| //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_OBJECT_ELFTYPES_H |
| #define LLVM_OBJECT_ELFTYPES_H |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/Object/Error.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/Error.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <cstring> |
| #include <type_traits> |
| |
| namespace llvm { |
| namespace object { |
| |
| using support::endianness; |
| |
| template <class ELFT> struct Elf_Ehdr_Impl; |
| template <class ELFT> struct Elf_Shdr_Impl; |
| template <class ELFT> struct Elf_Sym_Impl; |
| template <class ELFT> struct Elf_Dyn_Impl; |
| template <class ELFT> struct Elf_Phdr_Impl; |
| template <class ELFT, bool isRela> struct Elf_Rel_Impl; |
| template <class ELFT> struct Elf_Verdef_Impl; |
| template <class ELFT> struct Elf_Verdaux_Impl; |
| template <class ELFT> struct Elf_Verneed_Impl; |
| template <class ELFT> struct Elf_Vernaux_Impl; |
| template <class ELFT> struct Elf_Versym_Impl; |
| template <class ELFT> struct Elf_Hash_Impl; |
| template <class ELFT> struct Elf_GnuHash_Impl; |
| template <class ELFT> struct Elf_Chdr_Impl; |
| template <class ELFT> struct Elf_Nhdr_Impl; |
| template <class ELFT> class Elf_Note_Impl; |
| template <class ELFT> class Elf_Note_Iterator_Impl; |
| template <class ELFT> struct Elf_CGProfile_Impl; |
| |
| template <endianness E, bool Is64> struct ELFType { |
| private: |
| template <typename Ty> |
| using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>; |
| |
| public: |
| static const endianness TargetEndianness = E; |
| static const bool Is64Bits = Is64; |
| |
| using uint = typename std::conditional<Is64, uint64_t, uint32_t>::type; |
| using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>; |
| using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>; |
| using Sym = Elf_Sym_Impl<ELFType<E, Is64>>; |
| using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>; |
| using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>; |
| using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>; |
| using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>; |
| using Relr = packed<uint>; |
| using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>; |
| using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>; |
| using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>; |
| using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>; |
| using Versym = Elf_Versym_Impl<ELFType<E, Is64>>; |
| using Hash = Elf_Hash_Impl<ELFType<E, Is64>>; |
| using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>; |
| using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>; |
| using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>; |
| using Note = Elf_Note_Impl<ELFType<E, Is64>>; |
| using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>; |
| using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>; |
| using DynRange = ArrayRef<Dyn>; |
| using ShdrRange = ArrayRef<Shdr>; |
| using SymRange = ArrayRef<Sym>; |
| using RelRange = ArrayRef<Rel>; |
| using RelaRange = ArrayRef<Rela>; |
| using RelrRange = ArrayRef<Relr>; |
| using PhdrRange = ArrayRef<Phdr>; |
| |
| using Half = packed<uint16_t>; |
| using Word = packed<uint32_t>; |
| using Sword = packed<int32_t>; |
| using Xword = packed<uint64_t>; |
| using Sxword = packed<int64_t>; |
| using Addr = packed<uint>; |
| using Off = packed<uint>; |
| }; |
| |
| using ELF32LE = ELFType<support::little, false>; |
| using ELF32BE = ELFType<support::big, false>; |
| using ELF64LE = ELFType<support::little, true>; |
| using ELF64BE = ELFType<support::big, true>; |
| |
| // Use an alignment of 2 for the typedefs since that is the worst case for |
| // ELF files in archives. |
| |
| // I really don't like doing this, but the alternative is copypasta. |
| #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) \ |
| using Elf_Addr = typename ELFT::Addr; \ |
| using Elf_Off = typename ELFT::Off; \ |
| using Elf_Half = typename ELFT::Half; \ |
| using Elf_Word = typename ELFT::Word; \ |
| using Elf_Sword = typename ELFT::Sword; \ |
| using Elf_Xword = typename ELFT::Xword; \ |
| using Elf_Sxword = typename ELFT::Sxword; |
| |
| #define LLVM_ELF_COMMA , |
| #define LLVM_ELF_IMPORT_TYPES(E, W) \ |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>) |
| |
| // Section header. |
| template <class ELFT> struct Elf_Shdr_Base; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) |
| Elf_Word sh_name; // Section name (index into string table) |
| Elf_Word sh_type; // Section type (SHT_*) |
| Elf_Word sh_flags; // Section flags (SHF_*) |
| Elf_Addr sh_addr; // Address where section is to be loaded |
| Elf_Off sh_offset; // File offset of section data, in bytes |
| Elf_Word sh_size; // Size of section, in bytes |
| Elf_Word sh_link; // Section type-specific header table index link |
| Elf_Word sh_info; // Section type-specific extra information |
| Elf_Word sh_addralign; // Section address alignment |
| Elf_Word sh_entsize; // Size of records contained within the section |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) |
| Elf_Word sh_name; // Section name (index into string table) |
| Elf_Word sh_type; // Section type (SHT_*) |
| Elf_Xword sh_flags; // Section flags (SHF_*) |
| Elf_Addr sh_addr; // Address where section is to be loaded |
| Elf_Off sh_offset; // File offset of section data, in bytes |
| Elf_Xword sh_size; // Size of section, in bytes |
| Elf_Word sh_link; // Section type-specific header table index link |
| Elf_Word sh_info; // Section type-specific extra information |
| Elf_Xword sh_addralign; // Section address alignment |
| Elf_Xword sh_entsize; // Size of records contained within the section |
| }; |
| |
| template <class ELFT> |
| struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> { |
| using Elf_Shdr_Base<ELFT>::sh_entsize; |
| using Elf_Shdr_Base<ELFT>::sh_size; |
| |
| /// Get the number of entities this section contains if it has any. |
| unsigned getEntityCount() const { |
| if (sh_entsize == 0) |
| return 0; |
| return sh_size / sh_entsize; |
| } |
| }; |
| |
| template <class ELFT> struct Elf_Sym_Base; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Sym_Base<ELFType<TargetEndianness, false>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) |
| Elf_Word st_name; // Symbol name (index into string table) |
| Elf_Addr st_value; // Value or address associated with the symbol |
| Elf_Word st_size; // Size of the symbol |
| unsigned char st_info; // Symbol's type and binding attributes |
| unsigned char st_other; // Must be zero; reserved |
| Elf_Half st_shndx; // Which section (header table index) it's defined in |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Sym_Base<ELFType<TargetEndianness, true>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) |
| Elf_Word st_name; // Symbol name (index into string table) |
| unsigned char st_info; // Symbol's type and binding attributes |
| unsigned char st_other; // Must be zero; reserved |
| Elf_Half st_shndx; // Which section (header table index) it's defined in |
| Elf_Addr st_value; // Value or address associated with the symbol |
| Elf_Xword st_size; // Size of the symbol |
| }; |
| |
| template <class ELFT> |
| struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> { |
| using Elf_Sym_Base<ELFT>::st_info; |
| using Elf_Sym_Base<ELFT>::st_shndx; |
| using Elf_Sym_Base<ELFT>::st_other; |
| using Elf_Sym_Base<ELFT>::st_value; |
| |
| // These accessors and mutators correspond to the ELF32_ST_BIND, |
| // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: |
| unsigned char getBinding() const { return st_info >> 4; } |
| unsigned char getType() const { return st_info & 0x0f; } |
| uint64_t getValue() const { return st_value; } |
| void setBinding(unsigned char b) { setBindingAndType(b, getType()); } |
| void setType(unsigned char t) { setBindingAndType(getBinding(), t); } |
| |
| void setBindingAndType(unsigned char b, unsigned char t) { |
| st_info = (b << 4) + (t & 0x0f); |
| } |
| |
| /// Access to the STV_xxx flag stored in the first two bits of st_other. |
| /// STV_DEFAULT: 0 |
| /// STV_INTERNAL: 1 |
| /// STV_HIDDEN: 2 |
| /// STV_PROTECTED: 3 |
| unsigned char getVisibility() const { return st_other & 0x3; } |
| void setVisibility(unsigned char v) { |
| assert(v < 4 && "Invalid value for visibility"); |
| st_other = (st_other & ~0x3) | v; |
| } |
| |
| bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; } |
| |
| bool isCommon() const { |
| return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON; |
| } |
| |
| bool isDefined() const { return !isUndefined(); } |
| |
| bool isProcessorSpecific() const { |
| return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC; |
| } |
| |
| bool isOSSpecific() const { |
| return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS; |
| } |
| |
| bool isReserved() const { |
| // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always |
| // true and some compilers warn about it. |
| return st_shndx >= ELF::SHN_LORESERVE; |
| } |
| |
| bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; } |
| |
| bool isExternal() const { |
| return getBinding() != ELF::STB_LOCAL; |
| } |
| |
| Expected<StringRef> getName(StringRef StrTab) const; |
| }; |
| |
| template <class ELFT> |
| Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const { |
| uint32_t Offset = this->st_name; |
| if (Offset >= StrTab.size()) |
| return createStringError(object_error::parse_failed, |
| "st_name (0x%" PRIx32 |
| ") is past the end of the string table" |
| " of size 0x%zx", |
| Offset, StrTab.size()); |
| return StringRef(StrTab.data() + Offset); |
| } |
| |
| /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section |
| /// (.gnu.version). This structure is identical for ELF32 and ELF64. |
| template <class ELFT> |
| struct Elf_Versym_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN) |
| }; |
| |
| /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section |
| /// (.gnu.version_d). This structure is identical for ELF32 and ELF64. |
| template <class ELFT> |
| struct Elf_Verdef_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| using Elf_Verdaux = Elf_Verdaux_Impl<ELFT>; |
| Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT) |
| Elf_Half vd_flags; // Bitwise flags (VER_DEF_*) |
| Elf_Half vd_ndx; // Version index, used in .gnu.version entries |
| Elf_Half vd_cnt; // Number of Verdaux entries |
| Elf_Word vd_hash; // Hash of name |
| Elf_Word vd_aux; // Offset to the first Verdaux entry (in bytes) |
| Elf_Word vd_next; // Offset to the next Verdef entry (in bytes) |
| |
| /// Get the first Verdaux entry for this Verdef. |
| const Elf_Verdaux *getAux() const { |
| return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux); |
| } |
| }; |
| |
| /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef |
| /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64. |
| template <class ELFT> |
| struct Elf_Verdaux_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Word vda_name; // Version name (offset in string table) |
| Elf_Word vda_next; // Offset to next Verdaux entry (in bytes) |
| }; |
| |
| /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed |
| /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64. |
| template <class ELFT> |
| struct Elf_Verneed_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT) |
| Elf_Half vn_cnt; // Number of associated Vernaux entries |
| Elf_Word vn_file; // Library name (string table offset) |
| Elf_Word vn_aux; // Offset to first Vernaux entry (in bytes) |
| Elf_Word vn_next; // Offset to next Verneed entry (in bytes) |
| }; |
| |
| /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed |
| /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64. |
| template <class ELFT> |
| struct Elf_Vernaux_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Word vna_hash; // Hash of dependency name |
| Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*) |
| Elf_Half vna_other; // Version index, used in .gnu.version entries |
| Elf_Word vna_name; // Dependency name |
| Elf_Word vna_next; // Offset to next Vernaux entry (in bytes) |
| }; |
| |
| /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic |
| /// table section (.dynamic) look like. |
| template <class ELFT> struct Elf_Dyn_Base; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) |
| Elf_Sword d_tag; |
| union { |
| Elf_Word d_val; |
| Elf_Addr d_ptr; |
| } d_un; |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) |
| Elf_Sxword d_tag; |
| union { |
| Elf_Xword d_val; |
| Elf_Addr d_ptr; |
| } d_un; |
| }; |
| |
| /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters. |
| template <class ELFT> |
| struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> { |
| using Elf_Dyn_Base<ELFT>::d_tag; |
| using Elf_Dyn_Base<ELFT>::d_un; |
| using intX_t = typename std::conditional<ELFT::Is64Bits, |
| int64_t, int32_t>::type; |
| using uintX_t = typename std::conditional<ELFT::Is64Bits, |
| uint64_t, uint32_t>::type; |
| intX_t getTag() const { return d_tag; } |
| uintX_t getVal() const { return d_un.d_val; } |
| uintX_t getPtr() const { return d_un.d_ptr; } |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) |
| static const bool IsRela = false; |
| Elf_Addr r_offset; // Location (file byte offset, or program virtual addr) |
| Elf_Word r_info; // Symbol table index and type of relocation to apply |
| |
| uint32_t getRInfo(bool isMips64EL) const { |
| assert(!isMips64EL); |
| return r_info; |
| } |
| void setRInfo(uint32_t R, bool IsMips64EL) { |
| assert(!IsMips64EL); |
| r_info = R; |
| } |
| |
| // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, |
| // and ELF32_R_INFO macros defined in the ELF specification: |
| uint32_t getSymbol(bool isMips64EL) const { |
| return this->getRInfo(isMips64EL) >> 8; |
| } |
| unsigned char getType(bool isMips64EL) const { |
| return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff); |
| } |
| void setSymbol(uint32_t s, bool IsMips64EL) { |
| setSymbolAndType(s, getType(IsMips64EL), IsMips64EL); |
| } |
| void setType(unsigned char t, bool IsMips64EL) { |
| setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL); |
| } |
| void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) { |
| this->setRInfo((s << 8) + t, IsMips64EL); |
| } |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true> |
| : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) |
| static const bool IsRela = true; |
| Elf_Sword r_addend; // Compute value for relocatable field by adding this |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) |
| static const bool IsRela = false; |
| Elf_Addr r_offset; // Location (file byte offset, or program virtual addr) |
| Elf_Xword r_info; // Symbol table index and type of relocation to apply |
| |
| uint64_t getRInfo(bool isMips64EL) const { |
| uint64_t t = r_info; |
| if (!isMips64EL) |
| return t; |
| // Mips64 little endian has a "special" encoding of r_info. Instead of one |
| // 64 bit little endian number, it is a little endian 32 bit number followed |
| // by a 32 bit big endian number. |
| return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) | |
| ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff); |
| } |
| |
| void setRInfo(uint64_t R, bool IsMips64EL) { |
| if (IsMips64EL) |
| r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) | |
| ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56); |
| else |
| r_info = R; |
| } |
| |
| // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, |
| // and ELF64_R_INFO macros defined in the ELF specification: |
| uint32_t getSymbol(bool isMips64EL) const { |
| return (uint32_t)(this->getRInfo(isMips64EL) >> 32); |
| } |
| uint32_t getType(bool isMips64EL) const { |
| return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL); |
| } |
| void setSymbol(uint32_t s, bool IsMips64EL) { |
| setSymbolAndType(s, getType(IsMips64EL), IsMips64EL); |
| } |
| void setType(uint32_t t, bool IsMips64EL) { |
| setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL); |
| } |
| void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) { |
| this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL); |
| } |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true> |
| : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) |
| static const bool IsRela = true; |
| Elf_Sxword r_addend; // Compute value for relocatable field by adding this. |
| }; |
| |
| template <class ELFT> |
| struct Elf_Ehdr_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes |
| Elf_Half e_type; // Type of file (see ET_*) |
| Elf_Half e_machine; // Required architecture for this file (see EM_*) |
| Elf_Word e_version; // Must be equal to 1 |
| Elf_Addr e_entry; // Address to jump to in order to start program |
| Elf_Off e_phoff; // Program header table's file offset, in bytes |
| Elf_Off e_shoff; // Section header table's file offset, in bytes |
| Elf_Word e_flags; // Processor-specific flags |
| Elf_Half e_ehsize; // Size of ELF header, in bytes |
| Elf_Half e_phentsize; // Size of an entry in the program header table |
| Elf_Half e_phnum; // Number of entries in the program header table |
| Elf_Half e_shentsize; // Size of an entry in the section header table |
| Elf_Half e_shnum; // Number of entries in the section header table |
| Elf_Half e_shstrndx; // Section header table index of section name |
| // string table |
| |
| bool checkMagic() const { |
| return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0; |
| } |
| |
| unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; } |
| unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; } |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) |
| Elf_Word p_type; // Type of segment |
| Elf_Off p_offset; // FileOffset where segment is located, in bytes |
| Elf_Addr p_vaddr; // Virtual Address of beginning of segment |
| Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific) |
| Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero) |
| Elf_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) |
| Elf_Word p_flags; // Segment flags |
| Elf_Word p_align; // Segment alignment constraint |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) |
| Elf_Word p_type; // Type of segment |
| Elf_Word p_flags; // Segment flags |
| Elf_Off p_offset; // FileOffset where segment is located, in bytes |
| Elf_Addr p_vaddr; // Virtual Address of beginning of segment |
| Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific) |
| Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) |
| Elf_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) |
| Elf_Xword p_align; // Segment alignment constraint |
| }; |
| |
| // ELFT needed for endianness. |
| template <class ELFT> |
| struct Elf_Hash_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Word nbucket; |
| Elf_Word nchain; |
| |
| ArrayRef<Elf_Word> buckets() const { |
| return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket); |
| } |
| |
| ArrayRef<Elf_Word> chains() const { |
| return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket, |
| &nbucket + 2 + nbucket + nchain); |
| } |
| }; |
| |
| // .gnu.hash section |
| template <class ELFT> |
| struct Elf_GnuHash_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Word nbuckets; |
| Elf_Word symndx; |
| Elf_Word maskwords; |
| Elf_Word shift2; |
| |
| ArrayRef<Elf_Off> filter() const { |
| return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1), |
| maskwords); |
| } |
| |
| ArrayRef<Elf_Word> buckets() const { |
| return ArrayRef<Elf_Word>( |
| reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets); |
| } |
| |
| ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const { |
| return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx); |
| } |
| }; |
| |
| // Compressed section headers. |
| // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header |
| template <endianness TargetEndianness> |
| struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) |
| Elf_Word ch_type; |
| Elf_Word ch_size; |
| Elf_Word ch_addralign; |
| }; |
| |
| template <endianness TargetEndianness> |
| struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) |
| Elf_Word ch_type; |
| Elf_Word ch_reserved; |
| Elf_Xword ch_size; |
| Elf_Xword ch_addralign; |
| }; |
| |
| /// Note header |
| template <class ELFT> |
| struct Elf_Nhdr_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Word n_namesz; |
| Elf_Word n_descsz; |
| Elf_Word n_type; |
| |
| /// The alignment of the name and descriptor. |
| /// |
| /// Implementations differ from the specification here: in practice all |
| /// variants align both the name and descriptor to 4-bytes. |
| static const unsigned int Align = 4; |
| |
| /// Get the size of the note, including name, descriptor, and padding. |
| size_t getSize() const { |
| return sizeof(*this) + alignTo<Align>(n_namesz) + alignTo<Align>(n_descsz); |
| } |
| }; |
| |
| /// An ELF note. |
| /// |
| /// Wraps a note header, providing methods for accessing the name and |
| /// descriptor safely. |
| template <class ELFT> |
| class Elf_Note_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| |
| const Elf_Nhdr_Impl<ELFT> &Nhdr; |
| |
| template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl; |
| |
| public: |
| Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {} |
| |
| /// Get the note's name, excluding the terminating null byte. |
| StringRef getName() const { |
| if (!Nhdr.n_namesz) |
| return StringRef(); |
| return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr), |
| Nhdr.n_namesz - 1); |
| } |
| |
| /// Get the note's descriptor. |
| ArrayRef<uint8_t> getDesc() const { |
| if (!Nhdr.n_descsz) |
| return ArrayRef<uint8_t>(); |
| return ArrayRef<uint8_t>( |
| reinterpret_cast<const uint8_t *>(&Nhdr) + sizeof(Nhdr) + |
| alignTo<Elf_Nhdr_Impl<ELFT>::Align>(Nhdr.n_namesz), |
| Nhdr.n_descsz); |
| } |
| |
| /// Get the note's type. |
| Elf_Word getType() const { return Nhdr.n_type; } |
| }; |
| |
| template <class ELFT> |
| class Elf_Note_Iterator_Impl |
| : std::iterator<std::forward_iterator_tag, Elf_Note_Impl<ELFT>> { |
| // Nhdr being a nullptr marks the end of iteration. |
| const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr; |
| size_t RemainingSize = 0u; |
| Error *Err = nullptr; |
| |
| template <class ELFFileELFT> friend class ELFFile; |
| |
| // Stop iteration and indicate an overflow. |
| void stopWithOverflowError() { |
| Nhdr = nullptr; |
| *Err = make_error<StringError>("ELF note overflows container", |
| object_error::parse_failed); |
| } |
| |
| // Advance Nhdr by NoteSize bytes, starting from NhdrPos. |
| // |
| // Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize |
| // upon returning. Handles stopping iteration when reaching the end of the |
| // container, either cleanly or with an overflow error. |
| void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) { |
| RemainingSize -= NoteSize; |
| if (RemainingSize == 0u) { |
| // Ensure that if the iterator walks to the end, the error is checked |
| // afterwards. |
| *Err = Error::success(); |
| Nhdr = nullptr; |
| } else if (sizeof(*Nhdr) > RemainingSize) |
| stopWithOverflowError(); |
| else { |
| Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize); |
| if (Nhdr->getSize() > RemainingSize) |
| stopWithOverflowError(); |
| else |
| *Err = Error::success(); |
| } |
| } |
| |
| Elf_Note_Iterator_Impl() {} |
| explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {} |
| Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, Error &Err) |
| : RemainingSize(Size), Err(&Err) { |
| consumeError(std::move(Err)); |
| assert(Start && "ELF note iterator starting at NULL"); |
| advanceNhdr(Start, 0u); |
| } |
| |
| public: |
| Elf_Note_Iterator_Impl &operator++() { |
| assert(Nhdr && "incremented ELF note end iterator"); |
| const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr); |
| size_t NoteSize = Nhdr->getSize(); |
| advanceNhdr(NhdrPos, NoteSize); |
| return *this; |
| } |
| bool operator==(Elf_Note_Iterator_Impl Other) const { |
| if (!Nhdr && Other.Err) |
| (void)(bool)(*Other.Err); |
| if (!Other.Nhdr && Err) |
| (void)(bool)(*Err); |
| return Nhdr == Other.Nhdr; |
| } |
| bool operator!=(Elf_Note_Iterator_Impl Other) const { |
| return !(*this == Other); |
| } |
| Elf_Note_Impl<ELFT> operator*() const { |
| assert(Nhdr && "dereferenced ELF note end iterator"); |
| return Elf_Note_Impl<ELFT>(*Nhdr); |
| } |
| }; |
| |
| template <class ELFT> struct Elf_CGProfile_Impl { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Word cgp_from; |
| Elf_Word cgp_to; |
| Elf_Xword cgp_weight; |
| }; |
| |
| // MIPS .reginfo section |
| template <class ELFT> |
| struct Elf_Mips_RegInfo; |
| |
| template <support::endianness TargetEndianness> |
| struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) |
| Elf_Word ri_gprmask; // bit-mask of used general registers |
| Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers |
| Elf_Addr ri_gp_value; // gp register value |
| }; |
| |
| template <support::endianness TargetEndianness> |
| struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> { |
| LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) |
| Elf_Word ri_gprmask; // bit-mask of used general registers |
| Elf_Word ri_pad; // unused padding field |
| Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers |
| Elf_Addr ri_gp_value; // gp register value |
| }; |
| |
| // .MIPS.options section |
| template <class ELFT> struct Elf_Mips_Options { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| uint8_t kind; // Determines interpretation of variable part of descriptor |
| uint8_t size; // Byte size of descriptor, including this header |
| Elf_Half section; // Section header index of section affected, |
| // or 0 for global options |
| Elf_Word info; // Kind-specific information |
| |
| Elf_Mips_RegInfo<ELFT> &getRegInfo() { |
| assert(kind == ELF::ODK_REGINFO); |
| return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>( |
| (uint8_t *)this + sizeof(Elf_Mips_Options)); |
| } |
| const Elf_Mips_RegInfo<ELFT> &getRegInfo() const { |
| return const_cast<Elf_Mips_Options *>(this)->getRegInfo(); |
| } |
| }; |
| |
| // .MIPS.abiflags section content |
| template <class ELFT> struct Elf_Mips_ABIFlags { |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| Elf_Half version; // Version of the structure |
| uint8_t isa_level; // ISA level: 1-5, 32, and 64 |
| uint8_t isa_rev; // ISA revision (0 for MIPS I - MIPS V) |
| uint8_t gpr_size; // General purpose registers size |
| uint8_t cpr1_size; // Co-processor 1 registers size |
| uint8_t cpr2_size; // Co-processor 2 registers size |
| uint8_t fp_abi; // Floating-point ABI flag |
| Elf_Word isa_ext; // Processor-specific extension |
| Elf_Word ases; // ASEs flags |
| Elf_Word flags1; // General flags |
| Elf_Word flags2; // General flags |
| }; |
| |
| } // end namespace object. |
| } // end namespace llvm. |
| |
| #endif // LLVM_OBJECT_ELFTYPES_H |