| //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the DAGTypeLegalizer class. This is a private interface |
| // shared between the code that implements the SelectionDAG::LegalizeTypes |
| // method. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H |
| #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| /// This takes an arbitrary SelectionDAG as input and hacks on it until only |
| /// value types the target machine can handle are left. This involves promoting |
| /// small sizes to large sizes or splitting up large values into small values. |
| /// |
| class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer { |
| const TargetLowering &TLI; |
| SelectionDAG &DAG; |
| public: |
| /// This pass uses the NodeId on the SDNodes to hold information about the |
| /// state of the node. The enum has all the values. |
| enum NodeIdFlags { |
| /// All operands have been processed, so this node is ready to be handled. |
| ReadyToProcess = 0, |
| |
| /// This is a new node, not before seen, that was created in the process of |
| /// legalizing some other node. |
| NewNode = -1, |
| |
| /// This node's ID needs to be set to the number of its unprocessed |
| /// operands. |
| Unanalyzed = -2, |
| |
| /// This is a node that has already been processed. |
| Processed = -3 |
| |
| // 1+ - This is a node which has this many unprocessed operands. |
| }; |
| private: |
| |
| /// This is a bitvector that contains two bits for each simple value type, |
| /// where the two bits correspond to the LegalizeAction enum from |
| /// TargetLowering. This can be queried with "getTypeAction(VT)". |
| TargetLowering::ValueTypeActionImpl ValueTypeActions; |
| |
| /// Return how we should legalize values of this type. |
| TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const { |
| return TLI.getTypeAction(*DAG.getContext(), VT); |
| } |
| |
| /// Return true if this type is legal on this target. |
| bool isTypeLegal(EVT VT) const { |
| return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal; |
| } |
| |
| /// Return true if this is a simple legal type. |
| bool isSimpleLegalType(EVT VT) const { |
| return VT.isSimple() && TLI.isTypeLegal(VT); |
| } |
| |
| EVT getSetCCResultType(EVT VT) const { |
| return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| } |
| |
| /// Pretend all of this node's results are legal. |
| bool IgnoreNodeResults(SDNode *N) const { |
| return N->getOpcode() == ISD::TargetConstant || |
| N->getOpcode() == ISD::Register; |
| } |
| |
| // Bijection from SDValue to unique id. As each created node gets a |
| // new id we do not need to worry about reuse expunging. Should we |
| // run out of ids, we can do a one time expensive compactifcation. |
| typedef unsigned TableId; |
| |
| TableId NextValueId = 1; |
| |
| SmallDenseMap<SDValue, TableId, 8> ValueToIdMap; |
| SmallDenseMap<TableId, SDValue, 8> IdToValueMap; |
| |
| /// For integer nodes that are below legal width, this map indicates what |
| /// promoted value to use. |
| SmallDenseMap<TableId, TableId, 8> PromotedIntegers; |
| |
| /// For integer nodes that need to be expanded this map indicates which |
| /// operands are the expanded version of the input. |
| SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers; |
| |
| /// For floating-point nodes converted to integers of the same size, this map |
| /// indicates the converted value to use. |
| SmallDenseMap<TableId, TableId, 8> SoftenedFloats; |
| |
| /// For floating-point nodes that have a smaller precision than the smallest |
| /// supported precision, this map indicates what promoted value to use. |
| SmallDenseMap<TableId, TableId, 8> PromotedFloats; |
| |
| /// For float nodes that need to be expanded this map indicates which operands |
| /// are the expanded version of the input. |
| SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats; |
| |
| /// For nodes that are <1 x ty>, this map indicates the scalar value of type |
| /// 'ty' to use. |
| SmallDenseMap<TableId, TableId, 8> ScalarizedVectors; |
| |
| /// For nodes that need to be split this map indicates which operands are the |
| /// expanded version of the input. |
| SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors; |
| |
| /// For vector nodes that need to be widened, indicates the widened value to |
| /// use. |
| SmallDenseMap<TableId, TableId, 8> WidenedVectors; |
| |
| /// For values that have been replaced with another, indicates the replacement |
| /// value to use. |
| SmallDenseMap<TableId, TableId, 8> ReplacedValues; |
| |
| /// This defines a worklist of nodes to process. In order to be pushed onto |
| /// this worklist, all operands of a node must have already been processed. |
| SmallVector<SDNode*, 128> Worklist; |
| |
| TableId getTableId(SDValue V) { |
| assert(V.getNode() && "Getting TableId on SDValue()"); |
| |
| auto I = ValueToIdMap.find(V); |
| if (I != ValueToIdMap.end()) { |
| // replace if there's been a shift. |
| RemapId(I->second); |
| assert(I->second && "All Ids should be nonzero"); |
| return I->second; |
| } |
| // Add if it's not there. |
| ValueToIdMap.insert(std::make_pair(V, NextValueId)); |
| IdToValueMap.insert(std::make_pair(NextValueId, V)); |
| ++NextValueId; |
| assert(NextValueId != 0 && |
| "Ran out of Ids. Increase id type size or add compactification"); |
| return NextValueId - 1; |
| } |
| |
| const SDValue &getSDValue(TableId &Id) { |
| RemapId(Id); |
| assert(Id && "TableId should be non-zero"); |
| return IdToValueMap[Id]; |
| } |
| |
| public: |
| explicit DAGTypeLegalizer(SelectionDAG &dag) |
| : TLI(dag.getTargetLoweringInfo()), DAG(dag), |
| ValueTypeActions(TLI.getValueTypeActions()) { |
| static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, |
| "Too many value types for ValueTypeActions to hold!"); |
| } |
| |
| /// This is the main entry point for the type legalizer. This does a |
| /// top-down traversal of the dag, legalizing types as it goes. Returns |
| /// "true" if it made any changes. |
| bool run(); |
| |
| void NoteDeletion(SDNode *Old, SDNode *New) { |
| for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { |
| TableId NewId = getTableId(SDValue(New, i)); |
| TableId OldId = getTableId(SDValue(Old, i)); |
| |
| if (OldId != NewId) |
| ReplacedValues[OldId] = NewId; |
| |
| // Delete Node from tables. |
| ValueToIdMap.erase(SDValue(Old, i)); |
| IdToValueMap.erase(OldId); |
| PromotedIntegers.erase(OldId); |
| ExpandedIntegers.erase(OldId); |
| SoftenedFloats.erase(OldId); |
| PromotedFloats.erase(OldId); |
| ExpandedFloats.erase(OldId); |
| ScalarizedVectors.erase(OldId); |
| SplitVectors.erase(OldId); |
| WidenedVectors.erase(OldId); |
| } |
| } |
| |
| SelectionDAG &getDAG() const { return DAG; } |
| |
| private: |
| SDNode *AnalyzeNewNode(SDNode *N); |
| void AnalyzeNewValue(SDValue &Val); |
| void PerformExpensiveChecks(); |
| void RemapId(TableId &Id); |
| void RemapValue(SDValue &V); |
| |
| // Common routines. |
| SDValue BitConvertToInteger(SDValue Op); |
| SDValue BitConvertVectorToIntegerVector(SDValue Op); |
| SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT); |
| bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult); |
| bool CustomWidenLowerNode(SDNode *N, EVT VT); |
| |
| /// Replace each result of the given MERGE_VALUES node with the corresponding |
| /// input operand, except for the result 'ResNo', for which the corresponding |
| /// input operand is returned. |
| SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo); |
| |
| SDValue JoinIntegers(SDValue Lo, SDValue Hi); |
| |
| std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); |
| |
| SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT); |
| |
| void ReplaceValueWith(SDValue From, SDValue To); |
| void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); |
| void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT, |
| SDValue &Lo, SDValue &Hi); |
| |
| //===--------------------------------------------------------------------===// |
| // Integer Promotion Support: LegalizeIntegerTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| /// Given a processed operand Op which was promoted to a larger integer type, |
| /// this returns the promoted value. The low bits of the promoted value |
| /// corresponding to the original type are exactly equal to Op. |
| /// The extra bits contain rubbish, so the promoted value may need to be zero- |
| /// or sign-extended from the original type before it is usable (the helpers |
| /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). |
| /// For example, if Op is an i16 and was promoted to an i32, then this method |
| /// returns an i32, the lower 16 bits of which coincide with Op, and the upper |
| /// 16 bits of which contain rubbish. |
| SDValue GetPromotedInteger(SDValue Op) { |
| TableId &PromotedId = PromotedIntegers[getTableId(Op)]; |
| SDValue PromotedOp = getSDValue(PromotedId); |
| assert(PromotedOp.getNode() && "Operand wasn't promoted?"); |
| return PromotedOp; |
| } |
| void SetPromotedInteger(SDValue Op, SDValue Result); |
| |
| /// Get a promoted operand and sign extend it to the final size. |
| SDValue SExtPromotedInteger(SDValue Op) { |
| EVT OldVT = Op.getValueType(); |
| SDLoc dl(Op); |
| Op = GetPromotedInteger(Op); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op, |
| DAG.getValueType(OldVT)); |
| } |
| |
| /// Get a promoted operand and zero extend it to the final size. |
| SDValue ZExtPromotedInteger(SDValue Op) { |
| EVT OldVT = Op.getValueType(); |
| SDLoc dl(Op); |
| Op = GetPromotedInteger(Op); |
| return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType()); |
| } |
| |
| // Get a promoted operand and sign or zero extend it to the final size |
| // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given |
| // subtarget and type, the choice of sign or zero-extension will be |
| // consistent. |
| SDValue SExtOrZExtPromotedInteger(SDValue Op) { |
| EVT OldVT = Op.getValueType(); |
| SDLoc DL(Op); |
| Op = GetPromotedInteger(Op); |
| if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType())) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op, |
| DAG.getValueType(OldVT)); |
| return DAG.getZeroExtendInReg(Op, DL, OldVT.getScalarType()); |
| } |
| |
| // Integer Result Promotion. |
| void PromoteIntegerResult(SDNode *N, unsigned ResNo); |
| SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo); |
| SDValue PromoteIntRes_AssertSext(SDNode *N); |
| SDValue PromoteIntRes_AssertZext(SDNode *N); |
| SDValue PromoteIntRes_Atomic0(AtomicSDNode *N); |
| SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); |
| SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo); |
| SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N); |
| SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N); |
| SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N); |
| SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N); |
| SDValue PromoteIntRes_SPLAT_VECTOR(SDNode *N); |
| SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N); |
| SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N); |
| SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N); |
| SDValue PromoteIntRes_BITCAST(SDNode *N); |
| SDValue PromoteIntRes_BSWAP(SDNode *N); |
| SDValue PromoteIntRes_BITREVERSE(SDNode *N); |
| SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); |
| SDValue PromoteIntRes_Constant(SDNode *N); |
| SDValue PromoteIntRes_CTLZ(SDNode *N); |
| SDValue PromoteIntRes_CTPOP(SDNode *N); |
| SDValue PromoteIntRes_CTTZ(SDNode *N); |
| SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); |
| SDValue PromoteIntRes_FP_TO_FP16(SDNode *N); |
| SDValue PromoteIntRes_INT_EXTEND(SDNode *N); |
| SDValue PromoteIntRes_LOAD(LoadSDNode *N); |
| SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N); |
| SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N); |
| SDValue PromoteIntRes_Overflow(SDNode *N); |
| SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo); |
| SDValue PromoteIntRes_SELECT(SDNode *N); |
| SDValue PromoteIntRes_VSELECT(SDNode *N); |
| SDValue PromoteIntRes_SELECT_CC(SDNode *N); |
| SDValue PromoteIntRes_SETCC(SDNode *N); |
| SDValue PromoteIntRes_SHL(SDNode *N); |
| SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); |
| SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N); |
| SDValue PromoteIntRes_SExtIntBinOp(SDNode *N); |
| SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); |
| SDValue PromoteIntRes_SRA(SDNode *N); |
| SDValue PromoteIntRes_SRL(SDNode *N); |
| SDValue PromoteIntRes_TRUNCATE(SDNode *N); |
| SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo); |
| SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo); |
| SDValue PromoteIntRes_UNDEF(SDNode *N); |
| SDValue PromoteIntRes_VAARG(SDNode *N); |
| SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo); |
| SDValue PromoteIntRes_ADDSUBSAT(SDNode *N); |
| SDValue PromoteIntRes_MULFIX(SDNode *N); |
| SDValue PromoteIntRes_DIVFIX(SDNode *N); |
| SDValue PromoteIntRes_FLT_ROUNDS(SDNode *N); |
| SDValue PromoteIntRes_VECREDUCE(SDNode *N); |
| SDValue PromoteIntRes_ABS(SDNode *N); |
| |
| // Integer Operand Promotion. |
| bool PromoteIntegerOperand(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); |
| SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N); |
| SDValue PromoteIntOp_BITCAST(SDNode *N); |
| SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); |
| SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); |
| SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N); |
| SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N); |
| SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N); |
| SDValue PromoteIntOp_SPLAT_VECTOR(SDNode *N); |
| SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_Shift(SDNode *N); |
| SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); |
| SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); |
| SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N); |
| SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_TRUNCATE(SDNode *N); |
| SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); |
| SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N); |
| SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); |
| SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N); |
| SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo); |
| SDValue PromoteIntOp_FIX(SDNode *N); |
| SDValue PromoteIntOp_FPOWI(SDNode *N); |
| SDValue PromoteIntOp_VECREDUCE(SDNode *N); |
| |
| void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); |
| |
| //===--------------------------------------------------------------------===// |
| // Integer Expansion Support: LegalizeIntegerTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| /// Given a processed operand Op which was expanded into two integers of half |
| /// the size, this returns the two halves. The low bits of Op are exactly |
| /// equal to the bits of Lo; the high bits exactly equal Hi. |
| /// For example, if Op is an i64 which was expanded into two i32's, then this |
| /// method returns the two i32's, with Lo being equal to the lower 32 bits of |
| /// Op, and Hi being equal to the upper 32 bits. |
| void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); |
| void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); |
| |
| // Integer Result Expansion. |
| void ExpandIntegerResult(SDNode *N, unsigned ResNo); |
| void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_READCYCLECOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_FLT_ROUNDS (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_LLROUND_LLRINT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_ADDSUBCARRY (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| void ExpandShiftByConstant(SDNode *N, const APInt &Amt, |
| SDValue &Lo, SDValue &Hi); |
| bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); |
| bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| // Integer Operand Expansion. |
| bool ExpandIntegerOperand(SDNode *N, unsigned OpNo); |
| SDValue ExpandIntOp_BR_CC(SDNode *N); |
| SDValue ExpandIntOp_SELECT_CC(SDNode *N); |
| SDValue ExpandIntOp_SETCC(SDNode *N); |
| SDValue ExpandIntOp_SETCCCARRY(SDNode *N); |
| SDValue ExpandIntOp_Shift(SDNode *N); |
| SDValue ExpandIntOp_SINT_TO_FP(SDNode *N); |
| SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); |
| SDValue ExpandIntOp_TRUNCATE(SDNode *N); |
| SDValue ExpandIntOp_UINT_TO_FP(SDNode *N); |
| SDValue ExpandIntOp_RETURNADDR(SDNode *N); |
| SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N); |
| |
| void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, |
| ISD::CondCode &CCCode, const SDLoc &dl); |
| |
| //===--------------------------------------------------------------------===// |
| // Float to Integer Conversion Support: LegalizeFloatTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| /// GetSoftenedFloat - Given a processed operand Op which was converted to an |
| /// integer of the same size, this returns the integer. The integer contains |
| /// exactly the same bits as Op - only the type changed. For example, if Op |
| /// is an f32 which was softened to an i32, then this method returns an i32, |
| /// the bits of which coincide with those of Op |
| SDValue GetSoftenedFloat(SDValue Op) { |
| TableId Id = getTableId(Op); |
| auto Iter = SoftenedFloats.find(Id); |
| if (Iter == SoftenedFloats.end()) { |
| assert(isSimpleLegalType(Op.getValueType()) && |
| "Operand wasn't converted to integer?"); |
| return Op; |
| } |
| SDValue SoftenedOp = getSDValue(Iter->second); |
| assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?"); |
| return SoftenedOp; |
| } |
| void SetSoftenedFloat(SDValue Op, SDValue Result); |
| |
| // Convert Float Results to Integer. |
| void SoftenFloatResult(SDNode *N, unsigned ResNo); |
| SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC); |
| SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC); |
| SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo); |
| SDValue SoftenFloatRes_BITCAST(SDNode *N); |
| SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); |
| SDValue SoftenFloatRes_ConstantFP(SDNode *N); |
| SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo); |
| SDValue SoftenFloatRes_FABS(SDNode *N); |
| SDValue SoftenFloatRes_FMINNUM(SDNode *N); |
| SDValue SoftenFloatRes_FMAXNUM(SDNode *N); |
| SDValue SoftenFloatRes_FADD(SDNode *N); |
| SDValue SoftenFloatRes_FCBRT(SDNode *N); |
| SDValue SoftenFloatRes_FCEIL(SDNode *N); |
| SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); |
| SDValue SoftenFloatRes_FCOS(SDNode *N); |
| SDValue SoftenFloatRes_FDIV(SDNode *N); |
| SDValue SoftenFloatRes_FEXP(SDNode *N); |
| SDValue SoftenFloatRes_FEXP2(SDNode *N); |
| SDValue SoftenFloatRes_FFLOOR(SDNode *N); |
| SDValue SoftenFloatRes_FLOG(SDNode *N); |
| SDValue SoftenFloatRes_FLOG2(SDNode *N); |
| SDValue SoftenFloatRes_FLOG10(SDNode *N); |
| SDValue SoftenFloatRes_FMA(SDNode *N); |
| SDValue SoftenFloatRes_FMUL(SDNode *N); |
| SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); |
| SDValue SoftenFloatRes_FNEG(SDNode *N); |
| SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); |
| SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N); |
| SDValue SoftenFloatRes_FP_ROUND(SDNode *N); |
| SDValue SoftenFloatRes_FPOW(SDNode *N); |
| SDValue SoftenFloatRes_FPOWI(SDNode *N); |
| SDValue SoftenFloatRes_FREM(SDNode *N); |
| SDValue SoftenFloatRes_FRINT(SDNode *N); |
| SDValue SoftenFloatRes_FROUND(SDNode *N); |
| SDValue SoftenFloatRes_FSIN(SDNode *N); |
| SDValue SoftenFloatRes_FSQRT(SDNode *N); |
| SDValue SoftenFloatRes_FSUB(SDNode *N); |
| SDValue SoftenFloatRes_FTRUNC(SDNode *N); |
| SDValue SoftenFloatRes_LOAD(SDNode *N); |
| SDValue SoftenFloatRes_SELECT(SDNode *N); |
| SDValue SoftenFloatRes_SELECT_CC(SDNode *N); |
| SDValue SoftenFloatRes_UNDEF(SDNode *N); |
| SDValue SoftenFloatRes_VAARG(SDNode *N); |
| SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); |
| |
| // Convert Float Operand to Integer. |
| bool SoftenFloatOperand(SDNode *N, unsigned OpNo); |
| SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC); |
| SDValue SoftenFloatOp_BITCAST(SDNode *N); |
| SDValue SoftenFloatOp_BR_CC(SDNode *N); |
| SDValue SoftenFloatOp_FP_ROUND(SDNode *N); |
| SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N); |
| SDValue SoftenFloatOp_LROUND(SDNode *N); |
| SDValue SoftenFloatOp_LLROUND(SDNode *N); |
| SDValue SoftenFloatOp_LRINT(SDNode *N); |
| SDValue SoftenFloatOp_LLRINT(SDNode *N); |
| SDValue SoftenFloatOp_SELECT_CC(SDNode *N); |
| SDValue SoftenFloatOp_SETCC(SDNode *N); |
| SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); |
| SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N); |
| |
| //===--------------------------------------------------------------------===// |
| // Float Expansion Support: LegalizeFloatTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| /// Given a processed operand Op which was expanded into two floating-point |
| /// values of half the size, this returns the two halves. |
| /// The low bits of Op are exactly equal to the bits of Lo; the high bits |
| /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded |
| /// into two f64's, then this method returns the two f64's, with Lo being |
| /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits. |
| void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); |
| void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); |
| |
| // Float Result Expansion. |
| void ExpandFloatResult(SDNode *N, unsigned ResNo); |
| void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC, |
| SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC, |
| SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| // Float Operand Expansion. |
| bool ExpandFloatOperand(SDNode *N, unsigned OpNo); |
| SDValue ExpandFloatOp_BR_CC(SDNode *N); |
| SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N); |
| SDValue ExpandFloatOp_FP_ROUND(SDNode *N); |
| SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N); |
| SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N); |
| SDValue ExpandFloatOp_LROUND(SDNode *N); |
| SDValue ExpandFloatOp_LLROUND(SDNode *N); |
| SDValue ExpandFloatOp_LRINT(SDNode *N); |
| SDValue ExpandFloatOp_LLRINT(SDNode *N); |
| SDValue ExpandFloatOp_SELECT_CC(SDNode *N); |
| SDValue ExpandFloatOp_SETCC(SDNode *N); |
| SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); |
| |
| void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, |
| ISD::CondCode &CCCode, const SDLoc &dl); |
| |
| //===--------------------------------------------------------------------===// |
| // Float promotion support: LegalizeFloatTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| SDValue GetPromotedFloat(SDValue Op) { |
| TableId &PromotedId = PromotedFloats[getTableId(Op)]; |
| SDValue PromotedOp = getSDValue(PromotedId); |
| assert(PromotedOp.getNode() && "Operand wasn't promoted?"); |
| return PromotedOp; |
| } |
| void SetPromotedFloat(SDValue Op, SDValue Result); |
| |
| void PromoteFloatResult(SDNode *N, unsigned ResNo); |
| SDValue PromoteFloatRes_BITCAST(SDNode *N); |
| SDValue PromoteFloatRes_BinOp(SDNode *N); |
| SDValue PromoteFloatRes_ConstantFP(SDNode *N); |
| SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N); |
| SDValue PromoteFloatRes_FMAD(SDNode *N); |
| SDValue PromoteFloatRes_FPOWI(SDNode *N); |
| SDValue PromoteFloatRes_FP_ROUND(SDNode *N); |
| SDValue PromoteFloatRes_LOAD(SDNode *N); |
| SDValue PromoteFloatRes_SELECT(SDNode *N); |
| SDValue PromoteFloatRes_SELECT_CC(SDNode *N); |
| SDValue PromoteFloatRes_UnaryOp(SDNode *N); |
| SDValue PromoteFloatRes_UNDEF(SDNode *N); |
| SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N); |
| SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N); |
| |
| bool PromoteFloatOperand(SDNode *N, unsigned OpNo); |
| SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo); |
| SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo); |
| SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo); |
| SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo); |
| SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo); |
| SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo); |
| SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo); |
| |
| //===--------------------------------------------------------------------===// |
| // Scalarization Support: LegalizeVectorTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| /// Given a processed one-element vector Op which was scalarized to its |
| /// element type, this returns the element. For example, if Op is a v1i32, |
| /// Op = < i32 val >, this method returns val, an i32. |
| SDValue GetScalarizedVector(SDValue Op) { |
| TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)]; |
| SDValue ScalarizedOp = getSDValue(ScalarizedId); |
| assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); |
| return ScalarizedOp; |
| } |
| void SetScalarizedVector(SDValue Op, SDValue Result); |
| |
| // Vector Result Scalarization: <1 x ty> -> ty. |
| void ScalarizeVectorResult(SDNode *N, unsigned ResNo); |
| SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo); |
| SDValue ScalarizeVecRes_BinOp(SDNode *N); |
| SDValue ScalarizeVecRes_TernaryOp(SDNode *N); |
| SDValue ScalarizeVecRes_UnaryOp(SDNode *N); |
| SDValue ScalarizeVecRes_StrictFPOp(SDNode *N); |
| SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo); |
| SDValue ScalarizeVecRes_InregOp(SDNode *N); |
| SDValue ScalarizeVecRes_VecInregOp(SDNode *N); |
| |
| SDValue ScalarizeVecRes_BITCAST(SDNode *N); |
| SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N); |
| SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N); |
| SDValue ScalarizeVecRes_FP_ROUND(SDNode *N); |
| SDValue ScalarizeVecRes_FPOWI(SDNode *N); |
| SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); |
| SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); |
| SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); |
| SDValue ScalarizeVecRes_VSELECT(SDNode *N); |
| SDValue ScalarizeVecRes_SELECT(SDNode *N); |
| SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); |
| SDValue ScalarizeVecRes_SETCC(SDNode *N); |
| SDValue ScalarizeVecRes_UNDEF(SDNode *N); |
| SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); |
| |
| SDValue ScalarizeVecRes_FIX(SDNode *N); |
| |
| // Vector Operand Scalarization: <1 x ty> -> ty. |
| bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); |
| SDValue ScalarizeVecOp_BITCAST(SDNode *N); |
| SDValue ScalarizeVecOp_UnaryOp(SDNode *N); |
| SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N); |
| SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); |
| SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue ScalarizeVecOp_VSELECT(SDNode *N); |
| SDValue ScalarizeVecOp_VSETCC(SDNode *N); |
| SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); |
| SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo); |
| SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo); |
| SDValue ScalarizeVecOp_VECREDUCE(SDNode *N); |
| |
| //===--------------------------------------------------------------------===// |
| // Vector Splitting Support: LegalizeVectorTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| /// Given a processed vector Op which was split into vectors of half the size, |
| /// this method returns the halves. The first elements of Op coincide with the |
| /// elements of Lo; the remaining elements of Op coincide with the elements of |
| /// Hi: Op is what you would get by concatenating Lo and Hi. |
| /// For example, if Op is a v8i32 that was split into two v4i32's, then this |
| /// method returns the two v4i32's, with Lo corresponding to the first 4 |
| /// elements of Op, and Hi to the last 4 elements. |
| void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); |
| void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); |
| |
| // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. |
| void SplitVectorResult(SDNode *N, unsigned ResNo); |
| void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo, |
| SDValue &Lo, SDValue &Hi); |
| |
| void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_MGATHER(MaskedGatherSDNode *MGT, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, |
| SDValue &Hi); |
| void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. |
| bool SplitVectorOperand(SDNode *N, unsigned OpNo); |
| SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo); |
| SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo); |
| SDValue SplitVecOp_UnaryOp(SDNode *N); |
| SDValue SplitVecOp_TruncateHelper(SDNode *N); |
| |
| SDValue SplitVecOp_BITCAST(SDNode *N); |
| SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); |
| SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue SplitVecOp_ExtVecInRegOp(SDNode *N); |
| SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); |
| SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); |
| SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo); |
| SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *MGT, unsigned OpNo); |
| SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); |
| SDValue SplitVecOp_VSETCC(SDNode *N); |
| SDValue SplitVecOp_FP_ROUND(SDNode *N); |
| SDValue SplitVecOp_FCOPYSIGN(SDNode *N); |
| |
| //===--------------------------------------------------------------------===// |
| // Vector Widening Support: LegalizeVectorTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| /// Given a processed vector Op which was widened into a larger vector, this |
| /// method returns the larger vector. The elements of the returned vector |
| /// consist of the elements of Op followed by elements containing rubbish. |
| /// For example, if Op is a v2i32 that was widened to a v4i32, then this |
| /// method returns a v4i32 for which the first two elements are the same as |
| /// those of Op, while the last two elements contain rubbish. |
| SDValue GetWidenedVector(SDValue Op) { |
| TableId &WidenedId = WidenedVectors[getTableId(Op)]; |
| SDValue WidenedOp = getSDValue(WidenedId); |
| assert(WidenedOp.getNode() && "Operand wasn't widened?"); |
| return WidenedOp; |
| } |
| void SetWidenedVector(SDValue Op, SDValue Result); |
| |
| // Widen Vector Result Promotion. |
| void WidenVectorResult(SDNode *N, unsigned ResNo); |
| SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo); |
| SDValue WidenVecRes_BITCAST(SDNode* N); |
| SDValue WidenVecRes_BUILD_VECTOR(SDNode* N); |
| SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N); |
| SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N); |
| SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N); |
| SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N); |
| SDValue WidenVecRes_LOAD(SDNode* N); |
| SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N); |
| SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N); |
| SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N); |
| SDValue WidenVecRes_SELECT(SDNode* N); |
| SDValue WidenVSELECTAndMask(SDNode *N); |
| SDValue WidenVecRes_SELECT_CC(SDNode* N); |
| SDValue WidenVecRes_SETCC(SDNode* N); |
| SDValue WidenVecRes_STRICT_FSETCC(SDNode* N); |
| SDValue WidenVecRes_UNDEF(SDNode *N); |
| SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N); |
| |
| SDValue WidenVecRes_Ternary(SDNode *N); |
| SDValue WidenVecRes_Binary(SDNode *N); |
| SDValue WidenVecRes_BinaryCanTrap(SDNode *N); |
| SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N); |
| SDValue WidenVecRes_StrictFP(SDNode *N); |
| SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo); |
| SDValue WidenVecRes_Convert(SDNode *N); |
| SDValue WidenVecRes_Convert_StrictFP(SDNode *N); |
| SDValue WidenVecRes_FCOPYSIGN(SDNode *N); |
| SDValue WidenVecRes_POWI(SDNode *N); |
| SDValue WidenVecRes_Shift(SDNode *N); |
| SDValue WidenVecRes_Unary(SDNode *N); |
| SDValue WidenVecRes_InregOp(SDNode *N); |
| |
| // Widen Vector Operand. |
| bool WidenVectorOperand(SDNode *N, unsigned OpNo); |
| SDValue WidenVecOp_BITCAST(SDNode *N); |
| SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N); |
| SDValue WidenVecOp_EXTEND(SDNode *N); |
| SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N); |
| SDValue WidenVecOp_STORE(SDNode* N); |
| SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo); |
| SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo); |
| SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo); |
| SDValue WidenVecOp_SETCC(SDNode* N); |
| SDValue WidenVecOp_STRICT_FSETCC(SDNode* N); |
| SDValue WidenVecOp_VSELECT(SDNode *N); |
| |
| SDValue WidenVecOp_Convert(SDNode *N); |
| SDValue WidenVecOp_FCOPYSIGN(SDNode *N); |
| SDValue WidenVecOp_VECREDUCE(SDNode *N); |
| |
| /// Helper function to generate a set of operations to perform |
| /// a vector operation for a wider type. |
| /// |
| SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE); |
| |
| //===--------------------------------------------------------------------===// |
| // Vector Widening Utilities Support: LegalizeVectorTypes.cpp |
| //===--------------------------------------------------------------------===// |
| |
| /// Helper function to generate a set of loads to load a vector with a |
| /// resulting wider type. It takes: |
| /// LdChain: list of chains for the load to be generated. |
| /// Ld: load to widen |
| SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain, |
| LoadSDNode *LD); |
| |
| /// Helper function to generate a set of extension loads to load a vector with |
| /// a resulting wider type. It takes: |
| /// LdChain: list of chains for the load to be generated. |
| /// Ld: load to widen |
| /// ExtType: extension element type |
| SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain, |
| LoadSDNode *LD, ISD::LoadExtType ExtType); |
| |
| /// Helper function to generate a set of stores to store a widen vector into |
| /// non-widen memory. |
| /// StChain: list of chains for the stores we have generated |
| /// ST: store of a widen value |
| void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST); |
| |
| /// Helper function to generate a set of stores to store a truncate widen |
| /// vector into non-widen memory. |
| /// StChain: list of chains for the stores we have generated |
| /// ST: store of a widen value |
| void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain, |
| StoreSDNode *ST); |
| |
| /// Modifies a vector input (widen or narrows) to a vector of NVT. The |
| /// input vector must have the same element type as NVT. |
| /// When FillWithZeroes is "on" the vector will be widened with zeroes. |
| /// By default, the vector will be widened with undefined values. |
| SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false); |
| |
| /// Return a mask of vector type MaskVT to replace InMask. Also adjust |
| /// MaskVT to ToMaskVT if needed with vector extension or truncation. |
| SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT); |
| |
| //===--------------------------------------------------------------------===// |
| // Generic Splitting: LegalizeTypesGeneric.cpp |
| //===--------------------------------------------------------------------===// |
| |
| // Legalization methods which only use that the illegal type is split into two |
| // not necessarily identical types. As such they can be used for splitting |
| // vectors and expanding integers and floats. |
| |
| void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { |
| if (Op.getValueType().isVector()) |
| GetSplitVector(Op, Lo, Hi); |
| else if (Op.getValueType().isInteger()) |
| GetExpandedInteger(Op, Lo, Hi); |
| else |
| GetExpandedFloat(Op, Lo, Hi); |
| } |
| |
| /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the |
| /// given value. |
| void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi); |
| |
| // Generic Result Splitting. |
| void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo, |
| SDValue &Lo, SDValue &Hi); |
| void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| void SplitVSETCC(const SDNode *N); |
| |
| //===--------------------------------------------------------------------===// |
| // Generic Expansion: LegalizeTypesGeneric.cpp |
| //===--------------------------------------------------------------------===// |
| |
| // Legalization methods which only use that the illegal type is split into two |
| // identical types of half the size, and that the Lo/Hi part is stored first |
| // in memory on little/big-endian machines, followed by the Hi/Lo part. As |
| // such they can be used for expanding integers and floats. |
| |
| void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { |
| if (Op.getValueType().isInteger()) |
| GetExpandedInteger(Op, Lo, Hi); |
| else |
| GetExpandedFloat(Op, Lo, Hi); |
| } |
| |
| |
| /// This function will split the integer \p Op into \p NumElements |
| /// operations of type \p EltVT and store them in \p Ops. |
| void IntegerToVector(SDValue Op, unsigned NumElements, |
| SmallVectorImpl<SDValue> &Ops, EVT EltVT); |
| |
| // Generic Result Expansion. |
| void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo, |
| SDValue &Lo, SDValue &Hi); |
| void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); |
| void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); |
| |
| // Generic Operand Expansion. |
| SDValue ExpandOp_BITCAST (SDNode *N); |
| SDValue ExpandOp_BUILD_VECTOR (SDNode *N); |
| SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N); |
| SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N); |
| SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N); |
| SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); |
| }; |
| |
| } // end namespace llvm. |
| |
| #endif |