| //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAG class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "SDNodeDbgValue.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Mutex.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/SizeOpts.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <limits> |
| #include <set> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the |
| /// specified members. |
| static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { |
| SDVTList Res = {VTs, NumVTs}; |
| return Res; |
| } |
| |
| // Default null implementations of the callbacks. |
| void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} |
| void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} |
| void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} |
| |
| void SelectionDAG::DAGNodeDeletedListener::anchor() {} |
| |
| #define DEBUG_TYPE "selectiondag" |
| |
| static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", |
| cl::Hidden, cl::init(true), |
| cl::desc("Gang up loads and stores generated by inlining of memcpy")); |
| |
| static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", |
| cl::desc("Number limit for gluing ld/st of memcpy."), |
| cl::Hidden, cl::init(0)); |
| |
| static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { |
| LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantFPSDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| /// isExactlyValue - We don't rely on operator== working on double values, as |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| /// As such, this method can be used to do an exact bit-for-bit comparison of |
| /// two floating point values. |
| bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { |
| return getValueAPF().bitwiseIsEqual(V); |
| } |
| |
| bool ConstantFPSDNode::isValueValidForType(EVT VT, |
| const APFloat& Val) { |
| assert(VT.isFloatingPoint() && "Can only convert between FP types"); |
| |
| // convert modifies in place, so make a copy. |
| APFloat Val2 = APFloat(Val); |
| bool losesInfo; |
| (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven, |
| &losesInfo); |
| return !losesInfo; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ISD Namespace |
| //===----------------------------------------------------------------------===// |
| |
| bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { |
| auto *BV = dyn_cast<BuildVectorSDNode>(N); |
| if (!BV) |
| return false; |
| |
| APInt SplatUndef; |
| unsigned SplatBitSize; |
| bool HasUndefs; |
| unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); |
| return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, |
| EltSize) && |
| EltSize == SplatBitSize; |
| } |
| |
| // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be |
| // specializations of the more general isConstantSplatVector()? |
| |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) { |
| // Look through a bit convert. |
| while (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0).getNode(); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| unsigned i = 0, e = N->getNumOperands(); |
| |
| // Skip over all of the undef values. |
| while (i != e && N->getOperand(i).isUndef()) |
| ++i; |
| |
| // Do not accept an all-undef vector. |
| if (i == e) return false; |
| |
| // Do not accept build_vectors that aren't all constants or which have non-~0 |
| // elements. We have to be a bit careful here, as the type of the constant |
| // may not be the same as the type of the vector elements due to type |
| // legalization (the elements are promoted to a legal type for the target and |
| // a vector of a type may be legal when the base element type is not). |
| // We only want to check enough bits to cover the vector elements, because |
| // we care if the resultant vector is all ones, not whether the individual |
| // constants are. |
| SDValue NotZero = N->getOperand(i); |
| unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { |
| if (CN->getAPIntValue().countTrailingOnes() < EltSize) |
| return false; |
| } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { |
| if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) |
| return false; |
| } else |
| return false; |
| |
| // Okay, we have at least one ~0 value, check to see if the rest match or are |
| // undefs. Even with the above element type twiddling, this should be OK, as |
| // the same type legalization should have applied to all the elements. |
| for (++i; i != e; ++i) |
| if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) |
| return false; |
| return true; |
| } |
| |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) { |
| // Look through a bit convert. |
| while (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0).getNode(); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| bool IsAllUndef = true; |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| IsAllUndef = false; |
| // Do not accept build_vectors that aren't all constants or which have non-0 |
| // elements. We have to be a bit careful here, as the type of the constant |
| // may not be the same as the type of the vector elements due to type |
| // legalization (the elements are promoted to a legal type for the target |
| // and a vector of a type may be legal when the base element type is not). |
| // We only want to check enough bits to cover the vector elements, because |
| // we care if the resultant vector is all zeros, not whether the individual |
| // constants are. |
| unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { |
| if (CN->getAPIntValue().countTrailingZeros() < EltSize) |
| return false; |
| } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { |
| if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) |
| return false; |
| } else |
| return false; |
| } |
| |
| // Do not accept an all-undef vector. |
| if (IsAllUndef) |
| return false; |
| return true; |
| } |
| |
| bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| if (!isa<ConstantSDNode>(Op)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| if (!isa<ConstantFPSDNode>(Op)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool ISD::allOperandsUndef(const SDNode *N) { |
| // Return false if the node has no operands. |
| // This is "logically inconsistent" with the definition of "all" but |
| // is probably the desired behavior. |
| if (N->getNumOperands() == 0) |
| return false; |
| return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); |
| } |
| |
| bool ISD::matchUnaryPredicate(SDValue Op, |
| std::function<bool(ConstantSDNode *)> Match, |
| bool AllowUndefs) { |
| // FIXME: Add support for scalar UNDEF cases? |
| if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) |
| return Match(Cst); |
| |
| // FIXME: Add support for vector UNDEF cases? |
| if (ISD::BUILD_VECTOR != Op.getOpcode()) |
| return false; |
| |
| EVT SVT = Op.getValueType().getScalarType(); |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { |
| if (AllowUndefs && Op.getOperand(i).isUndef()) { |
| if (!Match(nullptr)) |
| return false; |
| continue; |
| } |
| |
| auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); |
| if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool ISD::matchBinaryPredicate( |
| SDValue LHS, SDValue RHS, |
| std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, |
| bool AllowUndefs, bool AllowTypeMismatch) { |
| if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) |
| return false; |
| |
| // TODO: Add support for scalar UNDEF cases? |
| if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) |
| if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) |
| return Match(LHSCst, RHSCst); |
| |
| // TODO: Add support for vector UNDEF cases? |
| if (ISD::BUILD_VECTOR != LHS.getOpcode() || |
| ISD::BUILD_VECTOR != RHS.getOpcode()) |
| return false; |
| |
| EVT SVT = LHS.getValueType().getScalarType(); |
| for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { |
| SDValue LHSOp = LHS.getOperand(i); |
| SDValue RHSOp = RHS.getOperand(i); |
| bool LHSUndef = AllowUndefs && LHSOp.isUndef(); |
| bool RHSUndef = AllowUndefs && RHSOp.isUndef(); |
| auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); |
| auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); |
| if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) |
| return false; |
| if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || |
| LHSOp.getValueType() != RHSOp.getValueType())) |
| return false; |
| if (!Match(LHSCst, RHSCst)) |
| return false; |
| } |
| return true; |
| } |
| |
| ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { |
| switch (ExtType) { |
| case ISD::EXTLOAD: |
| return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; |
| case ISD::SEXTLOAD: |
| return ISD::SIGN_EXTEND; |
| case ISD::ZEXTLOAD: |
| return ISD::ZERO_EXTEND; |
| default: |
| break; |
| } |
| |
| llvm_unreachable("Invalid LoadExtType"); |
| } |
| |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { |
| // To perform this operation, we just need to swap the L and G bits of the |
| // operation. |
| unsigned OldL = (Operation >> 2) & 1; |
| unsigned OldG = (Operation >> 1) & 1; |
| return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits |
| (OldL << 1) | // New G bit |
| (OldG << 2)); // New L bit. |
| } |
| |
| static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { |
| unsigned Operation = Op; |
| if (isIntegerLike) |
| Operation ^= 7; // Flip L, G, E bits, but not U. |
| else |
| Operation ^= 15; // Flip all of the condition bits. |
| |
| if (Operation > ISD::SETTRUE2) |
| Operation &= ~8; // Don't let N and U bits get set. |
| |
| return ISD::CondCode(Operation); |
| } |
| |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { |
| return getSetCCInverseImpl(Op, Type.isInteger()); |
| } |
| |
| ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, |
| bool isIntegerLike) { |
| return getSetCCInverseImpl(Op, isIntegerLike); |
| } |
| |
| /// For an integer comparison, return 1 if the comparison is a signed operation |
| /// and 2 if the result is an unsigned comparison. Return zero if the operation |
| /// does not depend on the sign of the input (setne and seteq). |
| static int isSignedOp(ISD::CondCode Opcode) { |
| switch (Opcode) { |
| default: llvm_unreachable("Illegal integer setcc operation!"); |
| case ISD::SETEQ: |
| case ISD::SETNE: return 0; |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETGT: |
| case ISD::SETGE: return 1; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: return 2; |
| } |
| } |
| |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| EVT Type) { |
| bool IsInteger = Type.isInteger(); |
| if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed integer setcc with an unsigned integer setcc. |
| return ISD::SETCC_INVALID; |
| |
| unsigned Op = Op1 | Op2; // Combine all of the condition bits. |
| |
| // If the N and U bits get set, then the resultant comparison DOES suddenly |
| // care about orderedness, and it is true when ordered. |
| if (Op > ISD::SETTRUE2) |
| Op &= ~16; // Clear the U bit if the N bit is set. |
| |
| // Canonicalize illegal integer setcc's. |
| if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT |
| Op = ISD::SETNE; |
| |
| return ISD::CondCode(Op); |
| } |
| |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| EVT Type) { |
| bool IsInteger = Type.isInteger(); |
| if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed setcc with an unsigned setcc. |
| return ISD::SETCC_INVALID; |
| |
| // Combine all of the condition bits. |
| ISD::CondCode Result = ISD::CondCode(Op1 & Op2); |
| |
| // Canonicalize illegal integer setcc's. |
| if (IsInteger) { |
| switch (Result) { |
| default: break; |
| case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT |
| case ISD::SETOEQ: // SETEQ & SETU[LG]E |
| case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE |
| case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE |
| case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE |
| } |
| } |
| |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Profile Support |
| //===----------------------------------------------------------------------===// |
| |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data. |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { |
| ID.AddInteger(OpC); |
| } |
| |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them |
| /// solely with their pointer. |
| static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { |
| ID.AddPointer(VTList.VTs); |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| ArrayRef<SDValue> Ops) { |
| for (auto& Op : Ops) { |
| ID.AddPointer(Op.getNode()); |
| ID.AddInteger(Op.getResNo()); |
| } |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| ArrayRef<SDUse> Ops) { |
| for (auto& Op : Ops) { |
| ID.AddPointer(Op.getNode()); |
| ID.AddInteger(Op.getResNo()); |
| } |
| } |
| |
| static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, |
| SDVTList VTList, ArrayRef<SDValue> OpList) { |
| AddNodeIDOpcode(ID, OpC); |
| AddNodeIDValueTypes(ID, VTList); |
| AddNodeIDOperands(ID, OpList); |
| } |
| |
| /// If this is an SDNode with special info, add this info to the NodeID data. |
| static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { |
| switch (N->getOpcode()) { |
| case ISD::TargetExternalSymbol: |
| case ISD::ExternalSymbol: |
| case ISD::MCSymbol: |
| llvm_unreachable("Should only be used on nodes with operands"); |
| default: break; // Normal nodes don't need extra info. |
| case ISD::TargetConstant: |
| case ISD::Constant: { |
| const ConstantSDNode *C = cast<ConstantSDNode>(N); |
| ID.AddPointer(C->getConstantIntValue()); |
| ID.AddBoolean(C->isOpaque()); |
| break; |
| } |
| case ISD::TargetConstantFP: |
| case ISD::ConstantFP: |
| ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); |
| break; |
| case ISD::TargetGlobalAddress: |
| case ISD::GlobalAddress: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::GlobalTLSAddress: { |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); |
| ID.AddPointer(GA->getGlobal()); |
| ID.AddInteger(GA->getOffset()); |
| ID.AddInteger(GA->getTargetFlags()); |
| break; |
| } |
| case ISD::BasicBlock: |
| ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); |
| break; |
| case ISD::Register: |
| ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); |
| break; |
| case ISD::RegisterMask: |
| ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); |
| break; |
| case ISD::SRCVALUE: |
| ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); |
| break; |
| case ISD::FrameIndex: |
| case ISD::TargetFrameIndex: |
| ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); |
| break; |
| case ISD::LIFETIME_START: |
| case ISD::LIFETIME_END: |
| if (cast<LifetimeSDNode>(N)->hasOffset()) { |
| ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); |
| ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); |
| } |
| break; |
| case ISD::JumpTable: |
| case ISD::TargetJumpTable: |
| ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); |
| ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); |
| break; |
| case ISD::ConstantPool: |
| case ISD::TargetConstantPool: { |
| const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); |
| ID.AddInteger(CP->getAlignment()); |
| ID.AddInteger(CP->getOffset()); |
| if (CP->isMachineConstantPoolEntry()) |
| CP->getMachineCPVal()->addSelectionDAGCSEId(ID); |
| else |
| ID.AddPointer(CP->getConstVal()); |
| ID.AddInteger(CP->getTargetFlags()); |
| break; |
| } |
| case ISD::TargetIndex: { |
| const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); |
| ID.AddInteger(TI->getIndex()); |
| ID.AddInteger(TI->getOffset()); |
| ID.AddInteger(TI->getTargetFlags()); |
| break; |
| } |
| case ISD::LOAD: { |
| const LoadSDNode *LD = cast<LoadSDNode>(N); |
| ID.AddInteger(LD->getMemoryVT().getRawBits()); |
| ID.AddInteger(LD->getRawSubclassData()); |
| ID.AddInteger(LD->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::STORE: { |
| const StoreSDNode *ST = cast<StoreSDNode>(N); |
| ID.AddInteger(ST->getMemoryVT().getRawBits()); |
| ID.AddInteger(ST->getRawSubclassData()); |
| ID.AddInteger(ST->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::MLOAD: { |
| const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); |
| ID.AddInteger(MLD->getMemoryVT().getRawBits()); |
| ID.AddInteger(MLD->getRawSubclassData()); |
| ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::MSTORE: { |
| const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); |
| ID.AddInteger(MST->getMemoryVT().getRawBits()); |
| ID.AddInteger(MST->getRawSubclassData()); |
| ID.AddInteger(MST->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::MGATHER: { |
| const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); |
| ID.AddInteger(MG->getMemoryVT().getRawBits()); |
| ID.AddInteger(MG->getRawSubclassData()); |
| ID.AddInteger(MG->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::MSCATTER: { |
| const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); |
| ID.AddInteger(MS->getMemoryVT().getRawBits()); |
| ID.AddInteger(MS->getRawSubclassData()); |
| ID.AddInteger(MS->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::ATOMIC_CMP_SWAP: |
| case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
| case ISD::ATOMIC_SWAP: |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_CLR: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_LOAD: |
| case ISD::ATOMIC_STORE: { |
| const AtomicSDNode *AT = cast<AtomicSDNode>(N); |
| ID.AddInteger(AT->getMemoryVT().getRawBits()); |
| ID.AddInteger(AT->getRawSubclassData()); |
| ID.AddInteger(AT->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::PREFETCH: { |
| const MemSDNode *PF = cast<MemSDNode>(N); |
| ID.AddInteger(PF->getPointerInfo().getAddrSpace()); |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); |
| i != e; ++i) |
| ID.AddInteger(SVN->getMaskElt(i)); |
| break; |
| } |
| case ISD::TargetBlockAddress: |
| case ISD::BlockAddress: { |
| const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); |
| ID.AddPointer(BA->getBlockAddress()); |
| ID.AddInteger(BA->getOffset()); |
| ID.AddInteger(BA->getTargetFlags()); |
| break; |
| } |
| } // end switch (N->getOpcode()) |
| |
| // Target specific memory nodes could also have address spaces to check. |
| if (N->isTargetMemoryOpcode()) |
| ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); |
| } |
| |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID |
| /// data. |
| static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { |
| AddNodeIDOpcode(ID, N->getOpcode()); |
| // Add the return value info. |
| AddNodeIDValueTypes(ID, N->getVTList()); |
| // Add the operand info. |
| AddNodeIDOperands(ID, N->ops()); |
| |
| // Handle SDNode leafs with special info. |
| AddNodeIDCustom(ID, N); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAG Class |
| //===----------------------------------------------------------------------===// |
| |
| /// doNotCSE - Return true if CSE should not be performed for this node. |
| static bool doNotCSE(SDNode *N) { |
| if (N->getValueType(0) == MVT::Glue) |
| return true; // Never CSE anything that produces a flag. |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::HANDLENODE: |
| case ISD::EH_LABEL: |
| return true; // Never CSE these nodes. |
| } |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Glue) |
| return true; // Never CSE anything that produces a flag. |
| |
| return false; |
| } |
| |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the |
| /// SelectionDAG. |
| void SelectionDAG::RemoveDeadNodes() { |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted. |
| HandleSDNode Dummy(getRoot()); |
| |
| SmallVector<SDNode*, 128> DeadNodes; |
| |
| // Add all obviously-dead nodes to the DeadNodes worklist. |
| for (SDNode &Node : allnodes()) |
| if (Node.use_empty()) |
| DeadNodes.push_back(&Node); |
| |
| RemoveDeadNodes(DeadNodes); |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| setRoot(Dummy.getValue()); |
| } |
| |
| /// RemoveDeadNodes - This method deletes the unreachable nodes in the |
| /// given list, and any nodes that become unreachable as a result. |
| void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { |
| |
| // Process the worklist, deleting the nodes and adding their uses to the |
| // worklist. |
| while (!DeadNodes.empty()) { |
| SDNode *N = DeadNodes.pop_back_val(); |
| // Skip to next node if we've already managed to delete the node. This could |
| // happen if replacing a node causes a node previously added to the node to |
| // be deleted. |
| if (N->getOpcode() == ISD::DELETED_NODE) |
| continue; |
| |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeDeleted(N, nullptr); |
| |
| // Take the node out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Next, brutally remove the operand list. This is safe to do, as there are |
| // no cycles in the graph. |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { |
| SDUse &Use = *I++; |
| SDNode *Operand = Use.getNode(); |
| Use.set(SDValue()); |
| |
| // Now that we removed this operand, see if there are no uses of it left. |
| if (Operand->use_empty()) |
| DeadNodes.push_back(Operand); |
| } |
| |
| DeallocateNode(N); |
| } |
| } |
| |
| void SelectionDAG::RemoveDeadNode(SDNode *N){ |
| SmallVector<SDNode*, 16> DeadNodes(1, N); |
| |
| // Create a dummy node that adds a reference to the root node, preventing |
| // it from being deleted. (This matters if the root is an operand of the |
| // dead node.) |
| HandleSDNode Dummy(getRoot()); |
| |
| RemoveDeadNodes(DeadNodes); |
| } |
| |
| void SelectionDAG::DeleteNode(SDNode *N) { |
| // First take this out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Finally, remove uses due to operands of this node, remove from the |
| // AllNodes list, and delete the node. |
| DeleteNodeNotInCSEMaps(N); |
| } |
| |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { |
| assert(N->getIterator() != AllNodes.begin() && |
| "Cannot delete the entry node!"); |
| assert(N->use_empty() && "Cannot delete a node that is not dead!"); |
| |
| // Drop all of the operands and decrement used node's use counts. |
| N->DropOperands(); |
| |
| DeallocateNode(N); |
| } |
| |
| void SDDbgInfo::erase(const SDNode *Node) { |
| DbgValMapType::iterator I = DbgValMap.find(Node); |
| if (I == DbgValMap.end()) |
| return; |
| for (auto &Val: I->second) |
| Val->setIsInvalidated(); |
| DbgValMap.erase(I); |
| } |
| |
| void SelectionDAG::DeallocateNode(SDNode *N) { |
| // If we have operands, deallocate them. |
| removeOperands(N); |
| |
| NodeAllocator.Deallocate(AllNodes.remove(N)); |
| |
| // Set the opcode to DELETED_NODE to help catch bugs when node |
| // memory is reallocated. |
| // FIXME: There are places in SDag that have grown a dependency on the opcode |
| // value in the released node. |
| __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); |
| N->NodeType = ISD::DELETED_NODE; |
| |
| // If any of the SDDbgValue nodes refer to this SDNode, invalidate |
| // them and forget about that node. |
| DbgInfo->erase(N); |
| } |
| |
| #ifndef NDEBUG |
| /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. |
| static void VerifySDNode(SDNode *N) { |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case ISD::BUILD_PAIR: { |
| EVT VT = N->getValueType(0); |
| assert(N->getNumValues() == 1 && "Too many results!"); |
| assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && |
| "Wrong return type!"); |
| assert(N->getNumOperands() == 2 && "Wrong number of operands!"); |
| assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && |
| "Mismatched operand types!"); |
| assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && |
| "Wrong operand type!"); |
| assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && |
| "Wrong return type size"); |
| break; |
| } |
| case ISD::BUILD_VECTOR: { |
| assert(N->getNumValues() == 1 && "Too many results!"); |
| assert(N->getValueType(0).isVector() && "Wrong return type!"); |
| assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && |
| "Wrong number of operands!"); |
| EVT EltVT = N->getValueType(0).getVectorElementType(); |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { |
| assert((I->getValueType() == EltVT || |
| (EltVT.isInteger() && I->getValueType().isInteger() && |
| EltVT.bitsLE(I->getValueType()))) && |
| "Wrong operand type!"); |
| assert(I->getValueType() == N->getOperand(0).getValueType() && |
| "Operands must all have the same type"); |
| } |
| break; |
| } |
| } |
| } |
| #endif // NDEBUG |
| |
| /// Insert a newly allocated node into the DAG. |
| /// |
| /// Handles insertion into the all nodes list and CSE map, as well as |
| /// verification and other common operations when a new node is allocated. |
| void SelectionDAG::InsertNode(SDNode *N) { |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| N->PersistentId = NextPersistentId++; |
| VerifySDNode(N); |
| #endif |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeInserted(N); |
| } |
| |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that |
| /// correspond to it. This is useful when we're about to delete or repurpose |
| /// the node. We don't want future request for structurally identical nodes |
| /// to return N anymore. |
| bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { |
| bool Erased = false; |
| switch (N->getOpcode()) { |
| case ISD::HANDLENODE: return false; // noop. |
| case ISD::CONDCODE: |
| assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && |
| "Cond code doesn't exist!"); |
| Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; |
| CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; |
| break; |
| case ISD::ExternalSymbol: |
| Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); |
| break; |
| case ISD::TargetExternalSymbol: { |
| ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); |
| Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( |
| ESN->getSymbol(), ESN->getTargetFlags())); |
| break; |
| } |
| case ISD::MCSymbol: { |
| auto *MCSN = cast<MCSymbolSDNode>(N); |
| Erased = MCSymbols.erase(MCSN->getMCSymbol()); |
| break; |
| } |
| case ISD::VALUETYPE: { |
| EVT VT = cast<VTSDNode>(N)->getVT(); |
| if (VT.isExtended()) { |
| Erased = ExtendedValueTypeNodes.erase(VT); |
| } else { |
| Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; |
| ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; |
| } |
| break; |
| } |
| default: |
| // Remove it from the CSE Map. |
| assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); |
| assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); |
| Erased = CSEMap.RemoveNode(N); |
| break; |
| } |
| #ifndef NDEBUG |
| // Verify that the node was actually in one of the CSE maps, unless it has a |
| // flag result (which cannot be CSE'd) or is one of the special cases that are |
| // not subject to CSE. |
| if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && |
| !N->isMachineOpcode() && !doNotCSE(N)) { |
| N->dump(this); |
| dbgs() << "\n"; |
| llvm_unreachable("Node is not in map!"); |
| } |
| #endif |
| return Erased; |
| } |
| |
| /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE |
| /// maps and modified in place. Add it back to the CSE maps, unless an identical |
| /// node already exists, in which case transfer all its users to the existing |
| /// node. This transfer can potentially trigger recursive merging. |
| void |
| SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { |
| // For node types that aren't CSE'd, just act as if no identical node |
| // already exists. |
| if (!doNotCSE(N)) { |
| SDNode *Existing = CSEMap.GetOrInsertNode(N); |
| if (Existing != N) { |
| // If there was already an existing matching node, use ReplaceAllUsesWith |
| // to replace the dead one with the existing one. This can cause |
| // recursive merging of other unrelated nodes down the line. |
| ReplaceAllUsesWith(N, Existing); |
| |
| // N is now dead. Inform the listeners and delete it. |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeDeleted(N, Existing); |
| DeleteNodeNotInCSEMaps(N); |
| return; |
| } |
| } |
| |
| // If the node doesn't already exist, we updated it. Inform listeners. |
| for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) |
| DUL->NodeUpdated(N); |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return nullptr; |
| |
| SDValue Ops[] = { Op }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); |
| if (Node) |
| Node->intersectFlagsWith(N->getFlags()); |
| return Node; |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, |
| SDValue Op1, SDValue Op2, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return nullptr; |
| |
| SDValue Ops[] = { Op1, Op2 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); |
| if (Node) |
| Node->intersectFlagsWith(N->getFlags()); |
| return Node; |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, |
| void *&InsertPos) { |
| if (doNotCSE(N)) |
| return nullptr; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); |
| AddNodeIDCustom(ID, N); |
| SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); |
| if (Node) |
| Node->intersectFlagsWith(N->getFlags()); |
| return Node; |
| } |
| |
| unsigned SelectionDAG::getEVTAlignment(EVT VT) const { |
| Type *Ty = VT == MVT::iPTR ? |
| PointerType::get(Type::getInt8Ty(*getContext()), 0) : |
| VT.getTypeForEVT(*getContext()); |
| |
| return getDataLayout().getABITypeAlignment(Ty); |
| } |
| |
| // EntryNode could meaningfully have debug info if we can find it... |
| SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) |
| : TM(tm), OptLevel(OL), |
| EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), |
| Root(getEntryNode()) { |
| InsertNode(&EntryNode); |
| DbgInfo = new SDDbgInfo(); |
| } |
| |
| void SelectionDAG::init(MachineFunction &NewMF, |
| OptimizationRemarkEmitter &NewORE, |
| Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, |
| LegacyDivergenceAnalysis * Divergence, |
| ProfileSummaryInfo *PSIin, |
| BlockFrequencyInfo *BFIin) { |
| MF = &NewMF; |
| SDAGISelPass = PassPtr; |
| ORE = &NewORE; |
| TLI = getSubtarget().getTargetLowering(); |
| TSI = getSubtarget().getSelectionDAGInfo(); |
| LibInfo = LibraryInfo; |
| Context = &MF->getFunction().getContext(); |
| DA = Divergence; |
| PSI = PSIin; |
| BFI = BFIin; |
| } |
| |
| SelectionDAG::~SelectionDAG() { |
| assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); |
| allnodes_clear(); |
| OperandRecycler.clear(OperandAllocator); |
| delete DbgInfo; |
| } |
| |
| bool SelectionDAG::shouldOptForSize() const { |
| return MF->getFunction().hasOptSize() || |
| llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); |
| } |
| |
| void SelectionDAG::allnodes_clear() { |
| assert(&*AllNodes.begin() == &EntryNode); |
| AllNodes.remove(AllNodes.begin()); |
| while (!AllNodes.empty()) |
| DeallocateNode(&AllNodes.front()); |
| #ifndef NDEBUG |
| NextPersistentId = 0; |
| #endif |
| } |
| |
| SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, |
| void *&InsertPos) { |
| SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| if (N) { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::Constant: |
| case ISD::ConstantFP: |
| llvm_unreachable("Querying for Constant and ConstantFP nodes requires " |
| "debug location. Use another overload."); |
| } |
| } |
| return N; |
| } |
| |
| SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, |
| const SDLoc &DL, void *&InsertPos) { |
| SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| if (N) { |
| switch (N->getOpcode()) { |
| case ISD::Constant: |
| case ISD::ConstantFP: |
| // Erase debug location from the node if the node is used at several |
| // different places. Do not propagate one location to all uses as it |
| // will cause a worse single stepping debugging experience. |
| if (N->getDebugLoc() != DL.getDebugLoc()) |
| N->setDebugLoc(DebugLoc()); |
| break; |
| default: |
| // When the node's point of use is located earlier in the instruction |
| // sequence than its prior point of use, update its debug info to the |
| // earlier location. |
| if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) |
| N->setDebugLoc(DL.getDebugLoc()); |
| break; |
| } |
| } |
| return N; |
| } |
| |
| void SelectionDAG::clear() { |
| allnodes_clear(); |
| OperandRecycler.clear(OperandAllocator); |
| OperandAllocator.Reset(); |
| CSEMap.clear(); |
| |
| ExtendedValueTypeNodes.clear(); |
| ExternalSymbols.clear(); |
| TargetExternalSymbols.clear(); |
| MCSymbols.clear(); |
| SDCallSiteDbgInfo.clear(); |
| std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), |
| static_cast<CondCodeSDNode*>(nullptr)); |
| std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), |
| static_cast<SDNode*>(nullptr)); |
| |
| EntryNode.UseList = nullptr; |
| InsertNode(&EntryNode); |
| Root = getEntryNode(); |
| DbgInfo->clear(); |
| } |
| |
| SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) |
| ? getNode(ISD::FP_EXTEND, DL, VT, Op) |
| : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); |
| } |
| |
| std::pair<SDValue, SDValue> |
| SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, |
| const SDLoc &DL, EVT VT) { |
| assert(!VT.bitsEq(Op.getValueType()) && |
| "Strict no-op FP extend/round not allowed."); |
| SDValue Res = |
| VT.bitsGT(Op.getValueType()) |
| ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) |
| : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, |
| {Chain, Op, getIntPtrConstant(0, DL)}); |
| |
| return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); |
| } |
| |
| SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::ANY_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::SIGN_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { |
| return VT.bitsGT(Op.getValueType()) ? |
| getNode(ISD::ZERO_EXTEND, DL, VT, Op) : |
| getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, |
| EVT OpVT) { |
| if (VT.bitsLE(Op.getValueType())) |
| return getNode(ISD::TRUNCATE, SL, VT, Op); |
| |
| TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); |
| return getNode(TLI->getExtendForContent(BType), SL, VT, Op); |
| } |
| |
| SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { |
| assert(!VT.isVector() && |
| "getZeroExtendInReg should use the vector element type instead of " |
| "the vector type!"); |
| if (Op.getValueType().getScalarType() == VT) return Op; |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| APInt Imm = APInt::getLowBitsSet(BitWidth, |
| VT.getSizeInBits()); |
| return getNode(ISD::AND, DL, Op.getValueType(), Op, |
| getConstant(Imm, DL, Op.getValueType())); |
| } |
| |
| SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { |
| // Only unsigned pointer semantics are supported right now. In the future this |
| // might delegate to TLI to check pointer signedness. |
| return getZExtOrTrunc(Op, DL, VT); |
| } |
| |
| SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { |
| // Only unsigned pointer semantics are supported right now. In the future this |
| // might delegate to TLI to check pointer signedness. |
| return getZeroExtendInReg(Op, DL, VT); |
| } |
| |
| /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). |
| SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { |
| EVT EltVT = VT.getScalarType(); |
| SDValue NegOne = |
| getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); |
| return getNode(ISD::XOR, DL, VT, Val, NegOne); |
| } |
| |
| SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { |
| SDValue TrueValue = getBoolConstant(true, DL, VT, VT); |
| return getNode(ISD::XOR, DL, VT, Val, TrueValue); |
| } |
| |
| SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, |
| EVT OpVT) { |
| if (!V) |
| return getConstant(0, DL, VT); |
| |
| switch (TLI->getBooleanContents(OpVT)) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| case TargetLowering::UndefinedBooleanContent: |
| return getConstant(1, DL, VT); |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| return getAllOnesConstant(DL, VT); |
| } |
| llvm_unreachable("Unexpected boolean content enum!"); |
| } |
| |
| SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, |
| bool isT, bool isO) { |
| EVT EltVT = VT.getScalarType(); |
| assert((EltVT.getSizeInBits() >= 64 || |
| (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && |
| "getConstant with a uint64_t value that doesn't fit in the type!"); |
| return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); |
| } |
| |
| SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, |
| bool isT, bool isO) { |
| return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); |
| } |
| |
| SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, |
| EVT VT, bool isT, bool isO) { |
| assert(VT.isInteger() && "Cannot create FP integer constant!"); |
| |
| EVT EltVT = VT.getScalarType(); |
| const ConstantInt *Elt = &Val; |
| |
| // In some cases the vector type is legal but the element type is illegal and |
| // needs to be promoted, for example v8i8 on ARM. In this case, promote the |
| // inserted value (the type does not need to match the vector element type). |
| // Any extra bits introduced will be truncated away. |
| if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == |
| TargetLowering::TypePromoteInteger) { |
| EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); |
| APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); |
| Elt = ConstantInt::get(*getContext(), NewVal); |
| } |
| // In other cases the element type is illegal and needs to be expanded, for |
| // example v2i64 on MIPS32. In this case, find the nearest legal type, split |
| // the value into n parts and use a vector type with n-times the elements. |
| // Then bitcast to the type requested. |
| // Legalizing constants too early makes the DAGCombiner's job harder so we |
| // only legalize if the DAG tells us we must produce legal types. |
| else if (NewNodesMustHaveLegalTypes && VT.isVector() && |
| TLI->getTypeAction(*getContext(), EltVT) == |
| TargetLowering::TypeExpandInteger) { |
| const APInt &NewVal = Elt->getValue(); |
| EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); |
| unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); |
| unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; |
| EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); |
| |
| // Check the temporary vector is the correct size. If this fails then |
| // getTypeToTransformTo() probably returned a type whose size (in bits) |
| // isn't a power-of-2 factor of the requested type size. |
| assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); |
| |
| SmallVector<SDValue, 2> EltParts; |
| for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { |
| EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) |
| .zextOrTrunc(ViaEltSizeInBits), DL, |
| ViaEltVT, isT, isO)); |
| } |
| |
| // EltParts is currently in little endian order. If we actually want |
| // big-endian order then reverse it now. |
| if (getDataLayout().isBigEndian()) |
| std::reverse(EltParts.begin(), EltParts.end()); |
| |
| // The elements must be reversed when the element order is different |
| // to the endianness of the elements (because the BITCAST is itself a |
| // vector shuffle in this situation). However, we do not need any code to |
| // perform this reversal because getConstant() is producing a vector |
| // splat. |
| // This situation occurs in MIPS MSA. |
| |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) |
| Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); |
| |
| SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); |
| return V; |
| } |
| |
| assert(Elt->getBitWidth() == EltVT.getSizeInBits() && |
| "APInt size does not match type size!"); |
| unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), None); |
| ID.AddPointer(Elt); |
| ID.AddBoolean(isO); |
| void *IP = nullptr; |
| SDNode *N = nullptr; |
| if ((N = FindNodeOrInsertPos(ID, DL, IP))) |
| if (!VT.isVector()) |
| return SDValue(N, 0); |
| |
| if (!N) { |
| N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); |
| } |
| |
| SDValue Result(N, 0); |
| if (VT.isScalableVector()) |
| Result = getSplatVector(VT, DL, Result); |
| else if (VT.isVector()) |
| Result = getSplatBuildVector(VT, DL, Result); |
| |
| return Result; |
| } |
| |
| SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, |
| bool isTarget) { |
| return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); |
| } |
| |
| SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, |
| const SDLoc &DL, bool LegalTypes) { |
| EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); |
| return getConstant(Val, DL, ShiftVT); |
| } |
| |
| SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, |
| bool isTarget) { |
| return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); |
| } |
| |
| SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, |
| EVT VT, bool isTarget) { |
| assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); |
| |
| EVT EltVT = VT.getScalarType(); |
| |
| // Do the map lookup using the actual bit pattern for the floating point |
| // value, so that we don't have problems with 0.0 comparing equal to -0.0, and |
| // we don't have issues with SNANs. |
| unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), None); |
| ID.AddPointer(&V); |
| void *IP = nullptr; |
| SDNode *N = nullptr; |
| if ((N = FindNodeOrInsertPos(ID, DL, IP))) |
| if (!VT.isVector()) |
| return SDValue(N, 0); |
| |
| if (!N) { |
| N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| } |
| |
| SDValue Result(N, 0); |
| if (VT.isVector()) |
| Result = getSplatBuildVector(VT, DL, Result); |
| NewSDValueDbgMsg(Result, "Creating fp constant: ", this); |
| return Result; |
| } |
| |
| SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, |
| bool isTarget) { |
| EVT EltVT = VT.getScalarType(); |
| if (EltVT == MVT::f32) |
| return getConstantFP(APFloat((float)Val), DL, VT, isTarget); |
| else if (EltVT == MVT::f64) |
| return getConstantFP(APFloat(Val), DL, VT, isTarget); |
| else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || |
| EltVT == MVT::f16) { |
| bool Ignored; |
| APFloat APF = APFloat(Val); |
| APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, |
| &Ignored); |
| return getConstantFP(APF, DL, VT, isTarget); |
| } else |
| llvm_unreachable("Unsupported type in getConstantFP"); |
| } |
| |
| SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, |
| EVT VT, int64_t Offset, bool isTargetGA, |
| unsigned TargetFlags) { |
| assert((TargetFlags == 0 || isTargetGA) && |
| "Cannot set target flags on target-independent globals"); |
| |
| // Truncate (with sign-extension) the offset value to the pointer size. |
| unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); |
| if (BitWidth < 64) |
| Offset = SignExtend64(Offset, BitWidth); |
| |
| unsigned Opc; |
| if (GV->isThreadLocal()) |
| Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; |
| else |
| Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddPointer(GV); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<GlobalAddressSDNode>( |
| Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { |
| unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddInteger(FI); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, |
| unsigned TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent jump tables"); |
| unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddInteger(JTI); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, |
| unsigned Alignment, int Offset, |
| bool isTarget, |
| unsigned TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent globals"); |
| if (Alignment == 0) |
| Alignment = shouldOptForSize() |
| ? getDataLayout().getABITypeAlignment(C->getType()) |
| : getDataLayout().getPrefTypeAlignment(C->getType()); |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| ID.AddPointer(C); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, |
| TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, |
| unsigned Alignment, int Offset, |
| bool isTarget, |
| unsigned TargetFlags) { |
| assert((TargetFlags == 0 || isTarget) && |
| "Cannot set target flags on target-independent globals"); |
| if (Alignment == 0) |
| Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| C->addSelectionDAGCSEId(ID); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, |
| TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, |
| unsigned TargetFlags) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); |
| ID.AddInteger(Index); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); |
| ID.AddPointer(MBB); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<BasicBlockSDNode>(MBB); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getValueType(EVT VT) { |
| if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= |
| ValueTypeNodes.size()) |
| ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); |
| |
| SDNode *&N = VT.isExtended() ? |
| ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; |
| |
| if (N) return SDValue(N, 0); |
| N = newSDNode<VTSDNode>(VT); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { |
| SDNode *&N = ExternalSymbols[Sym]; |
| if (N) return SDValue(N, 0); |
| N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { |
| SDNode *&N = MCSymbols[Sym]; |
| if (N) |
| return SDValue(N, 0); |
| N = newSDNode<MCSymbolSDNode>(Sym, VT); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, |
| unsigned TargetFlags) { |
| SDNode *&N = |
| TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; |
| if (N) return SDValue(N, 0); |
| N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { |
| if ((unsigned)Cond >= CondCodeNodes.size()) |
| CondCodeNodes.resize(Cond+1); |
| |
| if (!CondCodeNodes[Cond]) { |
| auto *N = newSDNode<CondCodeSDNode>(Cond); |
| CondCodeNodes[Cond] = N; |
| InsertNode(N); |
| } |
| |
| return SDValue(CondCodeNodes[Cond], 0); |
| } |
| |
| /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that |
| /// point at N1 to point at N2 and indices that point at N2 to point at N1. |
| static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { |
| std::swap(N1, N2); |
| ShuffleVectorSDNode::commuteMask(M); |
| } |
| |
| SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, |
| SDValue N2, ArrayRef<int> Mask) { |
| assert(VT.getVectorNumElements() == Mask.size() && |
| "Must have the same number of vector elements as mask elements!"); |
| assert(VT == N1.getValueType() && VT == N2.getValueType() && |
| "Invalid VECTOR_SHUFFLE"); |
| |
| // Canonicalize shuffle undef, undef -> undef |
| if (N1.isUndef() && N2.isUndef()) |
| return getUNDEF(VT); |
| |
| // Validate that all indices in Mask are within the range of the elements |
| // input to the shuffle. |
| int NElts = Mask.size(); |
| assert(llvm::all_of(Mask, |
| [&](int M) { return M < (NElts * 2) && M >= -1; }) && |
| "Index out of range"); |
| |
| // Copy the mask so we can do any needed cleanup. |
| SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); |
| |
| // Canonicalize shuffle v, v -> v, undef |
| if (N1 == N2) { |
| N2 = getUNDEF(VT); |
| for (int i = 0; i != NElts; ++i) |
| if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; |
| } |
| |
| // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. |
| if (N1.isUndef()) |
| commuteShuffle(N1, N2, MaskVec); |
| |
| if (TLI->hasVectorBlend()) { |
| // If shuffling a splat, try to blend the splat instead. We do this here so |
| // that even when this arises during lowering we don't have to re-handle it. |
| auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { |
| BitVector UndefElements; |
| SDValue Splat = BV->getSplatValue(&UndefElements); |
| if (!Splat) |
| return; |
| |
| for (int i = 0; i < NElts; ++i) { |
| if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) |
| continue; |
| |
| // If this input comes from undef, mark it as such. |
| if (UndefElements[MaskVec[i] - Offset]) { |
| MaskVec[i] = -1; |
| continue; |
| } |
| |
| // If we can blend a non-undef lane, use that instead. |
| if (!UndefElements[i]) |
| MaskVec[i] = i + Offset; |
| } |
| }; |
| if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) |
| BlendSplat(N1BV, 0); |
| if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) |
| BlendSplat(N2BV, NElts); |
| } |
| |
| // Canonicalize all index into lhs, -> shuffle lhs, undef |
| // Canonicalize all index into rhs, -> shuffle rhs, undef |
| bool AllLHS = true, AllRHS = true; |
| bool N2Undef = N2.isUndef(); |
| for (int i = 0; i != NElts; ++i) { |
| if (MaskVec[i] >= NElts) { |
| if (N2Undef) |
| MaskVec[i] = -1; |
| else |
| AllLHS = false; |
| } else if (MaskVec[i] >= 0) { |
| AllRHS = false; |
| } |
| } |
| if (AllLHS && AllRHS) |
| return getUNDEF(VT); |
| if (AllLHS && !N2Undef) |
| N2 = getUNDEF(VT); |
| if (AllRHS) { |
| N1 = getUNDEF(VT); |
| commuteShuffle(N1, N2, MaskVec); |
| } |
| // Reset our undef status after accounting for the mask. |
| N2Undef = N2.isUndef(); |
| // Re-check whether both sides ended up undef. |
| if (N1.isUndef() && N2Undef) |
| return getUNDEF(VT); |
| |
| // If Identity shuffle return that node. |
| bool Identity = true, AllSame = true; |
| for (int i = 0; i != NElts; ++i) { |
| if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; |
| if (MaskVec[i] != MaskVec[0]) AllSame = false; |
| } |
| if (Identity && NElts) |
| return N1; |
| |
| // Shuffling a constant splat doesn't change the result. |
| if (N2Undef) { |
| SDValue V = N1; |
| |
| // Look through any bitcasts. We check that these don't change the number |
| // (and size) of elements and just changes their types. |
| while (V.getOpcode() == ISD::BITCAST) |
| V = V->getOperand(0); |
| |
| // A splat should always show up as a build vector node. |
| if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { |
| BitVector UndefElements; |
| SDValue Splat = BV->getSplatValue(&UndefElements); |
| // If this is a splat of an undef, shuffling it is also undef. |
| if (Splat && Splat.isUndef()) |
| return getUNDEF(VT); |
| |
| bool SameNumElts = |
| V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); |
| |
| // We only have a splat which can skip shuffles if there is a splatted |
| // value and no undef lanes rearranged by the shuffle. |
| if (Splat && UndefElements.none()) { |
| // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the |
| // number of elements match or the value splatted is a zero constant. |
| if (SameNumElts) |
| return N1; |
| if (auto *C = dyn_cast<ConstantSDNode>(Splat)) |
| if (C->isNullValue()) |
| return N1; |
| } |
| |
| // If the shuffle itself creates a splat, build the vector directly. |
| if (AllSame && SameNumElts) { |
| EVT BuildVT = BV->getValueType(0); |
| const SDValue &Splatted = BV->getOperand(MaskVec[0]); |
| SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); |
| |
| // We may have jumped through bitcasts, so the type of the |
| // BUILD_VECTOR may not match the type of the shuffle. |
| if (BuildVT != VT) |
| NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); |
| return NewBV; |
| } |
| } |
| } |
| |
| FoldingSetNodeID ID; |
| SDValue Ops[2] = { N1, N2 }; |
| AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); |
| for (int i = 0; i != NElts; ++i) |
| ID.AddInteger(MaskVec[i]); |
| |
| void* IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) |
| return SDValue(E, 0); |
| |
| // Allocate the mask array for the node out of the BumpPtrAllocator, since |
| // SDNode doesn't have access to it. This memory will be "leaked" when |
| // the node is deallocated, but recovered when the NodeAllocator is released. |
| int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); |
| llvm::copy(MaskVec, MaskAlloc); |
| |
| auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), |
| dl.getDebugLoc(), MaskAlloc); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| SDValue V = SDValue(N, 0); |
| NewSDValueDbgMsg(V, "Creating new node: ", this); |
| return V; |
| } |
| |
| SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { |
| EVT VT = SV.getValueType(0); |
| SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); |
| ShuffleVectorSDNode::commuteMask(MaskVec); |
| |
| SDValue Op0 = SV.getOperand(0); |
| SDValue Op1 = SV.getOperand(1); |
| return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); |
| } |
| |
| SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); |
| ID.AddInteger(RegNo); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<RegisterSDNode>(RegNo, VT); |
| N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); |
| ID.AddPointer(RegMask); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<RegisterMaskSDNode>(RegMask); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, |
| MCSymbol *Label) { |
| return getLabelNode(ISD::EH_LABEL, dl, Root, Label); |
| } |
| |
| SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, |
| SDValue Root, MCSymbol *Label) { |
| FoldingSetNodeID ID; |
| SDValue Ops[] = { Root }; |
| AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); |
| ID.AddPointer(Label); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = |
| newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, |
| int64_t Offset, bool isTarget, |
| unsigned TargetFlags) { |
| unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), None); |
| ID.AddPointer(BA); |
| ID.AddInteger(Offset); |
| ID.AddInteger(TargetFlags); |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getSrcValue(const Value *V) { |
| assert((!V || V->getType()->isPointerTy()) && |
| "SrcValue is not a pointer?"); |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); |
| ID.AddPointer(V); |
| |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<SrcValueSDNode>(V); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getMDNode(const MDNode *MD) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); |
| ID.AddPointer(MD); |
| |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<MDNodeSDNode>(MD); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { |
| if (VT == V.getValueType()) |
| return V; |
| |
| return getNode(ISD::BITCAST, SDLoc(V), VT, V); |
| } |
| |
| SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, |
| unsigned SrcAS, unsigned DestAS) { |
| SDValue Ops[] = {Ptr}; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); |
| ID.AddInteger(SrcAS); |
| ID.AddInteger(DestAS); |
| |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) |
| return SDValue(E, 0); |
| |
| auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), |
| VT, SrcAS, DestAS); |
| createOperands(N, Ops); |
| |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| /// getShiftAmountOperand - Return the specified value casted to |
| /// the target's desired shift amount type. |
| SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { |
| EVT OpTy = Op.getValueType(); |
| EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); |
| if (OpTy == ShTy || OpTy.isVector()) return Op; |
| |
| return getZExtOrTrunc(Op, SDLoc(Op), ShTy); |
| } |
| |
| SDValue SelectionDAG::expandVAArg(SDNode *Node) { |
| SDLoc dl(Node); |
| const TargetLowering &TLI = getTargetLoweringInfo(); |
| const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| EVT VT = Node->getValueType(0); |
| SDValue Tmp1 = Node->getOperand(0); |
| SDValue Tmp2 = Node->getOperand(1); |
| const MaybeAlign MA(Node->getConstantOperandVal(3)); |
| |
| SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, |
| Tmp2, MachinePointerInfo(V)); |
| SDValue VAList = VAListLoad; |
| |
| if (MA && *MA > TLI.getMinStackArgumentAlignment()) { |
| VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, |
| getConstant(MA->value() - 1, dl, VAList.getValueType())); |
| |
| VAList = |
| getNode(ISD::AND, dl, VAList.getValueType(), VAList, |
| getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); |
| } |
| |
| // Increment the pointer, VAList, to the next vaarg |
| Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, |
| getConstant(getDataLayout().getTypeAllocSize( |
| VT.getTypeForEVT(*getContext())), |
| dl, VAList.getValueType())); |
| // Store the incremented VAList to the legalized pointer |
| Tmp1 = |
| getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); |
| // Load the actual argument out of the pointer VAList |
| return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); |
| } |
| |
| SDValue SelectionDAG::expandVACopy(SDNode *Node) { |
| SDLoc dl(Node); |
| const TargetLowering &TLI = getTargetLoweringInfo(); |
| // This defaults to loading a pointer from the input and storing it to the |
| // output, returning the chain. |
| const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); |
| const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); |
| SDValue Tmp1 = |
| getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), |
| Node->getOperand(2), MachinePointerInfo(VS)); |
| return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), |
| MachinePointerInfo(VD)); |
| } |
| |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { |
| MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); |
| unsigned ByteSize = VT.getStoreSize(); |
| Type *Ty = VT.getTypeForEVT(*getContext()); |
| unsigned StackAlign = |
| std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); |
| |
| int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); |
| return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); |
| } |
| |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { |
| unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); |
| Type *Ty1 = VT1.getTypeForEVT(*getContext()); |
| Type *Ty2 = VT2.getTypeForEVT(*getContext()); |
| const DataLayout &DL = getDataLayout(); |
| unsigned Align = |
| std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); |
| |
| MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); |
| int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); |
| return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); |
| } |
| |
| SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, |
| ISD::CondCode Cond, const SDLoc &dl) { |
| EVT OpVT = N1.getValueType(); |
| |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); |
| |
| case ISD::SETOEQ: |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| case ISD::SETO: |
| case ISD::SETUO: |
| case ISD::SETUEQ: |
| case ISD::SETUNE: |
| assert(!OpVT.isInteger() && "Illegal setcc for integer!"); |
| break; |
| } |
| |
| if (OpVT.isInteger()) { |
| // For EQ and NE, we can always pick a value for the undef to make the |
| // predicate pass or fail, so we can return undef. |
| // Matches behavior in llvm::ConstantFoldCompareInstruction. |
| // icmp eq/ne X, undef -> undef. |
| if ((N1.isUndef() || N2.isUndef()) && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE)) |
| return getUNDEF(VT); |
| |
| // If both operands are undef, we can return undef for int comparison. |
| // icmp undef, undef -> undef. |
| if (N1.isUndef() && N2.isUndef()) |
| return getUNDEF(VT); |
| |
| // icmp X, X -> true/false |
| // icmp X, undef -> true/false because undef could be X. |
| if (N1 == N2) |
| return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); |
| } |
| |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { |
| const APInt &C2 = N2C->getAPIntValue(); |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { |
| const APInt &C1 = N1C->getAPIntValue(); |
| |
| switch (Cond) { |
| default: llvm_unreachable("Unknown integer setcc!"); |
| case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); |
| case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); |
| case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); |
| case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); |
| case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); |
| case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); |
| case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); |
| case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); |
| case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); |
| case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); |
| } |
| } |
| } |
| |
| auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); |
| |
| if (N1CFP && N2CFP) { |
| APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); |
| switch (Cond) { |
| default: break; |
| case ISD::SETEQ: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, |
| OpVT); |
| case ISD::SETNE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpLessThan, dl, VT, |
| OpVT); |
| case ISD::SETLT: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, |
| OpVT); |
| case ISD::SETGT: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, |
| VT, OpVT); |
| case ISD::SETLE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || |
| R==APFloat::cmpEqual, dl, VT, |
| OpVT); |
| case ISD::SETGE: if (R==APFloat::cmpUnordered) |
| return getUNDEF(VT); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpEqual, dl, VT, OpVT); |
| case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, |
| OpVT); |
| case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, |
| OpVT); |
| case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || |
| R==APFloat::cmpEqual, dl, VT, |
| OpVT); |
| case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, |
| OpVT); |
| case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || |
| R==APFloat::cmpLessThan, dl, VT, |
| OpVT); |
| case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpUnordered, dl, VT, |
| OpVT); |
| case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, |
| VT, OpVT); |
| case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, |
| OpVT); |
| } |
| } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { |
| // Ensure that the constant occurs on the RHS. |
| ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); |
| if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) |
| return SDValue(); |
| return getSetCC(dl, VT, N2, N1, SwappedCond); |
| } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || |
| (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { |
| // If an operand is known to be a nan (or undef that could be a nan), we can |
| // fold it. |
| // Choosing NaN for the undef will always make unordered comparison succeed |
| // and ordered comparison fails. |
| // Matches behavior in llvm::ConstantFoldCompareInstruction. |
| switch (ISD::getUnorderedFlavor(Cond)) { |
| default: |
| llvm_unreachable("Unknown flavor!"); |
| case 0: // Known false. |
| return getBoolConstant(false, dl, VT, OpVT); |
| case 1: // Known true. |
| return getBoolConstant(true, dl, VT, OpVT); |
| case 2: // Undefined. |
| return getUNDEF(VT); |
| } |
| } |
| |
| // Could not fold it. |
| return SDValue(); |
| } |
| |
| /// See if the specified operand can be simplified with the knowledge that only |
| /// the bits specified by DemandedBits are used. |
| /// TODO: really we should be making this into the DAG equivalent of |
| /// SimplifyMultipleUseDemandedBits and not generate any new nodes. |
| SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { |
| EVT VT = V.getValueType(); |
| APInt DemandedElts = VT.isVector() |
| ? APInt::getAllOnesValue(VT.getVectorNumElements()) |
| : APInt(1, 1); |
| return GetDemandedBits(V, DemandedBits, DemandedElts); |
| } |
| |
| /// See if the specified operand can be simplified with the knowledge that only |
| /// the bits specified by DemandedBits are used in the elements specified by |
| /// DemandedElts. |
| /// TODO: really we should be making this into the DAG equivalent of |
| /// SimplifyMultipleUseDemandedBits and not generate any new nodes. |
| SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, |
| const APInt &DemandedElts) { |
| switch (V.getOpcode()) { |
| default: |
| break; |
| case ISD::Constant: { |
| auto *CV = cast<ConstantSDNode>(V.getNode()); |
| assert(CV && "Const value should be ConstSDNode."); |
| const APInt &CVal = CV->getAPIntValue(); |
| APInt NewVal = CVal & DemandedBits; |
| if (NewVal != CVal) |
| return getConstant(NewVal, SDLoc(V), V.getValueType()); |
| break; |
| } |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SIGN_EXTEND_INREG: |
| return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, |
| *this, 0); |
| case ISD::SRL: |
| // Only look at single-use SRLs. |
| if (!V.getNode()->hasOneUse()) |
| break; |
| if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { |
| // See if we can recursively simplify the LHS. |
| unsigned Amt = RHSC->getZExtValue(); |
| |
| // Watch out for shift count overflow though. |
| if (Amt >= DemandedBits.getBitWidth()) |
| break; |
| APInt SrcDemandedBits = DemandedBits << Amt; |
| if (SDValue SimplifyLHS = |
| GetDemandedBits(V.getOperand(0), SrcDemandedBits)) |
| return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, |
| V.getOperand(1)); |
| } |
| break; |
| case ISD::AND: { |
| // X & -1 -> X (ignoring bits which aren't demanded). |
| // Also handle the case where masked out bits in X are known to be zero. |
| if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { |
| const APInt &AndVal = RHSC->getAPIntValue(); |
| if (DemandedBits.isSubsetOf(AndVal) || |
| DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | |
| AndVal)) |
| return V.getOperand(0); |
| } |
| break; |
| } |
| case ISD::ANY_EXTEND: { |
| SDValue Src = V.getOperand(0); |
| unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); |
| // Being conservative here - only peek through if we only demand bits in the |
| // non-extended source (even though the extended bits are technically |
| // undef). |
| if (DemandedBits.getActiveBits() > SrcBitWidth) |
| break; |
| APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); |
| if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) |
| return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); |
| break; |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We |
| /// use this predicate to simplify operations downstream. |
| bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); |
| } |
| |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| /// this predicate to simplify operations downstream. Mask is known to be zero |
| /// for bits that V cannot have. |
| bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, |
| unsigned Depth) const { |
| EVT VT = V.getValueType(); |
| APInt DemandedElts = VT.isVector() |
| ? APInt::getAllOnesValue(VT.getVectorNumElements()) |
| : APInt(1, 1); |
| return MaskedValueIsZero(V, Mask, DemandedElts, Depth); |
| } |
| |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in |
| /// DemandedElts. We use this predicate to simplify operations downstream. |
| /// Mask is known to be zero for bits that V cannot have. |
| bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, |
| const APInt &DemandedElts, |
| unsigned Depth) const { |
| return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); |
| } |
| |
| /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. |
| bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, |
| unsigned Depth) const { |
| return Mask.isSubsetOf(computeKnownBits(V, Depth).One); |
| } |
| |
| /// isSplatValue - Return true if the vector V has the same value |
| /// across all DemandedElts. |
| bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, |
| APInt &UndefElts) { |
| if (!DemandedElts) |
| return false; // No demanded elts, better to assume we don't know anything. |
| |
| EVT VT = V.getValueType(); |
| assert(VT.isVector() && "Vector type expected"); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); |
| UndefElts = APInt::getNullValue(NumElts); |
| |
| switch (V.getOpcode()) { |
| case ISD::BUILD_VECTOR: { |
| SDValue Scl; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| SDValue Op = V.getOperand(i); |
| if (Op.isUndef()) { |
| UndefElts.setBit(i); |
| continue; |
| } |
| if (!DemandedElts[i]) |
| continue; |
| if (Scl && Scl != Op) |
| return false; |
| Scl = Op; |
| } |
| return true; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| // Check if this is a shuffle node doing a splat. |
| // TODO: Do we need to handle shuffle(splat, undef, mask)? |
| int SplatIndex = -1; |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); |
| for (int i = 0; i != (int)NumElts; ++i) { |
| int M = Mask[i]; |
| if (M < 0) { |
| UndefElts.setBit(i); |
| continue; |
| } |
| if (!DemandedElts[i]) |
| continue; |
| if (0 <= SplatIndex && SplatIndex != M) |
| return false; |
| SplatIndex = M; |
| } |
| return true; |
| } |
| case ISD::EXTRACT_SUBVECTOR: { |
| SDValue Src = V.getOperand(0); |
| ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); |
| unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
| if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { |
| // Offset the demanded elts by the subvector index. |
| uint64_t Idx = SubIdx->getZExtValue(); |
| APInt UndefSrcElts; |
| APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); |
| if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { |
| UndefElts = UndefSrcElts.extractBits(NumElts, Idx); |
| return true; |
| } |
| } |
| break; |
| } |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::AND: { |
| APInt UndefLHS, UndefRHS; |
| SDValue LHS = V.getOperand(0); |
| SDValue RHS = V.getOperand(1); |
| if (isSplatValue(LHS, DemandedElts, UndefLHS) && |
| isSplatValue(RHS, DemandedElts, UndefRHS)) { |
| UndefElts = UndefLHS | UndefRHS; |
| return true; |
| } |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Helper wrapper to main isSplatValue function. |
| bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { |
| EVT VT = V.getValueType(); |
| assert(VT.isVector() && "Vector type expected"); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| APInt UndefElts; |
| APInt DemandedElts = APInt::getAllOnesValue(NumElts); |
| return isSplatValue(V, DemandedElts, UndefElts) && |
| (AllowUndefs || !UndefElts); |
| } |
| |
| SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { |
| V = peekThroughExtractSubvectors(V); |
| |
| EVT VT = V.getValueType(); |
| unsigned Opcode = V.getOpcode(); |
| switch (Opcode) { |
| default: { |
| APInt UndefElts; |
| APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); |
| if (isSplatValue(V, DemandedElts, UndefElts)) { |
| // Handle case where all demanded elements are UNDEF. |
| if (DemandedElts.isSubsetOf(UndefElts)) { |
| SplatIdx = 0; |
| return getUNDEF(VT); |
| } |
| SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); |
| return V; |
| } |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| // Check if this is a shuffle node doing a splat. |
| // TODO - remove this and rely purely on SelectionDAG::isSplatValue, |
| // getTargetVShiftNode currently struggles without the splat source. |
| auto *SVN = cast<ShuffleVectorSDNode>(V); |
| if (!SVN->isSplat()) |
| break; |
| int Idx = SVN->getSplatIndex(); |
| int NumElts = V.getValueType().getVectorNumElements(); |
| SplatIdx = Idx % NumElts; |
| return V.getOperand(Idx / NumElts); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SelectionDAG::getSplatValue(SDValue V) { |
| int SplatIdx; |
| if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) |
| return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), |
| SrcVector.getValueType().getScalarType(), SrcVector, |
| getIntPtrConstant(SplatIdx, SDLoc(V))); |
| return SDValue(); |
| } |
| |
| /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that |
| /// is less than the element bit-width of the shift node, return it. |
| static const APInt *getValidShiftAmountConstant(SDValue V, |
| const APInt &DemandedElts) { |
| unsigned BitWidth = V.getScalarValueSizeInBits(); |
| if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { |
| // Shifting more than the bitwidth is not valid. |
| const APInt &ShAmt = SA->getAPIntValue(); |
| if (ShAmt.ult(BitWidth)) |
| return &ShAmt; |
| } |
| return nullptr; |
| } |
| |
| /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less |
| /// than the element bit-width of the shift node, return the minimum value. |
| static const APInt * |
| getValidMinimumShiftAmountConstant(SDValue V, const APInt &DemandedElts) { |
| unsigned BitWidth = V.getScalarValueSizeInBits(); |
| auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); |
| if (!BV) |
| return nullptr; |
| const APInt *MinShAmt = nullptr; |
| for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); |
| if (!SA) |
| return nullptr; |
| // Shifting more than the bitwidth is not valid. |
| const APInt &ShAmt = SA->getAPIntValue(); |
| if (ShAmt.uge(BitWidth)) |
| return nullptr; |
| if (MinShAmt && MinShAmt->ule(ShAmt)) |
| continue; |
| MinShAmt = &ShAmt; |
| } |
| return MinShAmt; |
| } |
| |
| /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less |
| /// than the element bit-width of the shift node, return the maximum value. |
| static const APInt * |
| getValidMaximumShiftAmountConstant(SDValue V, const APInt &DemandedElts) { |
| unsigned BitWidth = V.getScalarValueSizeInBits(); |
| auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); |
| if (!BV) |
| return nullptr; |
| const APInt *MaxShAmt = nullptr; |
| for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); |
| if (!SA) |
| return nullptr; |
| // Shifting more than the bitwidth is not valid. |
| const APInt &ShAmt = SA->getAPIntValue(); |
| if (ShAmt.uge(BitWidth)) |
| return nullptr; |
| if (MaxShAmt && MaxShAmt->uge(ShAmt)) |
| continue; |
| MaxShAmt = &ShAmt; |
| } |
| return MaxShAmt; |
| } |
| |
| /// Determine which bits of Op are known to be either zero or one and return |
| /// them in Known. For vectors, the known bits are those that are shared by |
| /// every vector element. |
| KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { |
| EVT VT = Op.getValueType(); |
| APInt DemandedElts = VT.isVector() |
| ? APInt::getAllOnesValue(VT.getVectorNumElements()) |
| : APInt(1, 1); |
| return computeKnownBits(Op, DemandedElts, Depth); |
| } |
| |
| /// Determine which bits of Op are known to be either zero or one and return |
| /// them in Known. The DemandedElts argument allows us to only collect the known |
| /// bits that are shared by the requested vector elements. |
| KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth) const { |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| |
| KnownBits Known(BitWidth); // Don't know anything. |
| |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| // We know all of the bits for a constant! |
| Known.One = C->getAPIntValue(); |
| Known.Zero = ~Known.One; |
| return Known; |
| } |
| if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { |
| // We know all of the bits for a constant fp! |
| Known.One = C->getValueAPF().bitcastToAPInt(); |
| Known.Zero = ~Known.One; |
| return Known; |
| } |
| |
| if (Depth >= MaxRecursionDepth) |
| return Known; // Limit search depth. |
| |
| KnownBits Known2; |
| unsigned NumElts = DemandedElts.getBitWidth(); |
| assert((!Op.getValueType().isVector() || |
| NumElts == Op.getValueType().getVectorNumElements()) && |
| "Unexpected vector size"); |
| |
| if (!DemandedElts) |
| return Known; // No demanded elts, better to assume we don't know anything. |
| |
| unsigned Opcode = Op.getOpcode(); |
| switch (Opcode) { |
| case ISD::BUILD_VECTOR: |
| // Collect the known bits that are shared by every demanded vector element. |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| |
| SDValue SrcOp = Op.getOperand(i); |
| Known2 = computeKnownBits(SrcOp, Depth + 1); |
| |
| // BUILD_VECTOR can implicitly truncate sources, we must handle this. |
| if (SrcOp.getValueSizeInBits() != BitWidth) { |
| assert(SrcOp.getValueSizeInBits() > BitWidth && |
| "Expected BUILD_VECTOR implicit truncation"); |
| Known2 = Known2.trunc(BitWidth); |
| } |
| |
| // Known bits are the values that are shared by every demanded element. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| } |
| break; |
| case ISD::VECTOR_SHUFFLE: { |
| // Collect the known bits that are shared by every vector element referenced |
| // by the shuffle. |
| APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); |
| assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| |
| int M = SVN->getMaskElt(i); |
| if (M < 0) { |
| // For UNDEF elements, we don't know anything about the common state of |
| // the shuffle result. |
| Known.resetAll(); |
| DemandedLHS.clearAllBits(); |
| DemandedRHS.clearAllBits(); |
| break; |
| } |
| |
| if ((unsigned)M < NumElts) |
| DemandedLHS.setBit((unsigned)M % NumElts); |
| else |
| DemandedRHS.setBit((unsigned)M % NumElts); |
|