#endif
#ifdef VK_USE_PLATFORM_DIRECTFB_EXT
# include "WSI/DirectFBSurfaceEXT.hpp"
#endif
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
# include "WSI/DisplaySurfaceKHR.hpp"
#endif
#ifdef VK_USE_PLATFORM_WIN32_KHR
# include "WSI/Win32SurfaceKHR.hpp"
#endif
#include "marl/mutex.h"
#include "marl/scheduler.h"
#include "marl/thread.h"
#include "marl/tsa.h"
#ifdef __ANDROID__
# include "commit.h"
# include "System/GrallocAndroid.hpp"
# include <android/log.h>
# include <hardware/gralloc1.h>
# include <sync/sync.h>
# ifdef SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER
# include "VkDeviceMemoryExternalAndroid.hpp"
# endif
#endif
#include <algorithm>
#include <cinttypes>
#include <cstring>
#include <functional>
#include <map>
#include <string>
namespace {
// Enable commit_id.py and #include commit.h for other platforms.
#if defined(__ANDROID__) && defined(ENABLE_BUILD_VERSION_OUTPUT)
void logBuildVersionInformation()
{
// TODO(b/144093703): Don't call __android_log_print() directly
__android_log_print(ANDROID_LOG_INFO, "SwiftShader", "SwiftShader Version: %s", SWIFTSHADER_VERSION_STRING);
}
#endif // __ANDROID__ && ENABLE_BUILD_VERSION_OUTPUT
// setReactorDefaultConfig() sets the default configuration for Vulkan's use of
// Reactor.
void setReactorDefaultConfig()
{
auto cfg = rr::Config::Edit()
.set(rr::Optimization::Level::Default)
.clearOptimizationPasses()
.add(rr::Optimization::Pass::ScalarReplAggregates)
.add(rr::Optimization::Pass::SCCP)
.add(rr::Optimization::Pass::CFGSimplification)
.add(rr::Optimization::Pass::EarlyCSEPass)
.add(rr::Optimization::Pass::CFGSimplification)
.add(rr::Optimization::Pass::InstructionCombining);
rr::Nucleus::adjustDefaultConfig(cfg);
}
std::shared_ptr<marl::Scheduler> getOrCreateScheduler()
{
struct Scheduler
{
marl::mutex mutex;
std::weak_ptr<marl::Scheduler> weakptr GUARDED_BY(mutex);
};
static Scheduler scheduler;
marl::lock lock(scheduler.mutex);
auto sptr = scheduler.weakptr.lock();
if(!sptr)
{
marl::Scheduler::Config cfg;
cfg.setWorkerThreadCount(std::min<size_t>(marl::Thread::numLogicalCPUs(), 16));
cfg.setWorkerThreadInitializer([](int) {
sw::CPUID::setFlushToZero(true);
sw::CPUID::setDenormalsAreZero(true);
});
sptr = std::make_shared<marl::Scheduler>(cfg);
scheduler.weakptr = sptr;
}
return sptr;
}
// initializeLibrary() is called by vkCreateInstance() to perform one-off global
// initialization of the swiftshader driver.
void initializeLibrary()
{
static bool doOnce = [] {
#if defined(__ANDROID__) && defined(ENABLE_BUILD_VERSION_OUTPUT)
logBuildVersionInformation();
#endif // __ANDROID__ && ENABLE_BUILD_VERSION_OUTPUT
setReactorDefaultConfig();
return true;
}();
(void)doOnce;
}
template<class T>
void ValidateRenderPassPNextChain(VkDevice device, const T *pCreateInfo)
{
const VkBaseInStructure *extensionCreateInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
while(extensionCreateInfo)
{
switch(extensionCreateInfo->sType)
{
case VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO:
{
const VkRenderPassInputAttachmentAspectCreateInfo *inputAttachmentAspectCreateInfo = reinterpret_cast<const VkRenderPassInputAttachmentAspectCreateInfo *>(extensionCreateInfo);
for(uint32_t i = 0; i < inputAttachmentAspectCreateInfo->aspectReferenceCount; i++)
{
const auto &aspectReference = inputAttachmentAspectCreateInfo->pAspectReferences[i];
ASSERT(aspectReference.subpass < pCreateInfo->subpassCount);
const auto &subpassDescription = pCreateInfo->pSubpasses[aspectReference.subpass];
ASSERT(aspectReference.inputAttachmentIndex < subpassDescription.inputAttachmentCount);
const auto &attachmentReference = subpassDescription.pInputAttachments[aspectReference.inputAttachmentIndex];
if(attachmentReference.attachment != VK_ATTACHMENT_UNUSED)
{
// If the pNext chain includes an instance of VkRenderPassInputAttachmentAspectCreateInfo, for any
// element of the pInputAttachments member of any element of pSubpasses where the attachment member
// is not VK_ATTACHMENT_UNUSED, the aspectMask member of the corresponding element of
// VkRenderPassInputAttachmentAspectCreateInfo::pAspectReferences must only include aspects that are
// present in images of the format specified by the element of pAttachments at attachment
vk::Format format(pCreateInfo->pAttachments[attachmentReference.attachment].format);
bool isDepth = format.isDepth();
bool isStencil = format.isStencil();
ASSERT(!(aspectReference.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) || (!isDepth && !isStencil));
ASSERT(!(aspectReference.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) || isDepth);
ASSERT(!(aspectReference.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) || isStencil);
}
}
}
break;
case VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO:
{
const VkRenderPassMultiviewCreateInfo *multiviewCreateInfo = reinterpret_cast<const VkRenderPassMultiviewCreateInfo *>(extensionCreateInfo);
ASSERT((multiviewCreateInfo->subpassCount == 0) || (multiviewCreateInfo->subpassCount == pCreateInfo->subpassCount));
ASSERT((multiviewCreateInfo->dependencyCount == 0) || (multiviewCreateInfo->dependencyCount == pCreateInfo->dependencyCount));
bool zeroMask = (multiviewCreateInfo->pViewMasks[0] == 0);
for(uint32_t i = 1; i < multiviewCreateInfo->subpassCount; i++)
{
ASSERT((multiviewCreateInfo->pViewMasks[i] == 0) == zeroMask);
}
if(zeroMask)
{
ASSERT(multiviewCreateInfo->correlationMaskCount == 0);
}
for(uint32_t i = 0; i < multiviewCreateInfo->dependencyCount; i++)
{
const auto &dependency = pCreateInfo->pDependencies[i];
if(multiviewCreateInfo->pViewOffsets[i] != 0)
{
ASSERT(dependency.srcSubpass != dependency.dstSubpass);
ASSERT(dependency.dependencyFlags & VK_DEPENDENCY_VIEW_LOCAL_BIT);
}
if(zeroMask)
{
ASSERT(!(dependency.dependencyFlags & VK_DEPENDENCY_VIEW_LOCAL_BIT));
}
}
// If the pNext chain includes an instance of VkRenderPassMultiviewCreateInfo,
// each element of its pViewMask member must not include a bit at a position
// greater than the value of VkPhysicalDeviceLimits::maxFramebufferLayers
// pViewMask is a 32 bit value. If maxFramebufferLayers > 32, it's impossible
// for pViewMask to contain a bit at an illegal position
// Note: Verify pViewMask values instead if we hit this assert
ASSERT(vk::Cast(device)->getPhysicalDevice()->getProperties().limits.maxFramebufferLayers >= 32);
}
break;
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str());
break;
}
extensionCreateInfo = extensionCreateInfo->pNext;
}
}
} // namespace
extern "C" {
VK_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName)
{
TRACE("(VkInstance instance = %p, const char* pName = %p)", instance, pName);
return vk::GetInstanceProcAddr(vk::Cast(instance), pName);
}
VK_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
{
*pSupportedVersion = 3;
return VK_SUCCESS;
}
#if VK_USE_PLATFORM_FUCHSIA
// This symbol must be exported by a Fuchsia Vulkan ICD. The Vulkan loader will
// call it, passing the address of a global function pointer that can later be
// used at runtime to connect to Fuchsia FIDL services, as required by certain
// extensions. See https://fxbug.dev/13095 for more details.
//
// NOTE: This entry point has not been upstreamed to Khronos yet, which reserves
// all symbols starting with vk_icd. See https://fxbug.dev/13074 which
// tracks upstreaming progress.
VK_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vk_icdInitializeConnectToServiceCallback(
PFN_vkConnectToService callback)
{
TRACE("(callback = %p)", callback);
vk::icdFuchsiaServiceConnectCallback = callback;
return VK_SUCCESS;
}
#endif // VK_USE_PLATFORM_FUCHSIA
struct ExtensionProperties : public VkExtensionProperties
{
std::function<bool()> isSupported = [] { return true; };
};
static const ExtensionProperties instanceExtensionProperties[] = {
{ { VK_KHR_DEVICE_GROUP_CREATION_EXTENSION_NAME, VK_KHR_DEVICE_GROUP_CREATION_SPEC_VERSION } },
{ { VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_FENCE_CAPABILITIES_SPEC_VERSION } },
{ { VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_SPEC_VERSION } },
{ { VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_SPEC_VERSION } },
{ { VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION } },
{ { VK_EXT_DEBUG_UTILS_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_SPEC_VERSION } },
{ { VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME, VK_EXT_HEADLESS_SURFACE_SPEC_VERSION } },
#ifndef __ANDROID__
{ { VK_KHR_SURFACE_EXTENSION_NAME, VK_KHR_SURFACE_SPEC_VERSION } },
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
{ { VK_KHR_XCB_SURFACE_EXTENSION_NAME, VK_KHR_XCB_SURFACE_SPEC_VERSION }, [] { return vk::XcbSurfaceKHR::hasLibXCB(); } },
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
{ { VK_KHR_XLIB_SURFACE_EXTENSION_NAME, VK_KHR_XLIB_SURFACE_SPEC_VERSION }, [] { return static_cast<bool>(libX11); } },
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
{ { VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, VK_KHR_WAYLAND_SURFACE_SPEC_VERSION } },
#endif
#ifdef VK_USE_PLATFORM_DIRECTFB_EXT
{ { VK_EXT_DIRECTFB_SURFACE_EXTENSION_NAME, VK_EXT_DIRECTFB_SURFACE_SPEC_VERSION } },
#endif
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
{ { VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_DISPLAY_SPEC_VERSION } },
#endif
#ifdef VK_USE_PLATFORM_MACOS_MVK
{ { VK_MVK_MACOS_SURFACE_EXTENSION_NAME, VK_MVK_MACOS_SURFACE_SPEC_VERSION } },
#endif
#ifdef VK_USE_PLATFORM_METAL_EXT
{ { VK_EXT_METAL_SURFACE_EXTENSION_NAME, VK_EXT_METAL_SURFACE_SPEC_VERSION } },
#endif
#ifdef VK_USE_PLATFORM_WIN32_KHR
{ { VK_KHR_WIN32_SURFACE_EXTENSION_NAME, VK_KHR_WIN32_SURFACE_SPEC_VERSION } },
#endif
};
static const ExtensionProperties deviceExtensionProperties[] = {
{ { VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME, VK_KHR_DRIVER_PROPERTIES_SPEC_VERSION } },
// Vulkan 1.1 promoted extensions
{ { VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, VK_KHR_BIND_MEMORY_2_SPEC_VERSION } },
{ { VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, VK_KHR_CREATE_RENDERPASS_2_SPEC_VERSION } },
{ { VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, VK_KHR_DEDICATED_ALLOCATION_SPEC_VERSION } },
{ { VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME, VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_SPEC_VERSION } },
{ { VK_KHR_DEVICE_GROUP_EXTENSION_NAME, VK_KHR_DEVICE_GROUP_SPEC_VERSION } },
{ { VK_KHR_EXTERNAL_FENCE_EXTENSION_NAME, VK_KHR_EXTERNAL_FENCE_SPEC_VERSION } },
{ { VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_SPEC_VERSION } },
{ { VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_SPEC_VERSION } },
{ { VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION } },
{ { VK_KHR_MAINTENANCE1_EXTENSION_NAME, VK_KHR_MAINTENANCE1_SPEC_VERSION } },
{ { VK_KHR_MAINTENANCE2_EXTENSION_NAME, VK_KHR_MAINTENANCE2_SPEC_VERSION } },
{ { VK_KHR_MAINTENANCE3_EXTENSION_NAME, VK_KHR_MAINTENANCE3_SPEC_VERSION } },
{ { VK_KHR_MULTIVIEW_EXTENSION_NAME, VK_KHR_MULTIVIEW_SPEC_VERSION } },
{ { VK_KHR_RELAXED_BLOCK_LAYOUT_EXTENSION_NAME, VK_KHR_RELAXED_BLOCK_LAYOUT_SPEC_VERSION } },
{ { VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, VK_KHR_SAMPLER_YCBCR_CONVERSION_SPEC_VERSION } },
{ { VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME, VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_SPEC_VERSION } },
{ { VK_EXT_DEPTH_CLIP_ENABLE_EXTENSION_NAME, VK_EXT_DEPTH_CLIP_ENABLE_SPEC_VERSION } },
{ { VK_EXT_CUSTOM_BORDER_COLOR_EXTENSION_NAME, VK_EXT_CUSTOM_BORDER_COLOR_SPEC_VERSION } },
{ { VK_EXT_LOAD_STORE_OP_NONE_EXTENSION_NAME, VK_EXT_LOAD_STORE_OP_NONE_SPEC_VERSION } },
// Only 1.1 core version of this is supported. The extension has additional requirements
//{{ VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, VK_KHR_SHADER_DRAW_PARAMETERS_SPEC_VERSION }},
{ { VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME, VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_SPEC_VERSION } },
// Only 1.1 core version of this is supported. The extension has additional requirements
//{{ VK_KHR_VARIABLE_POINTERS_EXTENSION_NAME, VK_KHR_VARIABLE_POINTERS_SPEC_VERSION }},
{ { VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, VK_EXT_QUEUE_FAMILY_FOREIGN_SPEC_VERSION } },
// The following extension is only used to add support for Bresenham lines
{ { VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME, VK_EXT_LINE_RASTERIZATION_SPEC_VERSION } },
// The following extension is used by ANGLE to emulate blitting the stencil buffer
{ { VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME, VK_EXT_SHADER_STENCIL_EXPORT_SPEC_VERSION } },
{ { VK_EXT_IMAGE_ROBUSTNESS_EXTENSION_NAME, VK_EXT_IMAGE_ROBUSTNESS_SPEC_VERSION } },
// Useful for D3D emulation
{ { VK_EXT_4444_FORMATS_EXTENSION_NAME, VK_EXT_4444_FORMATS_SPEC_VERSION } },
#ifndef __ANDROID__
// We fully support the KHR_swapchain v70 additions, so just track the spec version.
{ { VK_KHR_SWAPCHAIN_EXTENSION_NAME, VK_KHR_SWAPCHAIN_SPEC_VERSION } },
#else
// We only support V7 of this extension. Missing functionality: in V8,
// it becomes possible to pass a VkNativeBufferANDROID structure to
// vkBindImageMemory2. Android's swapchain implementation does this in
// order to support passing VkBindImageMemorySwapchainInfoKHR
// (from KHR_swapchain v70) to vkBindImageMemory2.
{ { VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME, 7 } },
#endif
#if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER
{ { VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_SPEC_VERSION } },
#endif
#if SWIFTSHADER_EXTERNAL_SEMAPHORE_OPAQUE_FD
{ { VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_FD_SPEC_VERSION } },
#endif
#if SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD
{ { VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_FD_SPEC_VERSION } },
#endif
{ { VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, VK_EXT_EXTERNAL_MEMORY_HOST_SPEC_VERSION } },
#if VK_USE_PLATFORM_FUCHSIA
{ { VK_FUCHSIA_EXTERNAL_SEMAPHORE_EXTENSION_NAME, VK_FUCHSIA_EXTERNAL_SEMAPHORE_SPEC_VERSION } },
{ { VK_FUCHSIA_EXTERNAL_MEMORY_EXTENSION_NAME, VK_FUCHSIA_EXTERNAL_MEMORY_SPEC_VERSION } },
#endif
{ { VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME, VK_EXT_PROVOKING_VERTEX_SPEC_VERSION } },
#if !defined(__ANDROID__)
{ { VK_GOOGLE_SAMPLER_FILTERING_PRECISION_EXTENSION_NAME, VK_GOOGLE_SAMPLER_FILTERING_PRECISION_SPEC_VERSION } },
#endif
{ { VK_EXT_DEPTH_RANGE_UNRESTRICTED_EXTENSION_NAME, VK_EXT_DEPTH_RANGE_UNRESTRICTED_SPEC_VERSION } },
#ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT
{ { VK_EXT_DEVICE_MEMORY_REPORT_EXTENSION_NAME, VK_EXT_DEVICE_MEMORY_REPORT_SPEC_VERSION } },
#endif // SWIFTSHADER_DEVICE_MEMORY_REPORT
// Vulkan 1.2 promoted extensions
{ { VK_EXT_HOST_QUERY_RESET_EXTENSION_NAME, VK_EXT_HOST_QUERY_RESET_SPEC_VERSION } },
{ { VK_EXT_SCALAR_BLOCK_LAYOUT_EXTENSION_NAME, VK_EXT_SCALAR_BLOCK_LAYOUT_SPEC_VERSION } },
{ { VK_EXT_SEPARATE_STENCIL_USAGE_EXTENSION_NAME, VK_EXT_SEPARATE_STENCIL_USAGE_SPEC_VERSION } },
{ { VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME, VK_KHR_DEPTH_STENCIL_RESOLVE_SPEC_VERSION } },
{ { VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME, VK_KHR_IMAGE_FORMAT_LIST_SPEC_VERSION } },
{ { VK_KHR_IMAGELESS_FRAMEBUFFER_EXTENSION_NAME, VK_KHR_IMAGELESS_FRAMEBUFFER_SPEC_VERSION } },
{ { VK_KHR_SHADER_FLOAT_CONTROLS_EXTENSION_NAME, VK_KHR_SHADER_FLOAT_CONTROLS_SPEC_VERSION } },
{ { VK_KHR_SHADER_SUBGROUP_EXTENDED_TYPES_EXTENSION_NAME, VK_KHR_SHADER_SUBGROUP_EXTENDED_TYPES_SPEC_VERSION } },
{ { VK_KHR_SPIRV_1_4_EXTENSION_NAME, VK_KHR_SPIRV_1_4_SPEC_VERSION } },
{ { VK_KHR_UNIFORM_BUFFER_STANDARD_LAYOUT_EXTENSION_NAME, VK_KHR_UNIFORM_BUFFER_STANDARD_LAYOUT_SPEC_VERSION } },
{ { VK_KHR_TIMELINE_SEMAPHORE_EXTENSION_NAME, VK_KHR_TIMELINE_SEMAPHORE_SPEC_VERSION } },
};
static uint32_t numSupportedExtensions(const ExtensionProperties *extensionProperties, uint32_t extensionPropertiesCount)
{
uint32_t count = 0;
for(uint32_t i = 0; i < extensionPropertiesCount; i++)
{
if(extensionProperties[i].isSupported)
{
count++;
}
}
return count;
}
static uint32_t numInstanceSupportedExtensions()
{
return numSupportedExtensions(instanceExtensionProperties, sizeof(instanceExtensionProperties) / sizeof(instanceExtensionProperties[0]));
}
static uint32_t numDeviceSupportedExtensions()
{
return numSupportedExtensions(deviceExtensionProperties, sizeof(deviceExtensionProperties) / sizeof(deviceExtensionProperties[0]));
}
static bool hasExtension(const char *extensionName, const ExtensionProperties *extensionProperties, uint32_t extensionPropertiesCount)
{
for(uint32_t i = 0; i < extensionPropertiesCount; i++)
{
if(strcmp(extensionName, extensionProperties[i].extensionName) == 0)
{
return extensionProperties[i].isSupported();
}
}
return false;
}
static bool hasInstanceExtension(const char *extensionName)
{
return hasExtension(extensionName, instanceExtensionProperties, sizeof(instanceExtensionProperties) / sizeof(instanceExtensionProperties[0]));
}
static bool hasDeviceExtension(const char *extensionName)
{
return hasExtension(extensionName, deviceExtensionProperties, sizeof(deviceExtensionProperties) / sizeof(deviceExtensionProperties[0]));
}
static void copyExtensions(VkExtensionProperties *pProperties, uint32_t toCopy, const ExtensionProperties *extensionProperties, uint32_t extensionPropertiesCount)
{
for(uint32_t i = 0, j = 0; i < toCopy; i++, j++)
{
while((j < extensionPropertiesCount) && !extensionProperties[j].isSupported)
{
j++;
}
if(j < extensionPropertiesCount)
{
pProperties[i] = extensionProperties[j];
}
}
}
static void copyInstanceExtensions(VkExtensionProperties *pProperties, uint32_t toCopy)
{
copyExtensions(pProperties, toCopy, instanceExtensionProperties, sizeof(instanceExtensionProperties) / sizeof(instanceExtensionProperties[0]));
}
static void copyDeviceExtensions(VkExtensionProperties *pProperties, uint32_t toCopy)
{
copyExtensions(pProperties, toCopy, deviceExtensionProperties, sizeof(deviceExtensionProperties) / sizeof(deviceExtensionProperties[0]));
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *pInstance)
{
TRACE("(const VkInstanceCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkInstance* pInstance = %p)",
pCreateInfo, pAllocator, pInstance);
initializeLibrary();
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
if(pCreateInfo->enabledLayerCount != 0)
{
UNIMPLEMENTED("b/148240133: pCreateInfo->enabledLayerCount != 0"); // FIXME(b/148240133)
}
for(uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; ++i)
{
if(!hasInstanceExtension(pCreateInfo->ppEnabledExtensionNames[i]))
{
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
VkDebugUtilsMessengerEXT messenger = { VK_NULL_HANDLE };
if(pCreateInfo->pNext)
{
const VkBaseInStructure *createInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
switch(createInfo->sType)
{
case VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT:
{
const VkDebugUtilsMessengerCreateInfoEXT *debugUtilsMessengerCreateInfoEXT = reinterpret_cast<const VkDebugUtilsMessengerCreateInfoEXT *>(createInfo);
VkResult result = vk::DebugUtilsMessenger::Create(pAllocator, debugUtilsMessengerCreateInfoEXT, &messenger);
if(result != VK_SUCCESS)
{
return result;
}
}
break;
case VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO:
// According to the Vulkan spec, section 2.7.2. Implicit Valid Usage:
// "The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and
// VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for
// internal use by the loader, and do not have corresponding
// Vulkan structures in this Specification."
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(createInfo->sType).c_str());
break;
}
}
*pInstance = VK_NULL_HANDLE;
VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
VkResult result = vk::DispatchablePhysicalDevice::Create(pAllocator, pCreateInfo, &physicalDevice);
if(result != VK_SUCCESS)
{
vk::destroy(messenger, pAllocator);
return result;
}
result = vk::DispatchableInstance::Create(pAllocator, pCreateInfo, pInstance, physicalDevice, vk::Cast(messenger));
if(result != VK_SUCCESS)
{
vk::destroy(messenger, pAllocator);
vk::destroy(physicalDevice, pAllocator);
return result;
}
return result;
}
VKAPI_ATTR void VKAPI_CALL vkDestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkInstance instance = %p, const VkAllocationCallbacks* pAllocator = %p)", instance, pAllocator);
vk::destroy(instance, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount, VkPhysicalDevice *pPhysicalDevices)
{
TRACE("(VkInstance instance = %p, uint32_t* pPhysicalDeviceCount = %p, VkPhysicalDevice* pPhysicalDevices = %p)",
instance, pPhysicalDeviceCount, pPhysicalDevices);
return vk::Cast(instance)->getPhysicalDevices(pPhysicalDeviceCount, pPhysicalDevices);
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures *pFeatures)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceFeatures* pFeatures = %p)",
physicalDevice, pFeatures);
*pFeatures = vk::Cast(physicalDevice)->getFeatures();
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties *pFormatProperties)
{
TRACE("GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice = %p, VkFormat format = %d, VkFormatProperties* pFormatProperties = %p)",
physicalDevice, (int)format, pFormatProperties);
vk::PhysicalDevice::GetFormatProperties(format, pFormatProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties *pImageFormatProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, VkFormat format = %d, VkImageType type = %d, VkImageTiling tiling = %d, VkImageUsageFlags usage = %d, VkImageCreateFlags flags = %d, VkImageFormatProperties* pImageFormatProperties = %p)",
physicalDevice, (int)format, (int)type, (int)tiling, usage, flags, pImageFormatProperties);
VkPhysicalDeviceImageFormatInfo2 info2 = {};
info2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2;
info2.pNext = nullptr;
info2.format = format;
info2.type = type;
info2.tiling = tiling;
info2.usage = usage;
info2.flags = flags;
VkImageFormatProperties2 properties2 = {};
properties2.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2;
properties2.pNext = nullptr;
VkResult result = vkGetPhysicalDeviceImageFormatProperties2(physicalDevice, &info2, &properties2);
*pImageFormatProperties = properties2.imageFormatProperties;
return result;
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties *pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceProperties* pProperties = %p)",
physicalDevice, pProperties);
*pProperties = vk::Cast(physicalDevice)->getProperties();
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount, VkQueueFamilyProperties *pQueueFamilyProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t* pQueueFamilyPropertyCount = %p, VkQueueFamilyProperties* pQueueFamilyProperties = %p))", physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties);
if(!pQueueFamilyProperties)
{
*pQueueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount();
}
else
{
vk::Cast(physicalDevice)->getQueueFamilyProperties(*pQueueFamilyPropertyCount, pQueueFamilyProperties);
}
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties *pMemoryProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceMemoryProperties* pMemoryProperties = %p)", physicalDevice, pMemoryProperties);
*pMemoryProperties = vk::PhysicalDevice::GetMemoryProperties();
}
VK_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char *pName)
{
TRACE("(VkInstance instance = %p, const char* pName = %p)", instance, pName);
return vk::GetInstanceProcAddr(vk::Cast(instance), pName);
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice device, const char *pName)
{
TRACE("(VkDevice device = %p, const char* pName = %p)", device, pName);
return vk::GetDeviceProcAddr(vk::Cast(device), pName);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, const VkDeviceCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDevice* pDevice = %p)",
physicalDevice, pCreateInfo, pAllocator, pDevice);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
if(pCreateInfo->enabledLayerCount != 0)
{
// "The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and their values must be ignored by implementations."
UNSUPPORTED("pCreateInfo->enabledLayerCount != 0");
}
for(uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; ++i)
{
if(!hasDeviceExtension(pCreateInfo->ppEnabledExtensionNames[i]))
{
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
const VkBaseInStructure *extensionCreateInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
const VkPhysicalDeviceFeatures *enabledFeatures = pCreateInfo->pEnabledFeatures;
while(extensionCreateInfo)
{
// Casting to a long since some structures, such as
// VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT
// are not enumerated in the official Vulkan header
switch((long)(extensionCreateInfo->sType))
{
case VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO:
// According to the Vulkan spec, section 2.7.2. Implicit Valid Usage:
// "The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and
// VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for
// internal use by the loader, and do not have corresponding
// Vulkan structures in this Specification."
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2:
{
ASSERT(!pCreateInfo->pEnabledFeatures); // "If the pNext chain includes a VkPhysicalDeviceFeatures2 structure, then pEnabledFeatures must be NULL"
const VkPhysicalDeviceFeatures2 *physicalDeviceFeatures2 = reinterpret_cast<const VkPhysicalDeviceFeatures2 *>(extensionCreateInfo);
enabledFeatures = &physicalDeviceFeatures2->features;
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES:
{
const VkPhysicalDeviceSamplerYcbcrConversionFeatures *samplerYcbcrConversionFeatures = reinterpret_cast<const VkPhysicalDeviceSamplerYcbcrConversionFeatures *>(extensionCreateInfo);
// YCbCr conversion is supported.
// samplerYcbcrConversionFeatures->samplerYcbcrConversion can be VK_TRUE or VK_FALSE.
// No action needs to be taken on our end in either case; it's the apps responsibility that
// "To create a sampler Y'CbCr conversion, the samplerYcbcrConversion feature must be enabled."
(void)samplerYcbcrConversionFeatures->samplerYcbcrConversion;
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES:
{
const VkPhysicalDevice16BitStorageFeatures *storage16BitFeatures = reinterpret_cast<const VkPhysicalDevice16BitStorageFeatures *>(extensionCreateInfo);
if(storage16BitFeatures->storageBuffer16BitAccess != VK_FALSE ||
storage16BitFeatures->uniformAndStorageBuffer16BitAccess != VK_FALSE ||
storage16BitFeatures->storagePushConstant16 != VK_FALSE ||
storage16BitFeatures->storageInputOutput16 != VK_FALSE)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES:
{
const VkPhysicalDeviceVariablePointerFeatures *variablePointerFeatures = reinterpret_cast<const VkPhysicalDeviceVariablePointerFeatures *>(extensionCreateInfo);
if(variablePointerFeatures->variablePointersStorageBuffer != VK_FALSE ||
variablePointerFeatures->variablePointers != VK_FALSE)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO:
{
const VkDeviceGroupDeviceCreateInfo *groupDeviceCreateInfo = reinterpret_cast<const VkDeviceGroupDeviceCreateInfo *>(extensionCreateInfo);
if((groupDeviceCreateInfo->physicalDeviceCount != 1) ||
(groupDeviceCreateInfo->pPhysicalDevices[0] != physicalDevice))
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES:
{
const VkPhysicalDeviceMultiviewFeatures *multiviewFeatures = reinterpret_cast<const VkPhysicalDeviceMultiviewFeatures *>(extensionCreateInfo);
if(multiviewFeatures->multiviewGeometryShader ||
multiviewFeatures->multiviewTessellationShader)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES:
{
const VkPhysicalDeviceShaderDrawParametersFeatures *shaderDrawParametersFeatures = reinterpret_cast<const VkPhysicalDeviceShaderDrawParametersFeatures *>(extensionCreateInfo);
if(shaderDrawParametersFeatures->shaderDrawParameters)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR:
{
const VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *shaderDrawParametersFeatures = reinterpret_cast<const VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *>(extensionCreateInfo);
// Separate depth and stencil layouts is already supported
(void)(shaderDrawParametersFeatures->separateDepthStencilLayouts);
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT:
{
const auto *lineRasterizationFeatures = reinterpret_cast<const VkPhysicalDeviceLineRasterizationFeaturesEXT *>(extensionCreateInfo);
bool hasFeatures = vk::Cast(physicalDevice)->hasExtendedFeatures(lineRasterizationFeatures);
if(!hasFeatures)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT:
{
const VkPhysicalDeviceProvokingVertexFeaturesEXT *provokingVertexFeatures = reinterpret_cast<const VkPhysicalDeviceProvokingVertexFeaturesEXT *>(extensionCreateInfo);
bool hasFeatures = vk::Cast(physicalDevice)->hasExtendedFeatures(provokingVertexFeatures);
if(!hasFeatures)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT:
{
const VkPhysicalDeviceImageRobustnessFeaturesEXT *imageRobustnessFeatures = reinterpret_cast<const VkPhysicalDeviceImageRobustnessFeaturesEXT *>(extensionCreateInfo);
// We currently always provide robust image accesses. When the feature is disabled, results are
// undefined (for images with Dim != Buffer), so providing robustness is also acceptable.
// TODO(b/159329067): Only provide robustness when requested.
(void)imageRobustnessFeatures->robustImageAccess;
}
break;
// For unsupported structures, check that we don't expose the corresponding extension string:
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT:
ASSERT(!hasDeviceExtension(VK_EXT_ROBUSTNESS_2_EXTENSION_NAME));
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR:
{
const VkPhysicalDeviceImagelessFramebufferFeaturesKHR *imagelessFramebufferFeatures = reinterpret_cast<const VkPhysicalDeviceImagelessFramebufferFeaturesKHR *>(extensionCreateInfo);
// Always provide Imageless Framebuffers
(void)imagelessFramebufferFeatures->imagelessFramebuffer;
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES:
{
const VkPhysicalDeviceScalarBlockLayoutFeatures *scalarBlockLayoutFeatures = reinterpret_cast<const VkPhysicalDeviceScalarBlockLayoutFeatures *>(extensionCreateInfo);
// VK_EXT_scalar_block_layout is supported, allowing C-like structure layout for SPIR-V blocks.
(void)scalarBlockLayoutFeatures->scalarBlockLayout;
}
break;
#ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_MEMORY_REPORT_FEATURES_EXT:
{
const VkPhysicalDeviceDeviceMemoryReportFeaturesEXT *deviceMemoryReportFeatures = reinterpret_cast<const VkPhysicalDeviceDeviceMemoryReportFeaturesEXT *>(extensionCreateInfo);
(void)deviceMemoryReportFeatures->deviceMemoryReport;
}
break;
#endif // SWIFTSHADER_DEVICE_MEMORY_REPORT
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES:
{
const VkPhysicalDeviceHostQueryResetFeatures *hostQueryResetFeatures = reinterpret_cast<const VkPhysicalDeviceHostQueryResetFeatures *>(extensionCreateInfo);
// VK_EXT_host_query_reset is always enabled.
(void)hostQueryResetFeatures->hostQueryReset;
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES:
{
const auto *tsFeatures = reinterpret_cast<const VkPhysicalDeviceTimelineSemaphoreFeatures *>(extensionCreateInfo);
// VK_KHR_timeline_semaphores is always enabled
(void)tsFeatures->timelineSemaphore;
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT:
{
const auto *customBorderColorFeatures = reinterpret_cast<const VkPhysicalDeviceCustomBorderColorFeaturesEXT *>(extensionCreateInfo);
// VK_EXT_custom_border_color is always enabled
(void)customBorderColorFeatures->customBorderColors;
(void)customBorderColorFeatures->customBorderColorWithoutFormat;
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
{
const auto *vk11Features = reinterpret_cast<const VkPhysicalDeviceVulkan11Features *>(extensionCreateInfo);
bool hasFeatures = vk::Cast(physicalDevice)->hasExtendedFeatures(vk11Features);
if(!hasFeatures)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
{
const auto *vk12Features = reinterpret_cast<const VkPhysicalDeviceVulkan12Features *>(extensionCreateInfo);
bool hasFeatures = vk::Cast(physicalDevice)->hasExtendedFeatures(vk12Features);
if(!hasFeatures)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT:
{
const auto *depthClipFeatures = reinterpret_cast<const VkPhysicalDeviceDepthClipEnableFeaturesEXT *>(extensionCreateInfo);
bool hasFeatures = vk::Cast(physicalDevice)->hasExtendedFeatures(depthClipFeatures);
if(!hasFeatures)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
break;
// These structs are supported, but no behavior changes based on their feature bools
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES:
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES:
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT:
break;
default:
// "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]"
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str());
break;
}
extensionCreateInfo = extensionCreateInfo->pNext;
}
ASSERT(pCreateInfo->queueCreateInfoCount > 0);
if(enabledFeatures)
{
if(!vk::Cast(physicalDevice)->hasFeatures(*enabledFeatures))
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
}
uint32_t queueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount();
for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
{
const VkDeviceQueueCreateInfo &queueCreateInfo = pCreateInfo->pQueueCreateInfos[i];
if(queueCreateInfo.flags != 0)
{
UNSUPPORTED("pCreateInfo->pQueueCreateInfos[%d]->flags %d", i, queueCreateInfo.flags);
}
auto extInfo = reinterpret_cast<VkBaseInStructure const *>(queueCreateInfo.pNext);
while(extInfo)
{
UNSUPPORTED("pCreateInfo->pQueueCreateInfos[%d].pNext sType = %s", i, vk::Stringify(extInfo->sType).c_str());
extInfo = extInfo->pNext;
}
ASSERT(queueCreateInfo.queueFamilyIndex < queueFamilyPropertyCount);
(void)queueFamilyPropertyCount; // Silence unused variable warning
}
auto scheduler = getOrCreateScheduler();
return vk::DispatchableDevice::Create(pAllocator, pCreateInfo, pDevice, vk::Cast(physicalDevice), enabledFeatures, scheduler);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, const VkAllocationCallbacks* pAllocator = %p)", device, pAllocator);
vk::destroy(device, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties)
{
TRACE("(const char* pLayerName = %p, uint32_t* pPropertyCount = %p, VkExtensionProperties* pProperties = %p)",
pLayerName, pPropertyCount, pProperties);
uint32_t extensionPropertiesCount = numInstanceSupportedExtensions();
if(!pProperties)
{
*pPropertyCount = extensionPropertiesCount;
return VK_SUCCESS;
}
auto toCopy = std::min(*pPropertyCount, extensionPropertiesCount);
copyInstanceExtensions(pProperties, toCopy);
*pPropertyCount = toCopy;
return (toCopy < extensionPropertiesCount) ? VK_INCOMPLETE : VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, const char* pLayerName, uint32_t* pPropertyCount = %p, VkExtensionProperties* pProperties = %p)", physicalDevice, pPropertyCount, pProperties);
uint32_t extensionPropertiesCount = numDeviceSupportedExtensions();
if(!pProperties)
{
*pPropertyCount = extensionPropertiesCount;
return VK_SUCCESS;
}
auto toCopy = std::min(*pPropertyCount, extensionPropertiesCount);
copyDeviceExtensions(pProperties, toCopy);
*pPropertyCount = toCopy;
return (toCopy < extensionPropertiesCount) ? VK_INCOMPLETE : VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceLayerProperties(uint32_t *pPropertyCount, VkLayerProperties *pProperties)
{
TRACE("(uint32_t* pPropertyCount = %p, VkLayerProperties* pProperties = %p)", pPropertyCount, pProperties);
if(!pProperties)
{
*pPropertyCount = 0;
return VK_SUCCESS;
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkLayerProperties *pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t* pPropertyCount = %p, VkLayerProperties* pProperties = %p)", physicalDevice, pPropertyCount, pProperties);
if(!pProperties)
{
*pPropertyCount = 0;
return VK_SUCCESS;
}
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetDeviceQueue(VkDevice device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue *pQueue)
{
TRACE("(VkDevice device = %p, uint32_t queueFamilyIndex = %d, uint32_t queueIndex = %d, VkQueue* pQueue = %p)",
device, queueFamilyIndex, queueIndex, pQueue);
*pQueue = vk::Cast(device)->getQueue(queueFamilyIndex, queueIndex);
}
VKAPI_ATTR VkResult VKAPI_CALL vkQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence)
{
TRACE("(VkQueue queue = %p, uint32_t submitCount = %d, const VkSubmitInfo* pSubmits = %p, VkFence fence = %p)",
queue, submitCount, pSubmits, static_cast<void *>(fence));
return vk::Cast(queue)->submit(submitCount, pSubmits, vk::Cast(fence));
}
VKAPI_ATTR VkResult VKAPI_CALL vkQueueWaitIdle(VkQueue queue)
{
TRACE("(VkQueue queue = %p)", queue);
return vk::Cast(queue)->waitIdle();
}
VKAPI_ATTR VkResult VKAPI_CALL vkDeviceWaitIdle(VkDevice device)
{
TRACE("(VkDevice device = %p)", device);
return vk::Cast(device)->waitIdle();
}
VKAPI_ATTR VkResult VKAPI_CALL vkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo, const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory)
{
TRACE("(VkDevice device = %p, const VkMemoryAllocateInfo* pAllocateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDeviceMemory* pMemory = %p)",
device, pAllocateInfo, pAllocator, pMemory);
VkResult result = vk::DeviceMemory::Allocate(pAllocator, pAllocateInfo, pMemory, vk::Cast(device));
if(result != VK_SUCCESS)
{
vk::destroy(*pMemory, pAllocator);
*pMemory = VK_NULL_HANDLE;
}
return result;
}
VKAPI_ATTR void VKAPI_CALL vkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkDeviceMemory memory = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(memory), pAllocator);
vk::destroy(memory, pAllocator);
}
#if SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD
VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryFdKHR(VkDevice device, const VkMemoryGetFdInfoKHR *getFdInfo, int *pFd)
{
TRACE("(VkDevice device = %p, const VkMemoryGetFdInfoKHR* getFdInfo = %p, int* pFd = %p",
device, getFdInfo, pFd);
if(getFdInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT)
{
UNSUPPORTED("pGetFdInfo->handleType %u", getFdInfo->handleType);
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
return vk::Cast(getFdInfo->memory)->exportFd(pFd);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryFdPropertiesKHR(VkDevice device, VkExternalMemoryHandleTypeFlagBits handleType, int fd, VkMemoryFdPropertiesKHR *pMemoryFdProperties)
{
TRACE("(VkDevice device = %p, VkExternalMemoryHandleTypeFlagBits handleType = %x, int fd = %d, VkMemoryFdPropertiesKHR* pMemoryFdProperties = %p)",
device, handleType, fd, pMemoryFdProperties);
if(handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT)
{
UNSUPPORTED("handleType %u", handleType);
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
if(fd < 0)
{
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
const VkPhysicalDeviceMemoryProperties &memoryProperties =
vk::PhysicalDevice::GetMemoryProperties();
// All SwiftShader memory types support this!
pMemoryFdProperties->memoryTypeBits = (1U << memoryProperties.memoryTypeCount) - 1U;
return VK_SUCCESS;
}
#endif // SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD
#if VK_USE_PLATFORM_FUCHSIA
VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryZirconHandleFUCHSIA(VkDevice device, const VkMemoryGetZirconHandleInfoFUCHSIA *pGetHandleInfo, zx_handle_t *pHandle)
{
TRACE("(VkDevice device = %p, const VkMemoryGetZirconHandleInfoFUCHSIA* pGetHandleInfo = %p, zx_handle_t* pHandle = %p",
device, pGetHandleInfo, pHandle);
if(pGetHandleInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA)
{
UNSUPPORTED("pGetHandleInfo->handleType %u", pGetHandleInfo->handleType);
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
return vk::Cast(pGetHandleInfo->memory)->exportHandle(pHandle);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryZirconHandlePropertiesFUCHSIA(VkDevice device, VkExternalMemoryHandleTypeFlagBits handleType, zx_handle_t handle, VkMemoryZirconHandlePropertiesFUCHSIA *pMemoryZirconHandleProperties)
{
TRACE("(VkDevice device = %p, VkExternalMemoryHandleTypeFlagBits handleType = %x, zx_handle_t handle = %d, VkMemoryZirconHandlePropertiesFUCHSIA* pMemoryZirconHandleProperties = %p)",
device, handleType, handle, pMemoryZirconHandleProperties);
if(handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA)
{
UNSUPPORTED("handleType %u", handleType);
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
if(handle == ZX_HANDLE_INVALID)
{
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
const VkPhysicalDeviceMemoryProperties &memoryProperties =
vk::PhysicalDevice::GetMemoryProperties();
// All SwiftShader memory types support this!
pMemoryZirconHandleProperties->memoryTypeBits = (1U << memoryProperties.memoryTypeCount) - 1U;
return VK_SUCCESS;
}
#endif // VK_USE_PLATFORM_FUCHSIA
VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryHostPointerPropertiesEXT(VkDevice device, VkExternalMemoryHandleTypeFlagBits handleType, const void *pHostPointer, VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
{
TRACE("(VkDevice device = %p, VkExternalMemoryHandleTypeFlagBits handleType = %x, const void *pHostPointer = %p, VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties = %p)",
device, handleType, pHostPointer, pMemoryHostPointerProperties);
if(handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT && handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT)
{
UNSUPPORTED("handleType %u", handleType);
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
pMemoryHostPointerProperties->memoryTypeBits = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
return VK_SUCCESS;
}
#if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER
VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryAndroidHardwareBufferANDROID(VkDevice device, const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo, struct AHardwareBuffer **pBuffer)
{
TRACE("(VkDevice device = %p, const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo = %p, struct AHardwareBuffer **pBuffer = %p)",
device, pInfo, pBuffer);
return vk::Cast(pInfo->memory)->exportAndroidHardwareBuffer(pBuffer);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetAndroidHardwareBufferPropertiesANDROID(VkDevice device, const struct AHardwareBuffer *buffer, VkAndroidHardwareBufferPropertiesANDROID *pProperties)
{
TRACE("(VkDevice device = %p, const struct AHardwareBuffer *buffer = %p, VkAndroidHardwareBufferPropertiesANDROID *pProperties = %p)",
device, buffer, pProperties);
return vk::DeviceMemory::GetAndroidHardwareBufferProperties(device, buffer, pProperties);
}
#endif // SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER
VKAPI_ATTR VkResult VKAPI_CALL vkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void **ppData)
{
TRACE("(VkDevice device = %p, VkDeviceMemory memory = %p, VkDeviceSize offset = %d, VkDeviceSize size = %d, VkMemoryMapFlags flags = %d, void** ppData = %p)",
device, static_cast<void *>(memory), int(offset), int(size), flags, ppData);
if(flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("flags %d", int(flags));
}
return vk::Cast(memory)->map(offset, size, ppData);
}
VKAPI_ATTR void VKAPI_CALL vkUnmapMemory(VkDevice device, VkDeviceMemory memory)
{
TRACE("(VkDevice device = %p, VkDeviceMemory memory = %p)", device, static_cast<void *>(memory));
// Noop, memory will be released when the DeviceMemory object is released
}
VKAPI_ATTR VkResult VKAPI_CALL vkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange *pMemoryRanges)
{
TRACE("(VkDevice device = %p, uint32_t memoryRangeCount = %d, const VkMappedMemoryRange* pMemoryRanges = %p)",
device, memoryRangeCount, pMemoryRanges);
// Noop, host and device memory are the same to SwiftShader
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange *pMemoryRanges)
{
TRACE("(VkDevice device = %p, uint32_t memoryRangeCount = %d, const VkMappedMemoryRange* pMemoryRanges = %p)",
device, memoryRangeCount, pMemoryRanges);
// Noop, host and device memory are the same to SwiftShader
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetDeviceMemoryCommitment(VkDevice pDevice, VkDeviceMemory pMemory, VkDeviceSize *pCommittedMemoryInBytes)
{
TRACE("(VkDevice device = %p, VkDeviceMemory memory = %p, VkDeviceSize* pCommittedMemoryInBytes = %p)",
pDevice, static_cast<void *>(pMemory), pCommittedMemoryInBytes);
auto memory = vk::Cast(pMemory);
#if !defined(NDEBUG) || defined(DCHECK_ALWAYS_ON)
const auto &memoryProperties = vk::PhysicalDevice::GetMemoryProperties();
uint32_t typeIndex = memory->getMemoryTypeIndex();
ASSERT(typeIndex < memoryProperties.memoryTypeCount);
ASSERT(memoryProperties.memoryTypes[typeIndex].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT);
#endif
*pCommittedMemoryInBytes = memory->getCommittedMemoryInBytes();
}
VKAPI_ATTR VkResult VKAPI_CALL vkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset)
{
TRACE("(VkDevice device = %p, VkBuffer buffer = %p, VkDeviceMemory memory = %p, VkDeviceSize memoryOffset = %d)",
device, static_cast<void *>(buffer), static_cast<void *>(memory), int(memoryOffset));
if(!vk::Cast(buffer)->canBindToMemory(vk::Cast(memory)))
{
UNSUPPORTED("vkBindBufferMemory with invalid external memory");
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
vk::Cast(buffer)->bind(vk::Cast(memory), memoryOffset);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory, VkDeviceSize memoryOffset)
{
TRACE("(VkDevice device = %p, VkImage image = %p, VkDeviceMemory memory = %p, VkDeviceSize memoryOffset = %d)",
device, static_cast<void *>(image), static_cast<void *>(memory), int(memoryOffset));
if(!vk::Cast(image)->canBindToMemory(vk::Cast(memory)))
{
UNSUPPORTED("vkBindImageMemory with invalid external memory");
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
vk::Cast(image)->bind(vk::Cast(memory), memoryOffset);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer, VkMemoryRequirements *pMemoryRequirements)
{
TRACE("(VkDevice device = %p, VkBuffer buffer = %p, VkMemoryRequirements* pMemoryRequirements = %p)",
device, static_cast<void *>(buffer), pMemoryRequirements);
*pMemoryRequirements = vk::Cast(buffer)->getMemoryRequirements();
}
VKAPI_ATTR void VKAPI_CALL vkGetImageMemoryRequirements(VkDevice device, VkImage image, VkMemoryRequirements *pMemoryRequirements)
{
TRACE("(VkDevice device = %p, VkImage image = %p, VkMemoryRequirements* pMemoryRequirements = %p)",
device, static_cast<void *>(image), pMemoryRequirements);
*pMemoryRequirements = vk::Cast(image)->getMemoryRequirements();
}
VKAPI_ATTR void VKAPI_CALL vkGetImageSparseMemoryRequirements(VkDevice device, VkImage image, uint32_t *pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements *pSparseMemoryRequirements)
{
TRACE("(VkDevice device = %p, VkImage image = %p, uint32_t* pSparseMemoryRequirementCount = %p, VkSparseImageMemoryRequirements* pSparseMemoryRequirements = %p)",
device, static_cast<void *>(image), pSparseMemoryRequirementCount, pSparseMemoryRequirements);
// The 'sparseBinding' feature is not supported, so images can not be created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag.
// "If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written to."
*pSparseMemoryRequirementCount = 0;
}
VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkSampleCountFlagBits samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t *pPropertyCount, VkSparseImageFormatProperties *pProperties)
{
TRACE("(VkPhysicalDevice physicalDevice = %p, VkFormat format = %d, VkImageType type = %d, VkSampleCountFlagBits samples = %d, VkImageUsageFlags usage = %d, VkImageTiling tiling = %d, uint32_t* pPropertyCount = %p, VkSparseImageFormatProperties* pProperties = %p)",
physicalDevice, format, type, samples, usage, tiling, pPropertyCount, pProperties);
// We do not support sparse images.
*pPropertyCount = 0;
}
VKAPI_ATTR VkResult VKAPI_CALL vkQueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo *pBindInfo, VkFence fence)
{
TRACE("()");
UNSUPPORTED("vkQueueBindSparse");
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateFence(VkDevice device, const VkFenceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkFence *pFence)
{
TRACE("(VkDevice device = %p, const VkFenceCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkFence* pFence = %p)",
device, pCreateInfo, pAllocator, pFence);
auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
while(nextInfo)
{
switch(nextInfo->sType)
{
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str());
break;
}
nextInfo = nextInfo->pNext;
}
return vk::Fence::Create(pAllocator, pCreateInfo, pFence);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyFence(VkDevice device, VkFence fence, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkFence fence = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(fence), pAllocator);
vk::destroy(fence, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetFences(VkDevice device, uint32_t fenceCount, const VkFence *pFences)
{
TRACE("(VkDevice device = %p, uint32_t fenceCount = %d, const VkFence* pFences = %p)",
device, fenceCount, pFences);
for(uint32_t i = 0; i < fenceCount; i++)
{
vk::Cast(pFences[i])->reset();
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetFenceStatus(VkDevice device, VkFence fence)
{
TRACE("(VkDevice device = %p, VkFence fence = %p)", device, static_cast<void *>(fence));
return vk::Cast(fence)->getStatus();
}
VKAPI_ATTR VkResult VKAPI_CALL vkWaitForFences(VkDevice device, uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll, uint64_t timeout)
{
TRACE("(VkDevice device = %p, uint32_t fenceCount = %d, const VkFence* pFences = %p, VkBool32 waitAll = %d, uint64_t timeout = %" PRIu64 ")",
device, int(fenceCount), pFences, int(waitAll), timeout);
return vk::Cast(device)->waitForFences(fenceCount, pFences, waitAll, timeout);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateSemaphore(VkDevice device, const VkSemaphoreCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSemaphore *pSemaphore)
{
TRACE("(VkDevice device = %p, const VkSemaphoreCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkSemaphore* pSemaphore = %p)",
device, pCreateInfo, pAllocator, pSemaphore);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
VkSemaphoreType type = VK_SEMAPHORE_TYPE_BINARY;
for(const auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
nextInfo != nullptr; nextInfo = nextInfo->pNext)
{
switch(nextInfo->sType)
{
case VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO:
// Let the semaphore constructor handle this
break;
case VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO:
{
const VkSemaphoreTypeCreateInfo *info = reinterpret_cast<const VkSemaphoreTypeCreateInfo *>(nextInfo);
type = info->semaphoreType;
}
break;
default:
WARN("nextInfo->sType = %s", vk::Stringify(nextInfo->sType).c_str());
break;
}
}
if(type == VK_SEMAPHORE_TYPE_BINARY)
{
return vk::BinarySemaphore::Create(pAllocator, pCreateInfo, pSemaphore, pAllocator);
}
else
{
return vk::TimelineSemaphore::Create(pAllocator, pCreateInfo, pSemaphore, pAllocator);
}
}
VKAPI_ATTR void VKAPI_CALL vkDestroySemaphore(VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkSemaphore semaphore = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(semaphore), pAllocator);
vk::destroy(semaphore, pAllocator);
}
#if SWIFTSHADER_EXTERNAL_SEMAPHORE_OPAQUE_FD
VKAPI_ATTR VkResult VKAPI_CALL vkGetSemaphoreFdKHR(VkDevice device, const VkSemaphoreGetFdInfoKHR *pGetFdInfo, int *pFd)
{
TRACE("(VkDevice device = %p, const VkSemaphoreGetFdInfoKHR* pGetFdInfo = %p, int* pFd = %p)",
device, static_cast<const void *>(pGetFdInfo), static_cast<void *>(pFd));
if(pGetFdInfo->handleType != VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT)
{
UNSUPPORTED("pGetFdInfo->handleType %d", int(pGetFdInfo->handleType));
}
auto *sem = vk::DynamicCast<vk::BinarySemaphore>(pGetFdInfo->semaphore);
ASSERT(sem != nullptr);
return sem->exportFd(pFd);
}
VKAPI_ATTR VkResult VKAPI_CALL vkImportSemaphoreFdKHR(VkDevice device, const VkImportSemaphoreFdInfoKHR *pImportSemaphoreInfo)
{
TRACE("(VkDevice device = %p, const VkImportSemaphoreFdInfoKHR* pImportSemaphoreInfo = %p",
device, static_cast<const void *>(pImportSemaphoreInfo));
if(pImportSemaphoreInfo->handleType != VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT)
{
UNSUPPORTED("pImportSemaphoreInfo->handleType %d", int(pImportSemaphoreInfo->handleType));
}
bool temporaryImport = (pImportSemaphoreInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) != 0;
auto *sem = vk::DynamicCast<vk::BinarySemaphore>(pImportSemaphoreInfo->semaphore);
ASSERT(sem != nullptr);
return sem->importFd(pImportSemaphoreInfo->fd, temporaryImport);
}
#endif // SWIFTSHADER_EXTERNAL_SEMAPHORE_OPAQUE_FD
#if VK_USE_PLATFORM_FUCHSIA
VKAPI_ATTR VkResult VKAPI_CALL vkImportSemaphoreZirconHandleFUCHSIA(
VkDevice device,
const VkImportSemaphoreZirconHandleInfoFUCHSIA *pImportSemaphoreZirconHandleInfo)
{
TRACE("(VkDevice device = %p, const VkImportSemaphoreZirconHandleInfoFUCHSIA* pImportSemaphoreZirconHandleInfo = %p)",
device, pImportSemaphoreZirconHandleInfo);
if(pImportSemaphoreZirconHandleInfo->handleType != VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_ZIRCON_EVENT_BIT_FUCHSIA)
{
UNSUPPORTED("pImportSemaphoreZirconHandleInfo->handleType %d", int(pImportSemaphoreZirconHandleInfo->handleType));
}
bool temporaryImport = (pImportSemaphoreZirconHandleInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) != 0;
auto *sem = vk::DynamicCast<vk::BinarySemaphore>(pImportSemaphoreZirconHandleInfo->semaphore);
ASSERT(sem != nullptr);
return sem->importHandle(pImportSemaphoreZirconHandleInfo->zirconHandle, temporaryImport);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetSemaphoreZirconHandleFUCHSIA(
VkDevice device,
const VkSemaphoreGetZirconHandleInfoFUCHSIA *pGetZirconHandleInfo,
zx_handle_t *pZirconHandle)
{
TRACE("(VkDevice device = %p, const VkSemaphoreGetZirconHandleInfoFUCHSIA* pGetZirconHandleInfo = %p, zx_handle_t* pZirconHandle = %p)",
device, static_cast<const void *>(pGetZirconHandleInfo), static_cast<void *>(pZirconHandle));
if(pGetZirconHandleInfo->handleType != VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_ZIRCON_EVENT_BIT_FUCHSIA)
{
UNSUPPORTED("pGetZirconHandleInfo->handleType %d", int(pGetZirconHandleInfo->handleType));
}
auto *sem = vk::DynamicCast<vk::BinarySemaphore>(pGetZirconHandleInfo->semaphore);
ASSERT(sem != nullptr);
return sem->exportHandle(pZirconHandle);
}
#endif // VK_USE_PLATFORM_FUCHSIA
VKAPI_ATTR VkResult VKAPI_CALL vkGetSemaphoreCounterValue(VkDevice device, VkSemaphore semaphore, uint64_t *pValue)
{
TRACE("(VkDevice device = %p, VkSemaphore semaphore = %p, uint64_t* pValue = %p)",
device, static_cast<void *>(semaphore), pValue);
*pValue = vk::DynamicCast<vk::TimelineSemaphore>(semaphore)->getCounterValue();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkSignalSemaphore(VkDevice device, const VkSemaphoreSignalInfo *pSignalInfo)
{
TRACE("(VkDevice device = %p, const VkSemaphoreSignalInfo *pSignalInfo = %p)",
device, pSignalInfo);
vk::DynamicCast<vk::TimelineSemaphore>(pSignalInfo->semaphore)->signal(pSignalInfo->value);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkWaitSemaphores(VkDevice device, const VkSemaphoreWaitInfo *pWaitInfo, uint64_t timeout)
{
TRACE("(VkDevice device = %p, const VkSemaphoreWaitInfo *pWaitInfo = %p, uint64_t timeout = %" PRIu64 ")",
device, pWaitInfo, timeout);
return vk::Cast(device)->waitForSemaphores(pWaitInfo, timeout);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateEvent(VkDevice device, const VkEventCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkEvent *pEvent)
{
TRACE("(VkDevice device = %p, const VkEventCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkEvent* pEvent = %p)",
device, pCreateInfo, pAllocator, pEvent);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
auto extInfo = reinterpret_cast<VkBaseInStructure const *>(pCreateInfo->pNext);
while(extInfo)
{
// Vulkan 1.2: "pNext must be NULL"
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str());
extInfo = extInfo->pNext;
}
return vk::Event::Create(pAllocator, pCreateInfo, pEvent);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkEvent event = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(event), pAllocator);
vk::destroy(event, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetEventStatus(VkDevice device, VkEvent event)
{
TRACE("(VkDevice device = %p, VkEvent event = %p)", device, static_cast<void *>(event));
return vk::Cast(event)->getStatus();
}
VKAPI_ATTR VkResult VKAPI_CALL vkSetEvent(VkDevice device, VkEvent event)
{
TRACE("(VkDevice device = %p, VkEvent event = %p)", device, static_cast<void *>(event));
vk::Cast(event)->signal();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetEvent(VkDevice device, VkEvent event)
{
TRACE("(VkDevice device = %p, VkEvent event = %p)", device, static_cast<void *>(event));
vk::Cast(event)->reset();
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateQueryPool(VkDevice device, const VkQueryPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkQueryPool *pQueryPool)
{
TRACE("(VkDevice device = %p, const VkQueryPoolCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkQueryPool* pQueryPool = %p)",
device, pCreateInfo, pAllocator, pQueryPool);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
auto extInfo = reinterpret_cast<VkBaseInStructure const *>(pCreateInfo->pNext);
while(extInfo)
{
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str());
extInfo = extInfo->pNext;
}
return vk::QueryPool::Create(pAllocator, pCreateInfo, pQueryPool);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyQueryPool(VkDevice device, VkQueryPool queryPool, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkQueryPool queryPool = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(queryPool), pAllocator);
vk::destroy(queryPool, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetQueryPoolResults(VkDevice device, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void *pData, VkDeviceSize stride, VkQueryResultFlags flags)
{
TRACE("(VkDevice device = %p, VkQueryPool queryPool = %p, uint32_t firstQuery = %d, uint32_t queryCount = %d, size_t dataSize = %d, void* pData = %p, VkDeviceSize stride = %d, VkQueryResultFlags flags = %d)",
device, static_cast<void *>(queryPool), int(firstQuery), int(queryCount), int(dataSize), pData, int(stride), flags);
return vk::Cast(queryPool)->getResults(firstQuery, queryCount, dataSize, pData, stride, flags);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer)
{
TRACE("(VkDevice device = %p, const VkBufferCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkBuffer* pBuffer = %p)",
device, pCreateInfo, pAllocator, pBuffer);
auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
while(nextInfo)
{
switch(nextInfo->sType)
{
case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO:
// Do nothing. Should be handled by vk::Buffer::Create().
break;
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str());
break;
}
nextInfo = nextInfo->pNext;
}
return vk::Buffer::Create(pAllocator, pCreateInfo, pBuffer);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkBuffer buffer = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(buffer), pAllocator);
vk::destroy(buffer, pAllocator);
}
VKAPI_ATTR uint64_t VKAPI_CALL vkGetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
{
TRACE("(VkDevice device = %p, const VkBufferDeviceAddressInfo* pInfo = %p)",
device, pInfo);
UNSUPPORTED("VK_KHR_buffer_device_address");
return 0;
}
VKAPI_ATTR uint64_t VKAPI_CALL vkGetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
{
TRACE("(VkDevice device = %p, const VkBufferDeviceAddressInfo* pInfo = %p)",
device, pInfo);
UNSUPPORTED("VK_KHR_buffer_device_address");
return 0;
}
VKAPI_ATTR uint64_t VKAPI_CALL vkGetDeviceMemoryOpaqueCaptureAddress(VkDevice device, const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo)
{
TRACE("(VkDevice device = %p, const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo = %p)",
device, pInfo);
UNSUPPORTED("VK_KHR_buffer_device_address");
return 0;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateBufferView(VkDevice device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView)
{
TRACE("(VkDevice device = %p, const VkBufferViewCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkBufferView* pView = %p)",
device, pCreateInfo, pAllocator, pView);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
auto extInfo = reinterpret_cast<VkBaseInStructure const *>(pCreateInfo->pNext);
while(extInfo)
{
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str());
extInfo = extInfo->pNext;
}
return vk::BufferView::Create(pAllocator, pCreateInfo, pView);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyBufferView(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkBufferView bufferView = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(bufferView), pAllocator);
vk::destroy(bufferView, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage)
{
TRACE("(VkDevice device = %p, const VkImageCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkImage* pImage = %p)",
device, pCreateInfo, pAllocator, pImage);
const VkBaseInStructure *extensionCreateInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
#ifdef __ANDROID__
vk::BackingMemory backmem;
bool swapchainImage = false;
#endif
while(extensionCreateInfo)
{
switch((long)(extensionCreateInfo->sType))
{
#ifdef __ANDROID__
case VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID:
{
const VkSwapchainImageCreateInfoANDROID *swapImageCreateInfo = reinterpret_cast<const VkSwapchainImageCreateInfoANDROID *>(extensionCreateInfo);
backmem.androidUsage = swapImageCreateInfo->usage;
}
break;
case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID:
{
const VkNativeBufferANDROID *nativeBufferInfo = reinterpret_cast<const VkNativeBufferANDROID *>(extensionCreateInfo);
backmem.nativeHandle = nativeBufferInfo->handle;
backmem.stride = nativeBufferInfo->stride;
swapchainImage = true;
}
break;
case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID:
break;
#endif
case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO:
// Do nothing. Should be handled by vk::Image::Create()
break;
case VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR:
/* Do nothing. We don't actually need the swapchain handle yet; we'll do all the work in vkBindImageMemory2. */
break;
case VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO:
// Do nothing. This extension tells the driver which image formats will be used
// by the application. Swiftshader is not impacted from lacking this information,
// so we don't need to track the format list.
break;
case VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO:
{
// SwiftShader does not use an image's usage info for non-debug purposes outside of
// vkGetPhysicalDeviceImageFormatProperties2. This also applies to separate stencil usage.
const VkImageStencilUsageCreateInfo *stencilUsageInfo = reinterpret_cast<const VkImageStencilUsageCreateInfo *>(extensionCreateInfo);
(void)stencilUsageInfo->stencilUsage;
}
break;
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
// "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]"
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str());
break;
}
extensionCreateInfo = extensionCreateInfo->pNext;
}
VkResult result = vk::Image::Create(pAllocator, pCreateInfo, pImage, vk::Cast(device));
#ifdef __ANDROID__
if(swapchainImage)
{
if(result != VK_SUCCESS)
{
return result;
}
vk::Image *image = vk::Cast(*pImage);
VkMemoryRequirements memRequirements = image->getMemoryRequirements();
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = 0;
VkDeviceMemory devmem = { VK_NULL_HANDLE };
result = vkAllocateMemory(device, &allocInfo, pAllocator, &devmem);
if(result != VK_SUCCESS)
{
return result;
}
vkBindImageMemory(device, *pImage, devmem, 0);
backmem.externalMemory = true;
image->setBackingMemory(backmem);
}
#endif
return result;
}
VKAPI_ATTR void VKAPI_CALL vkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkImage image = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(image), pAllocator);
#ifdef __ANDROID__
vk::Image *img = vk::Cast(image);
if(img && img->hasExternalMemory())
{
vk::destroy(img->getExternalMemory(), pAllocator);
}
#endif
vk::destroy(image, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL vkGetImageSubresourceLayout(VkDevice device, VkImage image, const VkImageSubresource *pSubresource, VkSubresourceLayout *pLayout)
{
TRACE("(VkDevice device = %p, VkImage image = %p, const VkImageSubresource* pSubresource = %p, VkSubresourceLayout* pLayout = %p)",
device, static_cast<void *>(image), pSubresource, pLayout);
vk::Cast(image)->getSubresourceLayout(pSubresource, pLayout);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateImageView(VkDevice device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView)
{
TRACE("(VkDevice device = %p, const VkImageViewCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkImageView* pView = %p)",
device, pCreateInfo, pAllocator, pView);
if(pCreateInfo->flags != 0)
{
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
const VkBaseInStructure *extensionCreateInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
const vk::SamplerYcbcrConversion *ycbcrConversion = nullptr;
while(extensionCreateInfo)
{
switch(extensionCreateInfo->sType)
{
case VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO:
{
const VkImageViewUsageCreateInfo *multiviewCreateInfo = reinterpret_cast<const VkImageViewUsageCreateInfo *>(extensionCreateInfo);
ASSERT(!(~vk::Cast(pCreateInfo->image)->getUsage() & multiviewCreateInfo->usage));
}
break;
case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO:
{
const VkSamplerYcbcrConversionInfo *samplerYcbcrConversionInfo = reinterpret_cast<const VkSamplerYcbcrConversionInfo *>(extensionCreateInfo);
ycbcrConversion = vk::Cast(samplerYcbcrConversionInfo->conversion);
if(ycbcrConversion)
{
ASSERT((pCreateInfo->components.r == VK_COMPONENT_SWIZZLE_IDENTITY || pCreateInfo->components.r == VK_COMPONENT_SWIZZLE_R) &&
(pCreateInfo->components.g == VK_COMPONENT_SWIZZLE_IDENTITY || pCreateInfo->components.g == VK_COMPONENT_SWIZZLE_G) &&
(pCreateInfo->components.b == VK_COMPONENT_SWIZZLE_IDENTITY || pCreateInfo->components.b == VK_COMPONENT_SWIZZLE_B) &&
(pCreateInfo->components.a == VK_COMPONENT_SWIZZLE_IDENTITY || pCreateInfo->components.a == VK_COMPONENT_SWIZZLE_A));
}
}
break;
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str());
break;
}
extensionCreateInfo = extensionCreateInfo->pNext;
}
VkResult result = vk::ImageView::Create(pAllocator, pCreateInfo, pView, ycbcrConversion);
if(result == VK_SUCCESS)
{
vk::Cast(device)->registerImageView(vk::Cast(*pView));
}
return result;
}
VKAPI_ATTR void VKAPI_CALL vkDestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkImageView imageView = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(imageView), pAllocator);
vk::Cast(device)->unregisterImageView(vk::Cast(imageView));
vk::destroy(imageView, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule)
{
TRACE("(VkDevice device = %p, const VkShaderModuleCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkShaderModule* pShaderModule = %p)",
device, pCreateInfo, pAllocator, pShaderModule);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
while(nextInfo)
{
switch(nextInfo->sType)
{
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str());
break;
}
nextInfo = nextInfo->pNext;
}
return vk::ShaderModule::Create(pAllocator, pCreateInfo, pShaderModule);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkShaderModule shaderModule = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(shaderModule), pAllocator);
vk::destroy(shaderModule, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreatePipelineCache(VkDevice device, const VkPipelineCacheCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineCache *pPipelineCache)
{
TRACE("(VkDevice device = %p, const VkPipelineCacheCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkPipelineCache* pPipelineCache = %p)",
device, pCreateInfo, pAllocator, pPipelineCache);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
auto extInfo = reinterpret_cast<VkBaseInStructure const *>(pCreateInfo->pNext);
while(extInfo)
{
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str());
extInfo = extInfo->pNext;
}
return vk::PipelineCache::Create(pAllocator, pCreateInfo, pPipelineCache);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyPipelineCache(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkPipelineCache pipelineCache = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(pipelineCache), pAllocator);
vk::destroy(pipelineCache, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetPipelineCacheData(VkDevice device, VkPipelineCache pipelineCache, size_t *pDataSize, void *pData)
{
TRACE("(VkDevice device = %p, VkPipelineCache pipelineCache = %p, size_t* pDataSize = %p, void* pData = %p)",
device, static_cast<void *>(pipelineCache), pDataSize, pData);
return vk::Cast(pipelineCache)->getData(pDataSize, pData);
}
VKAPI_ATTR VkResult VKAPI_CALL vkMergePipelineCaches(VkDevice device, VkPipelineCache dstCache, uint32_t srcCacheCount, const VkPipelineCache *pSrcCaches)
{
TRACE("(VkDevice device = %p, VkPipelineCache dstCache = %p, uint32_t srcCacheCount = %d, const VkPipelineCache* pSrcCaches = %p)",
device, static_cast<void *>(dstCache), int(srcCacheCount), pSrcCaches);
return vk::Cast(dstCache)->merge(srcCacheCount, pSrcCaches);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines)
{
TRACE("(VkDevice device = %p, VkPipelineCache pipelineCache = %p, uint32_t createInfoCount = %d, const VkGraphicsPipelineCreateInfo* pCreateInfos = %p, const VkAllocationCallbacks* pAllocator = %p, VkPipeline* pPipelines = %p)",
device, static_cast<void *>(pipelineCache), int(createInfoCount), pCreateInfos, pAllocator, pPipelines);
VkResult errorResult = VK_SUCCESS;
for(uint32_t i = 0; i < createInfoCount; i++)
{
VkResult result = vk::GraphicsPipeline::Create(pAllocator, &pCreateInfos[i], &pPipelines[i], vk::Cast(device));
if(result == VK_SUCCESS)
{
static_cast<vk::GraphicsPipeline *>(vk::Cast(pPipelines[i]))->compileShaders(pAllocator, &pCreateInfos[i], vk::Cast(pipelineCache));
}
else
{
// According to the Vulkan spec, section 9.4. Multiple Pipeline Creation
// "When an application attempts to create many pipelines in a single command,
// it is possible that some subset may fail creation. In that case, the
// corresponding entries in the pPipelines output array will be filled with
// VK_NULL_HANDLE values. If any pipeline fails creation (for example, due to
// out of memory errors), the vkCreate*Pipelines commands will return an
// error code. The implementation will attempt to create all pipelines, and
// only return VK_NULL_HANDLE values for those that actually failed."
pPipelines[i] = VK_NULL_HANDLE;
errorResult = result;
}
}
return errorResult;
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines)
{
TRACE("(VkDevice device = %p, VkPipelineCache pipelineCache = %p, uint32_t createInfoCount = %d, const VkComputePipelineCreateInfo* pCreateInfos = %p, const VkAllocationCallbacks* pAllocator = %p, VkPipeline* pPipelines = %p)",
device, static_cast<void *>(pipelineCache), int(createInfoCount), pCreateInfos, pAllocator, pPipelines);
VkResult errorResult = VK_SUCCESS;
for(uint32_t i = 0; i < createInfoCount; i++)
{
VkResult result = vk::ComputePipeline::Create(pAllocator, &pCreateInfos[i], &pPipelines[i], vk::Cast(device));
if(result == VK_SUCCESS)
{
static_cast<vk::ComputePipeline *>(vk::Cast(pPipelines[i]))->compileShaders(pAllocator, &pCreateInfos[i], vk::Cast(pipelineCache));
}
else
{
// According to the Vulkan spec, section 9.4. Multiple Pipeline Creation
// "When an application attempts to create many pipelines in a single command,
// it is possible that some subset may fail creation. In that case, the
// corresponding entries in the pPipelines output array will be filled with
// VK_NULL_HANDLE values. If any pipeline fails creation (for example, due to
// out of memory errors), the vkCreate*Pipelines commands will return an
// error code. The implementation will attempt to create all pipelines, and
// only return VK_NULL_HANDLE values for those that actually failed."
pPipelines[i] = VK_NULL_HANDLE;
errorResult = result;
}
}
return errorResult;
}
VKAPI_ATTR void VKAPI_CALL vkDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkPipeline pipeline = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(pipeline), pAllocator);
vk::destroy(pipeline, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout)
{
TRACE("(VkDevice device = %p, const VkPipelineLayoutCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkPipelineLayout* pPipelineLayout = %p)",
device, pCreateInfo, pAllocator, pPipelineLayout);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
while(nextInfo)
{
switch(nextInfo->sType)
{
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str());
break;
}
nextInfo = nextInfo->pNext;
}
return vk::PipelineLayout::Create(pAllocator, pCreateInfo, pPipelineLayout);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkPipelineLayout pipelineLayout = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(pipelineLayout), pAllocator);
vk::release(pipelineLayout, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateSampler(VkDevice device, const VkSamplerCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSampler *pSampler)
{
TRACE("(VkDevice device = %p, const VkSamplerCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkSampler* pSampler = %p)",
device, pCreateInfo, pAllocator, pSampler);
if(pCreateInfo->flags != 0)
{
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
const VkBaseInStructure *extensionCreateInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
const vk::SamplerYcbcrConversion *ycbcrConversion = nullptr;
VkSamplerFilteringPrecisionModeGOOGLE filteringPrecision = VK_SAMPLER_FILTERING_PRECISION_MODE_LOW_GOOGLE;
VkClearColorValue borderColor = {};
while(extensionCreateInfo)
{
switch(static_cast<long>(extensionCreateInfo->sType))
{
case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO:
{
const VkSamplerYcbcrConversionInfo *samplerYcbcrConversionInfo =
reinterpret_cast<const VkSamplerYcbcrConversionInfo *>(extensionCreateInfo);
ycbcrConversion = vk::Cast(samplerYcbcrConversionInfo->conversion);
}
break;
#if !defined(__ANDROID__)
case VK_STRUCTURE_TYPE_SAMPLER_FILTERING_PRECISION_GOOGLE:
{
const VkSamplerFilteringPrecisionGOOGLE *filteringInfo =
reinterpret_cast<const VkSamplerFilteringPrecisionGOOGLE *>(extensionCreateInfo);
filteringPrecision = filteringInfo->samplerFilteringPrecisionMode;
}
break;
#endif
case VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT:
{
const VkSamplerCustomBorderColorCreateInfoEXT *borderColorInfo =
reinterpret_cast<const VkSamplerCustomBorderColorCreateInfoEXT *>(extensionCreateInfo);
borderColor = borderColorInfo->customBorderColor;
}
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str());
break;
}
extensionCreateInfo = extensionCreateInfo->pNext;
}
vk::SamplerState samplerState(pCreateInfo, ycbcrConversion, filteringPrecision, borderColor);
uint32_t samplerID = vk::Cast(device)->indexSampler(samplerState);
VkResult result = vk::Sampler::Create(pAllocator, pCreateInfo, pSampler, samplerState, samplerID);
if(*pSampler == VK_NULL_HANDLE)
{
ASSERT(result != VK_SUCCESS);
vk::Cast(device)->removeSampler(samplerState);
}
return result;
}
VKAPI_ATTR void VKAPI_CALL vkDestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkSampler sampler = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(sampler), pAllocator);
if(sampler != VK_NULL_HANDLE)
{
vk::Cast(device)->removeSampler(*vk::Cast(sampler));
vk::destroy(sampler, pAllocator);
}
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorSetLayout(VkDevice device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorSetLayout *pSetLayout)
{
TRACE("(VkDevice device = %p, const VkDescriptorSetLayoutCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDescriptorSetLayout* pSetLayout = %p)",
device, pCreateInfo, pAllocator, pSetLayout);
const VkBaseInStructure *extensionCreateInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
while(extensionCreateInfo)
{
switch(extensionCreateInfo->sType)
{
case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT:
ASSERT(!vk::Cast(device)->hasExtension(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME));
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str());
break;
}
extensionCreateInfo = extensionCreateInfo->pNext;
}
return vk::DescriptorSetLayout::Create(pAllocator, pCreateInfo, pSetLayout);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkDescriptorSetLayout descriptorSetLayout = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(descriptorSetLayout), pAllocator);
vk::destroy(descriptorSetLayout, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorPool(VkDevice device, const VkDescriptorPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorPool *pDescriptorPool)
{
TRACE("(VkDevice device = %p, const VkDescriptorPoolCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDescriptorPool* pDescriptorPool = %p)",
device, pCreateInfo, pAllocator, pDescriptorPool);
auto extInfo = reinterpret_cast<VkBaseInStructure const *>(pCreateInfo->pNext);
while(extInfo)
{
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str());
extInfo = extInfo->pNext;
}
return vk::DescriptorPool::Create(pAllocator, pCreateInfo, pDescriptorPool);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkDescriptorPool descriptorPool = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(descriptorPool), pAllocator);
vk::destroy(descriptorPool, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags)
{
TRACE("(VkDevice device = %p, VkDescriptorPool descriptorPool = %p, VkDescriptorPoolResetFlags flags = 0x%x)",
device, static_cast<void *>(descriptorPool), int(flags));
if(flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("flags %d", int(flags));
}
return vk::Cast(descriptorPool)->reset();
}
VKAPI_ATTR VkResult VKAPI_CALL vkAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo *pAllocateInfo, VkDescriptorSet *pDescriptorSets)
{
TRACE("(VkDevice device = %p, const VkDescriptorSetAllocateInfo* pAllocateInfo = %p, VkDescriptorSet* pDescriptorSets = %p)",
device, pAllocateInfo, pDescriptorSets);
auto extInfo = reinterpret_cast<VkBaseInStructure const *>(pAllocateInfo->pNext);
while(extInfo)
{
UNSUPPORTED("pAllocateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str());
extInfo = extInfo->pNext;
}
return vk::Cast(pAllocateInfo->descriptorPool)->allocateSets(pAllocateInfo->descriptorSetCount, pAllocateInfo->pSetLayouts, pDescriptorSets);
}
VKAPI_ATTR VkResult VKAPI_CALL vkFreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t descriptorSetCount, const VkDescriptorSet *pDescriptorSets)
{
TRACE("(VkDevice device = %p, VkDescriptorPool descriptorPool = %p, uint32_t descriptorSetCount = %d, const VkDescriptorSet* pDescriptorSets = %p)",
device, static_cast<void *>(descriptorPool), descriptorSetCount, pDescriptorSets);
vk::Cast(descriptorPool)->freeSets(descriptorSetCount, pDescriptorSets);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL vkUpdateDescriptorSets(VkDevice device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies)
{
TRACE("(VkDevice device = %p, uint32_t descriptorWriteCount = %d, const VkWriteDescriptorSet* pDescriptorWrites = %p, uint32_t descriptorCopyCount = %d, const VkCopyDescriptorSet* pDescriptorCopies = %p)",
device, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies);
vk::Cast(device)->updateDescriptorSets(descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkFramebuffer *pFramebuffer)
{
TRACE("(VkDevice device = %p, const VkFramebufferCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkFramebuffer* pFramebuffer = %p)",
device, pCreateInfo, pAllocator, pFramebuffer);
return vk::Framebuffer::Create(pAllocator, pCreateInfo, pFramebuffer);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkFramebuffer framebuffer = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(framebuffer), pAllocator);
vk::destroy(framebuffer, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass)
{
TRACE("(VkDevice device = %p, const VkRenderPassCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkRenderPass* pRenderPass = %p)",
device, pCreateInfo, pAllocator, pRenderPass);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
ValidateRenderPassPNextChain(device, pCreateInfo);
return vk::RenderPass::Create(pAllocator, pCreateInfo, pRenderPass);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateRenderPass2(VkDevice device, const VkRenderPassCreateInfo2KHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass)
{
TRACE("(VkDevice device = %p, const VkRenderPassCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkRenderPass* pRenderPass = %p)",
device, pCreateInfo, pAllocator, pRenderPass);
if(pCreateInfo->flags != 0)
{
// Vulkan 1.2: "flags is reserved for future use." "flags must be 0"
UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags));
}
ValidateRenderPassPNextChain(device, pCreateInfo);
return vk::RenderPass::Create(pAllocator, pCreateInfo, pRenderPass);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkRenderPass renderPass = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(renderPass), pAllocator);
vk::destroy(renderPass, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL vkGetRenderAreaGranularity(VkDevice device, VkRenderPass renderPass, VkExtent2D *pGranularity)
{
TRACE("(VkDevice device = %p, VkRenderPass renderPass = %p, VkExtent2D* pGranularity = %p)",
device, static_cast<void *>(renderPass), pGranularity);
vk::Cast(renderPass)->getRenderAreaGranularity(pGranularity);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkCommandPool *pCommandPool)
{
TRACE("(VkDevice device = %p, const VkCommandPoolCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkCommandPool* pCommandPool = %p)",
device, pCreateInfo, pAllocator, pCommandPool);
auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
while(nextInfo)
{
switch(nextInfo->sType)
{
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str());
break;
}
nextInfo = nextInfo->pNext;
}
return vk::CommandPool::Create(pAllocator, pCreateInfo, pCommandPool);
}
VKAPI_ATTR void VKAPI_CALL vkDestroyCommandPool(VkDevice device, VkCommandPool commandPool, const VkAllocationCallbacks *pAllocator)
{
TRACE("(VkDevice device = %p, VkCommandPool commandPool = %p, const VkAllocationCallbacks* pAllocator = %p)",
device, static_cast<void *>(commandPool), pAllocator);
vk::destroy(commandPool, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolResetFlags flags)
{
TRACE("(VkDevice device = %p, VkCommandPool commandPool = %p, VkCommandPoolResetFlags flags = %d)",
device, static_cast<void *>(commandPool), int(flags));
return vk::Cast(commandPool)->reset(flags);
}
VKAPI_ATTR VkResult VKAPI_CALL vkAllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo *pAllocateInfo, VkCommandBuffer *pCommandBuffers)
{
TRACE("(VkDevice device = %p, const VkCommandBufferAllocateInfo* pAllocateInfo = %p, VkCommandBuffer* pCommandBuffers = %p)",
device, pAllocateInfo, pCommandBuffers);
auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pAllocateInfo->pNext);
while(nextInfo)
{
switch(nextInfo->sType)
{
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pAllocateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str());
break;
}
nextInfo = nextInfo->pNext;
}
return vk::Cast(pAllocateInfo->commandPool)->allocateCommandBuffers(vk::Cast(device), pAllocateInfo->level, pAllocateInfo->commandBufferCount, pCommandBuffers);
}
VKAPI_ATTR void VKAPI_CALL vkFreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount, const VkCommandBuffer *pCommandBuffers)
{
TRACE("(VkDevice device = %p, VkCommandPool commandPool = %p, uint32_t commandBufferCount = %d, const VkCommandBuffer* pCommandBuffers = %p)",
device, static_cast<void *>(commandPool), int(commandBufferCount), pCommandBuffers);
vk::Cast(commandPool)->freeCommandBuffers(commandBufferCount, pCommandBuffers);
}
VKAPI_ATTR VkResult VKAPI_CALL vkBeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo)
{
TRACE("(VkCommandBuffer commandBuffer = %p, const VkCommandBufferBeginInfo* pBeginInfo = %p)",
commandBuffer, pBeginInfo);
auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pBeginInfo->pNext);
while(nextInfo)
{
switch(nextInfo->sType)
{
case VK_STRUCTURE_TYPE_MAX_ENUM:
// dEQP tests that this value is ignored.
break;
default:
UNSUPPORTED("pBeginInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str());
break;
}
nextInfo = nextInfo->pNext;
}
return vk::Cast(commandBuffer)->begin(pBeginInfo->flags, pBeginInfo->pInheritanceInfo);
}
VKAPI_ATTR VkResult VKAPI_CALL vkEndCommandBuffer(VkCommandBuffer commandBuffer)
{
TRACE("(VkCommandBuffer commandBuffer = %p)", commandBuffer);
return vk::Cast(commandBuffer)->end();
}
VKAPI_ATTR VkResult VKAPI_CALL vkResetCommandBuffer(VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkCommandBufferResetFlags flags = %d)", commandBuffer, int(flags));
return vk::Cast(commandBuffer)->reset(flags);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkPipelineBindPoint pipelineBindPoint = %d, VkPipeline pipeline = %p)",
commandBuffer, int(pipelineBindPoint), static_cast<void *>(pipeline));
vk::Cast(commandBuffer)->bindPipeline(pipelineBindPoint, vk::Cast(pipeline));
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports)
{
TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t firstViewport = %d, uint32_t viewportCount = %d, const VkViewport* pViewports = %p)",
commandBuffer, int(firstViewport), int(viewportCount), pViewports);
vk::Cast(commandBuffer)->setViewport(firstViewport, viewportCount, pViewports);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D *pScissors)
{
TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t firstScissor = %d, uint32_t scissorCount = %d, const VkRect2D* pScissors = %p)",
commandBuffer, int(firstScissor), int(scissorCount), pScissors);
vk::Cast(commandBuffer)->setScissor(firstScissor, scissorCount, pScissors);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
{
TRACE("(VkCommandBuffer commandBuffer = %p, float lineWidth = %f)", commandBuffer, lineWidth);
vk::Cast(commandBuffer)->setLineWidth(lineWidth);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetDepthBias(VkCommandBuffer commandBuffer, float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor)
{
TRACE("(VkCommandBuffer commandBuffer = %p, float depthBiasConstantFactor = %f, float depthBiasClamp = %f, float depthBiasSlopeFactor = %f)",
commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
vk::Cast(commandBuffer)->setDepthBias(depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4])
{
TRACE("(VkCommandBuffer commandBuffer = %p, const float blendConstants[4] = {%f, %f, %f, %f})",
commandBuffer, blendConstants[0], blendConstants[1], blendConstants[2], blendConstants[3]);
vk::Cast(commandBuffer)->setBlendConstants(blendConstants);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds)
{
TRACE("(VkCommandBuffer commandBuffer = %p, float minDepthBounds = %f, float maxDepthBounds = %f)",
commandBuffer, minDepthBounds, maxDepthBounds);
vk::Cast(commandBuffer)->setDepthBounds(minDepthBounds, maxDepthBounds);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkStencilFaceFlags faceMask = %d, uint32_t compareMask = %d)",
commandBuffer, int(faceMask), int(compareMask));
vk::Cast(commandBuffer)->setStencilCompareMask(faceMask, compareMask);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkStencilFaceFlags faceMask = %d, uint32_t writeMask = %d)",
commandBuffer, int(faceMask), int(writeMask));
vk::Cast(commandBuffer)->setStencilWriteMask(faceMask, writeMask);
}
VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkStencilFaceFlags faceMask = %d, uint32_t reference = %d)",
commandBuffer, int(faceMask), int(reference));
vk::Cast(commandBuffer)->setStencilReference(faceMask, reference);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const VkDescriptorSet *pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t *pDynamicOffsets)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkPipelineBindPoint pipelineBindPoint = %d, VkPipelineLayout layout = %p, uint32_t firstSet = %d, uint32_t descriptorSetCount = %d, const VkDescriptorSet* pDescriptorSets = %p, uint32_t dynamicOffsetCount = %d, const uint32_t* pDynamicOffsets = %p)",
commandBuffer, int(pipelineBindPoint), static_cast<void *>(layout), int(firstSet), int(descriptorSetCount), pDescriptorSets, int(dynamicOffsetCount), pDynamicOffsets);
vk::Cast(commandBuffer)->bindDescriptorSets(pipelineBindPoint, vk::Cast(layout), firstSet, descriptorSetCount, pDescriptorSets, dynamicOffsetCount, pDynamicOffsets);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d, VkIndexType indexType = %d)",
commandBuffer, static_cast<void *>(buffer), int(offset), int(indexType));
vk::Cast(commandBuffer)->bindIndexBuffer(vk::Cast(buffer), offset, indexType);
}
VKAPI_ATTR void VKAPI_CALL vkCmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer *pBuffers, const VkDeviceSize *pOffsets)
{
TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t firstBinding = %d, uint32_t bindingCount = %d, const VkBuffer* pBuffers = %p, const VkDeviceSize* pOffsets = %p)",
commandBuffer, int(firstBinding), int(bindingCount), pBuffers, pOffsets);
vk::Cast(commandBuffer)->bindVertexBuffers(firstBinding, bindingCount, pBuffers, pOffsets);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance)
{
TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t vertexCount = %d, uint32_t instanceCount = %d, uint32_t firstVertex = %d, uint32_t firstInstance = %d)",
commandBuffer, int(vertexCount), int(instanceCount), int(firstVertex), int(firstInstance));
vk::Cast(commandBuffer)->draw(vertexCount, instanceCount, firstVertex, firstInstance);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance)
{
TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t indexCount = %d, uint32_t instanceCount = %d, uint32_t firstIndex = %d, int32_t vertexOffset = %d, uint32_t firstInstance = %d)",
commandBuffer, int(indexCount), int(instanceCount), int(firstIndex), int(vertexOffset), int(firstInstance));
vk::Cast(commandBuffer)->drawIndexed(indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d, uint32_t drawCount = %d, uint32_t stride = %d)",
commandBuffer, static_cast<void *>(buffer), int(offset), int(drawCount), int(stride));
vk::Cast(commandBuffer)->drawIndirect(vk::Cast(buffer), offset, drawCount, stride);
}
VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride)
{
TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d, uint32_t drawCount = %d, uint32_t stride = %d)",
commandBuffer,