blob: 1c4a668e5f316cec99573409b98775d5b774d370 [file] [log] [blame]
//===- Localizer.cpp ---------------------- Localize some instrs -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the Localizer class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Localizer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "localizer"
using namespace llvm;
char Localizer::ID = 0;
INITIALIZE_PASS_BEGIN(Localizer, DEBUG_TYPE,
"Move/duplicate certain instructions close to their use",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(Localizer, DEBUG_TYPE,
"Move/duplicate certain instructions close to their use",
false, false)
Localizer::Localizer(std::function<bool(const MachineFunction &)> F)
: MachineFunctionPass(ID), DoNotRunPass(F) {}
Localizer::Localizer()
: Localizer([](const MachineFunction &) { return false; }) {}
void Localizer::init(MachineFunction &MF) {
MRI = &MF.getRegInfo();
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(MF.getFunction());
}
bool Localizer::shouldLocalize(const MachineInstr &MI) {
// Assuming a spill and reload of a value has a cost of 1 instruction each,
// this helper function computes the maximum number of uses we should consider
// for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
// break even in terms of code size when the original MI has 2 users vs
// choosing to potentially spill. Any more than 2 users we we have a net code
// size increase. This doesn't take into account register pressure though.
auto maxUses = [](unsigned RematCost) {
// A cost of 1 means remats are basically free.
if (RematCost == 1)
return UINT_MAX;
if (RematCost == 2)
return 2U;
// Remat is too expensive, only sink if there's one user.
if (RematCost > 2)
return 1U;
llvm_unreachable("Unexpected remat cost");
};
// Helper to walk through uses and terminate if we've reached a limit. Saves
// us spending time traversing uses if all we want to know is if it's >= min.
auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
unsigned NumUses = 0;
auto UI = MRI->use_instr_nodbg_begin(Reg), UE = MRI->use_instr_nodbg_end();
for (; UI != UE && NumUses < MaxUses; ++UI) {
NumUses++;
}
// If we haven't reached the end yet then there are more than MaxUses users.
return UI == UE;
};
switch (MI.getOpcode()) {
default:
return false;
// Constants-like instructions should be close to their users.
// We don't want long live-ranges for them.
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_FRAME_INDEX:
case TargetOpcode::G_INTTOPTR:
return true;
case TargetOpcode::G_GLOBAL_VALUE: {
unsigned RematCost = TTI->getGISelRematGlobalCost();
Register Reg = MI.getOperand(0).getReg();
unsigned MaxUses = maxUses(RematCost);
if (MaxUses == UINT_MAX)
return true; // Remats are "free" so always localize.
bool B = isUsesAtMost(Reg, MaxUses);
return B;
}
}
}
void Localizer::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetTransformInfoWrapperPass>();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
bool Localizer::isLocalUse(MachineOperand &MOUse, const MachineInstr &Def,
MachineBasicBlock *&InsertMBB) {
MachineInstr &MIUse = *MOUse.getParent();
InsertMBB = MIUse.getParent();
if (MIUse.isPHI())
InsertMBB = MIUse.getOperand(MIUse.getOperandNo(&MOUse) + 1).getMBB();
return InsertMBB == Def.getParent();
}
bool Localizer::localizeInterBlock(MachineFunction &MF,
LocalizedSetVecT &LocalizedInstrs) {
bool Changed = false;
DenseMap<std::pair<MachineBasicBlock *, unsigned>, unsigned> MBBWithLocalDef;
// Since the IRTranslator only emits constants into the entry block, and the
// rest of the GISel pipeline generally emits constants close to their users,
// we only localize instructions in the entry block here. This might change if
// we start doing CSE across blocks.
auto &MBB = MF.front();
for (auto RI = MBB.rbegin(), RE = MBB.rend(); RI != RE; ++RI) {
MachineInstr &MI = *RI;
if (!shouldLocalize(MI))
continue;
LLVM_DEBUG(dbgs() << "Should localize: " << MI);
assert(MI.getDesc().getNumDefs() == 1 &&
"More than one definition not supported yet");
Register Reg = MI.getOperand(0).getReg();
// Check if all the users of MI are local.
// We are going to invalidation the list of use operands, so we
// can't use range iterator.
for (auto MOIt = MRI->use_begin(Reg), MOItEnd = MRI->use_end();
MOIt != MOItEnd;) {
MachineOperand &MOUse = *MOIt++;
// Check if the use is already local.
MachineBasicBlock *InsertMBB;
LLVM_DEBUG(MachineInstr &MIUse = *MOUse.getParent();
dbgs() << "Checking use: " << MIUse
<< " #Opd: " << MIUse.getOperandNo(&MOUse) << '\n');
if (isLocalUse(MOUse, MI, InsertMBB))
continue;
LLVM_DEBUG(dbgs() << "Fixing non-local use\n");
Changed = true;
auto MBBAndReg = std::make_pair(InsertMBB, Reg);
auto NewVRegIt = MBBWithLocalDef.find(MBBAndReg);
if (NewVRegIt == MBBWithLocalDef.end()) {
// Create the localized instruction.
MachineInstr *LocalizedMI = MF.CloneMachineInstr(&MI);
LocalizedInstrs.insert(LocalizedMI);
MachineInstr &UseMI = *MOUse.getParent();
if (MRI->hasOneUse(Reg) && !UseMI.isPHI())
InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(UseMI), LocalizedMI);
else
InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(InsertMBB->begin()),
LocalizedMI);
// Set a new register for the definition.
Register NewReg = MRI->createGenericVirtualRegister(MRI->getType(Reg));
MRI->setRegClassOrRegBank(NewReg, MRI->getRegClassOrRegBank(Reg));
LocalizedMI->getOperand(0).setReg(NewReg);
NewVRegIt =
MBBWithLocalDef.insert(std::make_pair(MBBAndReg, NewReg)).first;
LLVM_DEBUG(dbgs() << "Inserted: " << *LocalizedMI);
}
LLVM_DEBUG(dbgs() << "Update use with: " << printReg(NewVRegIt->second)
<< '\n');
// Update the user reg.
MOUse.setReg(NewVRegIt->second);
}
}
return Changed;
}
bool Localizer::localizeIntraBlock(LocalizedSetVecT &LocalizedInstrs) {
bool Changed = false;
// For each already-localized instruction which has multiple users, then we
// scan the block top down from the current position until we hit one of them.
// FIXME: Consider doing inst duplication if live ranges are very long due to
// many users, but this case may be better served by regalloc improvements.
for (MachineInstr *MI : LocalizedInstrs) {
Register Reg = MI->getOperand(0).getReg();
MachineBasicBlock &MBB = *MI->getParent();
// All of the user MIs of this reg.
SmallPtrSet<MachineInstr *, 32> Users;
for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
if (!UseMI.isPHI())
Users.insert(&UseMI);
}
// If all the users were PHIs then they're not going to be in our block,
// don't try to move this instruction.
if (Users.empty())
continue;
MachineBasicBlock::iterator II(MI);
++II;
while (II != MBB.end() && !Users.count(&*II))
++II;
LLVM_DEBUG(dbgs() << "Intra-block: moving " << *MI << " before " << *&*II
<< "\n");
assert(II != MBB.end() && "Didn't find the user in the MBB");
MI->removeFromParent();
MBB.insert(II, MI);
Changed = true;
}
return Changed;
}
bool Localizer::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
// Don't run the pass if the target asked so.
if (DoNotRunPass(MF))
return false;
LLVM_DEBUG(dbgs() << "Localize instructions for: " << MF.getName() << '\n');
init(MF);
// Keep track of the instructions we localized. We'll do a second pass of
// intra-block localization to further reduce live ranges.
LocalizedSetVecT LocalizedInstrs;
bool Changed = localizeInterBlock(MF, LocalizedInstrs);
Changed |= localizeIntraBlock(LocalizedInstrs);
return Changed;
}