| //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SelectionDAG::Legalize method. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "legalizedag" |
| |
| namespace { |
| |
| /// Keeps track of state when getting the sign of a floating-point value as an |
| /// integer. |
| struct FloatSignAsInt { |
| EVT FloatVT; |
| SDValue Chain; |
| SDValue FloatPtr; |
| SDValue IntPtr; |
| MachinePointerInfo IntPointerInfo; |
| MachinePointerInfo FloatPointerInfo; |
| SDValue IntValue; |
| APInt SignMask; |
| uint8_t SignBit; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// This takes an arbitrary SelectionDAG as input and |
| /// hacks on it until the target machine can handle it. This involves |
| /// eliminating value sizes the machine cannot handle (promoting small sizes to |
| /// large sizes or splitting up large values into small values) as well as |
| /// eliminating operations the machine cannot handle. |
| /// |
| /// This code also does a small amount of optimization and recognition of idioms |
| /// as part of its processing. For example, if a target does not support a |
| /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this |
| /// will attempt merge setcc and brc instructions into brcc's. |
| class SelectionDAGLegalize { |
| const TargetMachine &TM; |
| const TargetLowering &TLI; |
| SelectionDAG &DAG; |
| |
| /// The set of nodes which have already been legalized. We hold a |
| /// reference to it in order to update as necessary on node deletion. |
| SmallPtrSetImpl<SDNode *> &LegalizedNodes; |
| |
| /// A set of all the nodes updated during legalization. |
| SmallSetVector<SDNode *, 16> *UpdatedNodes; |
| |
| EVT getSetCCResultType(EVT VT) const { |
| return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| } |
| |
| // Libcall insertion helpers. |
| |
| public: |
| SelectionDAGLegalize(SelectionDAG &DAG, |
| SmallPtrSetImpl<SDNode *> &LegalizedNodes, |
| SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) |
| : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), |
| LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} |
| |
| /// Legalizes the given operation. |
| void LegalizeOp(SDNode *Node); |
| |
| private: |
| SDValue OptimizeFloatStore(StoreSDNode *ST); |
| |
| void LegalizeLoadOps(SDNode *Node); |
| void LegalizeStoreOps(SDNode *Node); |
| |
| /// Some targets cannot handle a variable |
| /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it |
| /// is necessary to spill the vector being inserted into to memory, perform |
| /// the insert there, and then read the result back. |
| SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, |
| const SDLoc &dl); |
| SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, |
| const SDLoc &dl); |
| |
| /// Return a vector shuffle operation which |
| /// performs the same shuffe in terms of order or result bytes, but on a type |
| /// whose vector element type is narrower than the original shuffle type. |
| /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> |
| SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, |
| SDValue N1, SDValue N2, |
| ArrayRef<int> Mask) const; |
| |
| bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, |
| bool &NeedInvert, const SDLoc &dl, SDValue &Chain, |
| bool IsSignaling = false); |
| |
| SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); |
| |
| void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_F128, |
| RTLIB::Libcall Call_PPCF128, |
| SmallVectorImpl<SDValue> &Results); |
| SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, |
| RTLIB::Libcall Call_I8, |
| RTLIB::Libcall Call_I16, |
| RTLIB::Libcall Call_I32, |
| RTLIB::Libcall Call_I64, |
| RTLIB::Libcall Call_I128); |
| void ExpandArgFPLibCall(SDNode *Node, |
| RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, |
| RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, |
| RTLIB::Libcall Call_PPCF128, |
| SmallVectorImpl<SDValue> &Results); |
| void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, |
| const SDLoc &dl); |
| SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, |
| const SDLoc &dl, SDValue ChainIn); |
| SDValue ExpandBUILD_VECTOR(SDNode *Node); |
| SDValue ExpandSPLAT_VECTOR(SDNode *Node); |
| SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); |
| void ExpandDYNAMIC_STACKALLOC(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results); |
| void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, |
| SDValue Value) const; |
| SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, |
| SDValue NewIntValue) const; |
| SDValue ExpandFCOPYSIGN(SDNode *Node) const; |
| SDValue ExpandFABS(SDNode *Node) const; |
| SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); |
| void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, |
| SmallVectorImpl<SDValue> &Results); |
| void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, |
| SmallVectorImpl<SDValue> &Results); |
| |
| SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); |
| SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); |
| |
| SDValue ExpandExtractFromVectorThroughStack(SDValue Op); |
| SDValue ExpandInsertToVectorThroughStack(SDValue Op); |
| SDValue ExpandVectorBuildThroughStack(SDNode* Node); |
| |
| SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); |
| SDValue ExpandConstant(ConstantSDNode *CP); |
| |
| // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall |
| bool ExpandNode(SDNode *Node); |
| void ConvertNodeToLibcall(SDNode *Node); |
| void PromoteNode(SDNode *Node); |
| |
| public: |
| // Node replacement helpers |
| |
| void ReplacedNode(SDNode *N) { |
| LegalizedNodes.erase(N); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(N); |
| } |
| |
| void ReplaceNode(SDNode *Old, SDNode *New) { |
| LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); |
| dbgs() << " with: "; New->dump(&DAG)); |
| |
| assert(Old->getNumValues() == New->getNumValues() && |
| "Replacing one node with another that produces a different number " |
| "of values!"); |
| DAG.ReplaceAllUsesWith(Old, New); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(New); |
| ReplacedNode(Old); |
| } |
| |
| void ReplaceNode(SDValue Old, SDValue New) { |
| LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); |
| dbgs() << " with: "; New->dump(&DAG)); |
| |
| DAG.ReplaceAllUsesWith(Old, New); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(New.getNode()); |
| ReplacedNode(Old.getNode()); |
| } |
| |
| void ReplaceNode(SDNode *Old, const SDValue *New) { |
| LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); |
| |
| DAG.ReplaceAllUsesWith(Old, New); |
| for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { |
| LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); |
| New[i]->dump(&DAG)); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(New[i].getNode()); |
| } |
| ReplacedNode(Old); |
| } |
| |
| void ReplaceNodeWithValue(SDValue Old, SDValue New) { |
| LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); |
| dbgs() << " with: "; New->dump(&DAG)); |
| |
| DAG.ReplaceAllUsesOfValueWith(Old, New); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(New.getNode()); |
| ReplacedNode(Old.getNode()); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Return a vector shuffle operation which |
| /// performs the same shuffle in terms of order or result bytes, but on a type |
| /// whose vector element type is narrower than the original shuffle type. |
| /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> |
| SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( |
| EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, |
| ArrayRef<int> Mask) const { |
| unsigned NumMaskElts = VT.getVectorNumElements(); |
| unsigned NumDestElts = NVT.getVectorNumElements(); |
| unsigned NumEltsGrowth = NumDestElts / NumMaskElts; |
| |
| assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); |
| |
| if (NumEltsGrowth == 1) |
| return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); |
| |
| SmallVector<int, 8> NewMask; |
| for (unsigned i = 0; i != NumMaskElts; ++i) { |
| int Idx = Mask[i]; |
| for (unsigned j = 0; j != NumEltsGrowth; ++j) { |
| if (Idx < 0) |
| NewMask.push_back(-1); |
| else |
| NewMask.push_back(Idx * NumEltsGrowth + j); |
| } |
| } |
| assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); |
| assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); |
| return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); |
| } |
| |
| /// Expands the ConstantFP node to an integer constant or |
| /// a load from the constant pool. |
| SDValue |
| SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { |
| bool Extend = false; |
| SDLoc dl(CFP); |
| |
| // If a FP immediate is precise when represented as a float and if the |
| // target can do an extending load from float to double, we put it into |
| // the constant pool as a float, even if it's is statically typed as a |
| // double. This shrinks FP constants and canonicalizes them for targets where |
| // an FP extending load is the same cost as a normal load (such as on the x87 |
| // fp stack or PPC FP unit). |
| EVT VT = CFP->getValueType(0); |
| ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); |
| if (!UseCP) { |
| assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); |
| return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, |
| (VT == MVT::f64) ? MVT::i64 : MVT::i32); |
| } |
| |
| APFloat APF = CFP->getValueAPF(); |
| EVT OrigVT = VT; |
| EVT SVT = VT; |
| |
| // We don't want to shrink SNaNs. Converting the SNaN back to its real type |
| // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). |
| if (!APF.isSignaling()) { |
| while (SVT != MVT::f32 && SVT != MVT::f16) { |
| SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); |
| if (ConstantFPSDNode::isValueValidForType(SVT, APF) && |
| // Only do this if the target has a native EXTLOAD instruction from |
| // smaller type. |
| TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && |
| TLI.ShouldShrinkFPConstant(OrigVT)) { |
| Type *SType = SVT.getTypeForEVT(*DAG.getContext()); |
| LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); |
| VT = SVT; |
| Extend = true; |
| } |
| } |
| } |
| |
| SDValue CPIdx = |
| DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| if (Extend) { |
| SDValue Result = DAG.getExtLoad( |
| ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, |
| Alignment); |
| return Result; |
| } |
| SDValue Result = DAG.getLoad( |
| OrigVT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); |
| return Result; |
| } |
| |
| /// Expands the Constant node to a load from the constant pool. |
| SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { |
| SDLoc dl(CP); |
| EVT VT = CP->getValueType(0); |
| SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| SDValue Result = DAG.getLoad( |
| VT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); |
| return Result; |
| } |
| |
| /// Some target cannot handle a variable insertion index for the |
| /// INSERT_VECTOR_ELT instruction. In this case, it |
| /// is necessary to spill the vector being inserted into to memory, perform |
| /// the insert there, and then read the result back. |
| SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, |
| SDValue Val, |
| SDValue Idx, |
| const SDLoc &dl) { |
| SDValue Tmp1 = Vec; |
| SDValue Tmp2 = Val; |
| SDValue Tmp3 = Idx; |
| |
| // If the target doesn't support this, we have to spill the input vector |
| // to a temporary stack slot, update the element, then reload it. This is |
| // badness. We could also load the value into a vector register (either |
| // with a "move to register" or "extload into register" instruction, then |
| // permute it into place, if the idx is a constant and if the idx is |
| // supported by the target. |
| EVT VT = Tmp1.getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue StackPtr = DAG.CreateStackTemporary(VT); |
| |
| int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| |
| // Store the vector. |
| SDValue Ch = DAG.getStore( |
| DAG.getEntryNode(), dl, Tmp1, StackPtr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); |
| |
| SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); |
| |
| // Store the scalar value. |
| Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); |
| // Load the updated vector. |
| return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), SPFI)); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, |
| SDValue Idx, |
| const SDLoc &dl) { |
| if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { |
| // SCALAR_TO_VECTOR requires that the type of the value being inserted |
| // match the element type of the vector being created, except for |
| // integers in which case the inserted value can be over width. |
| EVT EltVT = Vec.getValueType().getVectorElementType(); |
| if (Val.getValueType() == EltVT || |
| (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { |
| SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| Vec.getValueType(), Val); |
| |
| unsigned NumElts = Vec.getValueType().getVectorNumElements(); |
| // We generate a shuffle of InVec and ScVec, so the shuffle mask |
| // should be 0,1,2,3,4,5... with the appropriate element replaced with |
| // elt 0 of the RHS. |
| SmallVector<int, 8> ShufOps; |
| for (unsigned i = 0; i != NumElts; ++i) |
| ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); |
| |
| return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); |
| } |
| } |
| return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); |
| } |
| |
| SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { |
| if (!ISD::isNormalStore(ST)) |
| return SDValue(); |
| |
| LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); |
| // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' |
| // FIXME: We shouldn't do this for TargetConstantFP's. |
| // FIXME: move this to the DAG Combiner! Note that we can't regress due |
| // to phase ordering between legalized code and the dag combiner. This |
| // probably means that we need to integrate dag combiner and legalizer |
| // together. |
| // We generally can't do this one for long doubles. |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| unsigned Alignment = ST->getAlignment(); |
| MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = ST->getAAInfo(); |
| SDLoc dl(ST); |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { |
| if (CFP->getValueType(0) == MVT::f32 && |
| TLI.isTypeLegal(MVT::i32)) { |
| SDValue Con = DAG.getConstant(CFP->getValueAPF(). |
| bitcastToAPInt().zextOrTrunc(32), |
| SDLoc(CFP), MVT::i32); |
| return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, |
| MMOFlags, AAInfo); |
| } |
| |
| if (CFP->getValueType(0) == MVT::f64) { |
| // If this target supports 64-bit registers, do a single 64-bit store. |
| if (TLI.isTypeLegal(MVT::i64)) { |
| SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). |
| zextOrTrunc(64), SDLoc(CFP), MVT::i64); |
| return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), |
| Alignment, MMOFlags, AAInfo); |
| } |
| |
| if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { |
| // Otherwise, if the target supports 32-bit registers, use 2 32-bit |
| // stores. If the target supports neither 32- nor 64-bits, this |
| // xform is certainly not worth it. |
| const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); |
| SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); |
| SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(Lo, Hi); |
| |
| Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, |
| MMOFlags, AAInfo); |
| Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl); |
| Hi = DAG.getStore(Chain, dl, Hi, Ptr, |
| ST->getPointerInfo().getWithOffset(4), |
| MinAlign(Alignment, 4U), MMOFlags, AAInfo); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); |
| } |
| } |
| } |
| return SDValue(nullptr, 0); |
| } |
| |
| void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { |
| StoreSDNode *ST = cast<StoreSDNode>(Node); |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| SDLoc dl(Node); |
| |
| unsigned Alignment = ST->getAlignment(); |
| MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = ST->getAAInfo(); |
| |
| if (!ST->isTruncatingStore()) { |
| LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); |
| if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { |
| ReplaceNode(ST, OptStore); |
| return; |
| } |
| |
| SDValue Value = ST->getValue(); |
| MVT VT = Value.getSimpleValueType(); |
| switch (TLI.getOperationAction(ISD::STORE, VT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: { |
| // If this is an unaligned store and the target doesn't support it, |
| // expand it. |
| EVT MemVT = ST->getMemoryVT(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, |
| *ST->getMemOperand())) { |
| LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); |
| SDValue Result = TLI.expandUnalignedStore(ST, DAG); |
| ReplaceNode(SDValue(ST, 0), Result); |
| } else |
| LLVM_DEBUG(dbgs() << "Legal store\n"); |
| break; |
| } |
| case TargetLowering::Custom: { |
| LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); |
| SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); |
| if (Res && Res != SDValue(Node, 0)) |
| ReplaceNode(SDValue(Node, 0), Res); |
| return; |
| } |
| case TargetLowering::Promote: { |
| MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); |
| assert(NVT.getSizeInBits() == VT.getSizeInBits() && |
| "Can only promote stores to same size type"); |
| Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); |
| SDValue Result = |
| DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), |
| Alignment, MMOFlags, AAInfo); |
| ReplaceNode(SDValue(Node, 0), Result); |
| break; |
| } |
| } |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); |
| SDValue Value = ST->getValue(); |
| EVT StVT = ST->getMemoryVT(); |
| unsigned StWidth = StVT.getSizeInBits(); |
| auto &DL = DAG.getDataLayout(); |
| |
| if (StWidth != StVT.getStoreSizeInBits()) { |
| // Promote to a byte-sized store with upper bits zero if not |
| // storing an integral number of bytes. For example, promote |
| // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) |
| EVT NVT = EVT::getIntegerVT(*DAG.getContext(), |
| StVT.getStoreSizeInBits()); |
| Value = DAG.getZeroExtendInReg(Value, dl, StVT); |
| SDValue Result = |
| DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, |
| Alignment, MMOFlags, AAInfo); |
| ReplaceNode(SDValue(Node, 0), Result); |
| } else if (StWidth & (StWidth - 1)) { |
| // If not storing a power-of-2 number of bits, expand as two stores. |
| assert(!StVT.isVector() && "Unsupported truncstore!"); |
| unsigned LogStWidth = Log2_32(StWidth); |
| assert(LogStWidth < 32); |
| unsigned RoundWidth = 1 << LogStWidth; |
| assert(RoundWidth < StWidth); |
| unsigned ExtraWidth = StWidth - RoundWidth; |
| assert(ExtraWidth < RoundWidth); |
| assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && |
| "Store size not an integral number of bytes!"); |
| EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); |
| EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); |
| SDValue Lo, Hi; |
| unsigned IncrementSize; |
| |
| if (DL.isLittleEndian()) { |
| // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) |
| // Store the bottom RoundWidth bits. |
| Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), |
| RoundVT, Alignment, MMOFlags, AAInfo); |
| |
| // Store the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); |
| Hi = DAG.getNode( |
| ISD::SRL, dl, Value.getValueType(), Value, |
| DAG.getConstant(RoundWidth, dl, |
| TLI.getShiftAmountTy(Value.getValueType(), DL))); |
| Hi = DAG.getTruncStore( |
| Chain, dl, Hi, Ptr, |
| ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, |
| MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); |
| } else { |
| // Big endian - avoid unaligned stores. |
| // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X |
| // Store the top RoundWidth bits. |
| Hi = DAG.getNode( |
| ISD::SRL, dl, Value.getValueType(), Value, |
| DAG.getConstant(ExtraWidth, dl, |
| TLI.getShiftAmountTy(Value.getValueType(), DL))); |
| Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), |
| RoundVT, Alignment, MMOFlags, AAInfo); |
| |
| // Store the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, dl, |
| Ptr.getValueType())); |
| Lo = DAG.getTruncStore( |
| Chain, dl, Value, Ptr, |
| ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, |
| MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); |
| } |
| |
| // The order of the stores doesn't matter. |
| SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); |
| ReplaceNode(SDValue(Node, 0), Result); |
| } else { |
| switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: { |
| EVT MemVT = ST->getMemoryVT(); |
| // If this is an unaligned store and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, |
| *ST->getMemOperand())) { |
| SDValue Result = TLI.expandUnalignedStore(ST, DAG); |
| ReplaceNode(SDValue(ST, 0), Result); |
| } |
| break; |
| } |
| case TargetLowering::Custom: { |
| SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); |
| if (Res && Res != SDValue(Node, 0)) |
| ReplaceNode(SDValue(Node, 0), Res); |
| return; |
| } |
| case TargetLowering::Expand: |
| assert(!StVT.isVector() && |
| "Vector Stores are handled in LegalizeVectorOps"); |
| |
| SDValue Result; |
| |
| // TRUNCSTORE:i16 i32 -> STORE i16 |
| if (TLI.isTypeLegal(StVT)) { |
| Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); |
| Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), |
| Alignment, MMOFlags, AAInfo); |
| } else { |
| // The in-memory type isn't legal. Truncate to the type it would promote |
| // to, and then do a truncstore. |
| Value = DAG.getNode(ISD::TRUNCATE, dl, |
| TLI.getTypeToTransformTo(*DAG.getContext(), StVT), |
| Value); |
| Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), |
| StVT, Alignment, MMOFlags, AAInfo); |
| } |
| |
| ReplaceNode(SDValue(Node, 0), Result); |
| break; |
| } |
| } |
| } |
| |
| void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| SDValue Chain = LD->getChain(); // The chain. |
| SDValue Ptr = LD->getBasePtr(); // The base pointer. |
| SDValue Value; // The value returned by the load op. |
| SDLoc dl(Node); |
| |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| if (ExtType == ISD::NON_EXTLOAD) { |
| LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); |
| MVT VT = Node->getSimpleValueType(0); |
| SDValue RVal = SDValue(Node, 0); |
| SDValue RChain = SDValue(Node, 1); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: { |
| EVT MemVT = LD->getMemoryVT(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| // If this is an unaligned load and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, |
| *LD->getMemOperand())) { |
| std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); |
| } |
| break; |
| } |
| case TargetLowering::Custom: |
| if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { |
| RVal = Res; |
| RChain = Res.getValue(1); |
| } |
| break; |
| |
| case TargetLowering::Promote: { |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); |
| assert(NVT.getSizeInBits() == VT.getSizeInBits() && |
| "Can only promote loads to same size type"); |
| |
| SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); |
| RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); |
| RChain = Res.getValue(1); |
| break; |
| } |
| } |
| if (RChain.getNode() != Node) { |
| assert(RVal.getNode() != Node && "Load must be completely replaced"); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); |
| if (UpdatedNodes) { |
| UpdatedNodes->insert(RVal.getNode()); |
| UpdatedNodes->insert(RChain.getNode()); |
| } |
| ReplacedNode(Node); |
| } |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); |
| EVT SrcVT = LD->getMemoryVT(); |
| unsigned SrcWidth = SrcVT.getSizeInBits(); |
| unsigned Alignment = LD->getAlignment(); |
| MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = LD->getAAInfo(); |
| |
| if (SrcWidth != SrcVT.getStoreSizeInBits() && |
| // Some targets pretend to have an i1 loading operation, and actually |
| // load an i8. This trick is correct for ZEXTLOAD because the top 7 |
| // bits are guaranteed to be zero; it helps the optimizers understand |
| // that these bits are zero. It is also useful for EXTLOAD, since it |
| // tells the optimizers that those bits are undefined. It would be |
| // nice to have an effective generic way of getting these benefits... |
| // Until such a way is found, don't insist on promoting i1 here. |
| (SrcVT != MVT::i1 || |
| TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == |
| TargetLowering::Promote)) { |
| // Promote to a byte-sized load if not loading an integral number of |
| // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. |
| unsigned NewWidth = SrcVT.getStoreSizeInBits(); |
| EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); |
| SDValue Ch; |
| |
| // The extra bits are guaranteed to be zero, since we stored them that |
| // way. A zext load from NVT thus automatically gives zext from SrcVT. |
| |
| ISD::LoadExtType NewExtType = |
| ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; |
| |
| SDValue Result = |
| DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); |
| |
| Ch = Result.getValue(1); // The chain. |
| |
| if (ExtType == ISD::SEXTLOAD) |
| // Having the top bits zero doesn't help when sign extending. |
| Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, |
| Result.getValueType(), |
| Result, DAG.getValueType(SrcVT)); |
| else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) |
| // All the top bits are guaranteed to be zero - inform the optimizers. |
| Result = DAG.getNode(ISD::AssertZext, dl, |
| Result.getValueType(), Result, |
| DAG.getValueType(SrcVT)); |
| |
| Value = Result; |
| Chain = Ch; |
| } else if (SrcWidth & (SrcWidth - 1)) { |
| // If not loading a power-of-2 number of bits, expand as two loads. |
| assert(!SrcVT.isVector() && "Unsupported extload!"); |
| unsigned LogSrcWidth = Log2_32(SrcWidth); |
| assert(LogSrcWidth < 32); |
| unsigned RoundWidth = 1 << LogSrcWidth; |
| assert(RoundWidth < SrcWidth); |
| unsigned ExtraWidth = SrcWidth - RoundWidth; |
| assert(ExtraWidth < RoundWidth); |
| assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && |
| "Load size not an integral number of bytes!"); |
| EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); |
| EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); |
| SDValue Lo, Hi, Ch; |
| unsigned IncrementSize; |
| auto &DL = DAG.getDataLayout(); |
| |
| if (DL.isLittleEndian()) { |
| // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) |
| // Load the bottom RoundWidth bits. |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, |
| AAInfo); |
| |
| // Load the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); |
| Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(IncrementSize), |
| ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, |
| AAInfo); |
| |
| // Build a factor node to remember that this load is independent of |
| // the other one. |
| Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Move the top bits to the right place. |
| Hi = DAG.getNode( |
| ISD::SHL, dl, Hi.getValueType(), Hi, |
| DAG.getConstant(RoundWidth, dl, |
| TLI.getShiftAmountTy(Hi.getValueType(), DL))); |
| |
| // Join the hi and lo parts. |
| Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); |
| } else { |
| // Big endian - avoid unaligned loads. |
| // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 |
| // Load the top RoundWidth bits. |
| Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, |
| AAInfo); |
| |
| // Load the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(IncrementSize), |
| ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, |
| AAInfo); |
| |
| // Build a factor node to remember that this load is independent of |
| // the other one. |
| Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Move the top bits to the right place. |
| Hi = DAG.getNode( |
| ISD::SHL, dl, Hi.getValueType(), Hi, |
| DAG.getConstant(ExtraWidth, dl, |
| TLI.getShiftAmountTy(Hi.getValueType(), DL))); |
| |
| // Join the hi and lo parts. |
| Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); |
| } |
| |
| Chain = Ch; |
| } else { |
| bool isCustom = false; |
| switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), |
| SrcVT.getSimpleVT())) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| LLVM_FALLTHROUGH; |
| case TargetLowering::Legal: |
| Value = SDValue(Node, 0); |
| Chain = SDValue(Node, 1); |
| |
| if (isCustom) { |
| if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { |
| Value = Res; |
| Chain = Res.getValue(1); |
| } |
| } else { |
| // If this is an unaligned load and the target doesn't support it, |
| // expand it. |
| EVT MemVT = LD->getMemoryVT(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, |
| *LD->getMemOperand())) { |
| std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); |
| } |
| } |
| break; |
| |
| case TargetLowering::Expand: { |
| EVT DestVT = Node->getValueType(0); |
| if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { |
| // If the source type is not legal, see if there is a legal extload to |
| // an intermediate type that we can then extend further. |
| EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); |
| if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? |
| TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { |
| // If we are loading a legal type, this is a non-extload followed by a |
| // full extend. |
| ISD::LoadExtType MidExtType = |
| (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; |
| |
| SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, |
| SrcVT, LD->getMemOperand()); |
| unsigned ExtendOp = |
| ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); |
| Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); |
| Chain = Load.getValue(1); |
| break; |
| } |
| |
| // Handle the special case of fp16 extloads. EXTLOAD doesn't have the |
| // normal undefined upper bits behavior to allow using an in-reg extend |
| // with the illegal FP type, so load as an integer and do the |
| // from-integer conversion. |
| if (SrcVT.getScalarType() == MVT::f16) { |
| EVT ISrcVT = SrcVT.changeTypeToInteger(); |
| EVT IDestVT = DestVT.changeTypeToInteger(); |
| EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); |
| |
| SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, |
| Ptr, ISrcVT, LD->getMemOperand()); |
| Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); |
| Chain = Result.getValue(1); |
| break; |
| } |
| } |
| |
| assert(!SrcVT.isVector() && |
| "Vector Loads are handled in LegalizeVectorOps"); |
| |
| // FIXME: This does not work for vectors on most targets. Sign- |
| // and zero-extend operations are currently folded into extending |
| // loads, whether they are legal or not, and then we end up here |
| // without any support for legalizing them. |
| assert(ExtType != ISD::EXTLOAD && |
| "EXTLOAD should always be supported!"); |
| // Turn the unsupported load into an EXTLOAD followed by an |
| // explicit zero/sign extend inreg. |
| SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, |
| Node->getValueType(0), |
| Chain, Ptr, SrcVT, |
| LD->getMemOperand()); |
| SDValue ValRes; |
| if (ExtType == ISD::SEXTLOAD) |
| ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, |
| Result.getValueType(), |
| Result, DAG.getValueType(SrcVT)); |
| else |
| ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); |
| Value = ValRes; |
| Chain = Result.getValue(1); |
| break; |
| } |
| } |
| } |
| |
| // Since loads produce two values, make sure to remember that we legalized |
| // both of them. |
| if (Chain.getNode() != Node) { |
| assert(Value.getNode() != Node && "Load must be completely replaced"); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); |
| if (UpdatedNodes) { |
| UpdatedNodes->insert(Value.getNode()); |
| UpdatedNodes->insert(Chain.getNode()); |
| } |
| ReplacedNode(Node); |
| } |
| } |
| |
| /// Return a legal replacement for the given operation, with all legal operands. |
| void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { |
| LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); |
| |
| // Allow illegal target nodes and illegal registers. |
| if (Node->getOpcode() == ISD::TargetConstant || |
| Node->getOpcode() == ISD::Register) |
| return; |
| |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == |
| TargetLowering::TypeLegal && |
| "Unexpected illegal type!"); |
| |
| for (const SDValue &Op : Node->op_values()) |
| assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == |
| TargetLowering::TypeLegal || |
| Op.getOpcode() == ISD::TargetConstant || |
| Op.getOpcode() == ISD::Register) && |
| "Unexpected illegal type!"); |
| #endif |
| |
| // Figure out the correct action; the way to query this varies by opcode |
| TargetLowering::LegalizeAction Action = TargetLowering::Legal; |
| bool SimpleFinishLegalizing = true; |
| switch (Node->getOpcode()) { |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| case ISD::STACKSAVE: |
| Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); |
| break; |
| case ISD::GET_DYNAMIC_AREA_OFFSET: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getValueType(0)); |
| break; |
| case ISD::VAARG: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getValueType(0)); |
| if (Action != TargetLowering::Promote) |
| Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); |
| break; |
| case ISD::FP_TO_FP16: |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::LROUND: |
| case ISD::LLROUND: |
| case ISD::LRINT: |
| case ISD::LLRINT: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getOperand(0).getValueType()); |
| break; |
| case ISD::STRICT_SINT_TO_FP: |
| case ISD::STRICT_UINT_TO_FP: |
| case ISD::STRICT_LRINT: |
| case ISD::STRICT_LLRINT: |
| case ISD::STRICT_LROUND: |
| case ISD::STRICT_LLROUND: |
| // These pseudo-ops are the same as the other STRICT_ ops except |
| // they are registered with setOperationAction() using the input type |
| // instead of the output type. |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getOperand(1).getValueType()); |
| break; |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| Action = TLI.getOperationAction(Node->getOpcode(), InnerType); |
| break; |
| } |
| case ISD::ATOMIC_STORE: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getOperand(2).getValueType()); |
| break; |
| case ISD::SELECT_CC: |
| case ISD::STRICT_FSETCC: |
| case ISD::STRICT_FSETCCS: |
| case ISD::SETCC: |
| case ISD::BR_CC: { |
| unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : |
| Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : |
| Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : |
| Node->getOpcode() == ISD::SETCC ? 2 : 1; |
| unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : |
| Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : |
| Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; |
| MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); |
| ISD::CondCode CCCode = |
| cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); |
| Action = TLI.getCondCodeAction(CCCode, OpVT); |
| if (Action == TargetLowering::Legal) { |
| if (Node->getOpcode() == ISD::SELECT_CC) |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getValueType(0)); |
| else |
| Action = TLI.getOperationAction(Node->getOpcode(), OpVT); |
| } |
| break; |
| } |
| case ISD::LOAD: |
| case ISD::STORE: |
| // FIXME: Model these properly. LOAD and STORE are complicated, and |
| // STORE expects the unlegalized operand in some cases. |
| SimpleFinishLegalizing = false; |
| break; |
| case ISD::CALLSEQ_START: |
| case ISD::CALLSEQ_END: |
| // FIXME: This shouldn't be necessary. These nodes have special properties |
| // dealing with the recursive nature of legalization. Removing this |
| // special case should be done as part of making LegalizeDAG non-recursive. |
| SimpleFinishLegalizing = false; |
| break; |
| case ISD::EXTRACT_ELEMENT: |
| case ISD::FLT_ROUNDS_: |
| case ISD::MERGE_VALUES: |
| case ISD::EH_RETURN: |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| case ISD::EH_DWARF_CFA: |
| case ISD::EH_SJLJ_SETJMP: |
| case ISD::EH_SJLJ_LONGJMP: |
| case ISD::EH_SJLJ_SETUP_DISPATCH: |
| // These operations lie about being legal: when they claim to be legal, |
| // they should actually be expanded. |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| if (Action == TargetLowering::Legal) |
| Action = TargetLowering::Expand; |
| break; |
| case ISD::INIT_TRAMPOLINE: |
| case ISD::ADJUST_TRAMPOLINE: |
| case ISD::FRAMEADDR: |
| case ISD::RETURNADDR: |
| case ISD::ADDROFRETURNADDR: |
| case ISD::SPONENTRY: |
| // These operations lie about being legal: when they claim to be legal, |
| // they should actually be custom-lowered. |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| if (Action == TargetLowering::Legal) |
| Action = TargetLowering::Custom; |
| break; |
| case ISD::READCYCLECOUNTER: |
| // READCYCLECOUNTER returns an i64, even if type legalization might have |
| // expanded that to several smaller types. |
| Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); |
| break; |
| case ISD::READ_REGISTER: |
| case ISD::WRITE_REGISTER: |
| // Named register is legal in the DAG, but blocked by register name |
| // selection if not implemented by target (to chose the correct register) |
| // They'll be converted to Copy(To/From)Reg. |
| Action = TargetLowering::Legal; |
| break; |
| case ISD::DEBUGTRAP: |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| if (Action == TargetLowering::Expand) { |
| // replace ISD::DEBUGTRAP with ISD::TRAP |
| SDValue NewVal; |
| NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), |
| Node->getOperand(0)); |
| ReplaceNode(Node, NewVal.getNode()); |
| LegalizeOp(NewVal.getNode()); |
| return; |
| } |
| break; |
| case ISD::SADDSAT: |
| case ISD::UADDSAT: |
| case ISD::SSUBSAT: |
| case ISD::USUBSAT: { |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| break; |
| } |
| case ISD::SMULFIX: |
| case ISD::SMULFIXSAT: |
| case ISD::UMULFIX: |
| case ISD::UMULFIXSAT: |
| case ISD::SDIVFIX: |
| case ISD::UDIVFIX: { |
| unsigned Scale = Node->getConstantOperandVal(2); |
| Action = TLI.getFixedPointOperationAction(Node->getOpcode(), |
| Node->getValueType(0), Scale); |
| break; |
| } |
| case ISD::MSCATTER: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); |
| break; |
| case ISD::MSTORE: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); |
| break; |
| case ISD::VECREDUCE_FADD: |
| case ISD::VECREDUCE_FMUL: |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_MUL: |
| case ISD::VECREDUCE_AND: |
| case ISD::VECREDUCE_OR: |
| case ISD::VECREDUCE_XOR: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_SMIN: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_UMIN: |
| case ISD::VECREDUCE_FMAX: |
| case ISD::VECREDUCE_FMIN: |
| Action = TLI.getOperationAction( |
| Node->getOpcode(), Node->getOperand(0).getValueType()); |
| break; |
| default: |
| if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { |
| Action = TargetLowering::Legal; |
| } else { |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| } |
| break; |
| } |
| |
| if (SimpleFinishLegalizing) { |
| SDNode *NewNode = Node; |
| switch (Node->getOpcode()) { |
| default: break; |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| case ISD::ROTL: |
| case ISD::ROTR: { |
| // Legalizing shifts/rotates requires adjusting the shift amount |
| // to the appropriate width. |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| if (!Op1.getValueType().isVector()) { |
| SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); |
| // The getShiftAmountOperand() may create a new operand node or |
| // return the existing one. If new operand is created we need |
| // to update the parent node. |
| // Do not try to legalize SAO here! It will be automatically legalized |
| // in the next round. |
| if (SAO != Op1) |
| NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); |
| } |
| } |
| break; |
| case ISD::FSHL: |
| case ISD::FSHR: |
| case ISD::SRL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SHL_PARTS: { |
| // Legalizing shifts/rotates requires adjusting the shift amount |
| // to the appropriate width. |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| SDValue Op2 = Node->getOperand(2); |
| if (!Op2.getValueType().isVector()) { |
| SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); |
| // The getShiftAmountOperand() may create a new operand node or |
| // return the existing one. If new operand is created we need |
| // to update the parent node. |
| if (SAO != Op2) |
| NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); |
| } |
| break; |
| } |
| } |
| |
| if (NewNode != Node) { |
| ReplaceNode(Node, NewNode); |
| Node = NewNode; |
| } |
| switch (Action) { |
| case TargetLowering::Legal: |
| LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); |
| return; |
| case TargetLowering::Custom: |
| LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); |
| // FIXME: The handling for custom lowering with multiple results is |
| // a complete mess. |
| if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { |
| if (!(Res.getNode() != Node || Res.getResNo() != 0)) |
| return; |
| |
| if (Node->getNumValues() == 1) { |
| LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); |
| // We can just directly replace this node with the lowered value. |
| ReplaceNode(SDValue(Node, 0), Res); |
| return; |
| } |
| |
| SmallVector<SDValue, 8> ResultVals; |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| ResultVals.push_back(Res.getValue(i)); |
| LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); |
| ReplaceNode(Node, ResultVals.data()); |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); |
| LLVM_FALLTHROUGH; |
| case TargetLowering::Expand: |
| if (ExpandNode(Node)) |
| return; |
| LLVM_FALLTHROUGH; |
| case TargetLowering::LibCall: |
| ConvertNodeToLibcall(Node); |
| return; |
| case TargetLowering::Promote: |
| PromoteNode(Node); |
| return; |
| } |
| } |
| |
| switch (Node->getOpcode()) { |
| default: |
| #ifndef NDEBUG |
| dbgs() << "NODE: "; |
| Node->dump( &DAG); |
| dbgs() << "\n"; |
| #endif |
| llvm_unreachable("Do not know how to legalize this operator!"); |
| |
| case ISD::CALLSEQ_START: |
| case ISD::CALLSEQ_END: |
| break; |
| case ISD::LOAD: |
| return LegalizeLoadOps(Node); |
| case ISD::STORE: |
| return LegalizeStoreOps(Node); |
| } |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = Op.getOperand(1); |
| SDLoc dl(Op); |
| |
| // Before we generate a new store to a temporary stack slot, see if there is |
| // already one that we can use. There often is because when we scalarize |
| // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole |
| // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in |
| // the vector. If all are expanded here, we don't want one store per vector |
| // element. |
| |
| // Caches for hasPredecessorHelper |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 16> Worklist; |
| Visited.insert(Op.getNode()); |
| Worklist.push_back(Idx.getNode()); |
| SDValue StackPtr, Ch; |
| for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), |
| UE = Vec.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { |
| if (ST->isIndexed() || ST->isTruncatingStore() || |
| ST->getValue() != Vec) |
| continue; |
| |
| // Make sure that nothing else could have stored into the destination of |
| // this store. |
| if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) |
| continue; |
| |
| // If the index is dependent on the store we will introduce a cycle when |
| // creating the load (the load uses the index, and by replacing the chain |
| // we will make the index dependent on the load). Also, the store might be |
| // dependent on the extractelement and introduce a cycle when creating |
| // the load. |
| if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || |
| ST->hasPredecessor(Op.getNode())) |
| continue; |
| |
| StackPtr = ST->getBasePtr(); |
| Ch = SDValue(ST, 0); |
| break; |
| } |
| } |
| |
| EVT VecVT = Vec.getValueType(); |
| |
| if (!Ch.getNode()) { |
| // Store the value to a temporary stack slot, then LOAD the returned part. |
| StackPtr = DAG.CreateStackTemporary(VecVT); |
| Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, |
| MachinePointerInfo()); |
| } |
| |
| StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); |
| |
| SDValue NewLoad; |
| |
| if (Op.getValueType().isVector()) |
| NewLoad = |
| DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); |
| else |
| NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, |
| MachinePointerInfo(), |
| VecVT.getVectorElementType()); |
| |
| // Replace the chain going out of the store, by the one out of the load. |
| DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); |
| |
| // We introduced a cycle though, so update the loads operands, making sure |
| // to use the original store's chain as an incoming chain. |
| SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), |
| NewLoad->op_end()); |
| NewLoadOperands[0] = Ch; |
| NewLoad = |
| SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); |
| return NewLoad; |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { |
| assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); |
| |
| SDValue Vec = Op.getOperand(0); |
| SDValue Part = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| SDLoc dl(Op); |
| |
| // Store the value to a temporary stack slot, then LOAD the returned part. |
| EVT VecVT = Vec.getValueType(); |
| SDValue StackPtr = DAG.CreateStackTemporary(VecVT); |
| int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| MachinePointerInfo PtrInfo = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); |
| |
| // First store the whole vector. |
| SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); |
| |
| // Then store the inserted part. |
| SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); |
| |
| // Store the subvector. |
| Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); |
| |
| // Finally, load the updated vector. |
| return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { |
| // We can't handle this case efficiently. Allocate a sufficiently |
| // aligned object on the stack, store each element into it, then load |
| // the result as a vector. |
| // Create the stack frame object. |
| EVT VT = Node->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| SDLoc dl(Node); |
| SDValue FIPtr = DAG.CreateStackTemporary(VT); |
| int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); |
| MachinePointerInfo PtrInfo = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); |
| |
| // Emit a store of each element to the stack slot. |
| SmallVector<SDValue, 8> Stores; |
| unsigned TypeByteSize = EltVT.getSizeInBits() / 8; |
| assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); |
| // Store (in the right endianness) the elements to memory. |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { |
| // Ignore undef elements. |
| if (Node->getOperand(i).isUndef()) continue; |
| |
| unsigned Offset = TypeByteSize*i; |
| |
| SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); |
| Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl); |
| |
| // If the destination vector element type is narrower than the source |
| // element type, only store the bits necessary. |
| if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { |
| Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, |
| Node->getOperand(i), Idx, |
| PtrInfo.getWithOffset(Offset), EltVT)); |
| } else |
| Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), |
| Idx, PtrInfo.getWithOffset(Offset))); |
| } |
| |
| SDValue StoreChain; |
| if (!Stores.empty()) // Not all undef elements? |
| StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); |
| else |
| StoreChain = DAG.getEntryNode(); |
| |
| // Result is a load from the stack slot. |
| return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); |
| } |
| |
| /// Bitcast a floating-point value to an integer value. Only bitcast the part |
| /// containing the sign bit if the target has no integer value capable of |
| /// holding all bits of the floating-point value. |
| void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, |
| const SDLoc &DL, |
| SDValue Value) const { |
| EVT FloatVT = Value.getValueType(); |
| unsigned NumBits = FloatVT.getSizeInBits(); |
| State.FloatVT = FloatVT; |
| EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); |
| // Convert to an integer of the same size. |
| if (TLI.isTypeLegal(IVT)) { |
| State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); |
| State.SignMask = APInt::getSignMask(NumBits); |
| State.SignBit = NumBits - 1; |
| return; |
| } |
| |
| auto &DataLayout = DAG.getDataLayout(); |
| // Store the float to memory, then load the sign part out as an integer. |
| MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); |
| // First create a temporary that is aligned for both the load and store. |
| SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); |
| int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| // Then store the float to it. |
| State.FloatPtr = StackPtr; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); |
| State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, |
| State.FloatPointerInfo); |
| |
| SDValue IntPtr; |
| if (DataLayout.isBigEndian()) { |
| assert(FloatVT.isByteSized() && "Unsupported floating point type!"); |
| // Load out a legal integer with the same sign bit as the float. |
| IntPtr = StackPtr; |
| State.IntPointerInfo = State.FloatPointerInfo; |
| } else { |
| // Advance the pointer so that the loaded byte will contain the sign bit. |
| unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; |
| IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL); |
| State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, |
| ByteOffset); |
| } |
| |
| State.IntPtr = IntPtr; |
| State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, |
| State.IntPointerInfo, MVT::i8); |
| State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); |
| State.SignBit = 7; |
| } |
| |
| /// Replace the integer value produced by getSignAsIntValue() with a new value |
| /// and cast the result back to a floating-point type. |
| SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, |
| const SDLoc &DL, |
| SDValue NewIntValue) const { |
| if (!State.Chain) |
| return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); |
| |
| // Override the part containing the sign bit in the value stored on the stack. |
| SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, |
| State.IntPointerInfo, MVT::i8); |
| return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, |
| State.FloatPointerInfo); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { |
| SDLoc DL(Node); |
| SDValue Mag = Node->getOperand(0); |
| SDValue Sign = Node->getOperand(1); |
| |
| // Get sign bit into an integer value. |
| FloatSignAsInt SignAsInt; |
| getSignAsIntValue(SignAsInt, DL, Sign); |
| |
| EVT IntVT = SignAsInt.IntValue.getValueType(); |
| SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); |
| SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, |
| SignMask); |
| |
| // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) |
| EVT FloatVT = Mag.getValueType(); |
| if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && |
| TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { |
| SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); |
| SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); |
| SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, |
| DAG.getConstant(0, DL, IntVT), ISD::SETNE); |
| return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); |
| } |
| |
| // Transform Mag value to integer, and clear the sign bit. |
| FloatSignAsInt MagAsInt; |
| getSignAsIntValue(MagAsInt, DL, Mag); |
| EVT MagVT = MagAsInt.IntValue.getValueType(); |
| SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); |
| SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, |
| ClearSignMask); |
| |
| // Get the signbit at the right position for MagAsInt. |
| int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; |
| EVT ShiftVT = IntVT; |
| if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { |
| SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); |
| ShiftVT = MagVT; |
| } |
| if (ShiftAmount > 0) { |
| SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); |
| SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); |
| } else if (ShiftAmount < 0) { |
| SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); |
| SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); |
| } |
| if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { |
| SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); |
| } |
| |
| // Store the part with the modified sign and convert back to float. |
| SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); |
| return modifySignAsInt(MagAsInt, DL, CopiedSign); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { |
| SDLoc DL(Node); |
| SDValue Value = Node->getOperand(0); |
| |
| // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. |
| EVT FloatVT = Value.getValueType(); |
| if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { |
| SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); |
| return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); |
| } |
| |
| // Transform value to integer, clear the sign bit and transform back. |
| FloatSignAsInt ValueAsInt; |
| getSignAsIntValue(ValueAsInt, DL, Value); |
| EVT IntVT = ValueAsInt.IntValue.getValueType(); |
| SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); |
| SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, |
| ClearSignMask); |
| return modifySignAsInt(ValueAsInt, DL, ClearedSign); |
| } |
| |
| void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, |
| SmallVectorImpl<SDValue> &Results) { |
| unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); |
| assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" |
| " not tell us which reg is the stack pointer!"); |
| SDLoc dl(Node); |
| EVT VT = Node->getValueType(0); |
| SDValue Tmp1 = SDValue(Node, 0); |
| SDValue Tmp2 = SDValue(Node, 1); |
| SDValue Tmp3 = Node->getOperand(2); |
| SDValue Chain = Tmp1.getOperand(0); |
| |
| // Chain the dynamic stack allocation so that it doesn't modify the stack |
| // pointer when other instructions are using the stack. |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); |
| |
| SDValue Size = Tmp2.getOperand(1); |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); |
| Chain = SP.getValue(1); |
| unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); |
| unsigned StackAlign = |
| DAG.getSubtarget().getFrameLowering()->getStackAlignment(); |
| Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value |
| if (Align > StackAlign) |
| Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, |
| DAG.getConstant(-(uint64_t)Align, dl, VT)); |
| Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain |
| |
| Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), |
| DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); |
| |
| Results.push_back(Tmp1); |
| Results.push_back(Tmp2); |
| } |
| |
| /// Legalize a SETCC with given LHS and RHS and condition code CC on the current |
| /// target. |
| /// |
| /// If the SETCC has been legalized using AND / OR, then the legalized node |
| /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert |
| /// will be set to false. |
| /// |
| /// If the SETCC has been legalized by using getSetCCSwappedOperands(), |
| /// then the values of LHS and RHS will be swapped, CC will be set to the |
| /// new condition, and NeedInvert will be set to false. |
| /// |
| /// If the SETCC has been legalized using the inverse condcode, then LHS and |
| /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert |
| /// will be set to true. The caller must invert the result of the SETCC with |
| /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect |
| /// of a true/false result. |
| /// |
| /// \returns true if the SetCC has been legalized, false if it hasn't. |
| bool SelectionDAGLegalize::LegalizeSetCCCondCode( |
| EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, |
| const SDLoc &dl, SDValue &Chain, bool IsSignaling) { |
| MVT OpVT = LHS.getSimpleValueType(); |
| ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); |
| NeedInvert = false; |
| switch (TLI.getCondCodeAction(CCCode, OpVT)) { |
| default: llvm_unreachable("Unknown condition code action!"); |
| case TargetLowering::Legal: |
| // Nothing to do. |
| break; |
| case TargetLowering::Expand: { |
| ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); |
| if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { |
| std::swap(LHS, RHS); |
| CC = DAG.getCondCode(InvCC); |
| return true; |
| } |
| // Swapping operands didn't work. Try inverting the condition. |
| bool NeedSwap = false; |
| InvCC = getSetCCInverse(CCCode, OpVT); |
| if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { |
| // If inverting the condition is not enough, try swapping operands |
| // on top of it. |
| InvCC = ISD::getSetCCSwappedOperands(InvCC); |
| NeedSwap = true; |
| } |
| if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { |
| CC = DAG.getCondCode(InvCC); |
| NeedInvert = true; |
| if (NeedSwap) |
| std::swap(LHS, RHS); |
| return true; |
| } |
| |
| ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; |
| unsigned Opc = 0; |
| switch (CCCode) { |
| default: llvm_unreachable("Don't know how to expand this condition!"); |
| case ISD::SETO: |
| assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) |
| && "If SETO is expanded, SETOEQ must be legal!"); |
| CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; |
| case ISD::SETUO: |
| assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) |
| && "If SETUO is expanded, SETUNE must be legal!"); |
| CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; |
| case ISD::SETOEQ: |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| case ISD::SETUEQ: |
| case ISD::SETUNE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETULT: |
| case ISD::SETULE: |
| // If we are floating point, assign and break, otherwise fall through. |
| if (!OpVT.isInteger()) { |
| // We can use the 4th bit to tell if we are the unordered |
| // or ordered version of the opcode. |
| CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; |
| Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; |
| CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); |
| break; |
| } |
| // Fallthrough if we are unsigned integer. |
| LLVM_FALLTHROUGH; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETLT: |
| case ISD::SETNE: |
| case ISD::SETEQ: |
| // If all combinations of inverting the condition and swapping operands |
| // didn't work then we have no means to expand the condition. |
| llvm_unreachable("Don't know how to expand this condition!"); |
| } |
| |
| SDValue SetCC1, SetCC2; |
| if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { |
| // If we aren't the ordered or unorder operation, |
| // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). |
| SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); |
| SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); |
| } else { |
| // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) |
| SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); |
| SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); |
| } |
| if (Chain) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), |
| SetCC2.getValue(1)); |
| LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); |
| RHS = SDValue(); |
| CC = SDValue(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Emit a store/load combination to the stack. This stores |
| /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does |
| /// a load from the stack slot to DestVT, extending it if needed. |
| /// The resultant code need not be legal. |
| SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, |
| EVT DestVT, const SDLoc &dl) { |
| return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); |
| } |
| |
| SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, |
| EVT DestVT, const SDLoc &dl, |
| SDValue Chain) { |
| // Create the stack frame object. |
| unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( |
| SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); |
| SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); |
| |
| FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); |
| int SPFI = StackPtrFI->getIndex(); |
| MachinePointerInfo PtrInfo = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); |
| |
| unsigned SrcSize = SrcOp.getValueSizeInBits(); |
| unsigned SlotSize = SlotVT.getSizeInBits(); |
| unsigned DestSize = DestVT.getSizeInBits(); |
| Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); |
| unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); |
| |
| // Emit a store to the stack slot. Use a truncstore if the input value is |
| // later than DestVT. |
| SDValue Store; |
| |
| if (SrcSize > SlotSize) |
| Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, |
| SlotVT, SrcAlign); |
| else { |
| assert(SrcSize == SlotSize && "Invalid store"); |
| Store = |
| DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); |
| } |
| |
| // Result is a load from the stack slot. |
| if (SlotSize == DestSize) |
| return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); |
| |
| assert(SlotSize < DestSize && "Unknown extension!"); |
| return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, |
| DestAlign); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { |
| SDLoc dl(Node); |
| // Create a vector sized/aligned stack slot, store the value to element #0, |
| // then load the whole vector back out. |
| SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); |
| |
| FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); |
| int SPFI = StackPtrFI->getIndex(); |
| |
| SDValue Ch = DAG.getTruncStore( |
| DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), |
| Node->getValueType(0).getVectorElementType()); |
| return DAG.getLoad( |
| Node->getValueType(0), dl, Ch, StackPtr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); |
| } |
| |
| static bool |
| ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, |
| const TargetLowering &TLI, SDValue &Res) { |
| unsigned NumElems = Node->getNumOperands(); |
| SDLoc dl(Node); |
| EVT VT = Node->getValueType(0); |
| |
| // Try to group the scalars into pairs, shuffle the pairs together, then |
| // shuffle the pairs of pairs together, etc. until the vector has |
| // been built. This will work only if all of the necessary shuffle masks |
| // are legal. |
| |
| // We do this in two phases; first to check the legality of the shuffles, |
| // and next, assuming that all shuffles are legal, to create the new nodes. |
| for (int Phase = 0; Phase < 2; ++Phase) { |
| SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, |
| NewIntermedVals; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| if (V.isUndef()) |
| continue; |
| |
| SDValue Vec; |
| if (Phase) |
| Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); |
| IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); |
| } |
| |
| while (IntermedVals.size() > 2) { |
| NewIntermedVals.clear(); |
| for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { |
| // This vector and the next vector are shuffled together (simply to |
| // append the one to the other). |
| SmallVector<int, 16> ShuffleVec(NumElems, -1); |
| |
| SmallVector<int, 16> FinalIndices; |
| FinalIndices.reserve(IntermedVals[i].second.size() + |
| IntermedVals[i+1].second.size()); |
| |
| int k = 0; |
| for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; |
| ++j, ++k) { |
| ShuffleVec[k] = j; |
| FinalIndices.push_back(IntermedVals[i].second[j]); |
| } |
| for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; |
| ++j, ++k) { |
| ShuffleVec[k] = NumElems + j; |
| FinalIndices.push_back(IntermedVals[i+1].second[j]); |
| } |
| |
| SDValue Shuffle; |
| if (Phase) |
| Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, |
| IntermedVals[i+1].first, |
| ShuffleVec); |
| else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) |
| return false; |
| NewIntermedVals.push_back( |
| std::make_pair(Shuffle, std::move(FinalIndices))); |
| } |
| |
| // If we had an odd number of defined values, then append the last |
| // element to the array of new vectors. |
| if ((IntermedVals.size() & 1) != 0) |
| NewIntermedVals.push_back(IntermedVals.back()); |
| |
| IntermedVals.swap(NewIntermedVals); |
| } |
| |
| assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && |
| "Invalid number of intermediate vectors"); |
| SDValue Vec1 = IntermedVals[0].first; |
| SDValue Vec2; |
| if (IntermedVals.size() > 1) |
| Vec2 = IntermedVals[1].first; |
| else if (Phase) |
| Vec2 = DAG.getUNDEF(VT); |
| |
| SmallVector<int, 16> ShuffleVec(NumElems, -1); |
| for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) |
| ShuffleVec[IntermedVals[0].second[i]] = i; |
| for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) |
| ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; |
| |
| if (Phase) |
| Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); |
| else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Expand a BUILD_VECTOR node on targets that don't |
| /// support the operation, but do support the resultant vector type. |
| SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { |
| unsigned NumElems = Node->getNumOperands(); |
| SDValue Value1, Value2; |
| SDLoc dl(Node); |
| EVT VT = Node->getValueType(0); |
| EVT OpVT = Node->getOperand(0).getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| |
| // If the only non-undef value is the low element, turn this into a |
| // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. |
| bool isOnlyLowElement = true; |
| bool MoreThanTwoValues = false; |
| bool isConstant = true; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| if (V.isUndef()) |
| continue; |
| if (i > 0) |
| isOnlyLowElement = false; |
| if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) |
| isConstant = false; |
| |
| if (!Value1.getNode()) { |
| Value1 = V; |
| } else if (!Value2.getNode()) { |
| if (V != Value1) |
| Value2 = V; |
| } else if (V != Value1 && V != Value2) { |
| MoreThanTwoValues = true; |
| } |
| } |
| |
| if (!Value1.getNode()) |
| return DAG.getUNDEF(VT); |
| |
| if (isOnlyLowElement) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); |
| |
| // If all elements are constants, create a load from the constant pool. |
| if (isConstant) { |
| SmallVector<Constant*, 16> CV; |
| for (unsigned i = 0, e = NumElems; i != e; ++i) { |
| if (ConstantFPSDNode *V = |
| dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { |
| CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); |
| } else if (ConstantSDNode *V = |
| dyn_cast<ConstantSDNode>(Node->getOperand(i))) { |
| if (OpVT==EltVT) |
| CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); |
| else { |
| // If OpVT and EltVT don't match, EltVT is not legal and the |
| // element values have been promoted/truncated earlier. Undo this; |
| // we don't want a v16i8 to become a v16i32 for example. |
| const ConstantInt *CI = V->getConstantIntValue(); |
| CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), |
| CI->getZExtValue())); |
| } |
| } else { |
| assert(Node->getOperand(i).isUndef()); |
| Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); |
| CV.push_back(UndefValue::get(OpNTy)); |
| } |
| } |
| Constant *CP = ConstantVector::get(CV); |
| SDValue CPIdx = |
| DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| return DAG.getLoad( |
| VT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| } |
| |
| SmallSet<SDValue, 16> DefinedValues; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| if (Node->getOperand(i).isUndef()) |
| continue; |
| DefinedValues.insert(Node->getOperand(i)); |
| } |
| |
| if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { |
| if (!MoreThanTwoValues) { |
| SmallVector<int, 8> ShuffleVec(NumElems, -1); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| if (V.isUndef()) |
| continue; |
| ShuffleVec[i] = V == Value1 ? 0 : NumElems; |
| } |
| if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { |
| // Get the splatted value into the low element of a vector register. |
| SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); |
| SDValue Vec2; |
| if (Value2.getNode()) |
| Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); |
| else |
| Vec2 = DAG.getUNDEF(VT); |
| |
| // Return shuffle(LowValVec, undef, <0,0,0,0>) |
| return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); |
| } |
| } else { |
| SDValue Res; |
| if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) |
| return Res; |
| } |
| } |
| |
| // Otherwise, we can't handle this case efficiently. |
| return ExpandVectorBuildThroughStack(Node); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { |
| SDLoc DL(Node); |
| EVT VT = Node->getValueType(0); |
| SDValue SplatVal = Node->getOperand(0); |
| |
| return DAG.getSplatBuildVector(VT, DL, SplatVal); |
| } |
| |
| // Expand a node into a call to a libcall. If the result value |
| // does not fit into a register, return the lo part and set the hi part to the |
| // by-reg argument. If it does fit into a single register, return the result |
| // and leave the Hi part unset. |
| SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, |
| bool isSigned) { |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (const SDValue &Op : Node->op_values()) { |
| EVT ArgVT = Op.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Node = Op; |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); |
| Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); |
| Args.push_back(Entry); |
| } |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| EVT RetVT = Node->getValueType(0); |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| |
| // By default, the input chain to this libcall is the entry node of the |
| // function. If the libcall is going to be emitted as a tail call then |
| // TLI.isUsedByReturnOnly will change it to the right chain if the return |
| // node which is being folded has a non-entry input chain. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| // isTailCall may be true since the callee does not reference caller stack |
| // frame. Check if it's in the right position and that the return types match. |
| SDValue TCChain = InChain; |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| bool isTailCall = |
| TLI.isInTailCallPosition(DAG, Node, TCChain) && |
| (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); |
| if (isTailCall) |
| InChain = TCChain; |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); |
| CLI.setDebugLoc(SDLoc(Node)) |
| .setChain(InChain) |
| .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, |
| std::move(Args)) |
| .setTailCall(isTailCall) |
| .setSExtResult(signExtend) |
| .setZExtResult(!signExtend) |
| .setIsPostTypeLegalization(true); |
| |
| std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); |
| |
| if (!CallInfo.second.getNode()) { |
| LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); |
| // It's a tailcall, return the chain (which is the DAG root). |
| return DAG.getRoot(); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); |
| return CallInfo.first; |
| } |
| |
| void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, |
| RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, |
| RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_F128, |
| RTLIB::Libcall Call_PPCF128, |
| SmallVectorImpl<SDValue> &Results) { |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::f32: LC = Call_F32; break; |
| case MVT::f64: LC = Call_F64; break; |
| case MVT::f80: LC = Call_F80; break; |
| case MVT::f128: LC = Call_F128; break; |
| case MVT::ppcf128: LC = Call_PPCF128; break; |
| } |
| |
| if (Node->isStrictFPOpcode()) { |
| EVT RetVT = Node->getValueType(0); |
| SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); |
| TargetLowering::MakeLibCallOptions CallOptions; |
| // FIXME: This doesn't support tail calls. |
| std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, |
| Ops, CallOptions, |
| SDLoc(Node), |
| Node->getOperand(0)); |
| Results.push_back(Tmp.first); |
| Results.push_back(Tmp.second); |
| } else { |
| SDValue Tmp = ExpandLibCall(LC, Node, false); |
| Results.push_back(Tmp); |
| } |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, |
| RTLIB::Libcall Call_I8, |
| RTLIB::Libcall Call_I16, |
| RTLIB::Libcall Call_I32, |
| RTLIB::Libcall Call_I64, |
| RTLIB::Libcall Call_I128) { |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i8: LC = Call_I8; break; |
| case MVT::i16: LC = Call_I16; break; |
| case MVT::i32: LC = Call_I32; break; |
| case MVT::i64: LC = Call_I64; break; |
| case MVT::i128: LC = Call_I128; break; |
| } |
| return ExpandLibCall(LC, Node, isSigned); |
| } |
| |
| /// Expand the node to a libcall based on first argument type (for instance |
| /// lround and its variant). |
| void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, |
| RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, |
| RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_F128, |
| RTLIB::Libcall Call_PPCF128, |
| SmallVectorImpl<SDValue> &Results) { |
| EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); |
| |
| RTLIB::Libcall LC; |
| switch (InVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::f32: LC = Call_F32; break; |
| case MVT::f64: LC = Call_F64; break; |
| case MVT::f80: LC = Call_F80; break; |
| case MVT::f128: LC = Call_F128; break; |
| case MVT::ppcf128: LC = Call_PPCF128; break; |
| } |
| |
| if (Node->isStrictFPOpcode()) { |
| EVT RetVT = Node->getValueType(0); |
| SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); |
| TargetLowering::MakeLibCallOptions CallOptions; |
| // FIXME: This doesn't support tail calls. |
| std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, |
| Ops, CallOptions, |
| SDLoc(Node), |
| Node->getOperand(0)); |
| Results.push_back(Tmp.first); |
| Results.push_back(Tmp.second); |
| } else { |
| SDValue Tmp = ExpandLibCall(LC, Node, false); |
| Results.push_back(Tmp); |
| } |
| } |
| |
| /// Issue libcalls to __{u}divmod to compute div / rem pairs. |
| void |
| SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| unsigned Opcode = Node->getOpcode(); |
| bool isSigned = Opcode == ISD::SDIVREM; |
| |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; |
| case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; |
| case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; |
| case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; |
| case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; |
| } |
| |
| // The input chain to this libcall is the entry node of the function. |
| // Legalizing the call will automatically add the previous call to the |
| // dependence. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| EVT RetVT = Node->getValueType(0); |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (const SDValue &Op : Node->op_values()) { |
| EVT ArgVT = Op.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Node = Op; |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = isSigned; |
| Entry.IsZExt = !isSigned; |
| Args.push_back(Entry); |
| } |
| |
| // Also pass the return address of the remainder. |
| SDValue FIPtr = DAG.CreateStackTemporary(RetVT); |
| Entry.Node = FIPtr; |
| Entry.Ty = RetTy->getPointerTo(); |
| Entry.IsSExt = isSigned; |
| Entry.IsZExt = !isSigned; |
| Args.push_back(Entry); |
| |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| SDLoc dl(Node); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(InChain) |
| .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, |
| std::move(Args)) |
| .setSExtResult(isSigned) |
| .setZExtResult(!isSigned); |
| |
| std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); |
| |
| // Remainder is loaded back from the stack frame. |
| SDValue Rem = |
| DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); |
| Results.push_back(CallInfo.first); |
| Results.push_back(Rem); |
| } |
| |
| /// Return true if sincos libcall is available. |
| static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::f32: LC = RTLIB::SINCOS_F32; break; |
| case MVT::f64: LC = RTLIB::SINCOS_F64; break; |
| case MVT::f80: LC = RTLIB::SINCOS_F80; break; |
| case MVT::f128: LC = RTLIB::SINCOS_F128; break; |
| case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; |
| } |
| return TLI.getLibcallName(LC) != nullptr; |
| } |
| |
| /// Only issue sincos libcall if both sin and cos are needed. |
| static bool useSinCos(SDNode *Node) { |
| unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN |
| ? ISD::FCOS : ISD::FSIN; |
| |
| SDValue Op0 = Node->getOperand(0); |
| for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), |
| UE = Op0.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User == Node) |
| continue; |
| // The other user might have been turned into sincos already. |
| if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Issue libcalls to sincos to compute sin / cos pairs. |
| void |
| SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::f32: LC = RTLIB::SINCOS_F32; break; |
| case MVT::f64: LC = RTLIB::SINCOS_F64; break; |
| case MVT::f80: LC = RTLIB::SINCOS_F80; break; |
| case MVT::f128: LC = RTLIB::SINCOS_F128; break; |
| case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; |
| } |
| |
| // The input chain to this libcall is the entry node of the function. |
| // Legalizing the call will automatically add the previous call to the |
| // dependence. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| EVT RetVT = Node->getValueType(0); |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| |
| // Pass the argument. |
| Entry.Node = Node->getOperand(0); |
| Entry.Ty = RetTy; |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| // Pass the return address of sin. |
| SDValue SinPtr = DAG.CreateStackTemporary(RetVT); |
| Entry.Node = SinPtr; |
| Entry.Ty = RetTy->getPointerTo(); |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| // Also pass the return address of the cos. |
| SDValue CosPtr = DAG.CreateStackTemporary(RetVT); |
| Entry.Node = CosPtr; |
| Entry.Ty = RetTy->getPointerTo(); |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| SDLoc dl(Node); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( |
| TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, |
| std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); |
| |
| Results.push_back( |
| DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); |
| Results.push_back( |
| DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); |
| } |
| |
| /// This function is responsible for legalizing a |
| /// INT_TO_FP operation of the specified operand when the target requests that |
| /// we expand it. At this point, we know that the result and operand types are |
| /// legal for the target. |
| SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, |
| SDValue &Chain) { |
| bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || |
| Node->getOpcode() == ISD::SINT_TO_FP); |
| EVT DestVT = Node->getValueType(0); |
| SDLoc dl(Node); |
| unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; |
| SDValue Op0 = Node->getOperand(OpNo); |
| EVT SrcVT = Op0.getValueType(); |
| |
| // TODO: Should any fast-math-flags be set for the created nodes? |
| LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); |
| if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { |
| LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " |
| "expansion\n"); |
| |
| // Get the stack frame index of a 8 byte buffer. |
| SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); |
| |
| // word offset constant for Hi/Lo address computation |
| SDValue WordOff = DAG.getConstant(sizeof(int), dl, |
| StackSlot.getValueType()); |
| // set up Hi and Lo (into buffer) address based on endian |
| SDValue Hi = StackSlot; |
| SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), |
| StackSlot, WordOff); |
| if (DAG.getDataLayout().isLittleEndian()) |
| std::swap(Hi, Lo); |
| |
| // if signed map to unsigned space |
| SDValue Op0Mapped; |
| if (isSigned) { |
| // constant used to invert sign bit (signed to unsigned mapping) |
| SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); |
| Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); |
| } else { |
| Op0Mapped = Op0; |
| } |
| // store the lo of the constructed double - based on integer input |
| SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, |
| MachinePointerInfo()); |
| // initial hi portion of constructed double |
| SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); |
| // store the hi of the constructed double - biased exponent |
| SDValue Store2 = |
| DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); |
| // load the constructed double |
| SDValue Load = |
| DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); |
| // FP constant to bias correct the final result |
| SDValue Bias = DAG.getConstantFP(isSigned ? |
| BitsToDouble(0x4330000080000000ULL) : |
| BitsToDouble(0x4330000000000000ULL), |
| dl, MVT::f64); |
| // Subtract the bias and get the final result. |
| SDValue Sub; |
| SDValue Result; |
| if (Node->isStrictFPOpcode()) { |
| Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, |
| {Node->getOperand(0), Load, Bias}); |
| Chain = Sub.getValue(1); |
| if (DestVT != Sub.getValueType()) { |
| std::pair<SDValue, SDValue> ResultPair; |
| ResultPair = |
| DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); |
| Result = ResultPair.first; |
| Chain = ResultPair.second; |
| } |
| else |
| Result = Sub; |
| } else { |
| Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); |
| Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); |
| } |
| return Result; |
| } |
| assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); |
| // Code below here assumes !isSigned without checking again. |
| // FIXME: This can produce slightly incorrect results. See details in |
| // FIXME: https://reviews.llvm.org/D69275 |
| |
| SDValue Tmp1; |
| if (Node->isStrictFPOpcode()) { |
| Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, |
| { Node->getOperand(0), Op0 }); |
| } else |
| Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); |
| |
| SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, |
| DAG.getConstant(0, dl, SrcVT), ISD::SETLT); |
| SDValue Zero = DAG.getIntPtrConstant(0, dl), |
| Four = DAG.getIntPtrConstant(4, dl); |
| SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), |
| SignSet, Four, Zero); |
| |
| // If the sign bit of the integer is set, the large number will be treated |
| // as a negative number. To counteract this, the dynamic code adds an |
| // offset depending on the data type. |
| uint64_t FF; |
| switch (SrcVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported integer type!"); |
| case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) |
| case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) |
| case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) |
| case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) |
| } |
| if (DAG.getDataLayout().isLittleEndian()) |
| FF <<= 32; |
| Constant *FudgeFactor = ConstantInt::get( |
| Type::getInt64Ty(*DAG.getContext()), FF); |
| |
| SDValue CPIdx = |
| DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); |
| Alignment = std::min(Alignment, 4u); |
| SDValue FudgeInReg; |
| if (DestVT == MVT::f32) |
| FudgeInReg = DAG.getLoad( |
| MVT::f32, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| else { |
| SDValue Load = DAG.getExtLoad( |
| ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, |
| Alignment); |
| HandleSDNode Handle(Load); |
| LegalizeOp(Load.getNode()); |
| FudgeInReg = Handle.getValue(); |
| } |
| |
| if (Node->isStrictFPOpcode()) { |
| SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
|