| //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library implements `print` family of functions in classes like |
| // Module, Function, Value, etc. In-memory representation of those classes is |
| // converted to IR strings. |
| // |
| // Note that these routines must be extremely tolerant of various errors in the |
| // LLVM code, because it can be used for debugging transformations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/AssemblyAnnotationWriter.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalIFunc.h" |
| #include "llvm/IR/GlobalIndirectSymbol.h" |
| #include "llvm/IR/GlobalObject.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRPrintingPasses.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/ModuleSummaryIndex.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/TypeFinder.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/UseListOrder.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cctype> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| // Make virtual table appear in this compilation unit. |
| AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| struct OrderMap { |
| DenseMap<const Value *, std::pair<unsigned, bool>> IDs; |
| |
| unsigned size() const { return IDs.size(); } |
| std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } |
| |
| std::pair<unsigned, bool> lookup(const Value *V) const { |
| return IDs.lookup(V); |
| } |
| |
| void index(const Value *V) { |
| // Explicitly sequence get-size and insert-value operations to avoid UB. |
| unsigned ID = IDs.size() + 1; |
| IDs[V].first = ID; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static void orderValue(const Value *V, OrderMap &OM) { |
| if (OM.lookup(V).first) |
| return; |
| |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| if (C->getNumOperands() && !isa<GlobalValue>(C)) |
| for (const Value *Op : C->operands()) |
| if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) |
| orderValue(Op, OM); |
| |
| // Note: we cannot cache this lookup above, since inserting into the map |
| // changes the map's size, and thus affects the other IDs. |
| OM.index(V); |
| } |
| |
| static OrderMap orderModule(const Module *M) { |
| // This needs to match the order used by ValueEnumerator::ValueEnumerator() |
| // and ValueEnumerator::incorporateFunction(). |
| OrderMap OM; |
| |
| for (const GlobalVariable &G : M->globals()) { |
| if (G.hasInitializer()) |
| if (!isa<GlobalValue>(G.getInitializer())) |
| orderValue(G.getInitializer(), OM); |
| orderValue(&G, OM); |
| } |
| for (const GlobalAlias &A : M->aliases()) { |
| if (!isa<GlobalValue>(A.getAliasee())) |
| orderValue(A.getAliasee(), OM); |
| orderValue(&A, OM); |
| } |
| for (const GlobalIFunc &I : M->ifuncs()) { |
| if (!isa<GlobalValue>(I.getResolver())) |
| orderValue(I.getResolver(), OM); |
| orderValue(&I, OM); |
| } |
| for (const Function &F : *M) { |
| for (const Use &U : F.operands()) |
| if (!isa<GlobalValue>(U.get())) |
| orderValue(U.get(), OM); |
| |
| orderValue(&F, OM); |
| |
| if (F.isDeclaration()) |
| continue; |
| |
| for (const Argument &A : F.args()) |
| orderValue(&A, OM); |
| for (const BasicBlock &BB : F) { |
| orderValue(&BB, OM); |
| for (const Instruction &I : BB) { |
| for (const Value *Op : I.operands()) |
| if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || |
| isa<InlineAsm>(*Op)) |
| orderValue(Op, OM); |
| orderValue(&I, OM); |
| } |
| } |
| } |
| return OM; |
| } |
| |
| static void predictValueUseListOrderImpl(const Value *V, const Function *F, |
| unsigned ID, const OrderMap &OM, |
| UseListOrderStack &Stack) { |
| // Predict use-list order for this one. |
| using Entry = std::pair<const Use *, unsigned>; |
| SmallVector<Entry, 64> List; |
| for (const Use &U : V->uses()) |
| // Check if this user will be serialized. |
| if (OM.lookup(U.getUser()).first) |
| List.push_back(std::make_pair(&U, List.size())); |
| |
| if (List.size() < 2) |
| // We may have lost some users. |
| return; |
| |
| bool GetsReversed = |
| !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V); |
| if (auto *BA = dyn_cast<BlockAddress>(V)) |
| ID = OM.lookup(BA->getBasicBlock()).first; |
| llvm::sort(List, [&](const Entry &L, const Entry &R) { |
| const Use *LU = L.first; |
| const Use *RU = R.first; |
| if (LU == RU) |
| return false; |
| |
| auto LID = OM.lookup(LU->getUser()).first; |
| auto RID = OM.lookup(RU->getUser()).first; |
| |
| // If ID is 4, then expect: 7 6 5 1 2 3. |
| if (LID < RID) { |
| if (GetsReversed) |
| if (RID <= ID) |
| return true; |
| return false; |
| } |
| if (RID < LID) { |
| if (GetsReversed) |
| if (LID <= ID) |
| return false; |
| return true; |
| } |
| |
| // LID and RID are equal, so we have different operands of the same user. |
| // Assume operands are added in order for all instructions. |
| if (GetsReversed) |
| if (LID <= ID) |
| return LU->getOperandNo() < RU->getOperandNo(); |
| return LU->getOperandNo() > RU->getOperandNo(); |
| }); |
| |
| if (std::is_sorted( |
| List.begin(), List.end(), |
| [](const Entry &L, const Entry &R) { return L.second < R.second; })) |
| // Order is already correct. |
| return; |
| |
| // Store the shuffle. |
| Stack.emplace_back(V, F, List.size()); |
| assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); |
| for (size_t I = 0, E = List.size(); I != E; ++I) |
| Stack.back().Shuffle[I] = List[I].second; |
| } |
| |
| static void predictValueUseListOrder(const Value *V, const Function *F, |
| OrderMap &OM, UseListOrderStack &Stack) { |
| auto &IDPair = OM[V]; |
| assert(IDPair.first && "Unmapped value"); |
| if (IDPair.second) |
| // Already predicted. |
| return; |
| |
| // Do the actual prediction. |
| IDPair.second = true; |
| if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) |
| predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); |
| |
| // Recursive descent into constants. |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| if (C->getNumOperands()) // Visit GlobalValues. |
| for (const Value *Op : C->operands()) |
| if (isa<Constant>(Op)) // Visit GlobalValues. |
| predictValueUseListOrder(Op, F, OM, Stack); |
| } |
| |
| static UseListOrderStack predictUseListOrder(const Module *M) { |
| OrderMap OM = orderModule(M); |
| |
| // Use-list orders need to be serialized after all the users have been added |
| // to a value, or else the shuffles will be incomplete. Store them per |
| // function in a stack. |
| // |
| // Aside from function order, the order of values doesn't matter much here. |
| UseListOrderStack Stack; |
| |
| // We want to visit the functions backward now so we can list function-local |
| // constants in the last Function they're used in. Module-level constants |
| // have already been visited above. |
| for (const Function &F : make_range(M->rbegin(), M->rend())) { |
| if (F.isDeclaration()) |
| continue; |
| for (const BasicBlock &BB : F) |
| predictValueUseListOrder(&BB, &F, OM, Stack); |
| for (const Argument &A : F.args()) |
| predictValueUseListOrder(&A, &F, OM, Stack); |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| for (const Value *Op : I.operands()) |
| if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. |
| predictValueUseListOrder(Op, &F, OM, Stack); |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| predictValueUseListOrder(&I, &F, OM, Stack); |
| } |
| |
| // Visit globals last. |
| for (const GlobalVariable &G : M->globals()) |
| predictValueUseListOrder(&G, nullptr, OM, Stack); |
| for (const Function &F : *M) |
| predictValueUseListOrder(&F, nullptr, OM, Stack); |
| for (const GlobalAlias &A : M->aliases()) |
| predictValueUseListOrder(&A, nullptr, OM, Stack); |
| for (const GlobalIFunc &I : M->ifuncs()) |
| predictValueUseListOrder(&I, nullptr, OM, Stack); |
| for (const GlobalVariable &G : M->globals()) |
| if (G.hasInitializer()) |
| predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); |
| for (const GlobalAlias &A : M->aliases()) |
| predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); |
| for (const GlobalIFunc &I : M->ifuncs()) |
| predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); |
| for (const Function &F : *M) |
| for (const Use &U : F.operands()) |
| predictValueUseListOrder(U.get(), nullptr, OM, Stack); |
| |
| return Stack; |
| } |
| |
| static const Module *getModuleFromVal(const Value *V) { |
| if (const Argument *MA = dyn_cast<Argument>(V)) |
| return MA->getParent() ? MA->getParent()->getParent() : nullptr; |
| |
| if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| return BB->getParent() ? BB->getParent()->getParent() : nullptr; |
| |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; |
| return M ? M->getParent() : nullptr; |
| } |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
| return GV->getParent(); |
| |
| if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { |
| for (const User *U : MAV->users()) |
| if (isa<Instruction>(U)) |
| if (const Module *M = getModuleFromVal(U)) |
| return M; |
| return nullptr; |
| } |
| |
| return nullptr; |
| } |
| |
| static void PrintCallingConv(unsigned cc, raw_ostream &Out) { |
| switch (cc) { |
| default: Out << "cc" << cc; break; |
| case CallingConv::Fast: Out << "fastcc"; break; |
| case CallingConv::Cold: Out << "coldcc"; break; |
| case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; |
| case CallingConv::AnyReg: Out << "anyregcc"; break; |
| case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; |
| case CallingConv::PreserveAll: Out << "preserve_allcc"; break; |
| case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; |
| case CallingConv::GHC: Out << "ghccc"; break; |
| case CallingConv::Tail: Out << "tailcc"; break; |
| case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break; |
| case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; |
| case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; |
| case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; |
| case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; |
| case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; |
| case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; |
| case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; |
| case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; |
| case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; |
| case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break; |
| case CallingConv::AArch64_SVE_VectorCall: |
| Out << "aarch64_sve_vector_pcs"; |
| break; |
| case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; |
| case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; |
| case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; |
| case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; |
| case CallingConv::PTX_Device: Out << "ptx_device"; break; |
| case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; |
| case CallingConv::Win64: Out << "win64cc"; break; |
| case CallingConv::SPIR_FUNC: Out << "spir_func"; break; |
| case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; |
| case CallingConv::Swift: Out << "swiftcc"; break; |
| case CallingConv::X86_INTR: Out << "x86_intrcc"; break; |
| case CallingConv::HHVM: Out << "hhvmcc"; break; |
| case CallingConv::HHVM_C: Out << "hhvm_ccc"; break; |
| case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; |
| case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; |
| case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; |
| case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; |
| case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; |
| case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; |
| case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; |
| case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; |
| } |
| } |
| |
| enum PrefixType { |
| GlobalPrefix, |
| ComdatPrefix, |
| LabelPrefix, |
| LocalPrefix, |
| NoPrefix |
| }; |
| |
| void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { |
| assert(!Name.empty() && "Cannot get empty name!"); |
| |
| // Scan the name to see if it needs quotes first. |
| bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); |
| if (!NeedsQuotes) { |
| for (unsigned i = 0, e = Name.size(); i != e; ++i) { |
| // By making this unsigned, the value passed in to isalnum will always be |
| // in the range 0-255. This is important when building with MSVC because |
| // its implementation will assert. This situation can arise when dealing |
| // with UTF-8 multibyte characters. |
| unsigned char C = Name[i]; |
| if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && |
| C != '_') { |
| NeedsQuotes = true; |
| break; |
| } |
| } |
| } |
| |
| // If we didn't need any quotes, just write out the name in one blast. |
| if (!NeedsQuotes) { |
| OS << Name; |
| return; |
| } |
| |
| // Okay, we need quotes. Output the quotes and escape any scary characters as |
| // needed. |
| OS << '"'; |
| printEscapedString(Name, OS); |
| OS << '"'; |
| } |
| |
| /// Turn the specified name into an 'LLVM name', which is either prefixed with % |
| /// (if the string only contains simple characters) or is surrounded with ""'s |
| /// (if it has special chars in it). Print it out. |
| static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { |
| switch (Prefix) { |
| case NoPrefix: |
| break; |
| case GlobalPrefix: |
| OS << '@'; |
| break; |
| case ComdatPrefix: |
| OS << '$'; |
| break; |
| case LabelPrefix: |
| break; |
| case LocalPrefix: |
| OS << '%'; |
| break; |
| } |
| printLLVMNameWithoutPrefix(OS, Name); |
| } |
| |
| /// Turn the specified name into an 'LLVM name', which is either prefixed with % |
| /// (if the string only contains simple characters) or is surrounded with ""'s |
| /// (if it has special chars in it). Print it out. |
| static void PrintLLVMName(raw_ostream &OS, const Value *V) { |
| PrintLLVMName(OS, V->getName(), |
| isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); |
| } |
| |
| namespace { |
| |
| class TypePrinting { |
| public: |
| TypePrinting(const Module *M = nullptr) : DeferredM(M) {} |
| |
| TypePrinting(const TypePrinting &) = delete; |
| TypePrinting &operator=(const TypePrinting &) = delete; |
| |
| /// The named types that are used by the current module. |
| TypeFinder &getNamedTypes(); |
| |
| /// The numbered types, number to type mapping. |
| std::vector<StructType *> &getNumberedTypes(); |
| |
| bool empty(); |
| |
| void print(Type *Ty, raw_ostream &OS); |
| |
| void printStructBody(StructType *Ty, raw_ostream &OS); |
| |
| private: |
| void incorporateTypes(); |
| |
| /// A module to process lazily when needed. Set to nullptr as soon as used. |
| const Module *DeferredM; |
| |
| TypeFinder NamedTypes; |
| |
| // The numbered types, along with their value. |
| DenseMap<StructType *, unsigned> Type2Number; |
| |
| std::vector<StructType *> NumberedTypes; |
| }; |
| |
| } // end anonymous namespace |
| |
| TypeFinder &TypePrinting::getNamedTypes() { |
| incorporateTypes(); |
| return NamedTypes; |
| } |
| |
| std::vector<StructType *> &TypePrinting::getNumberedTypes() { |
| incorporateTypes(); |
| |
| // We know all the numbers that each type is used and we know that it is a |
| // dense assignment. Convert the map to an index table, if it's not done |
| // already (judging from the sizes): |
| if (NumberedTypes.size() == Type2Number.size()) |
| return NumberedTypes; |
| |
| NumberedTypes.resize(Type2Number.size()); |
| for (const auto &P : Type2Number) { |
| assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); |
| assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); |
| NumberedTypes[P.second] = P.first; |
| } |
| return NumberedTypes; |
| } |
| |
| bool TypePrinting::empty() { |
| incorporateTypes(); |
| return NamedTypes.empty() && Type2Number.empty(); |
| } |
| |
| void TypePrinting::incorporateTypes() { |
| if (!DeferredM) |
| return; |
| |
| NamedTypes.run(*DeferredM, false); |
| DeferredM = nullptr; |
| |
| // The list of struct types we got back includes all the struct types, split |
| // the unnamed ones out to a numbering and remove the anonymous structs. |
| unsigned NextNumber = 0; |
| |
| std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; |
| for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { |
| StructType *STy = *I; |
| |
| // Ignore anonymous types. |
| if (STy->isLiteral()) |
| continue; |
| |
| if (STy->getName().empty()) |
| Type2Number[STy] = NextNumber++; |
| else |
| *NextToUse++ = STy; |
| } |
| |
| NamedTypes.erase(NextToUse, NamedTypes.end()); |
| } |
| |
| /// Write the specified type to the specified raw_ostream, making use of type |
| /// names or up references to shorten the type name where possible. |
| void TypePrinting::print(Type *Ty, raw_ostream &OS) { |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: OS << "void"; return; |
| case Type::HalfTyID: OS << "half"; return; |
| case Type::FloatTyID: OS << "float"; return; |
| case Type::DoubleTyID: OS << "double"; return; |
| case Type::X86_FP80TyID: OS << "x86_fp80"; return; |
| case Type::FP128TyID: OS << "fp128"; return; |
| case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; |
| case Type::LabelTyID: OS << "label"; return; |
| case Type::MetadataTyID: OS << "metadata"; return; |
| case Type::X86_MMXTyID: OS << "x86_mmx"; return; |
| case Type::TokenTyID: OS << "token"; return; |
| case Type::IntegerTyID: |
| OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); |
| return; |
| |
| case Type::FunctionTyID: { |
| FunctionType *FTy = cast<FunctionType>(Ty); |
| print(FTy->getReturnType(), OS); |
| OS << " ("; |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I) { |
| if (I != FTy->param_begin()) |
| OS << ", "; |
| print(*I, OS); |
| } |
| if (FTy->isVarArg()) { |
| if (FTy->getNumParams()) OS << ", "; |
| OS << "..."; |
| } |
| OS << ')'; |
| return; |
| } |
| case Type::StructTyID: { |
| StructType *STy = cast<StructType>(Ty); |
| |
| if (STy->isLiteral()) |
| return printStructBody(STy, OS); |
| |
| if (!STy->getName().empty()) |
| return PrintLLVMName(OS, STy->getName(), LocalPrefix); |
| |
| incorporateTypes(); |
| const auto I = Type2Number.find(STy); |
| if (I != Type2Number.end()) |
| OS << '%' << I->second; |
| else // Not enumerated, print the hex address. |
| OS << "%\"type " << STy << '\"'; |
| return; |
| } |
| case Type::PointerTyID: { |
| PointerType *PTy = cast<PointerType>(Ty); |
| print(PTy->getElementType(), OS); |
| if (unsigned AddressSpace = PTy->getAddressSpace()) |
| OS << " addrspace(" << AddressSpace << ')'; |
| OS << '*'; |
| return; |
| } |
| case Type::ArrayTyID: { |
| ArrayType *ATy = cast<ArrayType>(Ty); |
| OS << '[' << ATy->getNumElements() << " x "; |
| print(ATy->getElementType(), OS); |
| OS << ']'; |
| return; |
| } |
| case Type::VectorTyID: { |
| VectorType *PTy = cast<VectorType>(Ty); |
| OS << "<"; |
| if (PTy->isScalable()) |
| OS << "vscale x "; |
| OS << PTy->getNumElements() << " x "; |
| print(PTy->getElementType(), OS); |
| OS << '>'; |
| return; |
| } |
| } |
| llvm_unreachable("Invalid TypeID"); |
| } |
| |
| void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { |
| if (STy->isOpaque()) { |
| OS << "opaque"; |
| return; |
| } |
| |
| if (STy->isPacked()) |
| OS << '<'; |
| |
| if (STy->getNumElements() == 0) { |
| OS << "{}"; |
| } else { |
| StructType::element_iterator I = STy->element_begin(); |
| OS << "{ "; |
| print(*I++, OS); |
| for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { |
| OS << ", "; |
| print(*I, OS); |
| } |
| |
| OS << " }"; |
| } |
| if (STy->isPacked()) |
| OS << '>'; |
| } |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| // SlotTracker Class: Enumerate slot numbers for unnamed values |
| //===----------------------------------------------------------------------===// |
| /// This class provides computation of slot numbers for LLVM Assembly writing. |
| /// |
| class SlotTracker { |
| public: |
| /// ValueMap - A mapping of Values to slot numbers. |
| using ValueMap = DenseMap<const Value *, unsigned>; |
| |
| private: |
| /// TheModule - The module for which we are holding slot numbers. |
| const Module* TheModule; |
| |
| /// TheFunction - The function for which we are holding slot numbers. |
| const Function* TheFunction = nullptr; |
| bool FunctionProcessed = false; |
| bool ShouldInitializeAllMetadata; |
| |
| /// The summary index for which we are holding slot numbers. |
| const ModuleSummaryIndex *TheIndex = nullptr; |
| |
| /// mMap - The slot map for the module level data. |
| ValueMap mMap; |
| unsigned mNext = 0; |
| |
| /// fMap - The slot map for the function level data. |
| ValueMap fMap; |
| unsigned fNext = 0; |
| |
| /// mdnMap - Map for MDNodes. |
| DenseMap<const MDNode*, unsigned> mdnMap; |
| unsigned mdnNext = 0; |
| |
| /// asMap - The slot map for attribute sets. |
| DenseMap<AttributeSet, unsigned> asMap; |
| unsigned asNext = 0; |
| |
| /// ModulePathMap - The slot map for Module paths used in the summary index. |
| StringMap<unsigned> ModulePathMap; |
| unsigned ModulePathNext = 0; |
| |
| /// GUIDMap - The slot map for GUIDs used in the summary index. |
| DenseMap<GlobalValue::GUID, unsigned> GUIDMap; |
| unsigned GUIDNext = 0; |
| |
| /// TypeIdMap - The slot map for type ids used in the summary index. |
| StringMap<unsigned> TypeIdMap; |
| unsigned TypeIdNext = 0; |
| |
| public: |
| /// Construct from a module. |
| /// |
| /// If \c ShouldInitializeAllMetadata, initializes all metadata in all |
| /// functions, giving correct numbering for metadata referenced only from |
| /// within a function (even if no functions have been initialized). |
| explicit SlotTracker(const Module *M, |
| bool ShouldInitializeAllMetadata = false); |
| |
| /// Construct from a function, starting out in incorp state. |
| /// |
| /// If \c ShouldInitializeAllMetadata, initializes all metadata in all |
| /// functions, giving correct numbering for metadata referenced only from |
| /// within a function (even if no functions have been initialized). |
| explicit SlotTracker(const Function *F, |
| bool ShouldInitializeAllMetadata = false); |
| |
| /// Construct from a module summary index. |
| explicit SlotTracker(const ModuleSummaryIndex *Index); |
| |
| SlotTracker(const SlotTracker &) = delete; |
| SlotTracker &operator=(const SlotTracker &) = delete; |
| |
| /// Return the slot number of the specified value in it's type |
| /// plane. If something is not in the SlotTracker, return -1. |
| int getLocalSlot(const Value *V); |
| int getGlobalSlot(const GlobalValue *V); |
| int getMetadataSlot(const MDNode *N); |
| int getAttributeGroupSlot(AttributeSet AS); |
| int getModulePathSlot(StringRef Path); |
| int getGUIDSlot(GlobalValue::GUID GUID); |
| int getTypeIdSlot(StringRef Id); |
| |
| /// If you'd like to deal with a function instead of just a module, use |
| /// this method to get its data into the SlotTracker. |
| void incorporateFunction(const Function *F) { |
| TheFunction = F; |
| FunctionProcessed = false; |
| } |
| |
| const Function *getFunction() const { return TheFunction; } |
| |
| /// After calling incorporateFunction, use this method to remove the |
| /// most recently incorporated function from the SlotTracker. This |
| /// will reset the state of the machine back to just the module contents. |
| void purgeFunction(); |
| |
| /// MDNode map iterators. |
| using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator; |
| |
| mdn_iterator mdn_begin() { return mdnMap.begin(); } |
| mdn_iterator mdn_end() { return mdnMap.end(); } |
| unsigned mdn_size() const { return mdnMap.size(); } |
| bool mdn_empty() const { return mdnMap.empty(); } |
| |
| /// AttributeSet map iterators. |
| using as_iterator = DenseMap<AttributeSet, unsigned>::iterator; |
| |
| as_iterator as_begin() { return asMap.begin(); } |
| as_iterator as_end() { return asMap.end(); } |
| unsigned as_size() const { return asMap.size(); } |
| bool as_empty() const { return asMap.empty(); } |
| |
| /// GUID map iterators. |
| using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator; |
| |
| /// These functions do the actual initialization. |
| inline void initializeIfNeeded(); |
| void initializeIndexIfNeeded(); |
| |
| // Implementation Details |
| private: |
| /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. |
| void CreateModuleSlot(const GlobalValue *V); |
| |
| /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. |
| void CreateMetadataSlot(const MDNode *N); |
| |
| /// CreateFunctionSlot - Insert the specified Value* into the slot table. |
| void CreateFunctionSlot(const Value *V); |
| |
| /// Insert the specified AttributeSet into the slot table. |
| void CreateAttributeSetSlot(AttributeSet AS); |
| |
| inline void CreateModulePathSlot(StringRef Path); |
| void CreateGUIDSlot(GlobalValue::GUID GUID); |
| void CreateTypeIdSlot(StringRef Id); |
| |
| /// Add all of the module level global variables (and their initializers) |
| /// and function declarations, but not the contents of those functions. |
| void processModule(); |
| void processIndex(); |
| |
| /// Add all of the functions arguments, basic blocks, and instructions. |
| void processFunction(); |
| |
| /// Add the metadata directly attached to a GlobalObject. |
| void processGlobalObjectMetadata(const GlobalObject &GO); |
| |
| /// Add all of the metadata from a function. |
| void processFunctionMetadata(const Function &F); |
| |
| /// Add all of the metadata from an instruction. |
| void processInstructionMetadata(const Instruction &I); |
| }; |
| |
| } // end namespace llvm |
| |
| ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, |
| const Function *F) |
| : M(M), F(F), Machine(&Machine) {} |
| |
| ModuleSlotTracker::ModuleSlotTracker(const Module *M, |
| bool ShouldInitializeAllMetadata) |
| : ShouldCreateStorage(M), |
| ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} |
| |
| ModuleSlotTracker::~ModuleSlotTracker() = default; |
| |
| SlotTracker *ModuleSlotTracker::getMachine() { |
| if (!ShouldCreateStorage) |
| return Machine; |
| |
| ShouldCreateStorage = false; |
| MachineStorage = |
| std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata); |
| Machine = MachineStorage.get(); |
| return Machine; |
| } |
| |
| void ModuleSlotTracker::incorporateFunction(const Function &F) { |
| // Using getMachine() may lazily create the slot tracker. |
| if (!getMachine()) |
| return; |
| |
| // Nothing to do if this is the right function already. |
| if (this->F == &F) |
| return; |
| if (this->F) |
| Machine->purgeFunction(); |
| Machine->incorporateFunction(&F); |
| this->F = &F; |
| } |
| |
| int ModuleSlotTracker::getLocalSlot(const Value *V) { |
| assert(F && "No function incorporated"); |
| return Machine->getLocalSlot(V); |
| } |
| |
| static SlotTracker *createSlotTracker(const Value *V) { |
| if (const Argument *FA = dyn_cast<Argument>(V)) |
| return new SlotTracker(FA->getParent()); |
| |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getParent()) |
| return new SlotTracker(I->getParent()->getParent()); |
| |
| if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| return new SlotTracker(BB->getParent()); |
| |
| if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| return new SlotTracker(GV->getParent()); |
| |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) |
| return new SlotTracker(GA->getParent()); |
| |
| if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V)) |
| return new SlotTracker(GIF->getParent()); |
| |
| if (const Function *Func = dyn_cast<Function>(V)) |
| return new SlotTracker(Func); |
| |
| return nullptr; |
| } |
| |
| #if 0 |
| #define ST_DEBUG(X) dbgs() << X |
| #else |
| #define ST_DEBUG(X) |
| #endif |
| |
| // Module level constructor. Causes the contents of the Module (sans functions) |
| // to be added to the slot table. |
| SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) |
| : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} |
| |
| // Function level constructor. Causes the contents of the Module and the one |
| // function provided to be added to the slot table. |
| SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) |
| : TheModule(F ? F->getParent() : nullptr), TheFunction(F), |
| ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} |
| |
| SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) |
| : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} |
| |
| inline void SlotTracker::initializeIfNeeded() { |
| if (TheModule) { |
| processModule(); |
| TheModule = nullptr; ///< Prevent re-processing next time we're called. |
| } |
| |
| if (TheFunction && !FunctionProcessed) |
| processFunction(); |
| } |
| |
| void SlotTracker::initializeIndexIfNeeded() { |
| if (!TheIndex) |
| return; |
| processIndex(); |
| TheIndex = nullptr; ///< Prevent re-processing next time we're called. |
| } |
| |
| // Iterate through all the global variables, functions, and global |
| // variable initializers and create slots for them. |
| void SlotTracker::processModule() { |
| ST_DEBUG("begin processModule!\n"); |
| |
| // Add all of the unnamed global variables to the value table. |
| for (const GlobalVariable &Var : TheModule->globals()) { |
| if (!Var.hasName()) |
| CreateModuleSlot(&Var); |
| processGlobalObjectMetadata(Var); |
| auto Attrs = Var.getAttributes(); |
| if (Attrs.hasAttributes()) |
| CreateAttributeSetSlot(Attrs); |
| } |
| |
| for (const GlobalAlias &A : TheModule->aliases()) { |
| if (!A.hasName()) |
| CreateModuleSlot(&A); |
| } |
| |
| for (const GlobalIFunc &I : TheModule->ifuncs()) { |
| if (!I.hasName()) |
| CreateModuleSlot(&I); |
| } |
| |
| // Add metadata used by named metadata. |
| for (const NamedMDNode &NMD : TheModule->named_metadata()) { |
| for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) |
| CreateMetadataSlot(NMD.getOperand(i)); |
| } |
| |
| for (const Function &F : *TheModule) { |
| if (!F.hasName()) |
| // Add all the unnamed functions to the table. |
| CreateModuleSlot(&F); |
| |
| if (ShouldInitializeAllMetadata) |
| processFunctionMetadata(F); |
| |
| // Add all the function attributes to the table. |
| // FIXME: Add attributes of other objects? |
| AttributeSet FnAttrs = F.getAttributes().getFnAttributes(); |
| if (FnAttrs.hasAttributes()) |
| CreateAttributeSetSlot(FnAttrs); |
| } |
| |
| ST_DEBUG("end processModule!\n"); |
| } |
| |
| // Process the arguments, basic blocks, and instructions of a function. |
| void SlotTracker::processFunction() { |
| ST_DEBUG("begin processFunction!\n"); |
| fNext = 0; |
| |
| // Process function metadata if it wasn't hit at the module-level. |
| if (!ShouldInitializeAllMetadata) |
| processFunctionMetadata(*TheFunction); |
| |
| // Add all the function arguments with no names. |
| for(Function::const_arg_iterator AI = TheFunction->arg_begin(), |
| AE = TheFunction->arg_end(); AI != AE; ++AI) |
| if (!AI->hasName()) |
| CreateFunctionSlot(&*AI); |
| |
| ST_DEBUG("Inserting Instructions:\n"); |
| |
| // Add all of the basic blocks and instructions with no names. |
| for (auto &BB : *TheFunction) { |
| if (!BB.hasName()) |
| CreateFunctionSlot(&BB); |
| |
| for (auto &I : BB) { |
| if (!I.getType()->isVoidTy() && !I.hasName()) |
| CreateFunctionSlot(&I); |
| |
| // We allow direct calls to any llvm.foo function here, because the |
| // target may not be linked into the optimizer. |
| if (const auto *Call = dyn_cast<CallBase>(&I)) { |
| // Add all the call attributes to the table. |
| AttributeSet Attrs = Call->getAttributes().getFnAttributes(); |
| if (Attrs.hasAttributes()) |
| CreateAttributeSetSlot(Attrs); |
| } |
| } |
| } |
| |
| FunctionProcessed = true; |
| |
| ST_DEBUG("end processFunction!\n"); |
| } |
| |
| // Iterate through all the GUID in the index and create slots for them. |
| void SlotTracker::processIndex() { |
| ST_DEBUG("begin processIndex!\n"); |
| assert(TheIndex); |
| |
| // The first block of slots are just the module ids, which start at 0 and are |
| // assigned consecutively. Since the StringMap iteration order isn't |
| // guaranteed, use a std::map to order by module ID before assigning slots. |
| std::map<uint64_t, StringRef> ModuleIdToPathMap; |
| for (auto &ModPath : TheIndex->modulePaths()) |
| ModuleIdToPathMap[ModPath.second.first] = ModPath.first(); |
| for (auto &ModPair : ModuleIdToPathMap) |
| CreateModulePathSlot(ModPair.second); |
| |
| // Start numbering the GUIDs after the module ids. |
| GUIDNext = ModulePathNext; |
| |
| for (auto &GlobalList : *TheIndex) |
| CreateGUIDSlot(GlobalList.first); |
| |
| // Start numbering the TypeIds after the GUIDs. |
| TypeIdNext = GUIDNext; |
| |
| for (auto TidIter = TheIndex->typeIds().begin(); |
| TidIter != TheIndex->typeIds().end(); TidIter++) |
| CreateTypeIdSlot(TidIter->second.first); |
| |
| for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) |
| CreateGUIDSlot(GlobalValue::getGUID(TId.first)); |
| |
| ST_DEBUG("end processIndex!\n"); |
| } |
| |
| void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| GO.getAllMetadata(MDs); |
| for (auto &MD : MDs) |
| CreateMetadataSlot(MD.second); |
| } |
| |
| void SlotTracker::processFunctionMetadata(const Function &F) { |
| processGlobalObjectMetadata(F); |
| for (auto &BB : F) { |
| for (auto &I : BB) |
| processInstructionMetadata(I); |
| } |
| } |
| |
| void SlotTracker::processInstructionMetadata(const Instruction &I) { |
| // Process metadata used directly by intrinsics. |
| if (const CallInst *CI = dyn_cast<CallInst>(&I)) |
| if (Function *F = CI->getCalledFunction()) |
| if (F->isIntrinsic()) |
| for (auto &Op : I.operands()) |
| if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) |
| if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) |
| CreateMetadataSlot(N); |
| |
| // Process metadata attached to this instruction. |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| I.getAllMetadata(MDs); |
| for (auto &MD : MDs) |
| CreateMetadataSlot(MD.second); |
| } |
| |
| /// Clean up after incorporating a function. This is the only way to get out of |
| /// the function incorporation state that affects get*Slot/Create*Slot. Function |
| /// incorporation state is indicated by TheFunction != 0. |
| void SlotTracker::purgeFunction() { |
| ST_DEBUG("begin purgeFunction!\n"); |
| fMap.clear(); // Simply discard the function level map |
| TheFunction = nullptr; |
| FunctionProcessed = false; |
| ST_DEBUG("end purgeFunction!\n"); |
| } |
| |
| /// getGlobalSlot - Get the slot number of a global value. |
| int SlotTracker::getGlobalSlot(const GlobalValue *V) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIfNeeded(); |
| |
| // Find the value in the module map |
| ValueMap::iterator MI = mMap.find(V); |
| return MI == mMap.end() ? -1 : (int)MI->second; |
| } |
| |
| /// getMetadataSlot - Get the slot number of a MDNode. |
| int SlotTracker::getMetadataSlot(const MDNode *N) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIfNeeded(); |
| |
| // Find the MDNode in the module map |
| mdn_iterator MI = mdnMap.find(N); |
| return MI == mdnMap.end() ? -1 : (int)MI->second; |
| } |
| |
| /// getLocalSlot - Get the slot number for a value that is local to a function. |
| int SlotTracker::getLocalSlot(const Value *V) { |
| assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); |
| |
| // Check for uninitialized state and do lazy initialization. |
| initializeIfNeeded(); |
| |
| ValueMap::iterator FI = fMap.find(V); |
| return FI == fMap.end() ? -1 : (int)FI->second; |
| } |
| |
| int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIfNeeded(); |
| |
| // Find the AttributeSet in the module map. |
| as_iterator AI = asMap.find(AS); |
| return AI == asMap.end() ? -1 : (int)AI->second; |
| } |
| |
| int SlotTracker::getModulePathSlot(StringRef Path) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIndexIfNeeded(); |
| |
| // Find the Module path in the map |
| auto I = ModulePathMap.find(Path); |
| return I == ModulePathMap.end() ? -1 : (int)I->second; |
| } |
| |
| int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIndexIfNeeded(); |
| |
| // Find the GUID in the map |
| guid_iterator I = GUIDMap.find(GUID); |
| return I == GUIDMap.end() ? -1 : (int)I->second; |
| } |
| |
| int SlotTracker::getTypeIdSlot(StringRef Id) { |
| // Check for uninitialized state and do lazy initialization. |
| initializeIndexIfNeeded(); |
| |
| // Find the TypeId string in the map |
| auto I = TypeIdMap.find(Id); |
| return I == TypeIdMap.end() ? -1 : (int)I->second; |
| } |
| |
| /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. |
| void SlotTracker::CreateModuleSlot(const GlobalValue *V) { |
| assert(V && "Can't insert a null Value into SlotTracker!"); |
| assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); |
| assert(!V->hasName() && "Doesn't need a slot!"); |
| |
| unsigned DestSlot = mNext++; |
| mMap[V] = DestSlot; |
| |
| ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << |
| DestSlot << " ["); |
| // G = Global, F = Function, A = Alias, I = IFunc, o = other |
| ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : |
| (isa<Function>(V) ? 'F' : |
| (isa<GlobalAlias>(V) ? 'A' : |
| (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n"); |
| } |
| |
| /// CreateSlot - Create a new slot for the specified value if it has no name. |
| void SlotTracker::CreateFunctionSlot(const Value *V) { |
| assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); |
| |
| unsigned DestSlot = fNext++; |
| fMap[V] = DestSlot; |
| |
| // G = Global, F = Function, o = other |
| ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << |
| DestSlot << " [o]\n"); |
| } |
| |
| /// CreateModuleSlot - Insert the specified MDNode* into the slot table. |
| void SlotTracker::CreateMetadataSlot(const MDNode *N) { |
| assert(N && "Can't insert a null Value into SlotTracker!"); |
| |
| // Don't make slots for DIExpressions. We just print them inline everywhere. |
| if (isa<DIExpression>(N)) |
| return; |
| |
| unsigned DestSlot = mdnNext; |
| if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) |
| return; |
| ++mdnNext; |
| |
| // Recursively add any MDNodes referenced by operands. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) |
| CreateMetadataSlot(Op); |
| } |
| |
| void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { |
| assert(AS.hasAttributes() && "Doesn't need a slot!"); |
| |
| as_iterator I = asMap.find(AS); |
| if (I != asMap.end()) |
| return; |
| |
| unsigned DestSlot = asNext++; |
| asMap[AS] = DestSlot; |
| } |
| |
| /// Create a new slot for the specified Module |
| void SlotTracker::CreateModulePathSlot(StringRef Path) { |
| ModulePathMap[Path] = ModulePathNext++; |
| } |
| |
| /// Create a new slot for the specified GUID |
| void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { |
| GUIDMap[GUID] = GUIDNext++; |
| } |
| |
| /// Create a new slot for the specified Id |
| void SlotTracker::CreateTypeIdSlot(StringRef Id) { |
| TypeIdMap[Id] = TypeIdNext++; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AsmWriter Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context); |
| |
| static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context, |
| bool FromValue = false); |
| |
| static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { |
| if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { |
| // 'Fast' is an abbreviation for all fast-math-flags. |
| if (FPO->isFast()) |
| Out << " fast"; |
| else { |
| if (FPO->hasAllowReassoc()) |
| Out << " reassoc"; |
| if (FPO->hasNoNaNs()) |
| Out << " nnan"; |
| if (FPO->hasNoInfs()) |
| Out << " ninf"; |
| if (FPO->hasNoSignedZeros()) |
| Out << " nsz"; |
| if (FPO->hasAllowReciprocal()) |
| Out << " arcp"; |
| if (FPO->hasAllowContract()) |
| Out << " contract"; |
| if (FPO->hasApproxFunc()) |
| Out << " afn"; |
| } |
| } |
| |
| if (const OverflowingBinaryOperator *OBO = |
| dyn_cast<OverflowingBinaryOperator>(U)) { |
| if (OBO->hasNoUnsignedWrap()) |
| Out << " nuw"; |
| if (OBO->hasNoSignedWrap()) |
| Out << " nsw"; |
| } else if (const PossiblyExactOperator *Div = |
| dyn_cast<PossiblyExactOperator>(U)) { |
| if (Div->isExact()) |
| Out << " exact"; |
| } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { |
| if (GEP->isInBounds()) |
| Out << " inbounds"; |
| } |
| } |
| |
| static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, |
| TypePrinting &TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| if (CI->getType()->isIntegerTy(1)) { |
| Out << (CI->getZExtValue() ? "true" : "false"); |
| return; |
| } |
| Out << CI->getValue(); |
| return; |
| } |
| |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| const APFloat &APF = CFP->getValueAPF(); |
| if (&APF.getSemantics() == &APFloat::IEEEsingle() || |
| &APF.getSemantics() == &APFloat::IEEEdouble()) { |
| // We would like to output the FP constant value in exponential notation, |
| // but we cannot do this if doing so will lose precision. Check here to |
| // make sure that we only output it in exponential format if we can parse |
| // the value back and get the same value. |
| // |
| bool ignored; |
| bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); |
| bool isInf = APF.isInfinity(); |
| bool isNaN = APF.isNaN(); |
| if (!isInf && !isNaN) { |
| double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat(); |
| SmallString<128> StrVal; |
| APF.toString(StrVal, 6, 0, false); |
| // Check to make sure that the stringized number is not some string like |
| // "Inf" or NaN, that atof will accept, but the lexer will not. Check |
| // that the string matches the "[-+]?[0-9]" regex. |
| // |
| assert(((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| ((StrVal[0] == '-' || StrVal[0] == '+') && |
| (StrVal[1] >= '0' && StrVal[1] <= '9'))) && |
| "[-+]?[0-9] regex does not match!"); |
| // Reparse stringized version! |
| if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { |
| Out << StrVal; |
| return; |
| } |
| } |
| // Otherwise we could not reparse it to exactly the same value, so we must |
| // output the string in hexadecimal format! Note that loading and storing |
| // floating point types changes the bits of NaNs on some hosts, notably |
| // x86, so we must not use these types. |
| static_assert(sizeof(double) == sizeof(uint64_t), |
| "assuming that double is 64 bits!"); |
| APFloat apf = APF; |
| // Floats are represented in ASCII IR as double, convert. |
| if (!isDouble) |
| apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, |
| &ignored); |
| Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); |
| return; |
| } |
| |
| // Either half, or some form of long double. |
| // These appear as a magic letter identifying the type, then a |
| // fixed number of hex digits. |
| Out << "0x"; |
| APInt API = APF.bitcastToAPInt(); |
| if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { |
| Out << 'K'; |
| Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, |
| /*Upper=*/true); |
| Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| return; |
| } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { |
| Out << 'L'; |
| Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { |
| Out << 'M'; |
| Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, |
| /*Upper=*/true); |
| } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { |
| Out << 'H'; |
| Out << format_hex_no_prefix(API.getZExtValue(), 4, |
| /*Upper=*/true); |
| } else |
| llvm_unreachable("Unsupported floating point type"); |
| return; |
| } |
| |
| if (isa<ConstantAggregateZero>(CV)) { |
| Out << "zeroinitializer"; |
| return; |
| } |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { |
| Out << "blockaddress("; |
| WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, |
| Context); |
| Out << ", "; |
| WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, |
| Context); |
| Out << ")"; |
| return; |
| } |
| |
| if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { |
| Type *ETy = CA->getType()->getElementType(); |
| Out << '['; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CA->getOperand(0), |
| &TypePrinter, Machine, |
| Context); |
| for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, |
| Context); |
| } |
| Out << ']'; |
| return; |
| } |
| |
| if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { |
| // As a special case, print the array as a string if it is an array of |
| // i8 with ConstantInt values. |
| if (CA->isString()) { |
| Out << "c\""; |
| printEscapedString(CA->getAsString(), Out); |
| Out << '"'; |
| return; |
| } |
| |
| Type *ETy = CA->getType()->getElementType(); |
| Out << '['; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CA->getElementAsConstant(0), |
| &TypePrinter, Machine, |
| Context); |
| for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { |
| Out << ", "; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, |
| Machine, Context); |
| } |
| Out << ']'; |
| return; |
| } |
| |
| if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { |
| if (CS->getType()->isPacked()) |
| Out << '<'; |
| Out << '{'; |
| unsigned N = CS->getNumOperands(); |
| if (N) { |
| Out << ' '; |
| TypePrinter.print(CS->getOperand(0)->getType(), Out); |
| Out << ' '; |
| |
| WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, |
| Context); |
| |
| for (unsigned i = 1; i < N; i++) { |
| Out << ", "; |
| TypePrinter.print(CS->getOperand(i)->getType(), Out); |
| Out << ' '; |
| |
| WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, |
| Context); |
| } |
| Out << ' '; |
| } |
| |
| Out << '}'; |
| if (CS->getType()->isPacked()) |
| Out << '>'; |
| return; |
| } |
| |
| if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { |
| Type *ETy = CV->getType()->getVectorElementType(); |
| Out << '<'; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, |
| Machine, Context); |
| for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ |
| Out << ", "; |
| TypePrinter.print(ETy, Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, |
| Machine, Context); |
| } |
| Out << '>'; |
| return; |
| } |
| |
| if (isa<ConstantPointerNull>(CV)) { |
| Out << "null"; |
| return; |
| } |
| |
| if (isa<ConstantTokenNone>(CV)) { |
| Out << "none"; |
| return; |
| } |
| |
| if (isa<UndefValue>(CV)) { |
| Out << "undef"; |
| return; |
| } |
| |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| Out << CE->getOpcodeName(); |
| WriteOptimizationInfo(Out, CE); |
| if (CE->isCompare()) |
| Out << ' ' << CmpInst::getPredicateName( |
| static_cast<CmpInst::Predicate>(CE->getPredicate())); |
| Out << " ("; |
| |
| Optional<unsigned> InRangeOp; |
| if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { |
| TypePrinter.print(GEP->getSourceElementType(), Out); |
| Out << ", "; |
| InRangeOp = GEP->getInRangeIndex(); |
| if (InRangeOp) |
| ++*InRangeOp; |
| } |
| |
| for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { |
| if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) |
| Out << "inrange "; |
| TypePrinter.print((*OI)->getType(), Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); |
| if (OI+1 != CE->op_end()) |
| Out << ", "; |
| } |
| |
| if (CE->hasIndices()) { |
| ArrayRef<unsigned> Indices = CE->getIndices(); |
| for (unsigned i = 0, e = Indices.size(); i != e; ++i) |
| Out << ", " << Indices[i]; |
| } |
| |
| if (CE->isCast()) { |
| Out << " to "; |
| TypePrinter.print(CE->getType(), Out); |
| } |
| |
| Out << ')'; |
| return; |
| } |
| |
| Out << "<placeholder or erroneous Constant>"; |
| } |
| |
| static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!{"; |
| for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { |
| const Metadata *MD = Node->getOperand(mi); |
| if (!MD) |
| Out << "null"; |
| else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) { |
| Value *V = MDV->getValue(); |
| TypePrinter->print(V->getType(), Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context); |
| } else { |
| WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); |
| } |
| if (mi + 1 != me) |
| Out << ", "; |
| } |
| |
| Out << "}"; |
| } |
| |
| namespace { |
| |
| struct FieldSeparator { |
| bool Skip = true; |
| const char *Sep; |
| |
| FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} |
| }; |
| |
| raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { |
| if (FS.Skip) { |
| FS.Skip = false; |
| return OS; |
| } |
| return OS << FS.Sep; |
| } |
| |
| struct MDFieldPrinter { |
| raw_ostream &Out; |
| FieldSeparator FS; |
| TypePrinting *TypePrinter = nullptr; |
| SlotTracker *Machine = nullptr; |
| const Module *Context = nullptr; |
| |
| explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {} |
| MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) |
| : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) { |
| } |
| |
| void printTag(const DINode *N); |
| void printMacinfoType(const DIMacroNode *N); |
| void printChecksum(const DIFile::ChecksumInfo<StringRef> &N); |
| void printString(StringRef Name, StringRef Value, |
| bool ShouldSkipEmpty = true); |
| void printMetadata(StringRef Name, const Metadata *MD, |
| bool ShouldSkipNull = true); |
| template <class IntTy> |
| void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); |
| void printBool(StringRef Name, bool Value, Optional<bool> Default = None); |
| void printDIFlags(StringRef Name, DINode::DIFlags Flags); |
| void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags); |
| template <class IntTy, class Stringifier> |
| void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, |
| bool ShouldSkipZero = true); |
| void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); |
| void printNameTableKind(StringRef Name, |
| DICompileUnit::DebugNameTableKind NTK); |
| }; |
| |
| } // end anonymous namespace |
| |
| void MDFieldPrinter::printTag(const DINode *N) { |
| Out << FS << "tag: "; |
| auto Tag = dwarf::TagString(N->getTag()); |
| if (!Tag.empty()) |
| Out << Tag; |
| else |
| Out << N->getTag(); |
| } |
| |
| void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { |
| Out << FS << "type: "; |
| auto Type = dwarf::MacinfoString(N->getMacinfoType()); |
| if (!Type.empty()) |
| Out << Type; |
| else |
| Out << N->getMacinfoType(); |
| } |
| |
| void MDFieldPrinter::printChecksum( |
| const DIFile::ChecksumInfo<StringRef> &Checksum) { |
| Out << FS << "checksumkind: " << Checksum.getKindAsString(); |
| printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); |
| } |
| |
| void MDFieldPrinter::printString(StringRef Name, StringRef Value, |
| bool ShouldSkipEmpty) { |
| if (ShouldSkipEmpty && Value.empty()) |
| return; |
| |
| Out << FS << Name << ": \""; |
| printEscapedString(Value, Out); |
| Out << "\""; |
| } |
| |
| static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| if (!MD) { |
| Out << "null"; |
| return; |
| } |
| WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); |
| } |
| |
| void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, |
| bool ShouldSkipNull) { |
| if (ShouldSkipNull && !MD) |
| return; |
| |
| Out << FS << Name << ": "; |
| writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context); |
| } |
| |
| template <class IntTy> |
| void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { |
| if (ShouldSkipZero && !Int) |
| return; |
| |
| Out << FS << Name << ": " << Int; |
| } |
| |
| void MDFieldPrinter::printBool(StringRef Name, bool Value, |
| Optional<bool> Default) { |
| if (Default && Value == *Default) |
| return; |
| Out << FS << Name << ": " << (Value ? "true" : "false"); |
| } |
| |
| void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { |
| if (!Flags) |
| return; |
| |
| Out << FS << Name << ": "; |
| |
| SmallVector<DINode::DIFlags, 8> SplitFlags; |
| auto Extra = DINode::splitFlags(Flags, SplitFlags); |
| |
| FieldSeparator FlagsFS(" | "); |
| for (auto F : SplitFlags) { |
| auto StringF = DINode::getFlagString(F); |
| assert(!StringF.empty() && "Expected valid flag"); |
| Out << FlagsFS << StringF; |
| } |
| if (Extra || SplitFlags.empty()) |
| Out << FlagsFS << Extra; |
| } |
| |
| void MDFieldPrinter::printDISPFlags(StringRef Name, |
| DISubprogram::DISPFlags Flags) { |
| // Always print this field, because no flags in the IR at all will be |
| // interpreted as old-style isDefinition: true. |
| Out << FS << Name << ": "; |
| |
| if (!Flags) { |
| Out << 0; |
| return; |
| } |
| |
| SmallVector<DISubprogram::DISPFlags, 8> SplitFlags; |
| auto Extra = DISubprogram::splitFlags(Flags, SplitFlags); |
| |
| FieldSeparator FlagsFS(" | "); |
| for (auto F : SplitFlags) { |
| auto StringF = DISubprogram::getFlagString(F); |
| assert(!StringF.empty() && "Expected valid flag"); |
| Out << FlagsFS << StringF; |
| } |
| if (Extra || SplitFlags.empty()) |
| Out << FlagsFS << Extra; |
| } |
| |
| void MDFieldPrinter::printEmissionKind(StringRef Name, |
| DICompileUnit::DebugEmissionKind EK) { |
| Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); |
| } |
| |
| void MDFieldPrinter::printNameTableKind(StringRef Name, |
| DICompileUnit::DebugNameTableKind NTK) { |
| if (NTK == DICompileUnit::DebugNameTableKind::Default) |
| return; |
| Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK); |
| } |
| |
| template <class IntTy, class Stringifier> |
| void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, |
| Stringifier toString, bool ShouldSkipZero) { |
| if (!Value) |
| return; |
| |
| Out << FS << Name << ": "; |
| auto S = toString(Value); |
| if (!S.empty()) |
| Out << S; |
| else |
| Out << Value; |
| } |
| |
| static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!GenericDINode("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printTag(N); |
| Printer.printString("header", N->getHeader()); |
| if (N->getNumDwarfOperands()) { |
| Out << Printer.FS << "operands: {"; |
| FieldSeparator IFS; |
| for (auto &I : N->dwarf_operands()) { |
| Out << IFS; |
| writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context); |
| } |
| Out << "}"; |
| } |
| Out << ")"; |
| } |
| |
| static void writeDILocation(raw_ostream &Out, const DILocation *DL, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DILocation("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| // Always output the line, since 0 is a relevant and important value for it. |
| Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); |
| Printer.printInt("column", DL->getColumn()); |
| Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); |
| Printer.printBool("isImplicitCode", DL->isImplicitCode(), |
| /* Default */ false); |
| Out << ")"; |
| } |
| |
| static void writeDISubrange(raw_ostream &Out, const DISubrange *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DISubrange("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| if (auto *CE = N->getCount().dyn_cast<ConstantInt*>()) |
| Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false); |
| else |
| Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(), |
| /*ShouldSkipNull */ false); |
| Printer.printInt("lowerBound", N->getLowerBound()); |
| Out << ")"; |
| } |
| |
| static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, |
| TypePrinting *, SlotTracker *, const Module *) { |
| Out << "!DIEnumerator("; |
| MDFieldPrinter Printer(Out); |
| Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); |
| if (N->isUnsigned()) { |
| auto Value = static_cast<uint64_t>(N->getValue()); |
| Printer.printInt("value", Value, /* ShouldSkipZero */ false); |
| Printer.printBool("isUnsigned", true); |
| } else { |
| Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false); |
| } |
| Out << ")"; |
| } |
| |
| static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, |
| TypePrinting *, SlotTracker *, const Module *) { |
| Out << "!DIBasicType("; |
| MDFieldPrinter Printer(Out); |
| if (N->getTag() != dwarf::DW_TAG_base_type) |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printInt("size", N->getSizeInBits()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Printer.printDwarfEnum("encoding", N->getEncoding(), |
| dwarf::AttributeEncodingString); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Out << ")"; |
| } |
| |
| static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIDerivedType("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("scope", N->getRawScope()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("baseType", N->getRawBaseType(), |
| /* ShouldSkipNull */ false); |
| Printer.printInt("size", N->getSizeInBits()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Printer.printInt("offset", N->getOffsetInBits()); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printMetadata("extraData", N->getRawExtraData()); |
| if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) |
| Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, |
| /* ShouldSkipZero */ false); |
| Out << ")"; |
| } |
| |
| static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DICompositeType("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("scope", N->getRawScope()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("baseType", N->getRawBaseType()); |
| Printer.printInt("size", N->getSizeInBits()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Printer.printInt("offset", N->getOffsetInBits()); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printMetadata("elements", N->getRawElements()); |
| Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), |
| dwarf::LanguageString); |
| Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); |
| Printer.printMetadata("templateParams", N->getRawTemplateParams()); |
| Printer.printString("identifier", N->getIdentifier()); |
| Printer.printMetadata("discriminator", N->getRawDiscriminator()); |
| Out << ")"; |
| } |
| |
| static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DISubroutineType("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); |
| Printer.printMetadata("types", N->getRawTypeArray(), |
| /* ShouldSkipNull */ false); |
| Out << ")"; |
| } |
| |
| static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *, |
| SlotTracker *, const Module *) { |
| Out << "!DIFile("; |
| MDFieldPrinter Printer(Out); |
| Printer.printString("filename", N->getFilename(), |
| /* ShouldSkipEmpty */ false); |
| Printer.printString("directory", N->getDirectory(), |
| /* ShouldSkipEmpty */ false); |
| // Print all values for checksum together, or not at all. |
| if (N->getChecksum()) |
| Printer.printChecksum(*N->getChecksum()); |
| Printer.printString("source", N->getSource().getValueOr(StringRef()), |
| /* ShouldSkipEmpty */ true); |
| Out << ")"; |
| } |
| |
| static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DICompileUnit("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printDwarfEnum("language", N->getSourceLanguage(), |
| dwarf::LanguageString, /* ShouldSkipZero */ false); |
| Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); |
| Printer.printString("producer", N->getProducer()); |
| Printer.printBool("isOptimized", N->isOptimized()); |
| Printer.printString("flags", N->getFlags()); |
| Printer.printInt("runtimeVersion", N->getRuntimeVersion(), |
| /* ShouldSkipZero */ false); |
| Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); |
| Printer.printEmissionKind("emissionKind", N->getEmissionKind()); |
| Printer.printMetadata("enums", N->getRawEnumTypes()); |
| Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); |
| Printer.printMetadata("globals", N->getRawGlobalVariables()); |
| Printer.printMetadata("imports", N->getRawImportedEntities()); |
| Printer.printMetadata("macros", N->getRawMacros()); |
| Printer.printInt("dwoId", N->getDWOId()); |
| Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); |
| Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), |
| false); |
| Printer.printNameTableKind("nameTableKind", N->getNameTableKind()); |
| Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false); |
| Out << ")"; |
| } |
| |
| static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DISubprogram("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printString("linkageName", N->getLinkageName()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("type", N->getRawType()); |
| Printer.printInt("scopeLine", N->getScopeLine()); |
| Printer.printMetadata("containingType", N->getRawContainingType()); |
| if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || |
| N->getVirtualIndex() != 0) |
| Printer.printInt("virtualIndex", N->getVirtualIndex(), false); |
| Printer.printInt("thisAdjustment", N->getThisAdjustment()); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printDISPFlags("spFlags", N->getSPFlags()); |
| Printer.printMetadata("unit", N->getRawUnit()); |
| Printer.printMetadata("templateParams", N->getRawTemplateParams()); |
| Printer.printMetadata("declaration", N->getRawDeclaration()); |
| Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); |
| Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); |
| Out << ")"; |
| } |
| |
| static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DILexicalBlock("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printInt("column", N->getColumn()); |
| Out << ")"; |
| } |
| |
| static void writeDILexicalBlockFile(raw_ostream &Out, |
| const DILexicalBlockFile *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DILexicalBlockFile("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("discriminator", N->getDiscriminator(), |
| /* ShouldSkipZero */ false); |
| Out << ")"; |
| } |
| |
| static void writeDINamespace(raw_ostream &Out, const DINamespace *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DINamespace("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printBool("exportSymbols", N->getExportSymbols(), false); |
| Out << ")"; |
| } |
| |
| static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DICommonBlock("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), false); |
| Printer.printMetadata("declaration", N->getRawDecl(), false); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLineNo()); |
| Out << ")"; |
| } |
| |
| static void writeDIMacro(raw_ostream &Out, const DIMacro *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIMacro("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMacinfoType(N); |
| Printer.printInt("line", N->getLine()); |
| Printer.printString("name", N->getName()); |
| Printer.printString("value", N->getValue()); |
| Out << ")"; |
| } |
| |
| static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIMacroFile("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("nodes", N->getRawElements()); |
| Out << ")"; |
| } |
| |
| static void writeDIModule(raw_ostream &Out, const DIModule *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIModule("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printString("name", N->getName()); |
| Printer.printString("configMacros", N->getConfigurationMacros()); |
| Printer.printString("includePath", N->getIncludePath()); |
| Printer.printString("sysroot", N->getSysRoot()); |
| Out << ")"; |
| } |
| |
| |
| static void writeDITemplateTypeParameter(raw_ostream &Out, |
| const DITemplateTypeParameter *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DITemplateTypeParameter("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); |
| Out << ")"; |
| } |
| |
| static void writeDITemplateValueParameter(raw_ostream &Out, |
| const DITemplateValueParameter *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DITemplateValueParameter("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| if (N->getTag() != dwarf::DW_TAG_template_value_parameter) |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("type", N->getRawType()); |
| Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); |
| Out << ")"; |
| } |
| |
| static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DIGlobalVariable("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printString("linkageName", N->getLinkageName()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("type", N->getRawType()); |
| Printer.printBool("isLocal", N->isLocalToUnit()); |
| Printer.printBool("isDefinition", N->isDefinition()); |
| Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); |
| Printer.printMetadata("templateParams", N->getRawTemplateParams()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Out << ")"; |
| } |
| |
| static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DILocalVariable("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printInt("arg", N->getArg()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printMetadata("type", N->getRawType()); |
| Printer.printDIFlags("flags", N->getFlags()); |
| Printer.printInt("align", N->getAlignInBits()); |
| Out << ")"; |
| } |
| |
| static void writeDILabel(raw_ostream &Out, const DILabel *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DILabel("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Out << ")"; |
| } |
| |
| static void writeDIExpression(raw_ostream &Out, const DIExpression *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIExpression("; |
| FieldSeparator FS; |
| if (N->isValid()) { |
| for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) { |
| auto OpStr = dwarf::OperationEncodingString(I->getOp()); |
| assert(!OpStr.empty() && "Expected valid opcode"); |
| |
| Out << FS << OpStr; |
| if (I->getOp() == dwarf::DW_OP_LLVM_convert) { |
| Out << FS << I->getArg(0); |
| Out << FS << dwarf::AttributeEncodingString(I->getArg(1)); |
| } else { |
| for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A) |
| Out << FS << I->getArg(A); |
| } |
| } |
| } else { |
| for (const auto &I : N->getElements()) |
| Out << FS << I; |
| } |
| Out << ")"; |
| } |
| |
| static void writeDIGlobalVariableExpression(raw_ostream &Out, |
| const DIGlobalVariableExpression *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIGlobalVariableExpression("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printMetadata("var", N->getVariable()); |
| Printer.printMetadata("expr", N->getExpression()); |
| Out << ")"; |
| } |
| |
| static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, |
| TypePrinting *TypePrinter, SlotTracker *Machine, |
| const Module *Context) { |
| Out << "!DIObjCProperty("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Printer.printString("setter", N->getSetterName()); |
| Printer.printString("getter", N->getGetterName()); |
| Printer.printInt("attributes", N->getAttributes()); |
| Printer.printMetadata("type", N->getRawType()); |
| Out << ")"; |
| } |
| |
| static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context) { |
| Out << "!DIImportedEntity("; |
| MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); |
| Printer.printTag(N); |
| Printer.printString("name", N->getName()); |
| Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); |
| Printer.printMetadata("entity", N->getRawEntity()); |
| Printer.printMetadata("file", N->getRawFile()); |
| Printer.printInt("line", N->getLine()); |
| Out << ")"; |
| } |
| |
| static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| if (Node->isDistinct()) |
| Out << "distinct "; |
| else if (Node->isTemporary()) |
| Out << "<temporary!> "; // Handle broken code. |
| |
| switch (Node->getMetadataID()) { |
| default: |
| llvm_unreachable("Expected uniquable MDNode"); |
| #define HANDLE_MDNODE_LEAF(CLASS) \ |
| case Metadata::CLASS##Kind: \ |
| write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \ |
| break; |
| #include "llvm/IR/Metadata.def" |
| } |
| } |
| |
| // Full implementation of printing a Value as an operand with support for |
| // TypePrinting, etc. |
| static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, |
| const Module *Context) { |
| if (V->hasName()) { |
| PrintLLVMName(Out, V); |
| return; |
| } |
| |
| const Constant *CV = dyn_cast<Constant>(V); |
| if (CV && !isa<GlobalValue>(CV)) { |
| assert(TypePrinter && "Constants require TypePrinting!"); |
| WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); |
| return; |
| } |
| |
| if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { |
| Out << "asm "; |
| if (IA->hasSideEffects()) |
| Out << "sideeffect "; |
| if (IA->isAlignStack()) |
| Out << "alignstack "; |
| // We don't emit the AD_ATT dialect as it's the assumed default. |
| if (IA->getDialect() == InlineAsm::AD_Intel) |
| Out << "inteldialect "; |
| Out << '"'; |
| printEscapedString(IA->getAsmString(), Out); |
| Out << "\", \""; |
| printEscapedString(IA->getConstraintString(), Out); |
| Out << '"'; |
| return; |
| } |
| |
| if (auto *MD = dyn_cast<MetadataAsValue>(V)) { |
| WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine, |
| Context, /* FromValue */ true); |
| return; |
| } |
| |
| char Prefix = '%'; |
| int Slot; |
| // If we have a SlotTracker, use it. |
| if (Machine) { |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| Slot = Machine->getGlobalSlot(GV); |
| Prefix = '@'; |
| } else { |
| Slot = Machine->getLocalSlot(V); |
| |
| // If the local value didn't succeed, then we may be referring to a value |
| // from a different function. Translate it, as this can happen when using |
| // address of blocks. |
| if (Slot == -1) |
| if ((Machine = createSlotTracker(V))) { |
| Slot = Machine->getLocalSlot(V); |
| delete Machine; |
| } |
| } |
| } else if ((Machine = createSlotTracker(V))) { |
| // Otherwise, create one to get the # and then destroy it. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| Slot = Machine->getGlobalSlot(GV); |
| Prefix = '@'; |
| } else { |
| Slot = Machine->getLocalSlot(V); |
| } |
| delete Machine; |
| Machine = nullptr; |
| } else { |
| Slot = -1; |
| } |
| |
| if (Slot != -1) |
| Out << Prefix << Slot; |
| else |
| Out << "<badref>"; |
| } |
| |
| static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, |
| TypePrinting *TypePrinter, |
| SlotTracker *Machine, const Module *Context, |
| bool FromValue) { |
| // Write DIExpressions inline when used as a value. Improves readability of |
| // debug info intrinsics. |
| if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) { |
| writeDIExpression(Out, Expr, TypePrinter, Machine, Context); |
| return; |
| } |
| |
| if (const MDNode *N = dyn_cast<MDNode>(MD)) { |
| std::unique_ptr<SlotTracker> MachineStorage; |
| if (!Machine) { |
| MachineStorage = std::make_unique<SlotTracker>(Context); |
| Machine = MachineStorage.get(); |
| } |
| int Slot = Machine->getMetadataSlot(N); |
| if (Slot == -1) { |
| if (const DILocation *Loc = dyn_cast<DILocation>(N)) { |
| writeDILocation(Out, Loc, TypePrinter, Machine, Context); |
| return; |
| } |
| // Give the pointer value instead of "badref", since this comes up all |
| // the time when debugging. |
| Out << "<" << N << ">"; |
| } else |
| Out << '!' << Slot; |
| return; |
| } |
| |
| if (const MDString *MDS = dyn_cast<MDString>(MD)) { |
| Out << "!\""; |
| printEscapedString(MDS->getString(), Out); |
| Out << '"'; |
| return; |
| } |
| |
| auto *V = cast<ValueAsMetadata>(MD); |
| assert(TypePrinter && "TypePrinter required for metadata values"); |
| assert((FromValue || !isa<LocalAsMetadata>(V)) && |
| "Unexpected function-local metadata outside of value argument"); |
| |
| TypePrinter->print(V->getValue()->getType(), Out); |
| Out << ' '; |
| WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context); |
| } |
| |
| namespace { |
| |
| class AssemblyWriter { |
| formatted_raw_ostream &Out; |
| const Module *TheModule = nullptr; |
| const ModuleSummaryIndex *TheIndex = nullptr; |
| std::unique_ptr<SlotTracker> SlotTrackerStorage; |
| SlotTracker &Machine; |
| TypePrinting TypePrinter; |
| AssemblyAnnotationWriter *AnnotationWriter = nullptr; |
| SetVector<const Comdat *> Comdats; |
| bool IsForDebug; |
| bool ShouldPreserveUseListOrder; |
| UseListOrderStack UseListOrders; |
| SmallVector<StringRef, 8> MDNames; |
| /// Synchronization scope names registered with LLVMContext. |
| SmallVector<StringRef, 8> SSNs; |
| DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap; |
| |
| public: |
| /// Construct an AssemblyWriter with an external SlotTracker |
| AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, |
| AssemblyAnnotationWriter *AAW, bool IsForDebug, |
| bool ShouldPreserveUseListOrder = false); |
| |
| AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, |
| const ModuleSummaryIndex *Index, bool IsForDebug); |
| |
| void printMDNodeBody(const MDNode *MD); |
| void printNamedMDNode(const NamedMDNode *NMD); |
| |
| void printModule(const Module *M); |
| |
| void writeOperand(const Value *Op, bool PrintType); |
| void writeParamOperand(const Value *Operand, AttributeSet Attrs); |
| void writeOperandBundles(const CallBase *Call); |
| void writeSyncScope(const LLVMContext &Context, |
| SyncScope::ID SSID); |
| void writeAtomic(const LLVMContext &Context, |
| AtomicOrdering Ordering, |
| SyncScope::ID SSID); |
| void writeAtomicCmpXchg(const LLVMContext &Context, |
| AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, |
| SyncScope::ID SSID); |
| |
| void writeAllMDNodes(); |
| void writeMDNode(unsigned Slot, const MDNode *Node); |
| void writeAttribute(const Attribute &Attr, bool InAttrGroup = false); |
| void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false); |
| void writeAllAttributeGroups(); |
| |
| void printTypeIdentities(); |
| void printGlobal(const GlobalVariable *GV); |
| void printIndirectSymbol(const GlobalIndirectSymbol *GIS); |
| void printComdat(const Comdat *C); |
| void printFunction(const Function *F); |
| void printArgument(const Argument *FA, AttributeSet Attrs); |
| void printBasicBlock(const BasicBlock *BB); |
| void printInstructionLine(const Instruction &I); |
| void printInstruction(const Instruction &I); |
| |
| void printUseListOrder(const UseListOrder &Order); |
| void printUseLists(const Function *F); |
| |
| void printModuleSummaryIndex(); |
| void printSummaryInfo(unsigned Slot, const ValueInfo &VI); |
| void printSummary(const GlobalValueSummary &Summary); |
| void printAliasSummary(const AliasSummary *AS); |
| void printGlobalVarSummary(const GlobalVarSummary *GS); |
| void printFunctionSummary(const FunctionSummary *FS); |
| void printTypeIdSummary(const TypeIdSummary &TIS); |
| void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI); |
| void printTypeTestResolution(const TypeTestResolution &TTRes); |
| void printArgs(const std::vector<uint64_t> &Args); |
| void printWPDRes(const WholeProgramDevirtResolution &WPDRes); |
| void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); |
| void printVFuncId(const FunctionSummary::VFuncId VFId); |
| void |
| printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList, |
| const char *Tag); |
| void |
| printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList, |
| const char *Tag); |
| |
| private: |
| /// Print out metadata attachments. |
| void printMetadataAttachments( |
| const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, |
| StringRef Separator); |
| |
| // printInfoComment - Print a little comment after the instruction indicating |
| // which slot it occupies. |
| void printInfoComment(const Value &V); |
| |
| // printGCRelocateComment - print comment after call to the gc.relocate |
| // intrinsic indicating base and derived pointer names. |
| void printGCRelocateComment(const GCRelocateInst &Relocate); |
| }; |
| |
| } // end anonymous namespace |
| |
| AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, |
| const Module *M, AssemblyAnnotationWriter *AAW, |
| bool IsForDebug, bool ShouldPreserveUseListOrder) |
| : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), |
| IsForDebug(IsForDebug), |
| ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { |
| if (!TheModule) |
| return; |
| for (const GlobalObject &GO : TheModule->global_objects()) |
| if (const Comdat *C = GO.getComdat()) |
| Comdats.insert(C); |
| } |
| |
| AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, |
| const ModuleSummaryIndex *Index, bool IsForDebug) |
| : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), |
| IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} |
| |
| void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { |
| if (!Operand) { |
| Out << "<null operand!>"; |
| return; |
| } |
| if (PrintType) { |
| TypePrinter.print(Operand->getType(), Out); |
| Out << ' '; |
| } |
| WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); |
| } |
| |
| void AssemblyWriter::writeSyncScope(const LLVMContext &Context, |
| SyncScope::ID SSID) { |
| switch (SSID) { |
| case SyncScope::System: { |
| break; |
| } |
| default: { |
| if (SSNs.empty()) |
| Context.getSyncScopeNames(SSNs); |
| |
| Out << " syncscope(\""; |
| printEscapedString(SSNs[SSID], Out); |
| Out << "\")"; |
| break; |
| } |
| } |
| } |
| |
| void AssemblyWriter::writeAtomic(const LLVMContext &Context, |
| AtomicOrdering Ordering, |
| SyncScope::ID SSID) { |
| if (Ordering == AtomicOrdering::NotAtomic) |
| return; |
| |
| writeSyncScope(Context, SSID); |
| Out << " " << toIRString(Ordering); |
| } |
| |
| void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, |
| AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, |
| SyncScope::ID SSID) { |
| assert(SuccessOrdering != AtomicOrdering::NotAtomic && |
| FailureOrdering != AtomicOrdering::NotAtomic); |
| |
| writeSyncScope(Context, SSID); |
| Out << " " << toIRString(SuccessOrdering); |
| Out << " " << toIRString(FailureOrdering); |
| } |
| |
| void AssemblyWriter::writeParamOperand(const Value *Operand, |
| AttributeSet Attrs) { |
| if (!Operand) { |
| Out << "<null operand!>"; |
| return; |
| } |
| |
| // Print the type |
| TypePrinter.print(Operand->getType(), Out); |
| // Print parameter attributes list |
| if (Attrs.hasAttributes()) { |
| Out << ' '; |
| writeAttributeSet(Attrs); |
|