| //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the function verifier interface, that can be used for some |
| // sanity checking of input to the system. |
| // |
| // Note that this does not provide full `Java style' security and verifications, |
| // instead it just tries to ensure that code is well-formed. |
| // |
| // * Both of a binary operator's parameters are of the same type |
| // * Verify that the indices of mem access instructions match other operands |
| // * Verify that arithmetic and other things are only performed on first-class |
| // types. Verify that shifts & logicals only happen on integrals f.e. |
| // * All of the constants in a switch statement are of the correct type |
| // * The code is in valid SSA form |
| // * It should be illegal to put a label into any other type (like a structure) |
| // or to return one. [except constant arrays!] |
| // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad |
| // * PHI nodes must have an entry for each predecessor, with no extras. |
| // * PHI nodes must be the first thing in a basic block, all grouped together |
| // * PHI nodes must have at least one entry |
| // * All basic blocks should only end with terminator insts, not contain them |
| // * The entry node to a function must not have predecessors |
| // * All Instructions must be embedded into a basic block |
| // * Functions cannot take a void-typed parameter |
| // * Verify that a function's argument list agrees with it's declared type. |
| // * It is illegal to specify a name for a void value. |
| // * It is illegal to have a internal global value with no initializer |
| // * It is illegal to have a ret instruction that returns a value that does not |
| // agree with the function return value type. |
| // * Function call argument types match the function prototype |
| // * A landing pad is defined by a landingpad instruction, and can be jumped to |
| // only by the unwind edge of an invoke instruction. |
| // * A landingpad instruction must be the first non-PHI instruction in the |
| // block. |
| // * Landingpad instructions must be in a function with a personality function. |
| // * All other things that are tested by asserts spread about the code... |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsWebAssembly.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| |
| struct VerifierSupport { |
| raw_ostream *OS; |
| const Module &M; |
| ModuleSlotTracker MST; |
| Triple TT; |
| const DataLayout &DL; |
| LLVMContext &Context; |
| |
| /// Track the brokenness of the module while recursively visiting. |
| bool Broken = false; |
| /// Broken debug info can be "recovered" from by stripping the debug info. |
| bool BrokenDebugInfo = false; |
| /// Whether to treat broken debug info as an error. |
| bool TreatBrokenDebugInfoAsError = true; |
| |
| explicit VerifierSupport(raw_ostream *OS, const Module &M) |
| : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), |
| Context(M.getContext()) {} |
| |
| private: |
| void Write(const Module *M) { |
| *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; |
| } |
| |
| void Write(const Value *V) { |
| if (V) |
| Write(*V); |
| } |
| |
| void Write(const Value &V) { |
| if (isa<Instruction>(V)) { |
| V.print(*OS, MST); |
| *OS << '\n'; |
| } else { |
| V.printAsOperand(*OS, true, MST); |
| *OS << '\n'; |
| } |
| } |
| |
| void Write(const Metadata *MD) { |
| if (!MD) |
| return; |
| MD->print(*OS, MST, &M); |
| *OS << '\n'; |
| } |
| |
| template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { |
| Write(MD.get()); |
| } |
| |
| void Write(const NamedMDNode *NMD) { |
| if (!NMD) |
| return; |
| NMD->print(*OS, MST); |
| *OS << '\n'; |
| } |
| |
| void Write(Type *T) { |
| if (!T) |
| return; |
| *OS << ' ' << *T; |
| } |
| |
| void Write(const Comdat *C) { |
| if (!C) |
| return; |
| *OS << *C; |
| } |
| |
| void Write(const APInt *AI) { |
| if (!AI) |
| return; |
| *OS << *AI << '\n'; |
| } |
| |
| void Write(const unsigned i) { *OS << i << '\n'; } |
| |
| template <typename T> void Write(ArrayRef<T> Vs) { |
| for (const T &V : Vs) |
| Write(V); |
| } |
| |
| template <typename T1, typename... Ts> |
| void WriteTs(const T1 &V1, const Ts &... Vs) { |
| Write(V1); |
| WriteTs(Vs...); |
| } |
| |
| template <typename... Ts> void WriteTs() {} |
| |
| public: |
| /// A check failed, so printout out the condition and the message. |
| /// |
| /// This provides a nice place to put a breakpoint if you want to see why |
| /// something is not correct. |
| void CheckFailed(const Twine &Message) { |
| if (OS) |
| *OS << Message << '\n'; |
| Broken = true; |
| } |
| |
| /// A check failed (with values to print). |
| /// |
| /// This calls the Message-only version so that the above is easier to set a |
| /// breakpoint on. |
| template <typename T1, typename... Ts> |
| void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { |
| CheckFailed(Message); |
| if (OS) |
| WriteTs(V1, Vs...); |
| } |
| |
| /// A debug info check failed. |
| void DebugInfoCheckFailed(const Twine &Message) { |
| if (OS) |
| *OS << Message << '\n'; |
| Broken |= TreatBrokenDebugInfoAsError; |
| BrokenDebugInfo = true; |
| } |
| |
| /// A debug info check failed (with values to print). |
| template <typename T1, typename... Ts> |
| void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, |
| const Ts &... Vs) { |
| DebugInfoCheckFailed(Message); |
| if (OS) |
| WriteTs(V1, Vs...); |
| } |
| }; |
| |
| } // namespace llvm |
| |
| namespace { |
| |
| class Verifier : public InstVisitor<Verifier>, VerifierSupport { |
| friend class InstVisitor<Verifier>; |
| |
| DominatorTree DT; |
| |
| /// When verifying a basic block, keep track of all of the |
| /// instructions we have seen so far. |
| /// |
| /// This allows us to do efficient dominance checks for the case when an |
| /// instruction has an operand that is an instruction in the same block. |
| SmallPtrSet<Instruction *, 16> InstsInThisBlock; |
| |
| /// Keep track of the metadata nodes that have been checked already. |
| SmallPtrSet<const Metadata *, 32> MDNodes; |
| |
| /// Keep track which DISubprogram is attached to which function. |
| DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; |
| |
| /// Track all DICompileUnits visited. |
| SmallPtrSet<const Metadata *, 2> CUVisited; |
| |
| /// The result type for a landingpad. |
| Type *LandingPadResultTy; |
| |
| /// Whether we've seen a call to @llvm.localescape in this function |
| /// already. |
| bool SawFrameEscape; |
| |
| /// Whether the current function has a DISubprogram attached to it. |
| bool HasDebugInfo = false; |
| |
| /// Whether source was present on the first DIFile encountered in each CU. |
| DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; |
| |
| /// Stores the count of how many objects were passed to llvm.localescape for a |
| /// given function and the largest index passed to llvm.localrecover. |
| DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; |
| |
| // Maps catchswitches and cleanuppads that unwind to siblings to the |
| // terminators that indicate the unwind, used to detect cycles therein. |
| MapVector<Instruction *, Instruction *> SiblingFuncletInfo; |
| |
| /// Cache of constants visited in search of ConstantExprs. |
| SmallPtrSet<const Constant *, 32> ConstantExprVisited; |
| |
| /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. |
| SmallVector<const Function *, 4> DeoptimizeDeclarations; |
| |
| // Verify that this GlobalValue is only used in this module. |
| // This map is used to avoid visiting uses twice. We can arrive at a user |
| // twice, if they have multiple operands. In particular for very large |
| // constant expressions, we can arrive at a particular user many times. |
| SmallPtrSet<const Value *, 32> GlobalValueVisited; |
| |
| // Keeps track of duplicate function argument debug info. |
| SmallVector<const DILocalVariable *, 16> DebugFnArgs; |
| |
| TBAAVerifier TBAAVerifyHelper; |
| |
| void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); |
| |
| public: |
| explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, |
| const Module &M) |
| : VerifierSupport(OS, M), LandingPadResultTy(nullptr), |
| SawFrameEscape(false), TBAAVerifyHelper(this) { |
| TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; |
| } |
| |
| bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } |
| |
| bool verify(const Function &F) { |
| assert(F.getParent() == &M && |
| "An instance of this class only works with a specific module!"); |
| |
| // First ensure the function is well-enough formed to compute dominance |
| // information, and directly compute a dominance tree. We don't rely on the |
| // pass manager to provide this as it isolates us from a potentially |
| // out-of-date dominator tree and makes it significantly more complex to run |
| // this code outside of a pass manager. |
| // FIXME: It's really gross that we have to cast away constness here. |
| if (!F.empty()) |
| DT.recalculate(const_cast<Function &>(F)); |
| |
| for (const BasicBlock &BB : F) { |
| if (!BB.empty() && BB.back().isTerminator()) |
| continue; |
| |
| if (OS) { |
| *OS << "Basic Block in function '" << F.getName() |
| << "' does not have terminator!\n"; |
| BB.printAsOperand(*OS, true, MST); |
| *OS << "\n"; |
| } |
| return false; |
| } |
| |
| Broken = false; |
| // FIXME: We strip const here because the inst visitor strips const. |
| visit(const_cast<Function &>(F)); |
| verifySiblingFuncletUnwinds(); |
| InstsInThisBlock.clear(); |
| DebugFnArgs.clear(); |
| LandingPadResultTy = nullptr; |
| SawFrameEscape = false; |
| SiblingFuncletInfo.clear(); |
| |
| return !Broken; |
| } |
| |
| /// Verify the module that this instance of \c Verifier was initialized with. |
| bool verify() { |
| Broken = false; |
| |
| // Collect all declarations of the llvm.experimental.deoptimize intrinsic. |
| for (const Function &F : M) |
| if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) |
| DeoptimizeDeclarations.push_back(&F); |
| |
| // Now that we've visited every function, verify that we never asked to |
| // recover a frame index that wasn't escaped. |
| verifyFrameRecoverIndices(); |
| for (const GlobalVariable &GV : M.globals()) |
| visitGlobalVariable(GV); |
| |
| for (const GlobalAlias &GA : M.aliases()) |
| visitGlobalAlias(GA); |
| |
| for (const NamedMDNode &NMD : M.named_metadata()) |
| visitNamedMDNode(NMD); |
| |
| for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) |
| visitComdat(SMEC.getValue()); |
| |
| visitModuleFlags(M); |
| visitModuleIdents(M); |
| visitModuleCommandLines(M); |
| |
| verifyCompileUnits(); |
| |
| verifyDeoptimizeCallingConvs(); |
| DISubprogramAttachments.clear(); |
| return !Broken; |
| } |
| |
| private: |
| // Verification methods... |
| void visitGlobalValue(const GlobalValue &GV); |
| void visitGlobalVariable(const GlobalVariable &GV); |
| void visitGlobalAlias(const GlobalAlias &GA); |
| void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); |
| void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, |
| const GlobalAlias &A, const Constant &C); |
| void visitNamedMDNode(const NamedMDNode &NMD); |
| void visitMDNode(const MDNode &MD); |
| void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); |
| void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); |
| void visitComdat(const Comdat &C); |
| void visitModuleIdents(const Module &M); |
| void visitModuleCommandLines(const Module &M); |
| void visitModuleFlags(const Module &M); |
| void visitModuleFlag(const MDNode *Op, |
| DenseMap<const MDString *, const MDNode *> &SeenIDs, |
| SmallVectorImpl<const MDNode *> &Requirements); |
| void visitModuleFlagCGProfileEntry(const MDOperand &MDO); |
| void visitFunction(const Function &F); |
| void visitBasicBlock(BasicBlock &BB); |
| void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); |
| void visitDereferenceableMetadata(Instruction &I, MDNode *MD); |
| void visitProfMetadata(Instruction &I, MDNode *MD); |
| |
| template <class Ty> bool isValidMetadataArray(const MDTuple &N); |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); |
| #include "llvm/IR/Metadata.def" |
| void visitDIScope(const DIScope &N); |
| void visitDIVariable(const DIVariable &N); |
| void visitDILexicalBlockBase(const DILexicalBlockBase &N); |
| void visitDITemplateParameter(const DITemplateParameter &N); |
| |
| void visitTemplateParams(const MDNode &N, const Metadata &RawParams); |
| |
| // InstVisitor overrides... |
| using InstVisitor<Verifier>::visit; |
| void visit(Instruction &I); |
| |
| void visitTruncInst(TruncInst &I); |
| void visitZExtInst(ZExtInst &I); |
| void visitSExtInst(SExtInst &I); |
| void visitFPTruncInst(FPTruncInst &I); |
| void visitFPExtInst(FPExtInst &I); |
| void visitFPToUIInst(FPToUIInst &I); |
| void visitFPToSIInst(FPToSIInst &I); |
| void visitUIToFPInst(UIToFPInst &I); |
| void visitSIToFPInst(SIToFPInst &I); |
| void visitIntToPtrInst(IntToPtrInst &I); |
| void visitPtrToIntInst(PtrToIntInst &I); |
| void visitBitCastInst(BitCastInst &I); |
| void visitAddrSpaceCastInst(AddrSpaceCastInst &I); |
| void visitPHINode(PHINode &PN); |
| void visitCallBase(CallBase &Call); |
| void visitUnaryOperator(UnaryOperator &U); |
| void visitBinaryOperator(BinaryOperator &B); |
| void visitICmpInst(ICmpInst &IC); |
| void visitFCmpInst(FCmpInst &FC); |
| void visitExtractElementInst(ExtractElementInst &EI); |
| void visitInsertElementInst(InsertElementInst &EI); |
| void visitShuffleVectorInst(ShuffleVectorInst &EI); |
| void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } |
| void visitCallInst(CallInst &CI); |
| void visitInvokeInst(InvokeInst &II); |
| void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void verifyDominatesUse(Instruction &I, unsigned i); |
| void visitInstruction(Instruction &I); |
| void visitTerminator(Instruction &I); |
| void visitBranchInst(BranchInst &BI); |
| void visitReturnInst(ReturnInst &RI); |
| void visitSwitchInst(SwitchInst &SI); |
| void visitIndirectBrInst(IndirectBrInst &BI); |
| void visitCallBrInst(CallBrInst &CBI); |
| void visitSelectInst(SelectInst &SI); |
| void visitUserOp1(Instruction &I); |
| void visitUserOp2(Instruction &I) { visitUserOp1(I); } |
| void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); |
| void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); |
| void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); |
| void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); |
| void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); |
| void visitAtomicRMWInst(AtomicRMWInst &RMWI); |
| void visitFenceInst(FenceInst &FI); |
| void visitAllocaInst(AllocaInst &AI); |
| void visitExtractValueInst(ExtractValueInst &EVI); |
| void visitInsertValueInst(InsertValueInst &IVI); |
| void visitEHPadPredecessors(Instruction &I); |
| void visitLandingPadInst(LandingPadInst &LPI); |
| void visitResumeInst(ResumeInst &RI); |
| void visitCatchPadInst(CatchPadInst &CPI); |
| void visitCatchReturnInst(CatchReturnInst &CatchReturn); |
| void visitCleanupPadInst(CleanupPadInst &CPI); |
| void visitFuncletPadInst(FuncletPadInst &FPI); |
| void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); |
| void visitCleanupReturnInst(CleanupReturnInst &CRI); |
| |
| void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); |
| void verifySwiftErrorValue(const Value *SwiftErrorVal); |
| void verifyMustTailCall(CallInst &CI); |
| bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, |
| unsigned ArgNo, std::string &Suffix); |
| bool verifyAttributeCount(AttributeList Attrs, unsigned Params); |
| void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, |
| const Value *V); |
| void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); |
| void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, |
| const Value *V, bool IsIntrinsic); |
| void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); |
| |
| void visitConstantExprsRecursively(const Constant *EntryC); |
| void visitConstantExpr(const ConstantExpr *CE); |
| void verifyStatepoint(const CallBase &Call); |
| void verifyFrameRecoverIndices(); |
| void verifySiblingFuncletUnwinds(); |
| |
| void verifyFragmentExpression(const DbgVariableIntrinsic &I); |
| template <typename ValueOrMetadata> |
| void verifyFragmentExpression(const DIVariable &V, |
| DIExpression::FragmentInfo Fragment, |
| ValueOrMetadata *Desc); |
| void verifyFnArgs(const DbgVariableIntrinsic &I); |
| void verifyNotEntryValue(const DbgVariableIntrinsic &I); |
| |
| /// Module-level debug info verification... |
| void verifyCompileUnits(); |
| |
| /// Module-level verification that all @llvm.experimental.deoptimize |
| /// declarations share the same calling convention. |
| void verifyDeoptimizeCallingConvs(); |
| |
| /// Verify all-or-nothing property of DIFile source attribute within a CU. |
| void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); |
| }; |
| |
| } // end anonymous namespace |
| |
| /// We know that cond should be true, if not print an error message. |
| #define Assert(C, ...) \ |
| do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) |
| |
| /// We know that a debug info condition should be true, if not print |
| /// an error message. |
| #define AssertDI(C, ...) \ |
| do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) |
| |
| void Verifier::visit(Instruction &I) { |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| Assert(I.getOperand(i) != nullptr, "Operand is null", &I); |
| InstVisitor<Verifier>::visit(I); |
| } |
| |
| // Helper to recursively iterate over indirect users. By |
| // returning false, the callback can ask to stop recursing |
| // further. |
| static void forEachUser(const Value *User, |
| SmallPtrSet<const Value *, 32> &Visited, |
| llvm::function_ref<bool(const Value *)> Callback) { |
| if (!Visited.insert(User).second) |
| return; |
| for (const Value *TheNextUser : User->materialized_users()) |
| if (Callback(TheNextUser)) |
| forEachUser(TheNextUser, Visited, Callback); |
| } |
| |
| void Verifier::visitGlobalValue(const GlobalValue &GV) { |
| Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), |
| "Global is external, but doesn't have external or weak linkage!", &GV); |
| |
| Assert(GV.getAlignment() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", &GV); |
| Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), |
| "Only global variables can have appending linkage!", &GV); |
| |
| if (GV.hasAppendingLinkage()) { |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); |
| Assert(GVar && GVar->getValueType()->isArrayTy(), |
| "Only global arrays can have appending linkage!", GVar); |
| } |
| |
| if (GV.isDeclarationForLinker()) |
| Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); |
| |
| if (GV.hasDLLImportStorageClass()) { |
| Assert(!GV.isDSOLocal(), |
| "GlobalValue with DLLImport Storage is dso_local!", &GV); |
| |
| Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || |
| GV.hasAvailableExternallyLinkage(), |
| "Global is marked as dllimport, but not external", &GV); |
| } |
| |
| if (GV.hasLocalLinkage()) |
| Assert(GV.isDSOLocal(), |
| "GlobalValue with private or internal linkage must be dso_local!", |
| &GV); |
| |
| if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) |
| Assert(GV.isDSOLocal(), |
| "GlobalValue with non default visibility must be dso_local!", &GV); |
| |
| forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| if (!I->getParent() || !I->getParent()->getParent()) |
| CheckFailed("Global is referenced by parentless instruction!", &GV, &M, |
| I); |
| else if (I->getParent()->getParent()->getParent() != &M) |
| CheckFailed("Global is referenced in a different module!", &GV, &M, I, |
| I->getParent()->getParent(), |
| I->getParent()->getParent()->getParent()); |
| return false; |
| } else if (const Function *F = dyn_cast<Function>(V)) { |
| if (F->getParent() != &M) |
| CheckFailed("Global is used by function in a different module", &GV, &M, |
| F, F->getParent()); |
| return false; |
| } |
| return true; |
| }); |
| } |
| |
| void Verifier::visitGlobalVariable(const GlobalVariable &GV) { |
| if (GV.hasInitializer()) { |
| Assert(GV.getInitializer()->getType() == GV.getValueType(), |
| "Global variable initializer type does not match global " |
| "variable type!", |
| &GV); |
| // If the global has common linkage, it must have a zero initializer and |
| // cannot be constant. |
| if (GV.hasCommonLinkage()) { |
| Assert(GV.getInitializer()->isNullValue(), |
| "'common' global must have a zero initializer!", &GV); |
| Assert(!GV.isConstant(), "'common' global may not be marked constant!", |
| &GV); |
| Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); |
| } |
| } |
| |
| if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || |
| GV.getName() == "llvm.global_dtors")) { |
| Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), |
| "invalid linkage for intrinsic global variable", &GV); |
| // Don't worry about emitting an error for it not being an array, |
| // visitGlobalValue will complain on appending non-array. |
| if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { |
| StructType *STy = dyn_cast<StructType>(ATy->getElementType()); |
| PointerType *FuncPtrTy = |
| FunctionType::get(Type::getVoidTy(Context), false)-> |
| getPointerTo(DL.getProgramAddressSpace()); |
| Assert(STy && |
| (STy->getNumElements() == 2 || STy->getNumElements() == 3) && |
| STy->getTypeAtIndex(0u)->isIntegerTy(32) && |
| STy->getTypeAtIndex(1) == FuncPtrTy, |
| "wrong type for intrinsic global variable", &GV); |
| Assert(STy->getNumElements() == 3, |
| "the third field of the element type is mandatory, " |
| "specify i8* null to migrate from the obsoleted 2-field form"); |
| Type *ETy = STy->getTypeAtIndex(2); |
| Assert(ETy->isPointerTy() && |
| cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), |
| "wrong type for intrinsic global variable", &GV); |
| } |
| } |
| |
| if (GV.hasName() && (GV.getName() == "llvm.used" || |
| GV.getName() == "llvm.compiler.used")) { |
| Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), |
| "invalid linkage for intrinsic global variable", &GV); |
| Type *GVType = GV.getValueType(); |
| if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { |
| PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); |
| Assert(PTy, "wrong type for intrinsic global variable", &GV); |
| if (GV.hasInitializer()) { |
| const Constant *Init = GV.getInitializer(); |
| const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); |
| Assert(InitArray, "wrong initalizer for intrinsic global variable", |
| Init); |
| for (Value *Op : InitArray->operands()) { |
| Value *V = Op->stripPointerCasts(); |
| Assert(isa<GlobalVariable>(V) || isa<Function>(V) || |
| isa<GlobalAlias>(V), |
| "invalid llvm.used member", V); |
| Assert(V->hasName(), "members of llvm.used must be named", V); |
| } |
| } |
| } |
| } |
| |
| // Visit any debug info attachments. |
| SmallVector<MDNode *, 1> MDs; |
| GV.getMetadata(LLVMContext::MD_dbg, MDs); |
| for (auto *MD : MDs) { |
| if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) |
| visitDIGlobalVariableExpression(*GVE); |
| else |
| AssertDI(false, "!dbg attachment of global variable must be a " |
| "DIGlobalVariableExpression"); |
| } |
| |
| // Scalable vectors cannot be global variables, since we don't know |
| // the runtime size. If the global is a struct or an array containing |
| // scalable vectors, that will be caught by the isValidElementType methods |
| // in StructType or ArrayType instead. |
| if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) |
| Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); |
| |
| if (!GV.hasInitializer()) { |
| visitGlobalValue(GV); |
| return; |
| } |
| |
| // Walk any aggregate initializers looking for bitcasts between address spaces |
| visitConstantExprsRecursively(GV.getInitializer()); |
| |
| visitGlobalValue(GV); |
| } |
| |
| void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { |
| SmallPtrSet<const GlobalAlias*, 4> Visited; |
| Visited.insert(&GA); |
| visitAliaseeSubExpr(Visited, GA, C); |
| } |
| |
| void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, |
| const GlobalAlias &GA, const Constant &C) { |
| if (const auto *GV = dyn_cast<GlobalValue>(&C)) { |
| Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", |
| &GA); |
| |
| if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { |
| Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); |
| |
| Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", |
| &GA); |
| } else { |
| // Only continue verifying subexpressions of GlobalAliases. |
| // Do not recurse into global initializers. |
| return; |
| } |
| } |
| |
| if (const auto *CE = dyn_cast<ConstantExpr>(&C)) |
| visitConstantExprsRecursively(CE); |
| |
| for (const Use &U : C.operands()) { |
| Value *V = &*U; |
| if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) |
| visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); |
| else if (const auto *C2 = dyn_cast<Constant>(V)) |
| visitAliaseeSubExpr(Visited, GA, *C2); |
| } |
| } |
| |
| void Verifier::visitGlobalAlias(const GlobalAlias &GA) { |
| Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), |
| "Alias should have private, internal, linkonce, weak, linkonce_odr, " |
| "weak_odr, or external linkage!", |
| &GA); |
| const Constant *Aliasee = GA.getAliasee(); |
| Assert(Aliasee, "Aliasee cannot be NULL!", &GA); |
| Assert(GA.getType() == Aliasee->getType(), |
| "Alias and aliasee types should match!", &GA); |
| |
| Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), |
| "Aliasee should be either GlobalValue or ConstantExpr", &GA); |
| |
| visitAliaseeSubExpr(GA, *Aliasee); |
| |
| visitGlobalValue(GA); |
| } |
| |
| void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { |
| // There used to be various other llvm.dbg.* nodes, but we don't support |
| // upgrading them and we want to reserve the namespace for future uses. |
| if (NMD.getName().startswith("llvm.dbg.")) |
| AssertDI(NMD.getName() == "llvm.dbg.cu", |
| "unrecognized named metadata node in the llvm.dbg namespace", |
| &NMD); |
| for (const MDNode *MD : NMD.operands()) { |
| if (NMD.getName() == "llvm.dbg.cu") |
| AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); |
| |
| if (!MD) |
| continue; |
| |
| visitMDNode(*MD); |
| } |
| } |
| |
| void Verifier::visitMDNode(const MDNode &MD) { |
| // Only visit each node once. Metadata can be mutually recursive, so this |
| // avoids infinite recursion here, as well as being an optimization. |
| if (!MDNodes.insert(&MD).second) |
| return; |
| |
| switch (MD.getMetadataID()) { |
| default: |
| llvm_unreachable("Invalid MDNode subclass"); |
| case Metadata::MDTupleKind: |
| break; |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ |
| case Metadata::CLASS##Kind: \ |
| visit##CLASS(cast<CLASS>(MD)); \ |
| break; |
| #include "llvm/IR/Metadata.def" |
| } |
| |
| for (const Metadata *Op : MD.operands()) { |
| if (!Op) |
| continue; |
| Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", |
| &MD, Op); |
| if (auto *N = dyn_cast<MDNode>(Op)) { |
| visitMDNode(*N); |
| continue; |
| } |
| if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { |
| visitValueAsMetadata(*V, nullptr); |
| continue; |
| } |
| } |
| |
| // Check these last, so we diagnose problems in operands first. |
| Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); |
| Assert(MD.isResolved(), "All nodes should be resolved!", &MD); |
| } |
| |
| void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { |
| Assert(MD.getValue(), "Expected valid value", &MD); |
| Assert(!MD.getValue()->getType()->isMetadataTy(), |
| "Unexpected metadata round-trip through values", &MD, MD.getValue()); |
| |
| auto *L = dyn_cast<LocalAsMetadata>(&MD); |
| if (!L) |
| return; |
| |
| Assert(F, "function-local metadata used outside a function", L); |
| |
| // If this was an instruction, bb, or argument, verify that it is in the |
| // function that we expect. |
| Function *ActualF = nullptr; |
| if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { |
| Assert(I->getParent(), "function-local metadata not in basic block", L, I); |
| ActualF = I->getParent()->getParent(); |
| } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) |
| ActualF = BB->getParent(); |
| else if (Argument *A = dyn_cast<Argument>(L->getValue())) |
| ActualF = A->getParent(); |
| assert(ActualF && "Unimplemented function local metadata case!"); |
| |
| Assert(ActualF == F, "function-local metadata used in wrong function", L); |
| } |
| |
| void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { |
| Metadata *MD = MDV.getMetadata(); |
| if (auto *N = dyn_cast<MDNode>(MD)) { |
| visitMDNode(*N); |
| return; |
| } |
| |
| // Only visit each node once. Metadata can be mutually recursive, so this |
| // avoids infinite recursion here, as well as being an optimization. |
| if (!MDNodes.insert(MD).second) |
| return; |
| |
| if (auto *V = dyn_cast<ValueAsMetadata>(MD)) |
| visitValueAsMetadata(*V, F); |
| } |
| |
| static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } |
| static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } |
| static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } |
| |
| void Verifier::visitDILocation(const DILocation &N) { |
| AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "location requires a valid scope", &N, N.getRawScope()); |
| if (auto *IA = N.getRawInlinedAt()) |
| AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); |
| if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) |
| AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); |
| } |
| |
| void Verifier::visitGenericDINode(const GenericDINode &N) { |
| AssertDI(N.getTag(), "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIScope(const DIScope &N) { |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDISubrange(const DISubrange &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); |
| auto Count = N.getCount(); |
| AssertDI(Count, "Count must either be a signed constant or a DIVariable", |
| &N); |
| AssertDI(!Count.is<ConstantInt*>() || |
| Count.get<ConstantInt*>()->getSExtValue() >= -1, |
| "invalid subrange count", &N); |
| } |
| |
| void Verifier::visitDIEnumerator(const DIEnumerator &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIBasicType(const DIBasicType &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_base_type || |
| N.getTag() == dwarf::DW_TAG_unspecified_type, |
| "invalid tag", &N); |
| AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , |
| "has conflicting flags", &N); |
| } |
| |
| void Verifier::visitDIDerivedType(const DIDerivedType &N) { |
| // Common scope checks. |
| visitDIScope(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_typedef || |
| N.getTag() == dwarf::DW_TAG_pointer_type || |
| N.getTag() == dwarf::DW_TAG_ptr_to_member_type || |
| N.getTag() == dwarf::DW_TAG_reference_type || |
| N.getTag() == dwarf::DW_TAG_rvalue_reference_type || |
| N.getTag() == dwarf::DW_TAG_const_type || |
| N.getTag() == dwarf::DW_TAG_volatile_type || |
| N.getTag() == dwarf::DW_TAG_restrict_type || |
| N.getTag() == dwarf::DW_TAG_atomic_type || |
| N.getTag() == dwarf::DW_TAG_member || |
| N.getTag() == dwarf::DW_TAG_inheritance || |
| N.getTag() == dwarf::DW_TAG_friend, |
| "invalid tag", &N); |
| if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { |
| AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, |
| N.getRawExtraData()); |
| } |
| |
| AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, |
| N.getRawBaseType()); |
| |
| if (N.getDWARFAddressSpace()) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || |
| N.getTag() == dwarf::DW_TAG_reference_type || |
| N.getTag() == dwarf::DW_TAG_rvalue_reference_type, |
| "DWARF address space only applies to pointer or reference types", |
| &N); |
| } |
| } |
| |
| /// Detect mutually exclusive flags. |
| static bool hasConflictingReferenceFlags(unsigned Flags) { |
| return ((Flags & DINode::FlagLValueReference) && |
| (Flags & DINode::FlagRValueReference)) || |
| ((Flags & DINode::FlagTypePassByValue) && |
| (Flags & DINode::FlagTypePassByReference)); |
| } |
| |
| void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { |
| auto *Params = dyn_cast<MDTuple>(&RawParams); |
| AssertDI(Params, "invalid template params", &N, &RawParams); |
| for (Metadata *Op : Params->operands()) { |
| AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", |
| &N, Params, Op); |
| } |
| } |
| |
| void Verifier::visitDICompositeType(const DICompositeType &N) { |
| // Common scope checks. |
| visitDIScope(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_array_type || |
| N.getTag() == dwarf::DW_TAG_structure_type || |
| N.getTag() == dwarf::DW_TAG_union_type || |
| N.getTag() == dwarf::DW_TAG_enumeration_type || |
| N.getTag() == dwarf::DW_TAG_class_type || |
| N.getTag() == dwarf::DW_TAG_variant_part, |
| "invalid tag", &N); |
| |
| AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, |
| N.getRawBaseType()); |
| |
| AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), |
| "invalid composite elements", &N, N.getRawElements()); |
| AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, |
| N.getRawVTableHolder()); |
| AssertDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| unsigned DIBlockByRefStruct = 1 << 4; |
| AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, |
| "DIBlockByRefStruct on DICompositeType is no longer supported", &N); |
| |
| if (N.isVector()) { |
| const DINodeArray Elements = N.getElements(); |
| AssertDI(Elements.size() == 1 && |
| Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, |
| "invalid vector, expected one element of type subrange", &N); |
| } |
| |
| if (auto *Params = N.getRawTemplateParams()) |
| visitTemplateParams(N, *Params); |
| |
| if (N.getTag() == dwarf::DW_TAG_class_type || |
| N.getTag() == dwarf::DW_TAG_union_type) { |
| AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), |
| "class/union requires a filename", &N, N.getFile()); |
| } |
| |
| if (auto *D = N.getRawDiscriminator()) { |
| AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, |
| "discriminator can only appear on variant part"); |
| } |
| } |
| |
| void Verifier::visitDISubroutineType(const DISubroutineType &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); |
| if (auto *Types = N.getRawTypeArray()) { |
| AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); |
| for (Metadata *Ty : N.getTypeArray()->operands()) { |
| AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); |
| } |
| } |
| AssertDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| } |
| |
| void Verifier::visitDIFile(const DIFile &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); |
| Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); |
| if (Checksum) { |
| AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, |
| "invalid checksum kind", &N); |
| size_t Size; |
| switch (Checksum->Kind) { |
| case DIFile::CSK_MD5: |
| Size = 32; |
| break; |
| case DIFile::CSK_SHA1: |
| Size = 40; |
| break; |
| } |
| AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); |
| AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, |
| "invalid checksum", &N); |
| } |
| } |
| |
| void Verifier::visitDICompileUnit(const DICompileUnit &N) { |
| AssertDI(N.isDistinct(), "compile units must be distinct", &N); |
| AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); |
| |
| // Don't bother verifying the compilation directory or producer string |
| // as those could be empty. |
| AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, |
| N.getRawFile()); |
| AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, |
| N.getFile()); |
| |
| verifySourceDebugInfo(N, *N.getFile()); |
| |
| AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), |
| "invalid emission kind", &N); |
| |
| if (auto *Array = N.getRawEnumTypes()) { |
| AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); |
| for (Metadata *Op : N.getEnumTypes()->operands()) { |
| auto *Enum = dyn_cast_or_null<DICompositeType>(Op); |
| AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, |
| "invalid enum type", &N, N.getEnumTypes(), Op); |
| } |
| } |
| if (auto *Array = N.getRawRetainedTypes()) { |
| AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); |
| for (Metadata *Op : N.getRetainedTypes()->operands()) { |
| AssertDI(Op && (isa<DIType>(Op) || |
| (isa<DISubprogram>(Op) && |
| !cast<DISubprogram>(Op)->isDefinition())), |
| "invalid retained type", &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawGlobalVariables()) { |
| AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); |
| for (Metadata *Op : N.getGlobalVariables()->operands()) { |
| AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), |
| "invalid global variable ref", &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawImportedEntities()) { |
| AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); |
| for (Metadata *Op : N.getImportedEntities()->operands()) { |
| AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", |
| &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawMacros()) { |
| AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); |
| for (Metadata *Op : N.getMacros()->operands()) { |
| AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); |
| } |
| } |
| CUVisited.insert(&N); |
| } |
| |
| void Verifier::visitDISubprogram(const DISubprogram &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); |
| AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| else |
| AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); |
| if (auto *T = N.getRawType()) |
| AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); |
| AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, |
| N.getRawContainingType()); |
| if (auto *Params = N.getRawTemplateParams()) |
| visitTemplateParams(N, *Params); |
| if (auto *S = N.getRawDeclaration()) |
| AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), |
| "invalid subprogram declaration", &N, S); |
| if (auto *RawNode = N.getRawRetainedNodes()) { |
| auto *Node = dyn_cast<MDTuple>(RawNode); |
| AssertDI(Node, "invalid retained nodes list", &N, RawNode); |
| for (Metadata *Op : Node->operands()) { |
| AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), |
| "invalid retained nodes, expected DILocalVariable or DILabel", |
| &N, Node, Op); |
| } |
| } |
| AssertDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| |
| auto *Unit = N.getRawUnit(); |
| if (N.isDefinition()) { |
| // Subprogram definitions (not part of the type hierarchy). |
| AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); |
| AssertDI(Unit, "subprogram definitions must have a compile unit", &N); |
| AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); |
| if (N.getFile()) |
| verifySourceDebugInfo(*N.getUnit(), *N.getFile()); |
| } else { |
| // Subprogram declarations (part of the type hierarchy). |
| AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); |
| } |
| |
| if (auto *RawThrownTypes = N.getRawThrownTypes()) { |
| auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); |
| AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); |
| for (Metadata *Op : ThrownTypes->operands()) |
| AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, |
| Op); |
| } |
| |
| if (N.areAllCallsDescribed()) |
| AssertDI(N.isDefinition(), |
| "DIFlagAllCallsDescribed must be attached to a definition"); |
| } |
| |
| void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); |
| AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "invalid local scope", &N, N.getRawScope()); |
| if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) |
| AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); |
| } |
| |
| void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { |
| visitDILexicalBlockBase(N); |
| |
| AssertDI(N.getLine() || !N.getColumn(), |
| "cannot have column info without line info", &N); |
| } |
| |
| void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { |
| visitDILexicalBlockBase(N); |
| } |
| |
| void Verifier::visitDICommonBlock(const DICommonBlock &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); |
| if (auto *S = N.getRawDecl()) |
| AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); |
| } |
| |
| void Verifier::visitDINamespace(const DINamespace &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); |
| } |
| |
| void Verifier::visitDIMacro(const DIMacro &N) { |
| AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || |
| N.getMacinfoType() == dwarf::DW_MACINFO_undef, |
| "invalid macinfo type", &N); |
| AssertDI(!N.getName().empty(), "anonymous macro", &N); |
| if (!N.getValue().empty()) { |
| assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); |
| } |
| } |
| |
| void Verifier::visitDIMacroFile(const DIMacroFile &N) { |
| AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, |
| "invalid macinfo type", &N); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| |
| if (auto *Array = N.getRawElements()) { |
| AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); |
| for (Metadata *Op : N.getElements()->operands()) { |
| AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); |
| } |
| } |
| } |
| |
| void Verifier::visitDIModule(const DIModule &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); |
| AssertDI(!N.getName().empty(), "anonymous module", &N); |
| } |
| |
| void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { |
| AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| } |
| |
| void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { |
| visitDITemplateParameter(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", |
| &N); |
| } |
| |
| void Verifier::visitDITemplateValueParameter( |
| const DITemplateValueParameter &N) { |
| visitDITemplateParameter(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || |
| N.getTag() == dwarf::DW_TAG_GNU_template_template_param || |
| N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, |
| "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIVariable(const DIVariable &N) { |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope", &N, S); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { |
| // Checks common to all variables. |
| visitDIVariable(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); |
| AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| AssertDI(N.getType(), "missing global variable type", &N); |
| if (auto *Member = N.getRawStaticDataMemberDeclaration()) { |
| AssertDI(isa<DIDerivedType>(Member), |
| "invalid static data member declaration", &N, Member); |
| } |
| } |
| |
| void Verifier::visitDILocalVariable(const DILocalVariable &N) { |
| // Checks common to all variables. |
| visitDIVariable(N); |
| |
| AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); |
| AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "local variable requires a valid scope", &N, N.getRawScope()); |
| if (auto Ty = N.getType()) |
| AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); |
| } |
| |
| void Verifier::visitDILabel(const DILabel &N) { |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope", &N, S); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); |
| AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "label requires a valid scope", &N, N.getRawScope()); |
| } |
| |
| void Verifier::visitDIExpression(const DIExpression &N) { |
| AssertDI(N.isValid(), "invalid expression", &N); |
| } |
| |
| void Verifier::visitDIGlobalVariableExpression( |
| const DIGlobalVariableExpression &GVE) { |
| AssertDI(GVE.getVariable(), "missing variable"); |
| if (auto *Var = GVE.getVariable()) |
| visitDIGlobalVariable(*Var); |
| if (auto *Expr = GVE.getExpression()) { |
| visitDIExpression(*Expr); |
| if (auto Fragment = Expr->getFragmentInfo()) |
| verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); |
| } |
| } |
| |
| void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); |
| if (auto *T = N.getRawType()) |
| AssertDI(isType(T), "invalid type ref", &N, T); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || |
| N.getTag() == dwarf::DW_TAG_imported_declaration, |
| "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); |
| AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, |
| N.getRawEntity()); |
| } |
| |
| void Verifier::visitComdat(const Comdat &C) { |
| // In COFF the Module is invalid if the GlobalValue has private linkage. |
| // Entities with private linkage don't have entries in the symbol table. |
| if (TT.isOSBinFormatCOFF()) |
| if (const GlobalValue *GV = M.getNamedValue(C.getName())) |
| Assert(!GV->hasPrivateLinkage(), |
| "comdat global value has private linkage", GV); |
| } |
| |
| void Verifier::visitModuleIdents(const Module &M) { |
| const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); |
| if (!Idents) |
| return; |
| |
| // llvm.ident takes a list of metadata entry. Each entry has only one string. |
| // Scan each llvm.ident entry and make sure that this requirement is met. |
| for (const MDNode *N : Idents->operands()) { |
| Assert(N->getNumOperands() == 1, |
| "incorrect number of operands in llvm.ident metadata", N); |
| Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), |
| ("invalid value for llvm.ident metadata entry operand" |
| "(the operand should be a string)"), |
| N->getOperand(0)); |
| } |
| } |
| |
| void Verifier::visitModuleCommandLines(const Module &M) { |
| const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); |
| if (!CommandLines) |
| return; |
| |
| // llvm.commandline takes a list of metadata entry. Each entry has only one |
| // string. Scan each llvm.commandline entry and make sure that this |
| // requirement is met. |
| for (const MDNode *N : CommandLines->operands()) { |
| Assert(N->getNumOperands() == 1, |
| "incorrect number of operands in llvm.commandline metadata", N); |
| Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), |
| ("invalid value for llvm.commandline metadata entry operand" |
| "(the operand should be a string)"), |
| N->getOperand(0)); |
| } |
| } |
| |
| void Verifier::visitModuleFlags(const Module &M) { |
| const NamedMDNode *Flags = M.getModuleFlagsMetadata(); |
| if (!Flags) return; |
| |
| // Scan each flag, and track the flags and requirements. |
| DenseMap<const MDString*, const MDNode*> SeenIDs; |
| SmallVector<const MDNode*, 16> Requirements; |
| for (const MDNode *MDN : Flags->operands()) |
| visitModuleFlag(MDN, SeenIDs, Requirements); |
| |
| // Validate that the requirements in the module are valid. |
| for (const MDNode *Requirement : Requirements) { |
| const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); |
| const Metadata *ReqValue = Requirement->getOperand(1); |
| |
| const MDNode *Op = SeenIDs.lookup(Flag); |
| if (!Op) { |
| CheckFailed("invalid requirement on flag, flag is not present in module", |
| Flag); |
| continue; |
| } |
| |
| if (Op->getOperand(2) != ReqValue) { |
| CheckFailed(("invalid requirement on flag, " |
| "flag does not have the required value"), |
| Flag); |
| continue; |
| } |
| } |
| } |
| |
| void |
| Verifier::visitModuleFlag(const MDNode *Op, |
| DenseMap<const MDString *, const MDNode *> &SeenIDs, |
| SmallVectorImpl<const MDNode *> &Requirements) { |
| // Each module flag should have three arguments, the merge behavior (a |
| // constant int), the flag ID (an MDString), and the value. |
| Assert(Op->getNumOperands() == 3, |
| "incorrect number of operands in module flag", Op); |
| Module::ModFlagBehavior MFB; |
| if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { |
| Assert( |
| mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), |
| "invalid behavior operand in module flag (expected constant integer)", |
| Op->getOperand(0)); |
| Assert(false, |
| "invalid behavior operand in module flag (unexpected constant)", |
| Op->getOperand(0)); |
| } |
| MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); |
| Assert(ID, "invalid ID operand in module flag (expected metadata string)", |
| Op->getOperand(1)); |
| |
| // Sanity check the values for behaviors with additional requirements. |
| switch (MFB) { |
| case Module::Error: |
| case Module::Warning: |
| case Module::Override: |
| // These behavior types accept any value. |
| break; |
| |
| case Module::Max: { |
| Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), |
| "invalid value for 'max' module flag (expected constant integer)", |
| Op->getOperand(2)); |
| break; |
| } |
| |
| case Module::Require: { |
| // The value should itself be an MDNode with two operands, a flag ID (an |
| // MDString), and a value. |
| MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); |
| Assert(Value && Value->getNumOperands() == 2, |
| "invalid value for 'require' module flag (expected metadata pair)", |
| Op->getOperand(2)); |
| Assert(isa<MDString>(Value->getOperand(0)), |
| ("invalid value for 'require' module flag " |
| "(first value operand should be a string)"), |
| Value->getOperand(0)); |
| |
| // Append it to the list of requirements, to check once all module flags are |
| // scanned. |
| Requirements.push_back(Value); |
| break; |
| } |
| |
| case Module::Append: |
| case Module::AppendUnique: { |
| // These behavior types require the operand be an MDNode. |
| Assert(isa<MDNode>(Op->getOperand(2)), |
| "invalid value for 'append'-type module flag " |
| "(expected a metadata node)", |
| Op->getOperand(2)); |
| break; |
| } |
| } |
| |
| // Unless this is a "requires" flag, check the ID is unique. |
| if (MFB != Module::Require) { |
| bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; |
| Assert(Inserted, |
| "module flag identifiers must be unique (or of 'require' type)", ID); |
| } |
| |
| if (ID->getString() == "wchar_size") { |
| ConstantInt *Value |
| = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); |
| Assert(Value, "wchar_size metadata requires constant integer argument"); |
| } |
| |
| if (ID->getString() == "Linker Options") { |
| // If the llvm.linker.options named metadata exists, we assume that the |
| // bitcode reader has upgraded the module flag. Otherwise the flag might |
| // have been created by a client directly. |
| Assert(M.getNamedMetadata("llvm.linker.options"), |
| "'Linker Options' named metadata no longer supported"); |
| } |
| |
| if (ID->getString() == "CG Profile") { |
| for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) |
| visitModuleFlagCGProfileEntry(MDO); |
| } |
| } |
| |
| void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { |
| auto CheckFunction = [&](const MDOperand &FuncMDO) { |
| if (!FuncMDO) |
| return; |
| auto F = dyn_cast<ValueAsMetadata>(FuncMDO); |
| Assert(F && isa<Function>(F->getValue()), "expected a Function or null", |
| FuncMDO); |
| }; |
| auto Node = dyn_cast_or_null<MDNode>(MDO); |
| Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); |
| CheckFunction(Node->getOperand(0)); |
| CheckFunction(Node->getOperand(1)); |
| auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); |
| Assert(Count && Count->getType()->isIntegerTy(), |
| "expected an integer constant", Node->getOperand(2)); |
| } |
| |
| /// Return true if this attribute kind only applies to functions. |
| static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { |
| switch (Kind) { |
| case Attribute::NoReturn: |
| case Attribute::NoSync: |
| case Attribute::WillReturn: |
| case Attribute::NoCfCheck: |
| case Attribute::NoUnwind: |
| case Attribute::NoInline: |
| case Attribute::AlwaysInline: |
| case Attribute::OptimizeForSize: |
| case Attribute::StackProtect: |
| case Attribute::StackProtectReq: |
| case Attribute::StackProtectStrong: |
| case Attribute::SafeStack: |
| case Attribute::ShadowCallStack: |
| case Attribute::NoRedZone: |
| case Attribute::NoImplicitFloat: |
| case Attribute::Naked: |
| case Attribute::InlineHint: |
| case Attribute::StackAlignment: |
| case Attribute::UWTable: |
| case Attribute::NonLazyBind: |
| case Attribute::ReturnsTwice: |
| case Attribute::SanitizeAddress: |
| case Attribute::SanitizeHWAddress: |
| case Attribute::SanitizeMemTag: |
| case Attribute::SanitizeThread: |
| case Attribute::SanitizeMemory: |
| case Attribute::MinSize: |
| case Attribute::NoDuplicate: |
| case Attribute::Builtin: |
| case Attribute::NoBuiltin: |
| case Attribute::Cold: |
| case Attribute::OptForFuzzing: |
| case Attribute::OptimizeNone: |
| case Attribute::JumpTable: |
| case Attribute::Convergent: |
| case Attribute::ArgMemOnly: |
| case Attribute::NoRecurse: |
| case Attribute::InaccessibleMemOnly: |
| case Attribute::InaccessibleMemOrArgMemOnly: |
| case Attribute::AllocSize: |
| case Attribute::SpeculativeLoadHardening: |
| case Attribute::Speculatable: |
| case Attribute::StrictFP: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| /// Return true if this is a function attribute that can also appear on |
| /// arguments. |
| static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { |
| return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || |
| Kind == Attribute::ReadNone || Kind == Attribute::NoFree; |
| } |
| |
| void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, |
| const Value *V) { |
| for (Attribute A : Attrs) { |
| if (A.isStringAttribute()) |
| continue; |
| |
| if (isFuncOnlyAttr(A.getKindAsEnum())) { |
| if (!IsFunction) { |
| CheckFailed("Attribute '" + A.getAsString() + |
| "' only applies to functions!", |
| V); |
| return; |
| } |
| } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { |
| CheckFailed("Attribute '" + A.getAsString() + |
| "' does not apply to functions!", |
| V); |
| return; |
| } |
| } |
| } |
| |
| // VerifyParameterAttrs - Check the given attributes for an argument or return |
| // value of the specified type. The value V is printed in error messages. |
| void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, |
| const Value *V) { |
| if (!Attrs.hasAttributes()) |
| return; |
| |
| verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); |
| |
| if (Attrs.hasAttribute(Attribute::ImmArg)) { |
| Assert(Attrs.getNumAttributes() == 1, |
| "Attribute 'immarg' is incompatible with other attributes", V); |
| } |
| |
| // Check for mutually incompatible attributes. Only inreg is compatible with |
| // sret. |
| unsigned AttrCount = 0; |
| AttrCount += Attrs.hasAttribute(Attribute::ByVal); |
| AttrCount += Attrs.hasAttribute(Attribute::InAlloca); |
| AttrCount += Attrs.hasAttribute(Attribute::StructRet) || |
| Attrs.hasAttribute(Attribute::InReg); |
| AttrCount += Attrs.hasAttribute(Attribute::Nest); |
| Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " |
| "and 'sret' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && |
| Attrs.hasAttribute(Attribute::ReadOnly)), |
| "Attributes " |
| "'inalloca and readonly' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::StructRet) && |
| Attrs.hasAttribute(Attribute::Returned)), |
| "Attributes " |
| "'sret and returned' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::ZExt) && |
| Attrs.hasAttribute(Attribute::SExt)), |
| "Attributes " |
| "'zeroext and signext' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && |
| Attrs.hasAttribute(Attribute::ReadOnly)), |
| "Attributes " |
| "'readnone and readonly' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && |
| Attrs.hasAttribute(Attribute::WriteOnly)), |
| "Attributes " |
| "'readnone and writeonly' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && |
| Attrs.hasAttribute(Attribute::WriteOnly)), |
| "Attributes " |
| "'readonly and writeonly' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::NoInline) && |
| Attrs.hasAttribute(Attribute::AlwaysInline)), |
| "Attributes " |
| "'noinline and alwaysinline' are incompatible!", |
| V); |
| |
| if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { |
| Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), |
| "Attribute 'byval' type does not match parameter!", V); |
| } |
| |
| AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); |
| Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), |
| "Wrong types for attribute: " + |
| AttributeSet::get(Context, IncompatibleAttrs).getAsString(), |
| V); |
| |
| if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { |
| SmallPtrSet<Type*, 4> Visited; |
| if (!PTy->getElementType()->isSized(&Visited)) { |
| Assert(!Attrs.hasAttribute(Attribute::ByVal) && |
| !Attrs.hasAttribute(Attribute::InAlloca), |
| "Attributes 'byval' and 'inalloca' do not support unsized types!", |
| V); |
| } |
| if (!isa<PointerType>(PTy->getElementType())) |
| Assert(!Attrs.hasAttribute(Attribute::SwiftError), |
| "Attribute 'swifterror' only applies to parameters " |
| "with pointer to pointer type!", |
| V); |
| } else { |
| Assert(!Attrs.hasAttribute(Attribute::ByVal), |
| "Attribute 'byval' only applies to parameters with pointer type!", |
| V); |
| Assert(!Attrs.hasAttribute(Attribute::SwiftError), |
| "Attribute 'swifterror' only applies to parameters " |
| "with pointer type!", |
| V); |
| } |
| } |
| |
| // Check parameter attributes against a function type. |
| // The value V is printed in error messages. |
| void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, |
| const Value *V, bool IsIntrinsic) { |
| if (Attrs.isEmpty()) |
| return; |
| |
| bool SawNest = false; |
| bool SawReturned = false; |
| bool SawSRet = false; |
| bool SawSwiftSelf = false; |
| bool SawSwiftError = false; |
| |
| // Verify return value attributes. |
| AttributeSet RetAttrs = Attrs.getRetAttributes(); |
| Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && |
| !RetAttrs.hasAttribute(Attribute::Nest) && |
| !RetAttrs.hasAttribute(Attribute::StructRet) && |
| !RetAttrs.hasAttribute(Attribute::NoCapture) && |
| !RetAttrs.hasAttribute(Attribute::NoFree) && |
| !RetAttrs.hasAttribute(Attribute::Returned) && |
| !RetAttrs.hasAttribute(Attribute::InAlloca) && |
| !RetAttrs.hasAttribute(Attribute::SwiftSelf) && |
| !RetAttrs.hasAttribute(Attribute::SwiftError)), |
| "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'" |
| "'returned', 'swiftself', and 'swifterror' do not apply to return " |
| "values!", |
| V); |
| Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && |
| !RetAttrs.hasAttribute(Attribute::WriteOnly) && |
| !RetAttrs.hasAttribute(Attribute::ReadNone)), |
| "Attribute '" + RetAttrs.getAsString() + |
| "' does not apply to function returns", |
| V); |
| verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); |
| |
| // Verify parameter attributes. |
| for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
| Type *Ty = FT->getParamType(i); |
| AttributeSet ArgAttrs = Attrs.getParamAttributes(i); |
| |
| if (!IsIntrinsic) { |
| Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), |
| "immarg attribute only applies to intrinsics",V); |
| } |
| |
| verifyParameterAttrs(ArgAttrs, Ty, V); |
| |
| if (ArgAttrs.hasAttribute(Attribute::Nest)) { |
| Assert(!SawNest, "More than one parameter has attribute nest!", V); |
| SawNest = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::Returned)) { |
| Assert(!SawReturned, "More than one parameter has attribute returned!", |
| V); |
| Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), |
| "Incompatible argument and return types for 'returned' attribute", |
| V); |
| SawReturned = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::StructRet)) { |
| Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); |
| Assert(i == 0 || i == 1, |
| "Attribute 'sret' is not on first or second parameter!", V); |
| SawSRet = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { |
| Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); |
| SawSwiftSelf = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { |
| Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", |
| V); |
| SawSwiftError = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { |
| Assert(i == FT->getNumParams() - 1, |
| "inalloca isn't on the last parameter!", V); |
| } |
| } |
| |
| if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) |
| return; |
| |
| verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && |
| Attrs.hasFnAttribute(Attribute::ReadOnly)), |
| "Attributes 'readnone and readonly' are incompatible!", V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && |
| Attrs.hasFnAttribute(Attribute::WriteOnly)), |
| "Attributes 'readnone and writeonly' are incompatible!", V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && |
| Attrs.hasFnAttribute(Attribute::WriteOnly)), |
| "Attributes 'readonly and writeonly' are incompatible!", V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && |
| Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), |
| "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " |
| "incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && |
| Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), |
| "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && |
| Attrs.hasFnAttribute(Attribute::AlwaysInline)), |
| "Attributes 'noinline and alwaysinline' are incompatible!", V); |
| |
| if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { |
| Assert(Attrs.hasFnAttribute(Attribute::NoInline), |
| "Attribute 'optnone' requires 'noinline'!", V); |
| |
| Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), |
| "Attributes 'optsize and optnone' are incompatible!", V); |
| |
| Assert(!Attrs.hasFnAttribute(Attribute::MinSize), |
| "Attributes 'minsize and optnone' are incompatible!", V); |
| } |
| |
| if (Attrs.hasFnAttribute(Attribute::JumpTable)) { |
| const GlobalValue *GV = cast<GlobalValue>(V); |
| Assert(GV->hasGlobalUnnamedAddr(), |
| "Attribute 'jumptable' requires 'unnamed_addr'", V); |
| } |
| |
| if (Attrs.hasFnAttribute(Attribute::AllocSize)) { |
| std::pair<unsigned, Optional<unsigned>> Args = |
| Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); |
| |
| auto CheckParam = [&](StringRef Name, unsigned ParamNo) { |
| if (ParamNo >= FT->getNumParams()) { |
| CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); |
| return false; |
| } |
| |
| if (!FT->getParamType(ParamNo)->isIntegerTy()) { |
| CheckFailed("'allocsize' " + Name + |
| " argument must refer to an integer parameter", |
| V); |
| return false; |
| } |
| |
| return true; |
| }; |
| |
| if (!CheckParam("element size", Args.first)) |
| return; |
| |
| if (Args.second && !CheckParam("number of elements", *Args.second)) |
| return; |
| } |
| |
| if (Attrs.hasFnAttribute("frame-pointer")) { |
| StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, |
| "frame-pointer").getValueAsString(); |
| if (FP != "all" && FP != "non-leaf" && FP != "none") |
| CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); |
| } |
| |
| if (Attrs.hasFnAttribute("patchable-function-prefix")) { |
| StringRef S = Attrs |
| .getAttribute(AttributeList::FunctionIndex, |
| "patchable-function-prefix") |
| .getValueAsString(); |
| unsigned N; |
| if (S.getAsInteger(10, N)) |
| CheckFailed( |
| "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); |
| } |
| if (Attrs.hasFnAttribute("patchable-function-entry")) { |
| StringRef S = Attrs |
| .getAttribute(AttributeList::FunctionIndex, |
| "patchable-function-entry") |
| .getValueAsString(); |
| unsigned N; |
| if (S.getAsInteger(10, N)) |
| CheckFailed( |
| "\"patchable-function-entry\" takes an unsigned integer: " + S, V); |
| } |
| } |
| |
| void Verifier::verifyFunctionMetadata( |
| ArrayRef<std::pair<unsigned, MDNode *>> MDs) { |
| for (const auto &Pair : MDs) { |
| if (Pair.first == LLVMContext::MD_prof) { |
| MDNode *MD = Pair.second; |
| Assert(MD->getNumOperands() >= 2, |
| "!prof annotations should have no less than 2 operands", MD); |
| |
| // Check first operand. |
| Assert(MD->getOperand(0) != nullptr, "first operand should not be null", |
| MD); |
| Assert(isa<MDString>(MD->getOperand(0)), |
| "expected string with name of the !prof annotation", MD); |
| MDString *MDS = cast<MDString>(MD->getOperand(0)); |
| StringRef ProfName = MDS->getString(); |
| Assert(ProfName.equals("function_entry_count") || |
| ProfName.equals("synthetic_function_entry_count"), |
| "first operand should be 'function_entry_count'" |
| " or 'synthetic_function_entry_count'", |
| MD); |
| |
| // Check second operand. |
| Assert(MD->getOperand(1) != nullptr, "second operand should not be null", |
| MD); |
| Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), |
| "expected integer argument to function_entry_count", MD); |
| } |
| } |
| } |
| |
| void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { |
| if (!ConstantExprVisited.insert(EntryC).second) |
| return; |
| |
| SmallVector<const Constant *, 16> Stack; |
| Stack.push_back(EntryC); |
| |
| while (!Stack.empty()) { |
| const Constant *C = Stack.pop_back_val(); |
| |
| // Check this constant expression. |
| if (const auto *CE = dyn_cast<ConstantExpr>(C)) |
| visitConstantExpr(CE); |
| |
| if (const auto *GV = dyn_cast<GlobalValue>(C)) { |
| // Global Values get visited separately, but we do need to make sure |
| // that the global value is in the correct module |
| Assert(GV->getParent() == &M, "Referencing global in another module!", |
| EntryC, &M, GV, GV->getParent()); |
| continue; |
| } |
| |
| // Visit all sub-expressions. |
| for (const Use &U : C->operands()) { |
| const auto *OpC = dyn_cast<Constant>(U); |
| if (!OpC) |
| continue; |
| if (!ConstantExprVisited.insert(OpC).second) |
| continue; |
| Stack.push_back(OpC); |
| } |
| } |
| } |
| |
| void Verifier::visitConstantExpr(const ConstantExpr *CE) { |
| if (CE->getOpcode() == Instruction::BitCast) |
| Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), |
| CE->getType()), |
| "Invalid bitcast", CE); |
| |
| if (CE->getOpcode() == Instruction::IntToPtr || |
| CE->getOpcode() == Instruction::PtrToInt) { |
| auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr |
| ? CE->getType() |
| : CE->getOperand(0)->getType(); |
| StringRef Msg = CE->getOpcode() == Instruction::IntToPtr |
| ? "inttoptr not supported for non-integral pointers" |
| : "ptrtoint not supported for non-integral pointers"; |
| Assert( |
| !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), |
| Msg); |
| } |
| } |
| |
| bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { |
| // There shouldn't be more attribute sets than there are parameters plus the |
| // function and return value. |
| return Attrs.getNumAttrSets() <= Params + 2; |
| } |
| |
| /// Verify that statepoint intrinsic is well formed. |
| void Verifier::verifyStatepoint(const CallBase &Call) { |
| assert(Call.getCalledFunction() && |
| Call.getCalledFunction()->getIntrinsicID() == |
| Intrinsic::experimental_gc_statepoint); |
| |
| Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && |
| !Call.onlyAccessesArgMemory(), |
| "gc.statepoint must read and write all memory to preserve " |
| "reordering restrictions required by safepoint semantics", |
| Call); |
| |
| const int64_t NumPatchBytes = |
| cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); |
| assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); |
| Assert(NumPatchBytes >= 0, |
| "gc.statepoint number of patchable bytes must be " |
| "positive", |
| Call); |
| |
| const Value *Target = Call.getArgOperand(2); |
| auto *PT = dyn_cast<PointerType>(Target->getType()); |
| Assert(PT && PT->getElementType()->isFunctionTy(), |
| "gc.statepoint callee must be of function pointer type", Call, Target); |
| FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); |
| |
| const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); |
| Assert(NumCallArgs >= 0, |
| "gc.statepoint number of arguments to underlying call " |
| "must be positive", |
| Call); |
| const int NumParams = (int)TargetFuncType->getNumParams(); |
| if (TargetFuncType->isVarArg()) { |
| Assert(NumCallArgs >= NumParams, |
| "gc.statepoint mismatch in number of vararg call args", Call); |
| |
| // TODO: Remove this limitation |
| Assert(TargetFuncType->getReturnType()->isVoidTy(), |
| "gc.statepoint doesn't support wrapping non-void " |
| "vararg functions yet", |
| Call); |
| } else |
| Assert(NumCallArgs == NumParams, |
| "gc.statepoint mismatch in number of call args", Call); |
| |
| const uint64_t Flags |
| = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); |
| Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, |
| "unknown flag used in gc.statepoint flags argument", Call); |
| |
| // Verify that the types of the call parameter arguments match |
| // the type of the wrapped callee. |
| AttributeList Attrs = Call.getAttributes(); |
| for (int i = 0; i < NumParams; i++) { |
| Type *ParamType = TargetFuncType->getParamType(i); |
| Type *ArgType = Call.getArgOperand(5 + i)->getType(); |
| Assert(ArgType == ParamType, |
| "gc.statepoint call argument does not match wrapped " |
| "function type", |
| Call); |
| |
| if (TargetFuncType->isVarArg()) { |
| AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); |
| Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), |
| "Attribute 'sret' cannot be used for vararg call arguments!", |
| Call); |
| } |
| } |
| |
| const int EndCallArgsInx = 4 + NumCallArgs; |
| |
| const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); |
| Assert(isa<ConstantInt>(NumTransitionArgsV), |
| "gc.statepoint number of transition arguments " |
| "must be constant integer", |
| Call); |
| const int NumTransitionArgs = |
| cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); |
| Assert(NumTransitionArgs >= 0, |
| "gc.statepoint number of transition arguments must be positive", Call); |
| const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; |
| |
| const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); |
| Assert(isa<ConstantInt>(NumDeoptArgsV), |
| "gc.statepoint number of deoptimization arguments " |
| "must be constant integer", |
| Call); |
| const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); |
| Assert(NumDeoptArgs >= 0, |
| "gc.statepoint number of deoptimization arguments " |
| "must be positive", |
| Call); |
| |
| const int ExpectedNumArgs = |
| 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; |
| Assert(ExpectedNumArgs <= (int)Call.arg_size(), |
| "gc.statepoint too few arguments according to length fields", Call); |
| |
| // Check that the only uses of this gc.statepoint are gc.result or |
| // gc.relocate calls which are tied to this statepoint and thus part |
| // of the same statepoint sequence |
| for (const User *U : Call.users()) { |
| const CallInst *UserCall = dyn_cast<const CallInst>(U); |
| Assert(UserCall, "illegal use of statepoint token", Call, U); |
| if (!UserCall) |
| continue; |
| Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), |
| "gc.result or gc.relocate are the only value uses " |
| "of a gc.statepoint", |
| Call, U); |
| if (isa<GCResultInst>(UserCall)) { |
| Assert(UserCall->getArgOperand(0) == &Call, |
| "gc.result connected to wrong gc.statepoint", Call, UserCall); |
| } else if (isa<GCRelocateInst>(Call)) { |
| Assert(UserCall->getArgOperand(0) == &Call, |
| "gc.relocate connected to wrong gc.statepoint", Call, UserCall); |
| } |
| } |
| |
| // Note: It is legal for a single derived pointer to be listed multiple |
| // times. It's non-optimal, but it is legal. It can also happen after |
| // insertion if we strip a bitcast away. |
| // Note: It is really tempting to check that each base is relocated and |
| // that a derived pointer is never reused as a base pointer. This turns |
| // out to be problematic since optimizations run after safepoint insertion |
| // can recognize equality properties that the insertion logic doesn't know |
| // about. See example statepoint.ll in the verifier subdirectory |
| } |
| |
| void Verifier::verifyFrameRecoverIndices() { |
| for (auto &Counts : FrameEscapeInfo) { |
| Function *F = Counts.first; |
| unsigned EscapedObjectCount = Counts.second.first; |
| unsigned MaxRecoveredIndex = Counts.second.second; |
| Assert(MaxRecoveredIndex <= EscapedObjectCount, |
| "all indices passed to llvm.localrecover must be less than the " |
| "number of arguments passed to llvm.localescape in the parent " |
| "function", |
| F); |
| } |
| } |
| |
| static Instruction *getSuccPad(Instruction *Terminator) { |
| BasicBlock *UnwindDest; |
| if (auto *II = dyn_cast<InvokeInst>(Terminator)) |
| UnwindDest = II->getUnwindDest(); |
| else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) |
| UnwindDest = CSI->getUnwindDest(); |
| else |
| UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); |
| return UnwindDest->getFirstNonPHI(); |
| } |
| |
| void Verifier::verifySiblingFuncletUnwinds() { |
| SmallPtrSet<Instruction *, 8> Visited; |
| SmallPtrSet<Instruction *, 8> Active; |
| for (const auto &Pair : SiblingFuncletInfo) { |
| Instruction *PredPad = Pair.first; |
| if (Visited.count(PredPad)) |
| continue; |
| Active.insert(PredPad); |
| Instruction *Terminator = Pair.second; |
| do { |
| Instruction *SuccPad = getSuccPad(Terminator); |
| if (Active.count(SuccPad)) { |
| // Found a cycle; report error |
| Instruction *CyclePad = SuccPad; |
| SmallVector<Instruction *, 8> CycleNodes; |
| do { |
| CycleNodes.push_back(CyclePad); |
| Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; |
| if (CycleTerminator != CyclePad) |
| CycleNodes.push_back(CycleTerminator); |
| CyclePad = getSuccPad(CycleTerminator); |
| } while (CyclePad != SuccPad); |
| Assert(false, "EH pads can't handle each other's exceptions", |
| ArrayRef<Instruction *>(CycleNodes)); |
| } |
| // Don't re-walk a node we've already checked |
| if (!Visited.insert(SuccPad).second) |
| break; |
| // Walk to this successor if it has a map entry. |
| PredPad = SuccPad; |
| auto TermI = SiblingFuncletInfo.find(PredPad); |
| if (TermI == SiblingFuncletInfo.end()) |
| break; |
| Terminator = TermI->second; |
| Active.insert(PredPad); |
| } while (true); |
| // Each node only has one successor, so we've walked all the active |
| // nodes' successors. |
| Active.clear(); |
| } |
| } |
| |
| // visitFunction - Verify that a function is ok. |
| // |
| void Verifier::visitFunction(const Function &F) { |
| visitGlobalValue(F); |
| |
| // Check function arguments. |
| FunctionType *FT = F.getFunctionType(); |
| unsigned NumArgs = F.arg_size(); |
| |
| Assert(&Context == &F.getContext(), |
| "Function context does not match Module context!", &F); |
| |
| Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); |
| Assert(FT->getNumParams() == NumArgs, |
| "# formal arguments must match # of arguments for function type!", &F, |
| FT); |
| Assert(F.getReturnType()->isFirstClassType() || |
| F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), |
| "Functions cannot return aggregate values!", &F); |
| |
| Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), |
| "Invalid struct return type!", &F); |
| |
| AttributeList Attrs = F.getAttributes(); |
| |
| Assert(verifyAttributeCount(Attrs, FT->getNumParams()), |
| "Attribute after last parameter!", &F); |
| |
| bool isLLVMdotName = F.getName().size() >= 5 && |
| F.getName().substr(0, 5) == "llvm."; |
| |
| // Check function attributes. |
| verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); |
| |
| // On function declarations/definitions, we do not support the builtin |
| // attribute. We do not check this in VerifyFunctionAttrs since that is |
| // checking for Attributes that can/can not ever be on functions. |
| Assert(!Attrs.hasFnAttribute(Attribute::Builtin), |
| "Attribute 'builtin' can only be applied to a callsite.", &F); |
| |
| // Check that this function meets the restrictions on this calling convention. |
| // Sometimes varargs is used for perfectly forwarding thunks, so some of these |
| // restrictions can be lifted. |
| switch (F.getCallingConv()) { |
| default: |
| case CallingConv::C: |
| break; |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| Assert(F.getReturnType()->isVoidTy(), |
| "Calling convention requires void return type", &F); |
| LLVM_FALLTHROUGH; |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| Assert(!F.hasStructRetAttr(), |
| "Calling convention does not allow sret", &F); |
| LLVM_FALLTHROUGH; |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| case CallingConv::Intel_OCL_BI: |
| case CallingConv::PTX_Kernel: |
| case CallingConv::PTX_Device: |
| Assert(!F.isVarArg(), "Calling convention does not support varargs or " |
| "perfect forwarding!", |
| &F); |
| break; |
| } |
| |
| // Check that the argument values match the function type for this function... |
| unsigned i = 0; |
| for (const Argument &Arg : F.args()) { |
| Assert(Arg.getType() == FT->getParamType(i), |
| "Argument value does not match function argument type!", &Arg, |
| FT->getParamType(i)); |
| Assert(Arg.getType()->isFirstClassType(), |
| "Function arguments must have first-class types!", &Arg); |
| if (!isLLVMdotName) { |
| Assert(!Arg.getType()->isMetadataTy(), |
| "Function takes metadata but isn't an intrinsic", &Arg, &F); |
| Assert(!Arg.getType()->isTokenTy(), |
| "Function takes token but isn't an intrinsic", &Arg, &F); |
| } |
| |
| // Check that swifterror argument is only used by loads and stores. |
| if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { |
| verifySwiftErrorValue(&Arg); |
| } |
| ++i; |
| } |
| |
| if (!isLLVMdotName) |
| Assert(!F.getReturnType()->isTokenTy(), |
| "Functions returns a token but isn't an intrinsic", &F); |
| |
| // Get the function metadata attachments. |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| F.getAllMetadata(MDs); |
| assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); |
| verifyFunctionMetadata(MDs); |
| |
| // Check validity of the personality function |
| if (F.hasPersonalityFn()) { |
| auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); |
| if (Per) |
| Assert(Per->getParent() == F.getParent(), |
| "Referencing personality function in another module!", |
| &F, F.getParent(), Per, Per->getParent()); |
| } |
| |
| if (F.isMaterializable()) { |
| // Function has a body somewhere we can't see. |
| Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, |
| MDs.empty() ? nullptr : MDs.front().second); |
| } else if (F.isDeclaration()) { |
| for (const auto &I : MDs) { |
| // This is used for call site debug information. |
| AssertDI(I.first != LLVMContext::MD_dbg || |
| !cast<DISubprogram>(I.second)->isDistinct(), |
| "function declaration may only have a unique !dbg attachment", |
| &F); |
| Assert(I.first != LLVMContext::MD_prof, |
| "function declaration may not have a !prof attachment", &F); |
| |
| // Verify the metadata itself. |
| visitMDNode(*I.second); |
| } |
| Assert(!F.hasPersonalityFn(), |
| "Function declaration shouldn't have a personality routine", &F); |
| } else { |
| // Verify that this function (which has a body) is not named "llvm.*". It |
| // is not legal to define intrinsics. |
| Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); |
| |
| // Check the entry node |
| const BasicBlock *Entry = &F.getEntryBlock(); |
| Assert(pred_empty(Entry), |
| "Entry block to function must not have predecessors!", Entry); |
| |
| // The address of the entry block cannot be taken, unless it is dead. |
| if (Entry->hasAddressTaken()) { |
| Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), |
| "blockaddress may not be used with the entry block!", Entry); |
| } |
| |
| unsigned NumDebugAttachments = 0, NumProfAttachments = 0; |
| // Visit metadata attachments. |
| for (const auto &I : MDs) { |
| // Verify that the attachment is legal. |
| switch (I.first) { |
| default: |
| break; |
| case LLVMContext::MD_dbg: { |
| ++NumDebugAttachments; |
| AssertDI(NumDebugAttachments == 1, |
| "function must have a single !dbg attachment", &F, I.second); |
| AssertDI(isa<DISubprogram>(I.second), |
| "function !dbg attachment must be a subprogram", &F, I.second); |
| auto *SP = cast<DISubprogram>(I.second); |
| const Function *&AttachedTo = DISubprogramAttachments[SP]; |
| AssertDI(!AttachedTo || AttachedTo == &F, |
| "DISubprogram attached to more than one function", SP, &F); |
| AttachedTo = &F; |
| break; |
| } |
| case LLVMContext::MD_prof: |
| ++NumProfAttachments; |
| Assert(NumProfAttachments == 1, |
| "function must have a single !prof attachment", &F, I.second); |
| break; |
| } |
| |
| // Verify the metadata itself. |
| visitMDNode(*I.second); |
| } |
| } |
| |
| // If this function is actually an intrinsic, verify that it is only used in |
| // direct call/invokes, never having its "address taken". |
| // Only do this if the module is materialized, otherwise we don't have all the |
| // uses. |
| if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { |
| const User *U; |
| if (F.hasAddressTaken(&U)) |
| Assert(false, "Invalid user of intrinsic instruction!", U); |
| } |
| |
| auto *N = F.getSubprogram(); |
| HasDebugInfo = (N != nullptr); |
| if (!HasDebugInfo) |
| return; |
| |
| // Check that all !dbg attachments lead to back to N (or, at least, another |
| // subprogram that describes the same function). |
| // |
| // FIXME: Check this incrementally while visiting !dbg attachments. |
| // FIXME: Only check when N is the canonical subprogram for F. |
| SmallPtrSet<const MDNode *, 32> Seen; |
| auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { |
| // Be careful about using DILocation here since we might be dealing with |
| // broken code (this is the Verifier after all). |
| const DILocation *DL = dyn_cast_or_null<DILocation>(Node); |
| if (!DL) |
| return; |
| if (!Seen.insert(DL).second) |
| return; |
| |
| Metadata *Parent = DL->getRawScope(); |
| AssertDI(Parent && isa<DILocalScope>(Parent), |
| "DILocation's scope must be a DILocalScope", N, &F, &I, DL, |
| Parent); |
| DILocalScope *Scope = DL->getInlinedAtScope(); |
| if (Scope && !Seen.insert(Scope).second) |
| return; |
| |
| DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; |
| |
| // Scope and SP could be the same MDNode and we don't want to skip |
| // validation in that case |
| if (SP && ((Scope != SP) && !Seen.insert(SP).second)) |
| return; |
| |
| // FIXME: Once N is canonical, check "SP == &N". |
| AssertDI(SP->describes(&F), |
| "!dbg attachment points at wrong subprogram for function", N, &F, |
| &I, DL, Scope, SP); |
| }; |
| for (auto &BB : F) |
| for (auto &I : BB) { |
| VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); |
| // The llvm.loop annotations also contain two DILocations. |
| if (auto MD = I.getMetadata(LLVMContext::MD_loop)) |
| for (unsigned i = 1; i < MD->getNumOperands(); ++i) |
| VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); |
| if (BrokenDebugInfo) |
| return; |
| } |
| } |
| |
| // verifyBasicBlock - Verify that a basic block is well formed... |
| // |
| void Verifier::visitBasicBlock(BasicBlock &BB) { |
| InstsInThisBlock.clear(); |
| |
| // Ensure that basic blocks have terminators! |
| Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); |
| |
| // Check constraints that this basic block imposes on all of the PHI nodes in |
| // it. |
| if (isa<PHINode>(BB.front())) { |
| SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); |
| SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; |
| llvm::sort(Preds); |
| for (const PHINode &PN : BB.phis()) { |
| // Ensure that PHI nodes have at least one entry! |
| Assert(PN.getNumIncomingValues() != 0, |
| "PHI nodes must have at least one entry. If the block is dead, " |
| "the PHI should be removed!", |
| &PN); |
| Assert(PN.getNumIncomingValues() == Preds.size(), |
| "PHINode should have one entry for each predecessor of its " |
| "parent basic block!", |
| &PN); |
| |
| // Get and sort all incoming values in the PHI node... |
| Values.clear(); |
| Values.reserve(PN.getNumIncomingValues()); |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| Values.push_back( |
| std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); |
| llvm::sort(Values); |
| |
| for (unsigned i = 0, e = Values.size(); i != e; ++i) { |
| // Check to make sure that if there is more than one entry for a |
| // particular basic block in this PHI node, that the incoming values are |
| // all identical. |
| // |
| Assert(i == 0 || Values[i].first != Values[i - 1].first || |
| Values[i].second == Values[i - 1].second, |
| "PHI node has multiple entries for the same basic block with " |
| "different incoming values!", |
| &PN, Values[i].first, Values[i].second, Values[i - 1].second); |
| |
| // Check to make sure that the predecessors and PHI node entries are |
| // matched up. |
| Assert(Values[i].first == Preds[i], |
| "PHI node entries do not match predecessors!", &PN, |
| Values[i].first, Preds[i]); |
| } |
| } |
| } |
| |
| // Check that all instructions have their parent pointers set up correctly. |
| for (auto &I : BB) |
| { |
| Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); |
| } |
| } |
| |
| void Verifier::visitTerminator(Instruction &I) { |
| // Ensure that terminators only exist at the end of the basic block. |
| Assert(&I == I.getParent()->getTerminator(), |
| "Terminator found in the middle of a basic block!", I.getParent()); |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitBranchInst(BranchInst &BI) { |
| if (BI.isConditional()) { |
| Assert(BI.getCondition()->getType()->isIntegerTy(1), |
| "Branch condition is not 'i1' type!", &BI, BI.getCondition()); |
| } |
| visitTerminator(BI); |
| } |
| |
| void Verifier::visitReturnInst(ReturnInst &RI) { |
| Function *F = RI.getParent()->getParent(); |
| unsigned N = RI.getNumOperands(); |
| if (F->getReturnType()->isVoidTy()) |
| Assert(N == 0, |
| "Found return instr that returns non-void in Function of void " |
| "return type!", |
| &RI, F->getReturnType()); |
| else |
| Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), |
| "Function return type does not match operand " |
| "type of return inst!", |
| &RI, F->getReturnType()); |
| |
| // Check to make sure that the return value has necessary properties for |
| // terminators... |
| visitTerminator(RI); |
| } |
| |
| void Verifier::visitSwitchInst(SwitchInst &SI) { |
| // Check to make sure that all of the constants in the switch instruction |
| // have the same type as the switched-on value. |
| Type *SwitchTy = SI.getCondition()->getType(); |
| SmallPtrSet<ConstantInt*, 32> Constants; |
| for (auto &Case : SI.cases()) { |
| Assert(Case.getCaseValue()->getType() == SwitchTy, |
| "Switch constants must all be same type as switch value!", &SI); |
| Assert(Constants.insert(Case.getCaseValue()).second, |
| "Duplicate integer as switch case", &SI, Case.getCaseValue()); |
| } |
| |
| visitTerminator(SI); |
| } |
| |
| void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { |
| Assert(BI.getAddress()->getType()->isPointerTy(), |
| "Indirectbr operand must have pointer type!", &BI); |
| for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) |
| Assert(BI.getDestination(i)->getType()->isLabelTy(), |
| "Indirectbr destinations must all have pointer type!", &BI); |
| |
| visitTerminator(BI); |
| } |
| |
| void Verifier::visitCallBrInst(CallBrInst &CBI) { |
| Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", |
| &CBI); |
| Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", |
| &CBI); |
| for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) |
| Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), |
| "Callbr successors must all have pointer type!", &CBI); |
| for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { |
| Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), |
| "Using an unescaped label as a callbr argument!", &CBI); |
| if (isa<BasicBlock>(CBI.getOperand(i))) |
| for (unsigned j = i + 1; j != e; ++j) |
| Assert(CBI.getOperand(i) != CBI.getOperand(j), |
| "Duplicate callbr destination!", &CBI); |
| } |
| { |
| SmallPtrSet<BasicBlock *, 4> ArgBBs; |
| for (Value *V : CBI.args()) |
| if (auto *BA = dyn_cast<BlockAddress>(V)) |
| ArgBBs.insert(BA->getBasicBlock()); |
| for (BasicBlock *BB : CBI.getIndirectDests()) |
| Assert(ArgBBs.find(BB) != ArgBBs.end(), |
| "Indirect label missing from arglist.", &CBI); |
| } |
| |
| visitTerminator(CBI); |
| } |
| |
| void Verifier::visitSelectInst(SelectInst &SI) { |
| Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), |
| SI.getOperand(2)), |
| "Invalid operands for select instruction!", &SI); |
| |
| Assert(SI.getTrueValue()->getType() == SI.getType(), |
| "Select values must have same type as select instruction!", &SI); |
| visitInstruction(SI); |
| } |
| |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of |
| /// a pass, if any exist, it's an error. |
| /// |
| void Verifier::visitUserOp1(Instruction &I) { |
| Assert(false, "User-defined operators should not live outside of a pass!", &I); |
| } |
| |
| void Verifier |