blob: 6aed5796acc6a652b9583960282acd01432b97bc [file] [log] [blame] [edit]
//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements integer type expansion and promotion for LegalizeTypes.
// Promotion is the act of changing a computation in an illegal type into a
// computation in a larger type. For example, implementing i8 arithmetic in an
// i32 register (often needed on powerpc).
// Expansion is the act of changing a computation in an illegal type into a
// computation in two identical registers of a smaller type. For example,
// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
// targets).
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "legalize-types"
//===----------------------------------------------------------------------===//
// Integer Result Promotion
//===----------------------------------------------------------------------===//
/// PromoteIntegerResult - This method is called when a result of a node is
/// found to be in need of promotion to a larger type. At this point, the node
/// may also have invalid operands or may have other results that need
/// expansion, we just know that (at least) one result needs promotion.
void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true)) {
LLVM_DEBUG(dbgs() << "Node has been custom expanded, done\n");
return;
}
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator!");
case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break;
case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break;
case ISD::BITREVERSE: Res = PromoteIntRes_BITREVERSE(N); break;
case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break;
case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break;
case ISD::Constant: Res = PromoteIntRes_Constant(N); break;
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break;
case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break;
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break;
case ISD::EXTRACT_VECTOR_ELT:
Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N)); break;
case ISD::MLOAD: Res = PromoteIntRes_MLOAD(cast<MaskedLoadSDNode>(N));
break;
case ISD::MGATHER: Res = PromoteIntRes_MGATHER(cast<MaskedGatherSDNode>(N));
break;
case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break;
case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break;
case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break;
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS:
case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break;
case ISD::SMIN:
case ISD::SMAX: Res = PromoteIntRes_SExtIntBinOp(N); break;
case ISD::UMIN:
case ISD::UMAX: Res = PromoteIntRes_ZExtIntBinOp(N); break;
case ISD::SHL: Res = PromoteIntRes_SHL(N); break;
case ISD::SIGN_EXTEND_INREG:
Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
case ISD::SRA: Res = PromoteIntRes_SRA(N); break;
case ISD::SRL: Res = PromoteIntRes_SRL(N); break;
case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break;
case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break;
case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break;
case ISD::EXTRACT_SUBVECTOR:
Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
case ISD::VECTOR_SHUFFLE:
Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
case ISD::INSERT_VECTOR_ELT:
Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
case ISD::BUILD_VECTOR:
Res = PromoteIntRes_BUILD_VECTOR(N); break;
case ISD::SCALAR_TO_VECTOR:
Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
case ISD::SPLAT_VECTOR:
Res = PromoteIntRes_SPLAT_VECTOR(N); break;
case ISD::CONCAT_VECTORS:
Res = PromoteIntRes_CONCAT_VECTORS(N); break;
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
Res = PromoteIntRes_EXTEND_VECTOR_INREG(N); break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break;
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break;
case ISD::FP_TO_FP16: Res = PromoteIntRes_FP_TO_FP16(N); break;
case ISD::FLT_ROUNDS_: Res = PromoteIntRes_FLT_ROUNDS(N); break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break;
case ISD::SDIV:
case ISD::SREM: Res = PromoteIntRes_SExtIntBinOp(N); break;
case ISD::UDIV:
case ISD::UREM: Res = PromoteIntRes_ZExtIntBinOp(N); break;
case ISD::SADDO:
case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
case ISD::UADDO:
case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
case ISD::SMULO:
case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break;
case ISD::ADDE:
case ISD::SUBE:
case ISD::ADDCARRY:
case ISD::SUBCARRY: Res = PromoteIntRes_ADDSUBCARRY(N, ResNo); break;
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::SSUBSAT:
case ISD::USUBSAT: Res = PromoteIntRes_ADDSUBSAT(N); break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT: Res = PromoteIntRes_MULFIX(N); break;
case ISD::SDIVFIX:
case ISD::UDIVFIX: Res = PromoteIntRes_DIVFIX(N); break;
case ISD::ABS: Res = PromoteIntRes_ABS(N); break;
case ISD::ATOMIC_LOAD:
Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_SWAP:
Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
Res = PromoteIntRes_AtomicCmpSwap(cast<AtomicSDNode>(N), ResNo);
break;
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
Res = PromoteIntRes_VECREDUCE(N);
break;
}
// If the result is null then the sub-method took care of registering it.
if (Res.getNode())
SetPromotedInteger(SDValue(N, ResNo), Res);
}
SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
unsigned ResNo) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
return GetPromotedInteger(Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
// Sign-extend the new bits, and continue the assertion.
SDValue Op = SExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::AssertSext, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
// Zero the new bits, and continue the assertion.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::AssertZext, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
N->getMemoryVT(), ResVT,
N->getChain(), N->getBasePtr(),
N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
N->getMemoryVT(),
N->getChain(), N->getBasePtr(),
Op2, N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N,
unsigned ResNo) {
if (ResNo == 1) {
assert(N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
EVT SVT = getSetCCResultType(N->getOperand(2).getValueType());
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
// Only use the result of getSetCCResultType if it is legal,
// otherwise just use the promoted result type (NVT).
if (!TLI.isTypeLegal(SVT))
SVT = NVT;
SDVTList VTs = DAG.getVTList(N->getValueType(0), SVT, MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, SDLoc(N), N->getMemoryVT(), VTs,
N->getChain(), N->getBasePtr(), N->getOperand(2), N->getOperand(3),
N->getMemOperand());
ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
ReplaceValueWith(SDValue(N, 2), Res.getValue(2));
return Res.getValue(1);
}
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
SDValue Op3 = GetPromotedInteger(N->getOperand(3));
SDVTList VTs =
DAG.getVTList(Op2.getValueType(), N->getValueType(1), MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
N->getOpcode(), SDLoc(N), N->getMemoryVT(), VTs, N->getChain(),
N->getBasePtr(), Op2, Op3, N->getMemOperand());
// Update the use to N with the newly created Res.
for (unsigned i = 1, NumResults = N->getNumValues(); i < NumResults; ++i)
ReplaceValueWith(SDValue(N, i), Res.getValue(i));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
SDLoc dl(N);
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
break;
case TargetLowering::TypePromoteInteger:
if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
// The input promotes to the same size. Convert the promoted value.
return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
break;
case TargetLowering::TypeSoftenFloat:
// Promote the integer operand by hand.
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
case TargetLowering::TypePromoteFloat: {
// Convert the promoted float by hand.
if (!NOutVT.isVector())
return DAG.getNode(ISD::FP_TO_FP16, dl, NOutVT, GetPromotedFloat(InOp));
break;
}
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
break;
case TargetLowering::TypeScalarizeVector:
// Convert the element to an integer and promote it by hand.
if (!NOutVT.isVector())
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
BitConvertToInteger(GetScalarizedVector(InOp)));
break;
case TargetLowering::TypeSplitVector: {
if (!NOutVT.isVector()) {
// For example, i32 = BITCAST v2i16 on alpha. Convert the split
// pieces of the input into integers and reassemble in the final type.
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
EVT::getIntegerVT(*DAG.getContext(),
NOutVT.getSizeInBits()),
JoinIntegers(Lo, Hi));
return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
}
break;
}
case TargetLowering::TypeWidenVector:
// The input is widened to the same size. Convert to the widened value.
// Make sure that the outgoing value is not a vector, because this would
// make us bitcast between two vectors which are legalized in different ways.
if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector()) {
SDValue Res =
DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
// For big endian targets we need to shift the casted value or the
// interesting bits will end up at the wrong place.
if (DAG.getDataLayout().isBigEndian()) {
unsigned ShiftAmt = NInVT.getSizeInBits() - InVT.getSizeInBits();
EVT ShiftAmtTy = TLI.getShiftAmountTy(NOutVT, DAG.getDataLayout());
assert(ShiftAmt < NOutVT.getSizeInBits() && "Too large shift amount!");
Res = DAG.getNode(ISD::SRL, dl, NOutVT, Res,
DAG.getConstant(ShiftAmt, dl, ShiftAmtTy));
}
return Res;
}
// If the output type is also a vector and widening it to the same size
// as the widened input type would be a legal type, we can widen the bitcast
// and handle the promotion after.
if (NOutVT.isVector()) {
unsigned WidenInSize = NInVT.getSizeInBits();
unsigned OutSize = OutVT.getSizeInBits();
if (WidenInSize % OutSize == 0) {
unsigned Scale = WidenInSize / OutSize;
EVT WideOutVT = EVT::getVectorVT(*DAG.getContext(),
OutVT.getVectorElementType(),
OutVT.getVectorNumElements() * Scale);
if (isTypeLegal(WideOutVT)) {
InOp = DAG.getBitcast(WideOutVT, GetWidenedVector(InOp));
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OutVT, InOp,
DAG.getConstant(0, dl, IdxTy));
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, InOp);
}
}
}
}
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
CreateStackStoreLoad(InOp, OutVT));
}
// Helper for BSWAP/BITREVERSE promotion to ensure we can fit any shift amount
// in the VT returned by getShiftAmountTy and to return a safe VT if we can't.
static EVT getShiftAmountTyForConstant(EVT VT, const TargetLowering &TLI,
SelectionDAG &DAG) {
EVT ShiftVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
// If any possible shift value won't fit in the prefered type, just use
// something safe. It will be legalized when the shift is expanded.
if (!ShiftVT.isVector() &&
ShiftVT.getSizeInBits() < Log2_32_Ceil(VT.getSizeInBits()))
ShiftVT = MVT::i32;
return ShiftVT;
}
SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
SDLoc dl(N);
unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
EVT ShiftVT = getShiftAmountTyForConstant(NVT, TLI, DAG);
return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
DAG.getConstant(DiffBits, dl, ShiftVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_BITREVERSE(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
SDLoc dl(N);
unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
EVT ShiftVT = getShiftAmountTyForConstant(NVT, TLI, DAG);
return DAG.getNode(ISD::SRL, dl, NVT,
DAG.getNode(ISD::BITREVERSE, dl, NVT, Op),
DAG.getConstant(DiffBits, dl, ShiftVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
// The pair element type may be legal, or may not promote to the same type as
// the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N),
TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)), JoinIntegers(N->getOperand(0),
N->getOperand(1)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
EVT VT = N->getValueType(0);
// FIXME there is no actual debug info here
SDLoc dl(N);
// Zero extend things like i1, sign extend everything else. It shouldn't
// matter in theory which one we pick, but this tends to give better code?
unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDValue Result = DAG.getNode(Opc, dl,
TLI.getTypeToTransformTo(*DAG.getContext(), VT),
SDValue(N, 0));
assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
return Result;
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
// Zero extend to the promoted type and do the count there.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
SDLoc dl(N);
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
// Subtract off the extra leading bits in the bigger type.
return DAG.getNode(
ISD::SUB, dl, NVT, Op,
DAG.getConstant(NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(), dl,
NVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
// Zero extend to the promoted type and do the count there.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
SDLoc dl(N);
if (N->getOpcode() == ISD::CTTZ) {
// The count is the same in the promoted type except if the original
// value was zero. This can be handled by setting the bit just off
// the top of the original type.
auto TopBit = APInt::getOneBitSet(NVT.getScalarSizeInBits(),
OVT.getScalarSizeInBits());
Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, dl, NVT));
}
return DAG.getNode(N->getOpcode(), dl, NVT, Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// If the input also needs to be promoted, do that first so we can get a
// get a good idea for the output type.
if (TLI.getTypeAction(*DAG.getContext(), Op0.getValueType())
== TargetLowering::TypePromoteInteger) {
SDValue In = GetPromotedInteger(Op0);
// If the new type is larger than NVT, use it. We probably won't need to
// promote it again.
EVT SVT = In.getValueType().getScalarType();
if (SVT.bitsGE(NVT)) {
SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, In, Op1);
return DAG.getAnyExtOrTrunc(Ext, dl, NVT);
}
}
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, Op0, Op1);
}
SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned NewOpc = N->getOpcode();
SDLoc dl(N);
// If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
// not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT
// and SINT conversions are Custom, there is no way to tell which is
// preferable. We choose SINT because that's the right thing on PPC.)
if (N->getOpcode() == ISD::FP_TO_UINT &&
!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
NewOpc = ISD::FP_TO_SINT;
if (N->getOpcode() == ISD::STRICT_FP_TO_UINT &&
!TLI.isOperationLegal(ISD::STRICT_FP_TO_UINT, NVT) &&
TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
NewOpc = ISD::STRICT_FP_TO_SINT;
SDValue Res;
if (N->isStrictFPOpcode()) {
Res = DAG.getNode(NewOpc, dl, { NVT, MVT::Other },
{ N->getOperand(0), N->getOperand(1) });
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
} else
Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
// Assert that the converted value fits in the original type. If it doesn't
// (eg: because the value being converted is too big), then the result of the
// original operation was undefined anyway, so the assert is still correct.
//
// NOTE: fp-to-uint to fp-to-sint promotion guarantees zero extend. For example:
// before legalization: fp-to-uint16, 65534. -> 0xfffe
// after legalization: fp-to-sint32, 65534. -> 0x0000fffe
return DAG.getNode((N->getOpcode() == ISD::FP_TO_UINT ||
N->getOpcode() == ISD::STRICT_FP_TO_UINT) ?
ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
DAG.getValueType(N->getValueType(0).getScalarType()));
}
SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_FP16(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::PromoteIntRes_FLT_ROUNDS(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
return DAG.getNode(N->getOpcode(), dl, NVT);
}
SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
if (getTypeAction(N->getOperand(0).getValueType())
== TargetLowering::TypePromoteInteger) {
SDValue Res = GetPromotedInteger(N->getOperand(0));
assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
// If the result and operand types are the same after promotion, simplify
// to an in-register extension.
if (NVT == Res.getValueType()) {
// The high bits are not guaranteed to be anything. Insert an extend.
if (N->getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
DAG.getValueType(N->getOperand(0).getValueType()));
if (N->getOpcode() == ISD::ZERO_EXTEND)
return DAG.getZeroExtendInReg(Res, dl,
N->getOperand(0).getValueType().getScalarType());
assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
return Res;
}
}
// Otherwise, just extend the original operand all the way to the larger type.
return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
ISD::LoadExtType ExtType =
ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
SDLoc dl(N);
SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
N->getMemoryVT(), N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_MLOAD(MaskedLoadSDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue ExtPassThru = GetPromotedInteger(N->getPassThru());
SDLoc dl(N);
SDValue Res = DAG.getMaskedLoad(NVT, dl, N->getChain(), N->getBasePtr(),
N->getOffset(), N->getMask(), ExtPassThru,
N->getMemoryVT(), N->getMemOperand(),
N->getAddressingMode(), ISD::EXTLOAD);
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_MGATHER(MaskedGatherSDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue ExtPassThru = GetPromotedInteger(N->getPassThru());
assert(NVT == ExtPassThru.getValueType() &&
"Gather result type and the passThru argument type should be the same");
SDLoc dl(N);
SDValue Ops[] = {N->getChain(), ExtPassThru, N->getMask(), N->getBasePtr(),
N->getIndex(), N->getScale() };
SDValue Res = DAG.getMaskedGather(DAG.getVTList(NVT, MVT::Other),
N->getMemoryVT(), dl, Ops,
N->getMemOperand(), N->getIndexType());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
/// Promote the overflow flag of an overflowing arithmetic node.
SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
// Change the return type of the boolean result while obeying
// getSetCCResultType.
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
EVT VT = N->getValueType(0);
EVT SVT = getSetCCResultType(VT);
SDValue Ops[3] = { N->getOperand(0), N->getOperand(1) };
unsigned NumOps = N->getNumOperands();
assert(NumOps <= 3 && "Too many operands");
if (NumOps == 3)
Ops[2] = N->getOperand(2);
SDLoc dl(N);
SDValue Res = DAG.getNode(N->getOpcode(), dl, DAG.getVTList(VT, SVT),
makeArrayRef(Ops, NumOps));
// Modified the sum result - switch anything that used the old sum to use
// the new one.
ReplaceValueWith(SDValue(N, 0), Res);
// Convert to the expected type.
return DAG.getBoolExtOrTrunc(Res.getValue(1), dl, NVT, VT);
}
SDValue DAGTypeLegalizer::PromoteIntRes_ADDSUBSAT(SDNode *N) {
// If the promoted type is legal, we can convert this to:
// 1. ANY_EXTEND iN to iM
// 2. SHL by M-N
// 3. [US][ADD|SUB]SAT
// 4. L/ASHR by M-N
// Else it is more efficient to convert this to a min and a max
// operation in the higher precision arithmetic.
SDLoc dl(N);
SDValue Op1 = N->getOperand(0);
SDValue Op2 = N->getOperand(1);
unsigned OldBits = Op1.getScalarValueSizeInBits();
unsigned Opcode = N->getOpcode();
SDValue Op1Promoted, Op2Promoted;
if (Opcode == ISD::UADDSAT || Opcode == ISD::USUBSAT) {
Op1Promoted = ZExtPromotedInteger(Op1);
Op2Promoted = ZExtPromotedInteger(Op2);
} else {
Op1Promoted = SExtPromotedInteger(Op1);
Op2Promoted = SExtPromotedInteger(Op2);
}
EVT PromotedType = Op1Promoted.getValueType();
unsigned NewBits = PromotedType.getScalarSizeInBits();
if (TLI.isOperationLegalOrCustom(Opcode, PromotedType)) {
unsigned ShiftOp;
switch (Opcode) {
case ISD::SADDSAT:
case ISD::SSUBSAT:
ShiftOp = ISD::SRA;
break;
case ISD::UADDSAT:
case ISD::USUBSAT:
ShiftOp = ISD::SRL;
break;
default:
llvm_unreachable("Expected opcode to be signed or unsigned saturation "
"addition or subtraction");
}
unsigned SHLAmount = NewBits - OldBits;
EVT SHVT = TLI.getShiftAmountTy(PromotedType, DAG.getDataLayout());
SDValue ShiftAmount = DAG.getConstant(SHLAmount, dl, SHVT);
Op1Promoted =
DAG.getNode(ISD::SHL, dl, PromotedType, Op1Promoted, ShiftAmount);
Op2Promoted =
DAG.getNode(ISD::SHL, dl, PromotedType, Op2Promoted, ShiftAmount);
SDValue Result =
DAG.getNode(Opcode, dl, PromotedType, Op1Promoted, Op2Promoted);
return DAG.getNode(ShiftOp, dl, PromotedType, Result, ShiftAmount);
} else {
if (Opcode == ISD::USUBSAT) {
SDValue Max =
DAG.getNode(ISD::UMAX, dl, PromotedType, Op1Promoted, Op2Promoted);
return DAG.getNode(ISD::SUB, dl, PromotedType, Max, Op2Promoted);
}
if (Opcode == ISD::UADDSAT) {
APInt MaxVal = APInt::getAllOnesValue(OldBits).zext(NewBits);
SDValue SatMax = DAG.getConstant(MaxVal, dl, PromotedType);
SDValue Add =
DAG.getNode(ISD::ADD, dl, PromotedType, Op1Promoted, Op2Promoted);
return DAG.getNode(ISD::UMIN, dl, PromotedType, Add, SatMax);
}
unsigned AddOp = Opcode == ISD::SADDSAT ? ISD::ADD : ISD::SUB;
APInt MinVal = APInt::getSignedMinValue(OldBits).sext(NewBits);
APInt MaxVal = APInt::getSignedMaxValue(OldBits).sext(NewBits);
SDValue SatMin = DAG.getConstant(MinVal, dl, PromotedType);
SDValue SatMax = DAG.getConstant(MaxVal, dl, PromotedType);
SDValue Result =
DAG.getNode(AddOp, dl, PromotedType, Op1Promoted, Op2Promoted);
Result = DAG.getNode(ISD::SMIN, dl, PromotedType, Result, SatMax);
Result = DAG.getNode(ISD::SMAX, dl, PromotedType, Result, SatMin);
return Result;
}
}
SDValue DAGTypeLegalizer::PromoteIntRes_MULFIX(SDNode *N) {
// Can just promote the operands then continue with operation.
SDLoc dl(N);
SDValue Op1Promoted, Op2Promoted;
bool Signed =
N->getOpcode() == ISD::SMULFIX || N->getOpcode() == ISD::SMULFIXSAT;
bool Saturating =
N->getOpcode() == ISD::SMULFIXSAT || N->getOpcode() == ISD::UMULFIXSAT;
if (Signed) {
Op1Promoted = SExtPromotedInteger(N->getOperand(0));
Op2Promoted = SExtPromotedInteger(N->getOperand(1));
} else {
Op1Promoted = ZExtPromotedInteger(N->getOperand(0));
Op2Promoted = ZExtPromotedInteger(N->getOperand(1));
}
EVT OldType = N->getOperand(0).getValueType();
EVT PromotedType = Op1Promoted.getValueType();
unsigned DiffSize =
PromotedType.getScalarSizeInBits() - OldType.getScalarSizeInBits();
if (Saturating) {
// Promoting the operand and result values changes the saturation width,
// which is extends the values that we clamp to on saturation. This could be
// resolved by shifting one of the operands the same amount, which would
// also shift the result we compare against, then shifting back.
EVT ShiftTy = TLI.getShiftAmountTy(PromotedType, DAG.getDataLayout());
Op1Promoted = DAG.getNode(ISD::SHL, dl, PromotedType, Op1Promoted,
DAG.getConstant(DiffSize, dl, ShiftTy));
SDValue Result = DAG.getNode(N->getOpcode(), dl, PromotedType, Op1Promoted,
Op2Promoted, N->getOperand(2));
unsigned ShiftOp = Signed ? ISD::SRA : ISD::SRL;
return DAG.getNode(ShiftOp, dl, PromotedType, Result,
DAG.getConstant(DiffSize, dl, ShiftTy));
}
return DAG.getNode(N->getOpcode(), dl, PromotedType, Op1Promoted, Op2Promoted,
N->getOperand(2));
}
static SDValue earlyExpandDIVFIX(SDNode *N, SDValue LHS, SDValue RHS,
unsigned Scale, const TargetLowering &TLI,
SelectionDAG &DAG) {
EVT VT = LHS.getValueType();
bool Signed = N->getOpcode() == ISD::SDIVFIX;
SDLoc dl(N);
// See if we can perform the division in this type without widening.
if (SDValue V = TLI.expandFixedPointDiv(N->getOpcode(), dl, LHS, RHS, Scale,
DAG))
return V;
// If that didn't work, double the type width and try again. That must work,
// or something is wrong.
EVT WideVT = EVT::getIntegerVT(*DAG.getContext(),
VT.getScalarSizeInBits() * 2);
if (Signed) {
LHS = DAG.getSExtOrTrunc(LHS, dl, WideVT);
RHS = DAG.getSExtOrTrunc(RHS, dl, WideVT);
} else {
LHS = DAG.getZExtOrTrunc(LHS, dl, WideVT);
RHS = DAG.getZExtOrTrunc(RHS, dl, WideVT);
}
// TODO: Saturation.
SDValue Res = TLI.expandFixedPointDiv(N->getOpcode(), dl, LHS, RHS, Scale,
DAG);
assert(Res && "Expanding DIVFIX with wide type failed?");
return DAG.getZExtOrTrunc(Res, dl, VT);
}
SDValue DAGTypeLegalizer::PromoteIntRes_DIVFIX(SDNode *N) {
SDLoc dl(N);
SDValue Op1Promoted, Op2Promoted;
bool Signed = N->getOpcode() == ISD::SDIVFIX;
if (Signed) {
Op1Promoted = SExtPromotedInteger(N->getOperand(0));
Op2Promoted = SExtPromotedInteger(N->getOperand(1));
} else {
Op1Promoted = ZExtPromotedInteger(N->getOperand(0));
Op2Promoted = ZExtPromotedInteger(N->getOperand(1));
}
EVT PromotedType = Op1Promoted.getValueType();
unsigned Scale = N->getConstantOperandVal(2);
SDValue Res;
// If the type is already legal and the operation is legal in that type, we
// should not early expand.
if (TLI.isTypeLegal(PromotedType)) {
TargetLowering::LegalizeAction Action =
TLI.getFixedPointOperationAction(N->getOpcode(), PromotedType, Scale);
if (Action == TargetLowering::Legal || Action == TargetLowering::Custom)
Res = DAG.getNode(N->getOpcode(), dl, PromotedType, Op1Promoted,
Op2Promoted, N->getOperand(2));
}
if (!Res)
Res = earlyExpandDIVFIX(N, Op1Promoted, Op2Promoted, Scale, TLI, DAG);
// TODO: Saturation.
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
// The operation overflowed iff the result in the larger type is not the
// sign extension of its truncation to the original type.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
EVT OVT = N->getOperand(0).getValueType();
EVT NVT = LHS.getValueType();
SDLoc dl(N);
// Do the arithmetic in the larger type.
unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
// Calculate the overflow flag: sign extend the arithmetic result from
// the original type.
SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
DAG.getValueType(OVT));
// Overflowed if and only if this is not equal to Res.
Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Ofl);
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
SDValue LHS = GetPromotedInteger(N->getOperand(1));
SDValue RHS = GetPromotedInteger(N->getOperand(2));
return DAG.getSelect(SDLoc(N),
LHS.getValueType(), N->getOperand(0), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
SDValue Mask = N->getOperand(0);
SDValue LHS = GetPromotedInteger(N->getOperand(1));
SDValue RHS = GetPromotedInteger(N->getOperand(2));
return DAG.getNode(ISD::VSELECT, SDLoc(N),
LHS.getValueType(), Mask, LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetPromotedInteger(N->getOperand(2));
SDValue RHS = GetPromotedInteger(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
LHS.getValueType(), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
EVT InVT = N->getOperand(OpNo).getValueType();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT SVT = getSetCCResultType(InVT);
// If we got back a type that needs to be promoted, this likely means the
// the input type also needs to be promoted. So get the promoted type for
// the input and try the query again.
if (getTypeAction(SVT) == TargetLowering::TypePromoteInteger) {
if (getTypeAction(InVT) == TargetLowering::TypePromoteInteger) {
InVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
SVT = getSetCCResultType(InVT);
} else {
// Input type isn't promoted, just use the default promoted type.
SVT = NVT;
}
}
SDLoc dl(N);
assert(SVT.isVector() == N->getOperand(OpNo).getValueType().isVector() &&
"Vector compare must return a vector result!");
// Get the SETCC result using the canonical SETCC type.
SDValue SetCC;
if (N->isStrictFPOpcode()) {
EVT VTs[] = {SVT, MVT::Other};
SDValue Opers[] = {N->getOperand(0), N->getOperand(1),
N->getOperand(2), N->getOperand(3)};
SetCC = DAG.getNode(N->getOpcode(), dl, VTs, Opers);
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), SetCC.getValue(1));
} else
SetCC = DAG.getNode(N->getOpcode(), dl, SVT, N->getOperand(0),
N->getOperand(1), N->getOperand(2));
// Convert to the expected type.
return DAG.getSExtOrTrunc(SetCC, dl, NVT);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
SDValue LHS = GetPromotedInteger(N->getOperand(0));
SDValue RHS = N->getOperand(1);
if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
RHS = ZExtPromotedInteger(RHS);
return DAG.getNode(ISD::SHL, SDLoc(N), LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
// The input may have strange things in the top bits of the registers, but
// these operations don't care. They may have weird bits going out, but
// that too is okay if they are integer operations.
SDValue LHS = GetPromotedInteger(N->getOperand(0));
SDValue RHS = GetPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SExtIntBinOp(SDNode *N) {
// Sign extend the input.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_ZExtIntBinOp(SDNode *N) {
// Zero extend the input.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
// The input value must be properly sign extended.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = N->getOperand(1);
if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
RHS = ZExtPromotedInteger(RHS);
return DAG.getNode(ISD::SRA, SDLoc(N), LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
// The input value must be properly zero extended.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = N->getOperand(1);
if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
RHS = ZExtPromotedInteger(RHS);
return DAG.getNode(ISD::SRL, SDLoc(N), LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res;
SDValue InOp = N->getOperand(0);
SDLoc dl(N);
switch (getTypeAction(InOp.getValueType())) {
default: llvm_unreachable("Unknown type action!");
case TargetLowering::TypeLegal:
case TargetLowering::TypeExpandInteger:
Res = InOp;
break;
case TargetLowering::TypePromoteInteger:
Res = GetPromotedInteger(InOp);
break;
case TargetLowering::TypeSplitVector: {
EVT InVT = InOp.getValueType();
assert(InVT.isVector() && "Cannot split scalar types");
unsigned NumElts = InVT.getVectorNumElements();
assert(NumElts == NVT.getVectorNumElements() &&
"Dst and Src must have the same number of elements");
assert(isPowerOf2_32(NumElts) &&
"Promoted vector type must be a power of two");
SDValue EOp1, EOp2;
GetSplitVector(InOp, EOp1, EOp2);
EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
NumElts/2);
EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
}
case TargetLowering::TypeWidenVector: {
SDValue WideInOp = GetWidenedVector(InOp);
// Truncate widened InOp.
unsigned NumElem = WideInOp.getValueType().getVectorNumElements();
EVT TruncVT = EVT::getVectorVT(*DAG.getContext(),
N->getValueType(0).getScalarType(), NumElem);
SDValue WideTrunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, WideInOp);
// Zero extend so that the elements are of same type as those of NVT
EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), NVT.getVectorElementType(),
NumElem);
SDValue WideExt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, WideTrunc);
// Extract the low NVT subvector.
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SDValue ZeroIdx = DAG.getConstant(0, dl, IdxTy);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, WideExt, ZeroIdx);
}
}
// Truncate to NVT instead of VT
return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
}
SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
// The operation overflowed iff the result in the larger type is not the
// zero extension of its truncation to the original type.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
EVT OVT = N->getOperand(0).getValueType();
EVT NVT = LHS.getValueType();
SDLoc dl(N);
// Do the arithmetic in the larger type.
unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
// Calculate the overflow flag: zero extend the arithmetic result from
// the original type.
SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT.getScalarType());
// Overflowed if and only if this is not equal to Res.
Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Ofl);
return Res;
}
// Handle promotion for the ADDE/SUBE/ADDCARRY/SUBCARRY nodes. Notice that
// the third operand of ADDE/SUBE nodes is carry flag, which differs from
// the ADDCARRY/SUBCARRY nodes in that the third operand is carry Boolean.
SDValue DAGTypeLegalizer::PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo) {
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
// We need to sign-extend the operands so the carry value computed by the
// wide operation will be equivalent to the carry value computed by the
// narrow operation.
// An ADDCARRY can generate carry only if any of the operands has its
// most significant bit set. Sign extension propagates the most significant
// bit into the higher bits which means the extra bit that the narrow
// addition would need (i.e. the carry) will be propagated through the higher
// bits of the wide addition.
// A SUBCARRY can generate borrow only if LHS < RHS and this property will be
// preserved by sign extension.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
EVT ValueVTs[] = {LHS.getValueType(), N->getValueType(1)};
// Do the arithmetic in the wide type.
SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N), DAG.getVTList(ValueVTs),
LHS, RHS, N->getOperand(2));
// Update the users of the original carry/borrow value.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return SDValue(Res.getNode(), 0);
}
SDValue DAGTypeLegalizer::PromoteIntRes_ABS(SDNode *N) {
SDValue Op0 = SExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::ABS, SDLoc(N), Op0.getValueType(), Op0);
}
SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
// Promote the overflow bit trivially.
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
SDLoc DL(N);
EVT SmallVT = LHS.getValueType();
// To determine if the result overflowed in a larger type, we extend the
// input to the larger type, do the multiply (checking if it overflows),
// then also check the high bits of the result to see if overflow happened
// there.
if (N->getOpcode() == ISD::SMULO) {
LHS = SExtPromotedInteger(LHS);
RHS = SExtPromotedInteger(RHS);
} else {
LHS = ZExtPromotedInteger(LHS);
RHS = ZExtPromotedInteger(RHS);
}
SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
// Overflow occurred if it occurred in the larger type, or if the high part
// of the result does not zero/sign-extend the low part. Check this second
// possibility first.
SDValue Overflow;
if (N->getOpcode() == ISD::UMULO) {
// Unsigned overflow occurred if the high part is non-zero.
unsigned Shift = SmallVT.getScalarSizeInBits();
EVT ShiftTy = getShiftAmountTyForConstant(Mul.getValueType(), TLI, DAG);
SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
DAG.getConstant(Shift, DL, ShiftTy));
Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
DAG.getConstant(0, DL, Hi.getValueType()),
ISD::SETNE);
} else {
// Signed overflow occurred if the high part does not sign extend the low.
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
Mul, DAG.getValueType(SmallVT));
Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
}
// The only other way for overflow to occur is if the multiplication in the
// larger type itself overflowed.
Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
SDValue(Mul.getNode(), 1));
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Overflow);
return Mul;
}
SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
SDValue Chain = N->getOperand(0); // Get the chain.
SDValue Ptr = N->getOperand(1); // Get the pointer.
EVT VT = N->getValueType(0);
SDLoc dl(N);
MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
// The argument is passed as NumRegs registers of type RegVT.
SmallVector<SDValue, 8> Parts(NumRegs);
for (unsigned i = 0; i < NumRegs; ++i) {
Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
N->getConstantOperandVal(3));
Chain = Parts[i].getValue(1);
}
// Handle endianness of the load.
if (DAG.getDataLayout().isBigEndian())
std::reverse(Parts.begin(), Parts.end());
// Assemble the parts in the promoted type.
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
for (unsigned i = 1; i < NumRegs; ++i) {
SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
// Shift it to the right position and "or" it in.
Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
DAG.getConstant(i * RegVT.getSizeInBits(), dl,
TLI.getPointerTy(DAG.getDataLayout())));
Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
}
// Modified the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Chain);
return Res;
}
//===----------------------------------------------------------------------===//
// Integer Operand Promotion
//===----------------------------------------------------------------------===//
/// PromoteIntegerOperand - This method is called when the specified operand of
/// the specified node is found to need promotion. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) {
LLVM_DEBUG(dbgs() << "Node has been custom lowered, done\n");
return false;
}
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator's operand!");
case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
case ISD::ATOMIC_STORE:
Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
break;
case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break;
case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break;
case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break;
case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break;
case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::INSERT_VECTOR_ELT:
Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
case ISD::SCALAR_TO_VECTOR:
Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
case ISD::SPLAT_VECTOR:
Res = PromoteIntOp_SPLAT_VECTOR(N); break;
case ISD::VSELECT:
case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break;
case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break;
case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break;
case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
case ISD::STRICT_SINT_TO_FP: Res = PromoteIntOp_STRICT_SINT_TO_FP(N); break;
case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
case ISD::MSTORE: Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N),
OpNo); break;
case ISD::MLOAD: Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N),
OpNo); break;
case ISD::MGATHER: Res = PromoteIntOp_MGATHER(cast<MaskedGatherSDNode>(N),
OpNo); break;
case ISD::MSCATTER: Res = PromoteIntOp_MSCATTER(cast<MaskedScatterSDNode>(N),
OpNo); break;
case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
case ISD::FP16_TO_FP:
case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
case ISD::STRICT_UINT_TO_FP: Res = PromoteIntOp_STRICT_UINT_TO_FP(N); break;
case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = PromoteIntOp_EXTRACT_SUBVECTOR(N); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
case ISD::ADDCARRY:
case ISD::SUBCARRY: Res = PromoteIntOp_ADDSUBCARRY(N, OpNo); break;
case ISD::FRAMEADDR:
case ISD::RETURNADDR: Res = PromoteIntOp_FRAMERETURNADDR(N); break;
case ISD::PREFETCH: Res = PromoteIntOp_PREFETCH(N, OpNo); break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT:
case ISD::SDIVFIX:
case ISD::UDIVFIX: Res = PromoteIntOp_FIX(N); break;
case ISD::FPOWI: Res = PromoteIntOp_FPOWI(N); break;
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN: Res = PromoteIntOp_VECREDUCE(N); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
const bool IsStrictFp = N->isStrictFPOpcode();
assert(Res.getValueType() == N->getValueType(0) &&
N->getNumValues() == (IsStrictFp ? 2 : 1) &&
"Invalid operand expansion");
LLVM_DEBUG(dbgs() << "Replacing: "; N->dump(&DAG); dbgs() << " with: ";
Res.dump());
ReplaceValueWith(SDValue(N, 0), Res);
if (IsStrictFp)
ReplaceValueWith(SDValue(N, 1), SDValue(Res.getNode(), 1));
return false;
}
/// PromoteSetCCOperands - Promote the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
ISD::CondCode CCCode) {
// We have to insert explicit sign or zero extends. Note that we could
// insert sign extends for ALL conditions. For those operations where either
// zero or sign extension would be valid, use SExtOrZExtPromotedInteger
// which will choose the cheapest for the target.
switch (CCCode) {
default: llvm_unreachable("Unknown integer comparison!");
case ISD::SETEQ:
case ISD::SETNE: {
SDValue OpL = GetPromotedInteger(NewLHS);
SDValue OpR = GetPromotedInteger(NewRHS);
// We would prefer to promote the comparison operand with sign extension.
// If the width of OpL/OpR excluding the duplicated sign bits is no greater
// than the width of NewLHS/NewRH, we can avoid inserting real truncate
// instruction, which is redundant eventually.
unsigned OpLEffectiveBits =
OpL.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(OpL) + 1;
unsigned OpREffectiveBits =
OpR.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(OpR) + 1;
if (OpLEffectiveBits <= NewLHS.getScalarValueSizeInBits() &&
OpREffectiveBits <= NewRHS.getScalarValueSizeInBits()) {
NewLHS = OpL;
NewRHS = OpR;
} else {
NewLHS = SExtOrZExtPromotedInteger(NewLHS);
NewRHS = SExtOrZExtPromotedInteger(NewRHS);
}
break;
}
case ISD::SETUGE:
case ISD::SETUGT:
case ISD::SETULE:
case ISD::SETULT:
NewLHS = SExtOrZExtPromotedInteger(NewLHS);
NewRHS = SExtOrZExtPromotedInteger(NewRHS);
break;
case ISD::SETGE:
case ISD::SETGT:
case ISD::SETLT:
case ISD::SETLE:
NewLHS = SExtPromotedInteger(NewLHS);
NewRHS = SExtPromotedInteger(NewRHS);
break;
}
}
SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op);
}
SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
N->getChain(), N->getBasePtr(), Op2, N->getMemOperand());
}
SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
// This should only occur in unusual situations like bitcasting to an
// x86_fp80, so just turn it into a store+load
return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
}
SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(2);
SDValue RHS = N->getOperand(3);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
// The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
// legal types.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4)),
0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "only know how to promote condition");
// Promote all the way up to the canonical SetCC type.
SDValue Cond = PromoteTargetBoolean(N->getOperand(1), MVT::Other);
// The chain (Op#0) and basic block destination (Op#2) are always legal types.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
N->getOperand(2)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
// Since the result type is legal, the operands must promote to it.
EVT OVT = N->getOperand(0).getValueType();
SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
SDValue Hi = GetPromotedInteger(N->getOperand(1));
assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
SDLoc dl(N);
Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
DAG.getConstant(OVT.getSizeInBits(), dl,
TLI.getPointerTy(DAG.getDataLayout())));
return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
// The vector type is legal but the element type is not. This implies
// that the vector is a power-of-two in length and that the element
// type does not have a strange size (eg: it is not i1).
EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
"Legal vector of one illegal element?");
// Promote the inserted value. The type does not need to match the
// vector element type. Check that any extra bits introduced will be
// truncated away.
assert(N->getOperand(0).getValueSizeInBits() >=
N->getValueType(0).getScalarSizeInBits() &&
"Type of inserted value narrower than vector element type!");
SmallVector<SDValue, 16> NewOps;
for (unsigned i = 0; i < NumElts; ++i)
NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
unsigned OpNo) {
if (OpNo == 1) {
// Promote the inserted value. This is valid because the type does not
// have to match the vector element type.
// Check that any extra bits introduced will be truncated away.
assert(N->getOperand(1).getValueSizeInBits() >=
N->getValueType(0).getScalarSizeInBits() &&
"Type of inserted value narrower than vector element type!");
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
GetPromotedInteger(N->getOperand(1)),
N->getOperand(2)),
0);
}
assert(OpNo == 2 && "Different operand and result vector types?");
// Promote the index.
SDValue Idx = DAG.getZExtOrTrunc(N->getOperand(2), SDLoc(N),
TLI.getVectorIdxTy(DAG.getDataLayout()));
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
N->getOperand(1), Idx), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
// Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
// the operand in place.
return SDValue(DAG.UpdateNodeOperands(N,
GetPromotedInteger(N->getOperand(0))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SPLAT_VECTOR(SDNode *N) {
// Integer SPLAT_VECTOR operands are implicitly truncated, so just promote the
// operand in place.
return SDValue(
DAG.UpdateNodeOperands(N, GetPromotedInteger(N->getOperand(0))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Only know how to promote the condition!");
SDValue Cond = N->getOperand(0);
EVT OpTy = N->getOperand(1).getValueType();
if (N->getOpcode() == ISD::VSELECT)
if (SDValue Res = WidenVSELECTAndMask(N))
return Res;
// Promote all the way up to the canonical SetCC type.
EVT OpVT = N->getOpcode() == ISD::SELECT ? OpTy.getScalarType() : OpTy;
Cond = PromoteTargetBoolean(Cond, OpVT);
return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
N->getOperand(2)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
// The CC (#4) and the possible return values (#2 and #3) have legal types.
return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
N->getOperand(3), N->getOperand(4)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
// The CC (#2) is always legal.
return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
ZExtPromotedInteger(N->getOperand(1))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
SDLoc dl(N);
Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
Op, DAG.getValueType(N->getOperand(0).getValueType()));
}
SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N,
SExtPromotedInteger(N->getOperand(0))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
SExtPromotedInteger(N->getOperand(1))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
SDLoc dl(N);
SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value.
// Truncate the value and store the result.
return DAG.getTruncStore(Ch, dl, Val, Ptr,
N->getMemoryVT(), N->getMemOperand());
}
SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N,
unsigned OpNo) {
SDValue DataOp = N->getValue();
EVT DataVT = DataOp.getValueType();
SDValue Mask = N->getMask();
SDLoc dl(N);
bool TruncateStore = false;
if (OpNo == 4) {
Mask = PromoteTargetBoolean(Mask, DataVT);
// Update in place.
SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
NewOps[4] = Mask;
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
} else { // Data operand
assert(OpNo == 1 && "Unexpected operand for promotion");
DataOp = GetPromotedInteger(DataOp);
TruncateStore = true;
}
return DAG.getMaskedStore(N->getChain(), dl, DataOp, N->getBasePtr(),
N->getOffset(), Mask, N->getMemoryVT(),
N->getMemOperand(), N->getAddressingMode(),
TruncateStore, N->isCompressingStore());
}
SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N,
unsigned OpNo) {
assert(OpNo == 3 && "Only know how to promote the mask!");
EVT DataVT = N->getValueType(0);
SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
NewOps[OpNo] = Mask;
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_MGATHER(MaskedGatherSDNode *N,
unsigned OpNo) {
SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
if (OpNo == 2) {
// The Mask
EVT DataVT = N->getValueType(0);
NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
} else if (OpNo == 4) {
// The Index
if (N->isIndexSigned())
// Need to sign extend the index since the bits will likely be used.
NewOps[OpNo] = SExtPromotedInteger(N->getOperand(OpNo));
else
NewOps[OpNo] = ZExtPromotedInteger(N->getOperand(OpNo));
} else
NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_MSCATTER(MaskedScatterSDNode *N,
unsigned OpNo) {
SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
if (OpNo == 2) {
// The Mask
EVT DataVT = N->getValue().getValueType();
NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
} else if (OpNo == 4) {
// The Index
if (N->isIndexSigned())
// Need to sign extend the index since the bits will likely be used.
NewOps[OpNo] = SExtPromotedInteger(N->getOperand(OpNo));
else
NewOps[OpNo] = ZExtPromotedInteger(N->getOperand(OpNo));
} else
NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op);
}
SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N,
ZExtPromotedInteger(N->getOperand(0))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
ZExtPromotedInteger(N->getOperand(1))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
SDLoc dl(N);
SDValue Op = GetPromotedInteger(N->getOperand(0));
Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
return DAG.getZeroExtendInReg(Op, dl,
N->getOperand(0).getValueType().getScalarType());
}
SDValue DAGTypeLegalizer::PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Carry = N->getOperand(2);
SDLoc DL(N);
Carry = PromoteTargetBoolean(Carry, LHS.getValueType());
return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, Carry), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_FIX(SDNode *N) {
SDValue Op2 = ZExtPromotedInteger(N->getOperand(2));
return SDValue(
DAG.UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), Op2), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_FRAMERETURNADDR(SDNode *N) {
// Promote the RETURNADDR/FRAMEADDR argument to a supported integer width.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
return SDValue(DAG.UpdateNodeOperands(N, Op), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo) {
assert(OpNo > 1 && "Don't know how to promote this operand!");
// Promote the rw, locality, and cache type arguments to a supported integer
// width.
SDValue Op2 = ZExtPromotedInteger(N->getOperand(2));
SDValue Op3 = ZExtPromotedInteger(N->getOperand(3));
SDValue Op4 = ZExtPromotedInteger(N->getOperand(4));
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
Op2, Op3, Op4),
0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_FPOWI(SDNode *N) {
SDValue Op = SExtPromotedInteger(N->getOperand(1));
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Op), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_VECREDUCE(SDNode *N) {
SDLoc dl(N);
SDValue Op;
switch (N->getOpcode()) {
default: llvm_unreachable("Expected integer vector reduction");
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
Op = GetPromotedInteger(N->getOperand(0));
break;
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
Op = SExtPromotedInteger(N->getOperand(0));
break;
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
Op = ZExtPromotedInteger(N->getOperand(0));
break;
}
EVT EltVT = Op.getValueType().getVectorElementType();
EVT VT = N->getValueType(0);
if (VT.bitsGE(EltVT))
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, Op);
// Result size must be >= element size. If this is not the case after
// promotion, also promote the result type and then truncate.
SDValue Reduce = DAG.getNode(N->getOpcode(), dl, EltVT, Op);
return DAG.getNode(ISD::TRUNCATE, dl, VT, Reduce);
}
//===----------------------------------------------------------------------===//
// Integer Result Expansion
//===----------------------------------------------------------------------===//
/// ExpandIntegerResult - This method is called when the specified result of the
/// specified node is found to need expansion. At this point, the node may also
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG);
dbgs() << "\n");
SDValue Lo, Hi;
Lo = Hi = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true))
return;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
report_fatal_error("Do not know how to expand the result of this "
"operator!");
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break;
case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break;
case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break;
case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break;
case ISD::BITREVERSE: ExpandIntRes_BITREVERSE(N, Lo, Hi); break;
case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break;
case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break;
case ISD::ABS: ExpandIntRes_ABS(N, Lo, Hi); break;
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break;
case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break;
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break;
case ISD::FLT_ROUNDS_: ExpandIntRes_FLT_ROUNDS(N, Lo, Hi); break;
case ISD::STRICT_FP_TO_SINT:
case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
case ISD::STRICT_LLROUND:
case ISD::STRICT_LLRINT:
case ISD::LLROUND:
case ISD::LLRINT: ExpandIntRes_LLROUND_LLRINT(N, Lo, Hi); break;
case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break;
case ISD::READCYCLECOUNTER: ExpandIntRes_READCYCLECOUNTER(N, Lo, Hi); break;
case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break;
case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break;
case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break;
case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break;
case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_CMP_SWAP: {
std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
SplitInteger(Tmp.first, Lo, Hi);
ReplaceValueWith(SDValue(N, 1), Tmp.second);
break;
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
AtomicSDNode *AN = cast<AtomicSDNode>(N);
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::Other);
SDValue Tmp = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, SDLoc(N), AN->getMemoryVT(), VTs,
N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3),
AN->getMemOperand());
// Expanding to the strong ATOMIC_CMP_SWAP node means we can determine
// success simply by comparing the loaded value against the ingoing
// comparison.
SDValue Success = DAG.getSetCC(SDLoc(N), N->getValueType(1), Tmp,
N->getOperand(2), ISD::SETEQ);
SplitInteger(Tmp, Lo, Hi);
ReplaceValueWith(SDValue(N, 1), Success);
ReplaceValueWith(SDValue(N, 2), Tmp.getValue(1));
break;
}
case ISD::AND:
case ISD::OR:
case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
case ISD::UMAX:
case ISD::SMAX:
case ISD::UMIN:
case ISD::SMIN: ExpandIntRes_MINMAX(N, Lo, Hi); break;
case ISD::ADD:
case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
case ISD::ADDC:
case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
case ISD::ADDE:
case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
case ISD::ADDCARRY:
case ISD::SUBCARRY: ExpandIntRes_ADDSUBCARRY(N, Lo, Hi); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
case ISD::SADDO:
case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
case ISD::UADDO:
case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
case ISD::UMULO:
case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::SSUBSAT:
case ISD::USUBSAT: ExpandIntRes_ADDSUBSAT(N, Lo, Hi); break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT: ExpandIntRes_MULFIX(N, Lo, Hi); break;
case ISD::SDIVFIX:
case ISD::UDIVFIX: ExpandIntRes_DIVFIX(N, Lo, Hi); break;
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN: ExpandIntRes_VECREDUCE(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.getNode())
SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
}
/// Lower an atomic node to the appropriate builtin call.
std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
unsigned Opc = Node->getOpcode();
MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
EVT RetVT = Node->getValueType(0);
SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
TargetLowering::MakeLibCallOptions CallOptions;
return TLI.makeLibCall(DAG, LC, RetVT, Ops, CallOptions, SDLoc(Node),
Node->getOperand(0));
}
/// N is a shift by a value that needs to be expanded,
/// and the shift amount is a constant 'Amt'. Expand the operation.
void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, const APInt &Amt,
SDValue &Lo, SDValue &Hi) {
SDLoc DL(N);
// Expand the incoming operand to be shifted, so that we have its parts
SDValue InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
// Though Amt shouldn't usually be 0, it's possible. E.g. when legalization
// splitted a vector shift, like this: <op1, op2> SHL <0, 2>.
if (!Amt) {
Lo = InL;
Hi = InH;
return;
}
EVT NVT = InL.getValueType();
unsigned VTBits = N->getValueType(0).getSizeInBits();
unsigned NVTBits = NVT.getSizeInBits();
EVT ShTy = N->getOperand(1).getValueType();
if (N->getOpcode() == ISD::SHL) {
if (Amt.ugt(VTBits)) {
Lo = Hi = DAG.getConstant(0, DL, NVT);
} else if (Amt.ugt(NVTBits)) {
Lo = DAG.getConstant(0, DL, NVT);
Hi = DAG.getNode(ISD::SHL, DL,
NVT, InL, DAG.getConstant(Amt - NVTBits, DL, ShTy));
} else if (Amt == NVTBits) {
Lo = DAG.getConstant(0, DL, NVT);
Hi = InL;
} else {
Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, DL, ShTy));
Hi = DAG.getNode(ISD::OR, DL, NVT,
DAG.getNode(ISD::SHL, DL, NVT, InH,
DAG.getConstant(Amt, DL, ShTy)),
DAG.getNode(ISD::SRL, DL, NVT, InL,
DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
}
return;
}
if (N->getOpcode() == ISD::SRL) {
if (Amt.ugt(VTBits)) {
Lo = Hi = DAG.getConstant(0, DL, NVT);
} else if (Amt.ugt(NVTBits)) {
Lo = DAG.getNode(ISD::SRL, DL,
NVT, InH, DAG.getConstant(Amt - NVTBits, DL, ShTy));
Hi = DAG.getConstant(0, DL, NVT);
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getConstant(0, DL, NVT);
} else {
Lo = DAG.getNode(ISD::OR, DL, NVT,
DAG.getNode(ISD::SRL, DL, NVT, InL,
DAG.getConstant(Amt, DL, ShTy)),
DAG.getNode(ISD::SHL, DL, NVT, InH,
DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy));
}
return;
}
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
if (Amt.ugt(VTBits)) {
Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
DAG.getConstant(NVTBits - 1, DL, ShTy));
} else if (Amt.ugt(NVTBits)) {
Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
DAG.getConstant(Amt - NVTBits, DL, ShTy));
Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
DAG.getConstant(NVTBits - 1, DL, ShTy));
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
DAG.getConstant(NVTBits - 1, DL, ShTy));
} else {
Lo = DAG.getNode(ISD::OR, DL, NVT,
DAG.getNode(ISD::SRL, DL, NVT, InL,
DAG.getConstant(Amt, DL, ShTy)),
DAG.getNode(ISD::SHL, DL, NVT, InH,
DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy));
}
}
/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
/// this shift based on knowledge of the high bit of the shift amount. If we
/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
/// shift amount.
bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue Amt = N->getOperand(1);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT ShTy = Amt.getValueType();
unsigned ShBits = ShTy.getScalarSizeInBits();
unsigned NVTBits = NVT.getScalarSizeInBits();
assert(isPowerOf2_32(NVTBits) &&
"Expanded integer type size not a power of two!");
SDLoc dl(N);
APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
KnownBits Known = DAG.computeKnownBits(N->getOperand(1));
// If we don't know anything about the high bits, exit.
if (((Known.Zero|Known.One) & HighBitMask) == 0)
return false;
// Get the incoming operand to be shifted.
SDValue InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
// If we know that any of the high bits of the shift amount are one, then we
// can do this as a couple of simple shifts.
if (Known.One.intersects(HighBitMask)) {
// Mask out the high bit, which we know is set.
Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
DAG.getConstant(~HighBitMask, dl, ShTy));
switch (N->getOpcode()) {
default: llvm_unreachable("Unknown shift");
case ISD::SHL:
Lo = DAG.getConstant(0, dl, NVT); // Low part is zero.
Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
return true;
case ISD::SRL:
Hi = DAG.getConstant(0, dl, NVT); // Hi part is zero.
Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part.
DAG.getConstant(NVTBits - 1, dl, ShTy));
Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
return true;
}
}
// If we know that all of the high bits of the shift amount are zero, then we
// can do this as a couple of simple shifts.
if (HighBitMask.isSubsetOf(Known.Zero)) {
// Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined
// shift if x is zero. We can use XOR here because x is known to be smaller
// than 32.
SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt,
DAG.getConstant(NVTBits - 1, dl, ShTy));
unsigned Op1, Op2;
switch (N->getOpcode()) {
default: llvm_unreachable("Unknown shift");
case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
case ISD::SRL:
case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
}
// When shifting right the arithmetic for Lo and Hi is swapped.
if (N->getOpcode() != ISD::SHL)
std::swap(InL, InH);
// Use a little trick to get the bits that move from Lo to Hi. First
// shift by one bit.
SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, dl, ShTy));
// Then compute the remaining shift with amount-1.
SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2);
Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt);
Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2);
if (N->getOpcode() != ISD::SHL)
std::swap(Hi, Lo);
return true;
}
return false;
}
/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
/// of any size.
bool DAGTypeLegalizer::
ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue Amt = N->getOperand(1);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT ShTy = Amt.getValueType();
unsigned NVTBits = NVT.getSizeInBits();
assert(isPowerOf2_32(NVTBits) &&
"Expanded integer type size not a power of two!");
SDLoc dl(N);
// Get the incoming operand to be shifted.
SDValue InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
SDValue NVBitsNode = DAG.getConstant(NVTBits, dl, ShTy);
SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
SDValue isShort = DAG.getSetCC(dl, getSetCCResultType(ShTy),
Amt, NVBitsNode, ISD::SETULT);
SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(ShTy),
Amt, DAG.getConstant(0, dl, ShTy),
ISD::SETEQ);
SDValue LoS, HiS, LoL, HiL;
switch (N->getOpcode()) {
default: llvm_unreachable("Unknown shift");
case ISD::SHL:
// Short: ShAmt < NVTBits
LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
HiS = DAG.getNode(ISD::OR, dl, NVT,
DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
// Long: ShAmt >= NVTBits
LoL = DAG.getConstant(0, dl, NVT); // Lo part is zero.
HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
Hi = DAG.getSelect(dl, NVT, isZero, InH,
DAG.getSelect(dl, NVT, isShort, HiS, HiL));
return true;
case ISD::SRL:
// Short: ShAmt < NVTBits
HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
LoS = DAG.getNode(ISD::OR, dl, NVT,
DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
// FIXME: If Amt is zero, the following shift generates an undefined result
// on some architectures.
DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
// Long: ShAmt >= NVTBits
HiL = DAG.getConstant(0, dl, NVT); // Hi part is zero.
LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
Lo = DAG.getSelect(dl, NVT, isZero, InL,
DAG.getSelect(dl, NVT, isShort, LoS, LoL));
Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
return true;
case ISD::SRA:
// Short: ShAmt < NVTBits
HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
LoS = DAG.getNode(ISD::OR, dl, NVT,
DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
// Long: ShAmt >= NVTBits
HiL = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign of Hi part.
DAG.getConstant(NVTBits - 1, dl, ShTy));
LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
Lo = DAG.getSelect(dl, NVT, isZero, InL,
DAG.getSelect(dl, NVT, isShort, LoS, LoL));
Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
return true;
}
}
static std::pair<ISD::CondCode, ISD::NodeType> getExpandedMinMaxOps(int Op) {
switch (Op) {
default: llvm_unreachable("invalid min/max opcode");
case ISD::SMAX:
return std::make_pair(ISD::SETGT, ISD::UMAX);
case ISD::UMAX:
return std::make_pair(ISD::SETUGT, ISD::UMAX);
case ISD::SMIN:
return std::make_pair(ISD::SETLT, ISD::UMIN);
case ISD::UMIN:
return std::make_pair(ISD::SETULT, ISD::UMIN);
}
}
void DAGTypeLegalizer::ExpandIntRes_MINMAX(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc DL(N);
ISD::NodeType LoOpc;
ISD::CondCode CondC;
std::tie(CondC, LoOpc) = getExpandedMinMaxOps(N->getOpcode());
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
// Value types
EVT NVT = LHSL.getValueType();
EVT CCT = getSetCCResultType(NVT);
// Hi part is always the same op
Hi = DAG.getNode(N->getOpcode(), DL, NVT, {LHSH, RHSH});
// We need to know whether to select Lo part that corresponds to 'winning'
// Hi part or if Hi parts are equal.
SDValue IsHiLeft = DAG.getSetCC(DL, CCT, LHSH, RHSH, CondC);
SDValue IsHiEq = DAG.getSetCC(DL, CCT, LHSH, RHSH, ISD::SETEQ);
// Lo part corresponding to the 'winning' Hi part
SDValue LoCmp = DAG.getSelect(DL, NVT, IsHiLeft, LHSL, RHSL);
// Recursed Lo part if Hi parts are equal, this uses unsigned version
SDValue LoMinMax = DAG.getNode(LoOpc, DL, NVT, {LHSL, RHSL});
Lo = DAG.getSelect(DL, NVT, IsHiEq, LoMinMax, LoCmp);
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
EVT NVT = LHSL.getValueType();
SDValue LoOps[2] = { LHSL, RHSL };
SDValue HiOps[3] = { LHSH, RHSH };
bool HasOpCarry = TLI.isOperationLegalOrCustom(
N->getOpcode() == ISD::ADD ? ISD::ADDCARRY : ISD::SUBCARRY,
TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
if (HasOpCarry) {
SDVTList VTList = DAG.getVTList(NVT, getSetCCResultType(NVT));
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::UADDO, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, HiOps);
} else {
Lo = DAG.getNode(ISD::USUBO, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBCARRY, dl, VTList, HiOps);
}
return;
}
// Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
// them. TODO: Teach operation legalization how to expand unsupported
// ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate
// a carry of type MVT::Glue, but there doesn't seem to be any way to
// generate a value of this type in the expanded code sequence.
bool hasCarry =
TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
ISD::ADDC : ISD::SUBC,
TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
if (hasCarry) {
SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
} else {
Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
}
return;
}
bool hasOVF =
TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
ISD::UADDO : ISD::USUBO,
TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
TargetLoweringBase::BooleanContent BoolType = TLI.getBooleanContents(NVT);
if (hasOVF) {
EVT OvfVT = getSetCCResultType(NVT);
SDVTList VTList = DAG.getVTList(NVT, OvfVT);
int RevOpc;
if (N->getOpcode() == ISD::ADD) {
RevOpc = ISD::SUB;
Lo = DAG.getNode(ISD::UADDO, dl, VTList, LoOps);
Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
} else {
RevOpc = ISD::ADD;
Lo = DAG.getNode(ISD::USUBO, dl, VTList, LoOps);
Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2));
}
SDValue OVF = Lo.getValue(1);
switch (BoolType) {
case TargetLoweringBase::UndefinedBooleanContent:
OVF = DAG.getNode(ISD::AND, dl, OvfVT, DAG.getConstant(1, dl, OvfVT), OVF);
LLVM_FALLTHROUGH;
case TargetLoweringBase::ZeroOrOneBooleanContent:
OVF = DAG.getZExtOrTrunc(OVF, dl, NVT);
Hi = DAG.getNode(N->getOpcode(), dl, NVT, Hi, OVF);
break;
case TargetLoweringBase::ZeroOrNegativeOneBooleanContent:
OVF = DAG.getSExtOrTrunc(OVF, dl, NVT);
Hi = DAG.getNode(RevOpc, dl, NVT, Hi, OVF);
}
return;
}
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps);
Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
SDValue Cmp1 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[0],
ISD::SETULT);
if (BoolType == TargetLoweringBase::ZeroOrOneBooleanContent) {
SDValue Carry = DAG.getZExtOrTrunc(Cmp1, dl, NVT);
Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry);
return;
}
SDValue Carry1 = DAG.getSelect(dl, NVT, Cmp1,
DAG.getConstant(1, dl, NVT),
DAG.getConstant(0, dl, NVT));
SDValue Cmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[1],
ISD::SETULT);
SDValue Carry2 = DAG.getSelect(dl, NVT, Cmp2,
DAG.getConstant(1, dl, NVT), Carry1);
Hi = DAG.getNode(ISD::