blob: 114ba85947a506408f92ff93af9791fabfa43db5 [file] [log] [blame] [edit]
//===-LTOCodeGenerator.h - LLVM Link Time Optimizer -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the LTOCodeGenerator class.
//
// LTO compilation consists of three phases: Pre-IPO, IPO and Post-IPO.
//
// The Pre-IPO phase compiles source code into bitcode file. The resulting
// bitcode files, along with object files and libraries, will be fed to the
// linker to through the IPO and Post-IPO phases. By using obj-file extension,
// the resulting bitcode file disguises itself as an object file, and therefore
// obviates the need of writing a special set of the make-rules only for LTO
// compilation.
//
// The IPO phase perform inter-procedural analyses and optimizations, and
// the Post-IPO consists two sub-phases: intra-procedural scalar optimizations
// (SOPT), and intra-procedural target-dependent code generator (CG).
//
// As of this writing, we don't separate IPO and the Post-IPO SOPT. They
// are intermingled together, and are driven by a single pass manager (see
// PassManagerBuilder::populateLTOPassManager()).
//
// The "LTOCodeGenerator" is the driver for the IPO and Post-IPO stages.
// The "CodeGenerator" here is bit confusing. Don't confuse the "CodeGenerator"
// with the machine specific code generator.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LTO_LTOCODEGENERATOR_H
#define LLVM_LTO_LTOCODEGENERATOR_H
#include "llvm-c/lto.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <string>
#include <vector>
/// Enable global value internalization in LTO.
extern llvm::cl::opt<bool> EnableLTOInternalization;
namespace llvm {
template <typename T> class ArrayRef;
class LLVMContext;
class DiagnosticInfo;
class Linker;
class Mangler;
class MemoryBuffer;
class TargetLibraryInfo;
class TargetMachine;
class raw_ostream;
class raw_pwrite_stream;
//===----------------------------------------------------------------------===//
/// C++ class which implements the opaque lto_code_gen_t type.
///
struct LTOCodeGenerator {
static const char *getVersionString();
LTOCodeGenerator(LLVMContext &Context);
~LTOCodeGenerator();
/// Merge given module. Return true on success.
///
/// Resets \a HasVerifiedInput.
bool addModule(struct LTOModule *);
/// Set the destination module.
///
/// Resets \a HasVerifiedInput.
void setModule(std::unique_ptr<LTOModule> M);
void setAsmUndefinedRefs(struct LTOModule *);
void setTargetOptions(const TargetOptions &Options);
void setDebugInfo(lto_debug_model);
void setCodePICModel(Optional<Reloc::Model> Model) { RelocModel = Model; }
/// Set the file type to be emitted (assembly or object code).
/// The default is CGFT_ObjectFile.
void setFileType(CodeGenFileType FT) { FileType = FT; }
void setCpu(StringRef MCpu) { this->MCpu = MCpu; }
void setAttr(StringRef MAttr) { this->MAttr = MAttr; }
void setOptLevel(unsigned OptLevel);
void setShouldInternalize(bool Value) { ShouldInternalize = Value; }
void setShouldEmbedUselists(bool Value) { ShouldEmbedUselists = Value; }
/// Restore linkage of globals
///
/// When set, the linkage of globals will be restored prior to code
/// generation. That is, a global symbol that had external linkage prior to
/// LTO will be emitted with external linkage again; and a local will remain
/// local. Note that this option only affects the end result - globals may
/// still be internalized in the process of LTO and may be modified and/or
/// deleted where legal.
///
/// The default behavior will internalize globals (unless on the preserve
/// list) and, if parallel code generation is enabled, will externalize
/// all locals.
void setShouldRestoreGlobalsLinkage(bool Value) {
ShouldRestoreGlobalsLinkage = Value;
}
void addMustPreserveSymbol(StringRef Sym) { MustPreserveSymbols.insert(Sym); }
/// Pass options to the driver and optimization passes.
///
/// These options are not necessarily for debugging purpose (the function
/// name is misleading). This function should be called before
/// LTOCodeGenerator::compilexxx(), and
/// LTOCodeGenerator::writeMergedModules().
void setCodeGenDebugOptions(ArrayRef<const char *> Opts);
/// Parse the options set in setCodeGenDebugOptions.
///
/// Like \a setCodeGenDebugOptions(), this must be called before
/// LTOCodeGenerator::compilexxx() and
/// LTOCodeGenerator::writeMergedModules().
void parseCodeGenDebugOptions();
/// Write the merged module to the file specified by the given path. Return
/// true on success.
///
/// Calls \a verifyMergedModuleOnce().
bool writeMergedModules(StringRef Path);
/// Compile the merged module into a *single* output file; the path to output
/// file is returned to the caller via argument "name". Return true on
/// success.
///
/// \note It is up to the linker to remove the intermediate output file. Do
/// not try to remove the object file in LTOCodeGenerator's destructor as we
/// don't who (LTOCodeGenerator or the output file) will last longer.
bool compile_to_file(const char **Name, bool DisableVerify,
bool DisableInline, bool DisableGVNLoadPRE,
bool DisableVectorization);
/// As with compile_to_file(), this function compiles the merged module into
/// single output file. Instead of returning the output file path to the
/// caller (linker), it brings the output to a buffer, and returns the buffer
/// to the caller. This function should delete the intermediate file once
/// its content is brought to memory. Return NULL if the compilation was not
/// successful.
std::unique_ptr<MemoryBuffer> compile(bool DisableVerify, bool DisableInline,
bool DisableGVNLoadPRE,
bool DisableVectorization);
/// Optimizes the merged module. Returns true on success.
///
/// Calls \a verifyMergedModuleOnce().
bool optimize(bool DisableVerify, bool DisableInline, bool DisableGVNLoadPRE,
bool DisableVectorization);
/// Compiles the merged optimized module into a single output file. It brings
/// the output to a buffer, and returns the buffer to the caller. Return NULL
/// if the compilation was not successful.
std::unique_ptr<MemoryBuffer> compileOptimized();
/// Compile the merged optimized module into out.size() output files each
/// representing a linkable partition of the module. If out contains more
/// than one element, code generation is done in parallel with out.size()
/// threads. Output files will be written to members of out. Returns true on
/// success.
///
/// Calls \a verifyMergedModuleOnce().
bool compileOptimized(ArrayRef<raw_pwrite_stream *> Out);
/// Enable the Freestanding mode: indicate that the optimizer should not
/// assume builtins are present on the target.
void setFreestanding(bool Enabled) { Freestanding = Enabled; }
void setDiagnosticHandler(lto_diagnostic_handler_t, void *);
LLVMContext &getContext() { return Context; }
void resetMergedModule() { MergedModule.reset(); }
void DiagnosticHandler(const DiagnosticInfo &DI);
private:
void initializeLTOPasses();
/// Verify the merged module on first call.
///
/// Sets \a HasVerifiedInput on first call and doesn't run again on the same
/// input.
void verifyMergedModuleOnce();
bool compileOptimizedToFile(const char **Name);
void restoreLinkageForExternals();
void applyScopeRestrictions();
void preserveDiscardableGVs(
Module &TheModule,
llvm::function_ref<bool(const GlobalValue &)> mustPreserveGV);
bool determineTarget();
std::unique_ptr<TargetMachine> createTargetMachine();
void emitError(const std::string &ErrMsg);
void emitWarning(const std::string &ErrMsg);
void finishOptimizationRemarks();
LLVMContext &Context;
std::unique_ptr<Module> MergedModule;
std::unique_ptr<Linker> TheLinker;
std::unique_ptr<TargetMachine> TargetMach;
bool EmitDwarfDebugInfo = false;
bool ScopeRestrictionsDone = false;
bool HasVerifiedInput = false;
Optional<Reloc::Model> RelocModel;
StringSet<> MustPreserveSymbols;
StringSet<> AsmUndefinedRefs;
StringMap<GlobalValue::LinkageTypes> ExternalSymbols;
std::vector<std::string> CodegenOptions;
std::string FeatureStr;
std::string MCpu;
std::string MAttr;
std::string NativeObjectPath;
TargetOptions Options;
CodeGenOpt::Level CGOptLevel = CodeGenOpt::Default;
const Target *MArch = nullptr;
std::string TripleStr;
unsigned OptLevel = 2;
lto_diagnostic_handler_t DiagHandler = nullptr;
void *DiagContext = nullptr;
bool ShouldInternalize = EnableLTOInternalization;
bool ShouldEmbedUselists = false;
bool ShouldRestoreGlobalsLinkage = false;
CodeGenFileType FileType = CGFT_ObjectFile;
std::unique_ptr<ToolOutputFile> DiagnosticOutputFile;
bool Freestanding = false;
std::unique_ptr<ToolOutputFile> StatsFile = nullptr;
};
}
#endif