| //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SelectionDAG::LegalizeVectors method. |
| // |
| // The vector legalizer looks for vector operations which might need to be |
| // scalarized and legalizes them. This is a separate step from Legalize because |
| // scalarizing can introduce illegal types. For example, suppose we have an |
| // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition |
| // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the |
| // operation, which introduces nodes with the illegal type i64 which must be |
| // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; |
| // the operation must be unrolled, which introduces nodes with the illegal |
| // type i8 which must be promoted. |
| // |
| // This does not legalize vector manipulations like ISD::BUILD_VECTOR, |
| // or operations that happen to take a vector which are custom-lowered; |
| // the legalization for such operations never produces nodes |
| // with illegal types, so it's okay to put off legalizing them until |
| // SelectionDAG::Legalize runs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "legalizevectorops" |
| |
| namespace { |
| |
| class VectorLegalizer { |
| SelectionDAG& DAG; |
| const TargetLowering &TLI; |
| bool Changed = false; // Keep track of whether anything changed |
| |
| /// For nodes that are of legal width, and that have more than one use, this |
| /// map indicates what regularized operand to use. This allows us to avoid |
| /// legalizing the same thing more than once. |
| SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; |
| |
| /// Adds a node to the translation cache. |
| void AddLegalizedOperand(SDValue From, SDValue To) { |
| LegalizedNodes.insert(std::make_pair(From, To)); |
| // If someone requests legalization of the new node, return itself. |
| if (From != To) |
| LegalizedNodes.insert(std::make_pair(To, To)); |
| } |
| |
| /// Legalizes the given node. |
| SDValue LegalizeOp(SDValue Op); |
| |
| /// Assuming the node is legal, "legalize" the results. |
| SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); |
| |
| /// Make sure Results are legal and update the translation cache. |
| SDValue RecursivelyLegalizeResults(SDValue Op, |
| MutableArrayRef<SDValue> Results); |
| |
| /// Wrapper to interface LowerOperation with a vector of Results. |
| /// Returns false if the target wants to use default expansion. Otherwise |
| /// returns true. If return is true and the Results are empty, then the |
| /// target wants to keep the input node as is. |
| bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); |
| |
| /// Implements unrolling a VSETCC. |
| SDValue UnrollVSETCC(SDNode *Node); |
| |
| /// Implement expand-based legalization of vector operations. |
| /// |
| /// This is just a high-level routine to dispatch to specific code paths for |
| /// operations to legalize them. |
| void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if |
| /// FP_TO_SINT isn't legal. |
| void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if |
| /// SINT_TO_FLOAT and SHR on vectors isn't legal. |
| void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. |
| SDValue ExpandSEXTINREG(SDNode *Node); |
| |
| /// Implement expansion for ANY_EXTEND_VECTOR_INREG. |
| /// |
| /// Shuffles the low lanes of the operand into place and bitcasts to the proper |
| /// type. The contents of the bits in the extended part of each element are |
| /// undef. |
| SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); |
| |
| /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. |
| /// |
| /// Shuffles the low lanes of the operand into place, bitcasts to the proper |
| /// type, then shifts left and arithmetic shifts right to introduce a sign |
| /// extension. |
| SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); |
| |
| /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. |
| /// |
| /// Shuffles the low lanes of the operand into place and blends zeros into |
| /// the remaining lanes, finally bitcasting to the proper type. |
| SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); |
| |
| /// Expand bswap of vectors into a shuffle if legal. |
| SDValue ExpandBSWAP(SDNode *Node); |
| |
| /// Implement vselect in terms of XOR, AND, OR when blend is not |
| /// supported by the target. |
| SDValue ExpandVSELECT(SDNode *Node); |
| SDValue ExpandSELECT(SDNode *Node); |
| std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); |
| SDValue ExpandStore(SDNode *N); |
| SDValue ExpandFNEG(SDNode *Node); |
| void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| SDValue ExpandFixedPointDiv(SDNode *Node); |
| SDValue ExpandStrictFPOp(SDNode *Node); |
| void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| /// Implements vector promotion. |
| /// |
| /// This is essentially just bitcasting the operands to a different type and |
| /// bitcasting the result back to the original type. |
| void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| /// Implements [SU]INT_TO_FP vector promotion. |
| /// |
| /// This is a [zs]ext of the input operand to a larger integer type. |
| void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| /// Implements FP_TO_[SU]INT vector promotion of the result type. |
| /// |
| /// It is promoted to a larger integer type. The result is then |
| /// truncated back to the original type. |
| void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| public: |
| VectorLegalizer(SelectionDAG& dag) : |
| DAG(dag), TLI(dag.getTargetLoweringInfo()) {} |
| |
| /// Begin legalizer the vector operations in the DAG. |
| bool Run(); |
| }; |
| |
| } // end anonymous namespace |
| |
| bool VectorLegalizer::Run() { |
| // Before we start legalizing vector nodes, check if there are any vectors. |
| bool HasVectors = false; |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { |
| // Check if the values of the nodes contain vectors. We don't need to check |
| // the operands because we are going to check their values at some point. |
| for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); |
| J != E; ++J) |
| HasVectors |= J->isVector(); |
| |
| // If we found a vector node we can start the legalization. |
| if (HasVectors) |
| break; |
| } |
| |
| // If this basic block has no vectors then no need to legalize vectors. |
| if (!HasVectors) |
| return false; |
| |
| // The legalize process is inherently a bottom-up recursive process (users |
| // legalize their uses before themselves). Given infinite stack space, we |
| // could just start legalizing on the root and traverse the whole graph. In |
| // practice however, this causes us to run out of stack space on large basic |
| // blocks. To avoid this problem, compute an ordering of the nodes where each |
| // node is only legalized after all of its operands are legalized. |
| DAG.AssignTopologicalOrder(); |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) |
| LegalizeOp(SDValue(&*I, 0)); |
| |
| // Finally, it's possible the root changed. Get the new root. |
| SDValue OldRoot = DAG.getRoot(); |
| assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); |
| DAG.setRoot(LegalizedNodes[OldRoot]); |
| |
| LegalizedNodes.clear(); |
| |
| // Remove dead nodes now. |
| DAG.RemoveDeadNodes(); |
| |
| return Changed; |
| } |
| |
| SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { |
| assert(Op->getNumValues() == Result->getNumValues() && |
| "Unexpected number of results"); |
| // Generic legalization: just pass the operand through. |
| for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) |
| AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); |
| return SDValue(Result, Op.getResNo()); |
| } |
| |
| SDValue |
| VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, |
| MutableArrayRef<SDValue> Results) { |
| assert(Results.size() == Op->getNumValues() && |
| "Unexpected number of results"); |
| // Make sure that the generated code is itself legal. |
| for (unsigned i = 0, e = Results.size(); i != e; ++i) { |
| Results[i] = LegalizeOp(Results[i]); |
| AddLegalizedOperand(Op.getValue(i), Results[i]); |
| } |
| |
| return Results[Op.getResNo()]; |
| } |
| |
| SDValue VectorLegalizer::LegalizeOp(SDValue Op) { |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); |
| if (I != LegalizedNodes.end()) return I->second; |
| |
| // Legalize the operands |
| SmallVector<SDValue, 8> Ops; |
| for (const SDValue &Oper : Op->op_values()) |
| Ops.push_back(LegalizeOp(Oper)); |
| |
| SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); |
| |
| if (Op.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { |
| LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; |
| Node->dump(&DAG)); |
| switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), |
| LD->getMemoryVT())) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: |
| return TranslateLegalizeResults(Op, Node); |
| case TargetLowering::Custom: { |
| SmallVector<SDValue, 2> ResultVals; |
| if (LowerOperationWrapper(Node, ResultVals)) { |
| if (ResultVals.empty()) |
| return TranslateLegalizeResults(Op, Node); |
| |
| Changed = true; |
| return RecursivelyLegalizeResults(Op, ResultVals); |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case TargetLowering::Expand: { |
| Changed = true; |
| std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); |
| AddLegalizedOperand(Op.getValue(0), Tmp.first); |
| AddLegalizedOperand(Op.getValue(1), Tmp.second); |
| return Op.getResNo() ? Tmp.first : Tmp.second; |
| } |
| } |
| } |
| } else if (Op.getOpcode() == ISD::STORE) { |
| StoreSDNode *ST = cast<StoreSDNode>(Node); |
| EVT StVT = ST->getMemoryVT(); |
| MVT ValVT = ST->getValue().getSimpleValueType(); |
| if (StVT.isVector() && ST->isTruncatingStore()) { |
| LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; |
| Node->dump(&DAG)); |
| switch (TLI.getTruncStoreAction(ValVT, StVT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: |
| return TranslateLegalizeResults(Op, Node); |
| case TargetLowering::Custom: { |
| SmallVector<SDValue, 1> ResultVals; |
| if (LowerOperationWrapper(Node, ResultVals)) { |
| if (ResultVals.empty()) |
| return TranslateLegalizeResults(Op, Node); |
| |
| Changed = true; |
| return RecursivelyLegalizeResults(Op, ResultVals); |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case TargetLowering::Expand: { |
| Changed = true; |
| SDValue Chain = ExpandStore(Node); |
| AddLegalizedOperand(Op, Chain); |
| return Chain; |
| } |
| } |
| } |
| } |
| |
| bool HasVectorValueOrOp = false; |
| for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) |
| HasVectorValueOrOp |= J->isVector(); |
| for (const SDValue &Oper : Node->op_values()) |
| HasVectorValueOrOp |= Oper.getValueType().isVector(); |
| |
| if (!HasVectorValueOrOp) |
| return TranslateLegalizeResults(Op, Node); |
| |
| TargetLowering::LegalizeAction Action = TargetLowering::Legal; |
| EVT ValVT; |
| switch (Op.getOpcode()) { |
| default: |
| return TranslateLegalizeResults(Op, Node); |
| case ISD::MERGE_VALUES: |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| // This operation lies about being legal: when it claims to be legal, |
| // it should actually be expanded. |
| if (Action == TargetLowering::Legal) |
| Action = TargetLowering::Expand; |
| break; |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
| case ISD::STRICT_##DAGN: |
| #include "llvm/IR/ConstrainedOps.def" |
| ValVT = Node->getValueType(0); |
| if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || |
| Op.getOpcode() == ISD::STRICT_UINT_TO_FP) |
| ValVT = Node->getOperand(1).getValueType(); |
| Action = TLI.getOperationAction(Node->getOpcode(), ValVT); |
| // If we're asked to expand a strict vector floating-point operation, |
| // by default we're going to simply unroll it. That is usually the |
| // best approach, except in the case where the resulting strict (scalar) |
| // operations would themselves use the fallback mutation to non-strict. |
| // In that specific case, just do the fallback on the vector op. |
| if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && |
| TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == |
| TargetLowering::Legal) { |
| EVT EltVT = ValVT.getVectorElementType(); |
| if (TLI.getOperationAction(Node->getOpcode(), EltVT) |
| == TargetLowering::Expand && |
| TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) |
| == TargetLowering::Legal) |
| Action = TargetLowering::Legal; |
| } |
| break; |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::MULHS: |
| case ISD::MULHU: |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::FSHL: |
| case ISD::FSHR: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| case ISD::ABS: |
| case ISD::BSWAP: |
| case ISD::BITREVERSE: |
| case ISD::CTLZ: |
| case ISD::CTTZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| case ISD::CTTZ_ZERO_UNDEF: |
| case ISD::CTPOP: |
| case ISD::SELECT: |
| case ISD::VSELECT: |
| case ISD::SELECT_CC: |
| case ISD::SETCC: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| case ISD::TRUNCATE: |
| case ISD::SIGN_EXTEND: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::FNEG: |
| case ISD::FABS: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINIMUM: |
| case ISD::FMAXIMUM: |
| case ISD::FCOPYSIGN: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FPOWI: |
| case ISD::FPOW: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FCEIL: |
| case ISD::FTRUNC: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| case ISD::FROUND: |
| case ISD::FFLOOR: |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| case ISD::FMA: |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::ANY_EXTEND_VECTOR_INREG: |
| case ISD::SIGN_EXTEND_VECTOR_INREG: |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| case ISD::SMUL_LOHI: |
| case ISD::UMUL_LOHI: |
| case ISD::SADDO: |
| case ISD::UADDO: |
| case ISD::SSUBO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: |
| case ISD::FCANONICALIZE: |
| case ISD::SADDSAT: |
| case ISD::UADDSAT: |
| case ISD::SSUBSAT: |
| case ISD::USUBSAT: |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| break; |
| case ISD::SMULFIX: |
| case ISD::SMULFIXSAT: |
| case ISD::UMULFIX: |
| case ISD::UMULFIXSAT: |
| case ISD::SDIVFIX: |
| case ISD::UDIVFIX: { |
| unsigned Scale = Node->getConstantOperandVal(2); |
| Action = TLI.getFixedPointOperationAction(Node->getOpcode(), |
| Node->getValueType(0), Scale); |
| break; |
| } |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_MUL: |
| case ISD::VECREDUCE_AND: |
| case ISD::VECREDUCE_OR: |
| case ISD::VECREDUCE_XOR: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_SMIN: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_UMIN: |
| case ISD::VECREDUCE_FADD: |
| case ISD::VECREDUCE_FMUL: |
| case ISD::VECREDUCE_FMAX: |
| case ISD::VECREDUCE_FMIN: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getOperand(0).getValueType()); |
| break; |
| } |
| |
| LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); |
| |
| SmallVector<SDValue, 8> ResultVals; |
| switch (Action) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Promote: |
| LLVM_DEBUG(dbgs() << "Promoting\n"); |
| Promote(Node, ResultVals); |
| assert(!ResultVals.empty() && "No results for promotion?"); |
| break; |
| case TargetLowering::Legal: |
| LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); |
| break; |
| case TargetLowering::Custom: |
| LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); |
| if (LowerOperationWrapper(Node, ResultVals)) |
| break; |
| LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); |
| LLVM_FALLTHROUGH; |
| case TargetLowering::Expand: |
| LLVM_DEBUG(dbgs() << "Expanding\n"); |
| Expand(Node, ResultVals); |
| break; |
| } |
| |
| if (ResultVals.empty()) |
| return TranslateLegalizeResults(Op, Node); |
| |
| Changed = true; |
| return RecursivelyLegalizeResults(Op, ResultVals); |
| } |
| |
| // FIME: This is very similar to the X86 override of |
| // TargetLowering::LowerOperationWrapper. Can we merge them somehow? |
| bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); |
| |
| if (!Res.getNode()) |
| return false; |
| |
| if (Res == SDValue(Node, 0)) |
| return true; |
| |
| // If the original node has one result, take the return value from |
| // LowerOperation as is. It might not be result number 0. |
| if (Node->getNumValues() == 1) { |
| Results.push_back(Res); |
| return true; |
| } |
| |
| // If the original node has multiple results, then the return node should |
| // have the same number of results. |
| assert((Node->getNumValues() == Res->getNumValues()) && |
| "Lowering returned the wrong number of results!"); |
| |
| // Places new result values base on N result number. |
| for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) |
| Results.push_back(Res.getValue(I)); |
| |
| return true; |
| } |
| |
| void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { |
| // For a few operations there is a specific concept for promotion based on |
| // the operand's type. |
| switch (Node->getOpcode()) { |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::STRICT_SINT_TO_FP: |
| case ISD::STRICT_UINT_TO_FP: |
| // "Promote" the operation by extending the operand. |
| PromoteINT_TO_FP(Node, Results); |
| return; |
| case ISD::FP_TO_UINT: |
| case ISD::FP_TO_SINT: |
| case ISD::STRICT_FP_TO_UINT: |
| case ISD::STRICT_FP_TO_SINT: |
| // Promote the operation by extending the operand. |
| PromoteFP_TO_INT(Node, Results); |
| return; |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| // These operations are used to do promotion so they can't be promoted |
| // themselves. |
| llvm_unreachable("Don't know how to promote this operation!"); |
| } |
| |
| // There are currently two cases of vector promotion: |
| // 1) Bitcasting a vector of integers to a different type to a vector of the |
| // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. |
| // 2) Extending a vector of floats to a vector of the same number of larger |
| // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. |
| assert(Node->getNumValues() == 1 && |
| "Can't promote a vector with multiple results!"); |
| MVT VT = Node->getSimpleValueType(0); |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); |
| SDLoc dl(Node); |
| SmallVector<SDValue, 4> Operands(Node->getNumOperands()); |
| |
| for (unsigned j = 0; j != Node->getNumOperands(); ++j) { |
| if (Node->getOperand(j).getValueType().isVector()) |
| if (Node->getOperand(j) |
| .getValueType() |
| .getVectorElementType() |
| .isFloatingPoint() && |
| NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) |
| Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); |
| else |
| Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); |
| else |
| Operands[j] = Node->getOperand(j); |
| } |
| |
| SDValue Res = |
| DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); |
| |
| if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || |
| (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && |
| NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) |
| Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); |
| else |
| Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); |
| |
| Results.push_back(Res); |
| } |
| |
| void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| // INT_TO_FP operations may require the input operand be promoted even |
| // when the type is otherwise legal. |
| bool IsStrict = Node->isStrictFPOpcode(); |
| MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); |
| assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && |
| "Vectors have different number of elements!"); |
| |
| SDLoc dl(Node); |
| SmallVector<SDValue, 4> Operands(Node->getNumOperands()); |
| |
| unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || |
| Node->getOpcode() == ISD::STRICT_UINT_TO_FP) |
| ? ISD::ZERO_EXTEND |
| : ISD::SIGN_EXTEND; |
| for (unsigned j = 0; j != Node->getNumOperands(); ++j) { |
| if (Node->getOperand(j).getValueType().isVector()) |
| Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); |
| else |
| Operands[j] = Node->getOperand(j); |
| } |
| |
| if (IsStrict) { |
| SDValue Res = DAG.getNode(Node->getOpcode(), dl, |
| {Node->getValueType(0), MVT::Other}, Operands); |
| Results.push_back(Res); |
| Results.push_back(Res.getValue(1)); |
| return; |
| } |
| |
| SDValue Res = |
| DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); |
| Results.push_back(Res); |
| } |
| |
| // For FP_TO_INT we promote the result type to a vector type with wider |
| // elements and then truncate the result. This is different from the default |
| // PromoteVector which uses bitcast to promote thus assumning that the |
| // promoted vector type has the same overall size. |
| void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| MVT VT = Node->getSimpleValueType(0); |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); |
| bool IsStrict = Node->isStrictFPOpcode(); |
| assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && |
| "Vectors have different number of elements!"); |
| |
| unsigned NewOpc = Node->getOpcode(); |
| // Change FP_TO_UINT to FP_TO_SINT if possible. |
| // TODO: Should we only do this if FP_TO_UINT itself isn't legal? |
| if (NewOpc == ISD::FP_TO_UINT && |
| TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) |
| NewOpc = ISD::FP_TO_SINT; |
| |
| if (NewOpc == ISD::STRICT_FP_TO_UINT && |
| TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) |
| NewOpc = ISD::STRICT_FP_TO_SINT; |
| |
| SDLoc dl(Node); |
| SDValue Promoted, Chain; |
| if (IsStrict) { |
| Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, |
| {Node->getOperand(0), Node->getOperand(1)}); |
| Chain = Promoted.getValue(1); |
| } else |
| Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); |
| |
| // Assert that the converted value fits in the original type. If it doesn't |
| // (eg: because the value being converted is too big), then the result of the |
| // original operation was undefined anyway, so the assert is still correct. |
| if (Node->getOpcode() == ISD::FP_TO_UINT || |
| Node->getOpcode() == ISD::STRICT_FP_TO_UINT) |
| NewOpc = ISD::AssertZext; |
| else |
| NewOpc = ISD::AssertSext; |
| |
| Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, |
| DAG.getValueType(VT.getScalarType())); |
| Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); |
| Results.push_back(Promoted); |
| if (IsStrict) |
| Results.push_back(Chain); |
| } |
| |
| std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| |
| EVT SrcVT = LD->getMemoryVT(); |
| EVT SrcEltVT = SrcVT.getScalarType(); |
| unsigned NumElem = SrcVT.getVectorNumElements(); |
| |
| SDValue NewChain; |
| SDValue Value; |
| if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { |
| SDLoc dl(N); |
| |
| SmallVector<SDValue, 8> Vals; |
| SmallVector<SDValue, 8> LoadChains; |
| |
| EVT DstEltVT = LD->getValueType(0).getScalarType(); |
| SDValue Chain = LD->getChain(); |
| SDValue BasePTR = LD->getBasePtr(); |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| |
| // When elements in a vector is not byte-addressable, we cannot directly |
| // load each element by advancing pointer, which could only address bytes. |
| // Instead, we load all significant words, mask bits off, and concatenate |
| // them to form each element. Finally, they are extended to destination |
| // scalar type to build the destination vector. |
| EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); |
| |
| assert(WideVT.isRound() && |
| "Could not handle the sophisticated case when the widest integer is" |
| " not power of 2."); |
| assert(WideVT.bitsGE(SrcEltVT) && |
| "Type is not legalized?"); |
| |
| unsigned WideBytes = WideVT.getStoreSize(); |
| unsigned Offset = 0; |
| unsigned RemainingBytes = SrcVT.getStoreSize(); |
| SmallVector<SDValue, 8> LoadVals; |
| while (RemainingBytes > 0) { |
| SDValue ScalarLoad; |
| unsigned LoadBytes = WideBytes; |
| |
| if (RemainingBytes >= LoadBytes) { |
| ScalarLoad = |
| DAG.getLoad(WideVT, dl, Chain, BasePTR, |
| LD->getPointerInfo().getWithOffset(Offset), |
| MinAlign(LD->getAlignment(), Offset), |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| } else { |
| EVT LoadVT = WideVT; |
| while (RemainingBytes < LoadBytes) { |
| LoadBytes >>= 1; // Reduce the load size by half. |
| LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); |
| } |
| ScalarLoad = |
| DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, |
| LD->getPointerInfo().getWithOffset(Offset), LoadVT, |
| MinAlign(LD->getAlignment(), Offset), |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| } |
| |
| RemainingBytes -= LoadBytes; |
| Offset += LoadBytes; |
| |
| BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); |
| |
| LoadVals.push_back(ScalarLoad.getValue(0)); |
| LoadChains.push_back(ScalarLoad.getValue(1)); |
| } |
| |
| unsigned BitOffset = 0; |
| unsigned WideIdx = 0; |
| unsigned WideBits = WideVT.getSizeInBits(); |
| |
| // Extract bits, pack and extend/trunc them into destination type. |
| unsigned SrcEltBits = SrcEltVT.getSizeInBits(); |
| SDValue SrcEltBitMask = DAG.getConstant( |
| APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); |
| |
| for (unsigned Idx = 0; Idx != NumElem; ++Idx) { |
| assert(BitOffset < WideBits && "Unexpected offset!"); |
| |
| SDValue ShAmt = DAG.getConstant( |
| BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); |
| SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); |
| |
| BitOffset += SrcEltBits; |
| if (BitOffset >= WideBits) { |
| WideIdx++; |
| BitOffset -= WideBits; |
| if (BitOffset > 0) { |
| ShAmt = DAG.getConstant( |
| SrcEltBits - BitOffset, dl, |
| TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); |
| SDValue Hi = |
| DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); |
| Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); |
| } |
| } |
| |
| Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); |
| |
| switch (ExtType) { |
| default: llvm_unreachable("Unknown extended-load op!"); |
| case ISD::EXTLOAD: |
| Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); |
| break; |
| case ISD::ZEXTLOAD: |
| Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); |
| break; |
| case ISD::SEXTLOAD: |
| ShAmt = |
| DAG.getConstant(WideBits - SrcEltBits, dl, |
| TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); |
| Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); |
| Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); |
| Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); |
| break; |
| } |
| Vals.push_back(Lo); |
| } |
| |
| NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); |
| Value = DAG.getBuildVector(N->getValueType(0), dl, Vals); |
| } else { |
| std::tie(Value, NewChain) = TLI.scalarizeVectorLoad(LD, DAG); |
| } |
| |
| return std::make_pair(Value, NewChain); |
| } |
| |
| SDValue VectorLegalizer::ExpandStore(SDNode *N) { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| SDValue TF = TLI.scalarizeVectorStore(ST, DAG); |
| return TF; |
| } |
| |
| void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { |
| SDValue Tmp; |
| switch (Node->getOpcode()) { |
| case ISD::MERGE_VALUES: |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| Results.push_back(Node->getOperand(i)); |
| return; |
| case ISD::SIGN_EXTEND_INREG: |
| Results.push_back(ExpandSEXTINREG(Node)); |
| return; |
| case ISD::ANY_EXTEND_VECTOR_INREG: |
| Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); |
| return; |
| case ISD::SIGN_EXTEND_VECTOR_INREG: |
| Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); |
| return; |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); |
| return; |
| case ISD::BSWAP: |
| Results.push_back(ExpandBSWAP(Node)); |
| return; |
| case ISD::VSELECT: |
| Results.push_back(ExpandVSELECT(Node)); |
| return; |
| case ISD::SELECT: |
| Results.push_back(ExpandSELECT(Node)); |
| return; |
| case ISD::FP_TO_UINT: |
| ExpandFP_TO_UINT(Node, Results); |
| return; |
| case ISD::UINT_TO_FP: |
| ExpandUINT_TO_FLOAT(Node, Results); |
| return; |
| case ISD::FNEG: |
| Results.push_back(ExpandFNEG(Node)); |
| return; |
| case ISD::FSUB: |
| ExpandFSUB(Node, Results); |
| return; |
| case ISD::SETCC: |
| Results.push_back(UnrollVSETCC(Node)); |
| return; |
| case ISD::ABS: |
| if (TLI.expandABS(Node, Tmp, DAG)) { |
| Results.push_back(Tmp); |
| return; |
| } |
| break; |
| case ISD::BITREVERSE: |
| ExpandBITREVERSE(Node, Results); |
| return; |
| case ISD::CTPOP: |
| if (TLI.expandCTPOP(Node, Tmp, DAG)) { |
| Results.push_back(Tmp); |
| return; |
| } |
| break; |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| if (TLI.expandCTLZ(Node, Tmp, DAG)) { |
| Results.push_back(Tmp); |
| return; |
| } |
| break; |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| if (TLI.expandCTTZ(Node, Tmp, DAG)) { |
| Results.push_back(Tmp); |
| return; |
| } |
| break; |
| case ISD::FSHL: |
| case ISD::FSHR: |
| if (TLI.expandFunnelShift(Node, Tmp, DAG)) { |
| Results.push_back(Tmp); |
| return; |
| } |
| break; |
| case ISD::ROTL: |
| case ISD::ROTR: |
| if (TLI.expandROT(Node, Tmp, DAG)) { |
| Results.push_back(Tmp); |
| return; |
| } |
| break; |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { |
| Results.push_back(Expanded); |
| return; |
| } |
| break; |
| case ISD::UADDO: |
| case ISD::USUBO: |
| ExpandUADDSUBO(Node, Results); |
| return; |
| case ISD::SADDO: |
| case ISD::SSUBO: |
| ExpandSADDSUBO(Node, Results); |
| return; |
| case ISD::UMULO: |
| case ISD::SMULO: |
| ExpandMULO(Node, Results); |
| return; |
| case ISD::USUBSAT: |
| case ISD::SSUBSAT: |
| case ISD::UADDSAT: |
| case ISD::SADDSAT: |
| if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { |
| Results.push_back(Expanded); |
| return; |
| } |
| break; |
| case ISD::SMULFIX: |
| case ISD::UMULFIX: |
| if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { |
| Results.push_back(Expanded); |
| return; |
| } |
| break; |
| case ISD::SMULFIXSAT: |
| case ISD::UMULFIXSAT: |
| // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly |
| // why. Maybe it results in worse codegen compared to the unroll for some |
| // targets? This should probably be investigated. And if we still prefer to |
| // unroll an explanation could be helpful. |
| break; |
| case ISD::SDIVFIX: |
| case ISD::UDIVFIX: |
| Results.push_back(ExpandFixedPointDiv(Node)); |
| return; |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
| case ISD::STRICT_##DAGN: |
| #include "llvm/IR/ConstrainedOps.def" |
| ExpandStrictFPOp(Node, Results); |
| return; |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_MUL: |
| case ISD::VECREDUCE_AND: |
| case ISD::VECREDUCE_OR: |
| case ISD::VECREDUCE_XOR: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_SMIN: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_UMIN: |
| case ISD::VECREDUCE_FADD: |
| case ISD::VECREDUCE_FMUL: |
| case ISD::VECREDUCE_FMAX: |
| case ISD::VECREDUCE_FMIN: |
| Results.push_back(TLI.expandVecReduce(Node, DAG)); |
| return; |
| } |
| |
| Results.push_back(DAG.UnrollVectorOp(Node)); |
| } |
| |
| SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { |
| // Lower a select instruction where the condition is a scalar and the |
| // operands are vectors. Lower this select to VSELECT and implement it |
| // using XOR AND OR. The selector bit is broadcasted. |
| EVT VT = Node->getValueType(0); |
| SDLoc DL(Node); |
| |
| SDValue Mask = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| SDValue Op2 = Node->getOperand(2); |
| |
| assert(VT.isVector() && !Mask.getValueType().isVector() |
| && Op1.getValueType() == Op2.getValueType() && "Invalid type"); |
| |
| // If we can't even use the basic vector operations of |
| // AND,OR,XOR, we will have to scalarize the op. |
| // Notice that the operation may be 'promoted' which means that it is |
| // 'bitcasted' to another type which is handled. |
| // Also, we need to be able to construct a splat vector using BUILD_VECTOR. |
| if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) |
| return DAG.UnrollVectorOp(Node); |
| |
| // Generate a mask operand. |
| EVT MaskTy = VT.changeVectorElementTypeToInteger(); |
| |
| // What is the size of each element in the vector mask. |
| EVT BitTy = MaskTy.getScalarType(); |
| |
| Mask = DAG.getSelect(DL, BitTy, Mask, |
| DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, |
| BitTy), |
| DAG.getConstant(0, DL, BitTy)); |
| |
| // Broadcast the mask so that the entire vector is all-one or all zero. |
| Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); |
| |
| // Bitcast the operands to be the same type as the mask. |
| // This is needed when we select between FP types because |
| // the mask is a vector of integers. |
| Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); |
| Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); |
| |
| SDValue AllOnes = DAG.getConstant( |
| APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); |
| SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); |
| |
| Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); |
| Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); |
| SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); |
| return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); |
| } |
| |
| SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { |
| EVT VT = Node->getValueType(0); |
| |
| // Make sure that the SRA and SHL instructions are available. |
| if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) |
| return DAG.UnrollVectorOp(Node); |
| |
| SDLoc DL(Node); |
| EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| |
| unsigned BW = VT.getScalarSizeInBits(); |
| unsigned OrigBW = OrigTy.getScalarSizeInBits(); |
| SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); |
| |
| SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); |
| return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); |
| } |
| |
| // Generically expand a vector anyext in register to a shuffle of the relevant |
| // lanes into the appropriate locations, with other lanes left undef. |
| SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { |
| SDLoc DL(Node); |
| EVT VT = Node->getValueType(0); |
| int NumElements = VT.getVectorNumElements(); |
| SDValue Src = Node->getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| int NumSrcElements = SrcVT.getVectorNumElements(); |
| |
| // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector |
| // into a larger vector type. |
| if (SrcVT.bitsLE(VT)) { |
| assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && |
| "ANY_EXTEND_VECTOR_INREG vector size mismatch"); |
| NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); |
| SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), |
| NumSrcElements); |
| Src = DAG.getNode( |
| ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, |
| DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| } |
| |
| // Build a base mask of undef shuffles. |
| SmallVector<int, 16> ShuffleMask; |
| ShuffleMask.resize(NumSrcElements, -1); |
| |
| // Place the extended lanes into the correct locations. |
| int ExtLaneScale = NumSrcElements / NumElements; |
| int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; |
| for (int i = 0; i < NumElements; ++i) |
| ShuffleMask[i * ExtLaneScale + EndianOffset] = i; |
| |
| return DAG.getNode( |
| ISD::BITCAST, DL, VT, |
| DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); |
| } |
| |
| SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { |
| SDLoc DL(Node); |
| EVT VT = Node->getValueType(0); |
| SDValue Src = Node->getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| |
| // First build an any-extend node which can be legalized above when we |
| // recurse through it. |
| SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); |
| |
| // Now we need sign extend. Do this by shifting the elements. Even if these |
| // aren't legal operations, they have a better chance of being legalized |
| // without full scalarization than the sign extension does. |
| unsigned EltWidth = VT.getScalarSizeInBits(); |
| unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); |
| SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); |
| return DAG.getNode(ISD::SRA, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), |
| ShiftAmount); |
| } |
| |
| // Generically expand a vector zext in register to a shuffle of the relevant |
| // lanes into the appropriate locations, a blend of zero into the high bits, |
| // and a bitcast to the wider element type. |
| SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { |
| SDLoc DL(Node); |
| EVT VT = Node->getValueType(0); |
| int NumElements = VT.getVectorNumElements(); |
| SDValue Src = Node->getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| int NumSrcElements = SrcVT.getVectorNumElements(); |
| |
| // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector |
| // into a larger vector type. |
| if (SrcVT.bitsLE(VT)) { |
| assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && |
| "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); |
| NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); |
| SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), |
| NumSrcElements); |
| Src = DAG.getNode( |
| ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, |
| DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| } |
| |
| // Build up a zero vector to blend into this one. |
| SDValue Zero = DAG.getConstant(0, DL, SrcVT); |
| |
| // Shuffle the incoming lanes into the correct position, and pull all other |
| // lanes from the zero vector. |
| SmallVector<int, 16> ShuffleMask; |
| ShuffleMask.reserve(NumSrcElements); |
| for (int i = 0; i < NumSrcElements; ++i) |
| ShuffleMask.push_back(i); |
| |
| int ExtLaneScale = NumSrcElements / NumElements; |
| int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; |
| for (int i = 0; i < NumElements; ++i) |
| ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; |
| |
| return DAG.getNode(ISD::BITCAST, DL, VT, |
| DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); |
| } |
| |
| static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { |
| int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; |
| for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) |
| for (int J = ScalarSizeInBytes - 1; J >= 0; --J) |
| ShuffleMask.push_back((I * ScalarSizeInBytes) + J); |
| } |
| |
| SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { |
| EVT VT = Node->getValueType(0); |
| |
| // Generate a byte wise shuffle mask for the BSWAP. |
| SmallVector<int, 16> ShuffleMask; |
| createBSWAPShuffleMask(VT, ShuffleMask); |
| EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); |
| |
| // Only emit a shuffle if the mask is legal. |
| if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) |
| return DAG.UnrollVectorOp(Node); |
| |
| SDLoc DL(Node); |
| SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); |
| Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Op); |
| } |
| |
| void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| EVT VT = Node->getValueType(0); |
| |
| // If we have the scalar operation, it's probably cheaper to unroll it. |
| if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { |
| SDValue Tmp = DAG.UnrollVectorOp(Node); |
| Results.push_back(Tmp); |
| return; |
| } |
| |
| // If the vector element width is a whole number of bytes, test if its legal |
| // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte |
| // vector. This greatly reduces the number of bit shifts necessary. |
| unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); |
| if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { |
| SmallVector<int, 16> BSWAPMask; |
| createBSWAPShuffleMask(VT, BSWAPMask); |
| |
| EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); |
| if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && |
| (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || |
| (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && |
| TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && |
| TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && |
| TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { |
| SDLoc DL(Node); |
| SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); |
| Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), |
| BSWAPMask); |
| Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); |
| Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); |
| Results.push_back(Op); |
| return; |
| } |
| } |
| |
| // If we have the appropriate vector bit operations, it is better to use them |
| // than unrolling and expanding each component. |
| if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && |
| TLI.isOperationLegalOrCustom(ISD::SRL, VT) && |
| TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && |
| TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) |
| // Let LegalizeDAG handle this later. |
| return; |
| |
| // Otherwise unroll. |
| SDValue Tmp = DAG.UnrollVectorOp(Node); |
| Results.push_back(Tmp); |
| } |
| |
| SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { |
| // Implement VSELECT in terms of XOR, AND, OR |
| // on platforms which do not support blend natively. |
| SDLoc DL(Node); |
| |
| SDValue Mask = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| SDValue Op2 = Node->getOperand(2); |
| |
| EVT VT = Mask.getValueType(); |
| |
| // If we can't even use the basic vector operations of |
| // AND,OR,XOR, we will have to scalarize the op. |
| // Notice that the operation may be 'promoted' which means that it is |
| // 'bitcasted' to another type which is handled. |
| // This operation also isn't safe with AND, OR, XOR when the boolean |
| // type is 0/1 as we need an all ones vector constant to mask with. |
| // FIXME: Sign extend 1 to all ones if thats legal on the target. |
| if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || |
| TLI.getBooleanContents(Op1.getValueType()) != |
| TargetLowering::ZeroOrNegativeOneBooleanContent) |
| return DAG.UnrollVectorOp(Node); |
| |
| // If the mask and the type are different sizes, unroll the vector op. This |
| // can occur when getSetCCResultType returns something that is different in |
| // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. |
| if (VT.getSizeInBits() != Op1.getValueSizeInBits()) |
| return DAG.UnrollVectorOp(Node); |
| |
| // Bitcast the operands to be the same type as the mask. |
| // This is needed when we select between FP types because |
| // the mask is a vector of integers. |
| Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); |
| Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); |
| |
| SDValue AllOnes = DAG.getConstant( |
| APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); |
| SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); |
| |
| Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); |
| Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); |
| SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); |
| return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); |
| } |
| |
| void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| // Attempt to expand using TargetLowering. |
| SDValue Result, Chain; |
| if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { |
| Results.push_back(Result); |
| if (Node->isStrictFPOpcode()) |
| Results.push_back(Chain); |
| return; |
| } |
| |
| // Otherwise go ahead and unroll. |
| if (Node->isStrictFPOpcode()) { |
| UnrollStrictFPOp(Node, Results); |
| return; |
| } |
| |
| Results.push_back(DAG.UnrollVectorOp(Node)); |
| } |
| |
| void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| bool IsStrict = Node->isStrictFPOpcode(); |
| unsigned OpNo = IsStrict ? 1 : 0; |
| SDValue Src = Node->getOperand(OpNo); |
| EVT VT = Src.getValueType(); |
| SDLoc DL(Node); |
| |
| // Attempt to expand using TargetLowering. |
| SDValue Result; |
| SDValue Chain; |
| if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { |
| Results.push_back(Result); |
| if (IsStrict) |
| Results.push_back(Chain); |
| return; |
| } |
| |
| // Make sure that the SINT_TO_FP and SRL instructions are available. |
| if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == |
| TargetLowering::Expand) || |
| (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == |
| TargetLowering::Expand)) || |
| TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { |
| if (IsStrict) { |
| UnrollStrictFPOp(Node, Results); |
| return; |
| } |
| |
| Results.push_back(DAG.UnrollVectorOp(Node)); |
| return; |
| } |
| |
| unsigned BW = VT.getScalarSizeInBits(); |
| assert((BW == 64 || BW == 32) && |
| "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); |
| |
| SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); |
| |
| // Constants to clear the upper part of the word. |
| // Notice that we can also use SHL+SHR, but using a constant is slightly |
| // faster on x86. |
| uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; |
| SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); |
| |
| // Two to the power of half-word-size. |
| SDValue TWOHW = |
| DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); |
| |
| // Clear upper part of LO, lower HI |
| SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); |
| SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); |
| |
| if (IsStrict) { |
| // Convert hi and lo to floats |
| // Convert the hi part back to the upper values |
| // TODO: Can any fast-math-flags be set on these nodes? |
| SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, |
| {Node->getValueType(0), MVT::Other}, |
| {Node->getOperand(0), HI}); |
| fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, |
| {fHI.getValue(1), fHI, TWOHW}); |
| SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, |
| {Node->getValueType(0), MVT::Other}, |
| {Node->getOperand(0), LO}); |
| |
| SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), |
| fLO.getValue(1)); |
| |
| // Add the two halves |
| SDValue Result = |
| DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, |
| {TF, fHI, fLO}); |
| |
| Results.push_back(Result); |
| Results.push_back(Result.getValue(1)); |
| return; |
| } |
| |
| // Convert hi and lo to floats |
| // Convert the hi part back to the upper values |
| // TODO: Can any fast-math-flags be set on these nodes? |
| SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); |
| fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); |
| SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); |
| |
| // Add the two halves |
| Results.push_back( |
| DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); |
| } |
| |
| SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { |
| if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { |
| SDLoc DL(Node); |
| SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); |
| // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. |
| return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, |
| Node->getOperand(0)); |
| } |
| return DAG.UnrollVectorOp(Node); |
| } |
| |
| void VectorLegalizer::ExpandFSUB(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, |
| // we can defer this to operation legalization where it will be lowered as |
| // a+(-b). |
| EVT VT = Node->getValueType(0); |
| if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && |
| TLI.isOperationLegalOrCustom(ISD::FADD, VT)) |
| return; // Defer to LegalizeDAG |
| |
| SDValue Tmp = DAG.UnrollVectorOp(Node); |
| Results.push_back(Tmp); |
| } |
| |
| void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| SDValue Result, Overflow; |
| TLI.expandUADDSUBO(Node, Result, Overflow, DAG); |
| Results.push_back(Result); |
| Results.push_back(Overflow); |
| } |
| |
| void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| SDValue Result, Overflow; |
| TLI.expandSADDSUBO(Node, Result, Overflow, DAG); |
| Results.push_back(Result); |
| Results.push_back(Overflow); |
| } |
| |
| void VectorLegalizer::ExpandMULO(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| SDValue Result, Overflow; |
| if (!TLI.expandMULO(Node, Result, Overflow, DAG)) |
| std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); |
| |
| Results.push_back(Result); |
| Results.push_back(Overflow); |
| } |
| |
| SDValue VectorLegalizer::ExpandFixedPointDiv(SDNode *Node) { |
| SDNode *N = Node; |
| if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), |
| N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) |
| return Expanded; |
| return DAG.UnrollVectorOp(N); |
| } |
| |
| void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { |
| ExpandUINT_TO_FLOAT(Node, Results); |
| return; |
| } |
| if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { |
| ExpandFP_TO_UINT(Node, Results); |
| return; |
| } |
| |
| UnrollStrictFPOp(Node, Results); |
| } |
| |
| void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| EVT VT = Node->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned NumOpers = Node->getNumOperands(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| EVT TmpEltVT = EltVT; |
| if (Node->getOpcode() == ISD::STRICT_FSETCC || |
| Node->getOpcode() == ISD::STRICT_FSETCCS) |
| TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), |
| *DAG.getContext(), TmpEltVT); |
| |
| EVT ValueVTs[] = {TmpEltVT, MVT::Other}; |
| SDValue Chain = Node->getOperand(0); |
| SDLoc dl(Node); |
| |
| SmallVector<SDValue, 32> OpValues; |
| SmallVector<SDValue, 32> OpChains; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SmallVector<SDValue, 4> Opers; |
| SDValue Idx = DAG.getConstant(i, dl, |
| TLI.getVectorIdxTy(DAG.getDataLayout())); |
| |
| // The Chain is the first operand. |
| Opers.push_back(Chain); |
| |
| // Now process the remaining operands. |
| for (unsigned j = 1; j < NumOpers; ++j) { |
| SDValue Oper = Node->getOperand(j); |
| EVT OperVT = Oper.getValueType(); |
| |
| if (OperVT.isVector()) |
| Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| OperVT.getVectorElementType(), Oper, Idx); |
| |
| Opers.push_back(Oper); |
| } |
| |
| SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); |
| SDValue ScalarResult = ScalarOp.getValue(0); |
| SDValue ScalarChain = ScalarOp.getValue(1); |
| |
| if (Node->getOpcode() == ISD::STRICT_FSETCC || |
| Node->getOpcode() == ISD::STRICT_FSETCCS) |
| ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, |
| DAG.getConstant(APInt::getAllOnesValue |
| (EltVT.getSizeInBits()), dl, EltVT), |
| DAG.getConstant(0, dl, EltVT)); |
| |
| OpValues.push_back(ScalarResult); |
| OpChains.push_back(ScalarChain); |
| } |
| |
| SDValue Result = DAG.getBuildVector(VT, dl, OpValues); |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); |
| |
| Results.push_back(Result); |
| Results.push_back(NewChain); |
| } |
| |
| SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { |
| EVT VT = Node->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue LHS = Node->getOperand(0); |
| SDValue RHS = Node->getOperand(1); |
| SDValue CC = Node->getOperand(2); |
| EVT TmpEltVT = LHS.getValueType().getVectorElementType(); |
| SDLoc dl(Node); |
| SmallVector<SDValue, 8> Ops(NumElems); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue LHSElem = DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, |
| DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| SDValue RHSElem = DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, |
| DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| Ops[i] = DAG.getNode(ISD::SETCC, dl, |
| TLI.getSetCCResultType(DAG.getDataLayout(), |
| *DAG.getContext(), TmpEltVT), |
| LHSElem, RHSElem, CC); |
| Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], |
| DAG.getConstant(APInt::getAllOnesValue |
| (EltVT.getSizeInBits()), dl, EltVT), |
| DAG.getConstant(0, dl, EltVT)); |
| } |
| return DAG.getBuildVector(VT, dl, Ops); |
| } |
| |
| bool SelectionDAG::LegalizeVectors() { |
| return VectorLegalizer(*this).Run(); |
| } |