blob: 0802580580a0d1f087964af2b920162dc470bf29 [file] [log] [blame] [edit]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "PixelProcessor.hpp"
#include "Surface.hpp"
#include "Primitive.hpp"
#include "Shader/PixelPipeline.hpp"
#include "Shader/PixelProgram.hpp"
#include "Shader/PixelShader.hpp"
#include "Shader/Constants.hpp"
#include "Common/Debug.hpp"
#include "Common/Memory.hpp"
#include <cstring>
namespace sw
{
extern bool complementaryDepthBuffer;
extern TransparencyAntialiasing transparencyAntialiasing;
extern bool perspectiveCorrection;
bool precachePixel = false;
uint32_t PixelProcessor::States::computeHash()
{
uint32_t *state = reinterpret_cast<uint32_t*>(this);
uint32_t hash = 0;
for(unsigned int i = 0; i < sizeof(States) / sizeof(uint32_t); i++)
{
hash ^= state[i];
}
return hash;
}
bool PixelProcessor::State::operator==(const State &state) const
{
if(hash != state.hash)
{
return false;
}
static_assert(is_memcmparable<State>::value, "Cannot memcmp State");
return memcmp(static_cast<const States*>(this), static_cast<const States*>(&state), sizeof(States)) == 0;
}
PixelProcessor::UniformBufferInfo::UniformBufferInfo()
{
buffer = nullptr;
offset = 0;
}
PixelProcessor::PixelProcessor(Context *context) : context(context)
{
setGlobalMipmapBias(0.0f); // Round to highest LOD [0.5, 1.0]: -0.5
// Round to nearest LOD [0.7, 1.4]: 0.0
// Round to lowest LOD [1.0, 2.0]: 0.5
routineCache = 0;
setRoutineCacheSize(1024);
}
PixelProcessor::~PixelProcessor()
{
delete routineCache;
routineCache = nullptr;
}
// This object has to be mem aligned
void *PixelProcessor::operator new(size_t size)
{
ASSERT(size == sizeof(PixelProcessor)); // This operator can't be called from a derived class
return sw::allocate(sizeof(PixelProcessor), 16);
}
void PixelProcessor::operator delete(void *mem)
{
sw::deallocate(mem);
}
void PixelProcessor::setFloatConstant(unsigned int index, const float value[4])
{
if(index < FRAGMENT_UNIFORM_VECTORS)
{
c[index][0] = value[0];
c[index][1] = value[1];
c[index][2] = value[2];
c[index][3] = value[3];
}
else ASSERT(false);
if(index < 8) // ps_1_x constants
{
// TODO: Compact into generic function
short x = iround(4095 * clamp_s(value[0], -1.0f, 1.0f));
short y = iround(4095 * clamp_s(value[1], -1.0f, 1.0f));
short z = iround(4095 * clamp_s(value[2], -1.0f, 1.0f));
short w = iround(4095 * clamp_s(value[3], -1.0f, 1.0f));
cW[index][0][0] = x;
cW[index][0][1] = x;
cW[index][0][2] = x;
cW[index][0][3] = x;
cW[index][1][0] = y;
cW[index][1][1] = y;
cW[index][1][2] = y;
cW[index][1][3] = y;
cW[index][2][0] = z;
cW[index][2][1] = z;
cW[index][2][2] = z;
cW[index][2][3] = z;
cW[index][3][0] = w;
cW[index][3][1] = w;
cW[index][3][2] = w;
cW[index][3][3] = w;
}
}
void PixelProcessor::setIntegerConstant(unsigned int index, const int value[4])
{
if(index < 16)
{
i[index][0] = value[0];
i[index][1] = value[1];
i[index][2] = value[2];
i[index][3] = value[3];
}
else ASSERT(false);
}
void PixelProcessor::setBooleanConstant(unsigned int index, int boolean)
{
if(index < 16)
{
b[index] = boolean != 0;
}
else ASSERT(false);
}
void PixelProcessor::setUniformBuffer(int index, sw::Resource* buffer, int offset)
{
uniformBufferInfo[index].buffer = buffer;
uniformBufferInfo[index].offset = offset;
}
void PixelProcessor::lockUniformBuffers(byte** u, sw::Resource* uniformBuffers[])
{
for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; ++i)
{
u[i] = uniformBufferInfo[i].buffer ? static_cast<byte*>(uniformBufferInfo[i].buffer->lock(PUBLIC, PRIVATE)) + uniformBufferInfo[i].offset : nullptr;
uniformBuffers[i] = uniformBufferInfo[i].buffer;
}
}
void PixelProcessor::setRenderTarget(int index, Surface *renderTarget, unsigned int layer)
{
context->renderTarget[index] = renderTarget;
context->renderTargetLayer[index] = layer;
}
void PixelProcessor::setDepthBuffer(Surface *depthBuffer, unsigned int layer)
{
context->depthBuffer = depthBuffer;
context->depthBufferLayer = layer;
}
void PixelProcessor::setStencilBuffer(Surface *stencilBuffer, unsigned int layer)
{
context->stencilBuffer = stencilBuffer;
context->stencilBufferLayer = layer;
}
void PixelProcessor::setTexCoordIndex(unsigned int stage, int texCoordIndex)
{
if(stage < 8)
{
context->textureStage[stage].setTexCoordIndex(texCoordIndex);
}
else ASSERT(false);
}
void PixelProcessor::setStageOperation(unsigned int stage, TextureStage::StageOperation stageOperation)
{
if(stage < 8)
{
context->textureStage[stage].setStageOperation(stageOperation);
}
else ASSERT(false);
}
void PixelProcessor::setFirstArgument(unsigned int stage, TextureStage::SourceArgument firstArgument)
{
if(stage < 8)
{
context->textureStage[stage].setFirstArgument(firstArgument);
}
else ASSERT(false);
}
void PixelProcessor::setSecondArgument(unsigned int stage, TextureStage::SourceArgument secondArgument)
{
if(stage < 8)
{
context->textureStage[stage].setSecondArgument(secondArgument);
}
else ASSERT(false);
}
void PixelProcessor::setThirdArgument(unsigned int stage, TextureStage::SourceArgument thirdArgument)
{
if(stage < 8)
{
context->textureStage[stage].setThirdArgument(thirdArgument);
}
else ASSERT(false);
}
void PixelProcessor::setStageOperationAlpha(unsigned int stage, TextureStage::StageOperation stageOperationAlpha)
{
if(stage < 8)
{
context->textureStage[stage].setStageOperationAlpha(stageOperationAlpha);
}
else ASSERT(false);
}
void PixelProcessor::setFirstArgumentAlpha(unsigned int stage, TextureStage::SourceArgument firstArgumentAlpha)
{
if(stage < 8)
{
context->textureStage[stage].setFirstArgumentAlpha(firstArgumentAlpha);
}
else ASSERT(false);
}
void PixelProcessor::setSecondArgumentAlpha(unsigned int stage, TextureStage::SourceArgument secondArgumentAlpha)
{
if(stage < 8)
{
context->textureStage[stage].setSecondArgumentAlpha(secondArgumentAlpha);
}
else ASSERT(false);
}
void PixelProcessor::setThirdArgumentAlpha(unsigned int stage, TextureStage::SourceArgument thirdArgumentAlpha)
{
if(stage < 8)
{
context->textureStage[stage].setThirdArgumentAlpha(thirdArgumentAlpha);
}
else ASSERT(false);
}
void PixelProcessor::setFirstModifier(unsigned int stage, TextureStage::ArgumentModifier firstModifier)
{
if(stage < 8)
{
context->textureStage[stage].setFirstModifier(firstModifier);
}
else ASSERT(false);
}
void PixelProcessor::setSecondModifier(unsigned int stage, TextureStage::ArgumentModifier secondModifier)
{
if(stage < 8)
{
context->textureStage[stage].setSecondModifier(secondModifier);
}
else ASSERT(false);
}
void PixelProcessor::setThirdModifier(unsigned int stage, TextureStage::ArgumentModifier thirdModifier)
{
if(stage < 8)
{
context->textureStage[stage].setThirdModifier(thirdModifier);
}
else ASSERT(false);
}
void PixelProcessor::setFirstModifierAlpha(unsigned int stage, TextureStage::ArgumentModifier firstModifierAlpha)
{
if(stage < 8)
{
context->textureStage[stage].setFirstModifierAlpha(firstModifierAlpha);
}
else ASSERT(false);
}
void PixelProcessor::setSecondModifierAlpha(unsigned int stage, TextureStage::ArgumentModifier secondModifierAlpha)
{
if(stage < 8)
{
context->textureStage[stage].setSecondModifierAlpha(secondModifierAlpha);
}
else ASSERT(false);
}
void PixelProcessor::setThirdModifierAlpha(unsigned int stage, TextureStage::ArgumentModifier thirdModifierAlpha)
{
if(stage < 8)
{
context->textureStage[stage].setThirdModifierAlpha(thirdModifierAlpha);
}
else ASSERT(false);
}
void PixelProcessor::setDestinationArgument(unsigned int stage, TextureStage::DestinationArgument destinationArgument)
{
if(stage < 8)
{
context->textureStage[stage].setDestinationArgument(destinationArgument);
}
else ASSERT(false);
}
void PixelProcessor::setConstantColor(unsigned int stage, const Color<float> &constantColor)
{
if(stage < 8)
{
context->textureStage[stage].setConstantColor(constantColor);
}
else ASSERT(false);
}
void PixelProcessor::setBumpmapMatrix(unsigned int stage, int element, float value)
{
if(stage < 8)
{
context->textureStage[stage].setBumpmapMatrix(element, value);
}
else ASSERT(false);
}
void PixelProcessor::setLuminanceScale(unsigned int stage, float value)
{
if(stage < 8)
{
context->textureStage[stage].setLuminanceScale(value);
}
else ASSERT(false);
}
void PixelProcessor::setLuminanceOffset(unsigned int stage, float value)
{
if(stage < 8)
{
context->textureStage[stage].setLuminanceOffset(value);
}
else ASSERT(false);
}
void PixelProcessor::setTextureFilter(unsigned int sampler, FilterType textureFilter)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setTextureFilter(textureFilter);
}
else ASSERT(false);
}
void PixelProcessor::setMipmapFilter(unsigned int sampler, MipmapType mipmapFilter)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setMipmapFilter(mipmapFilter);
}
else ASSERT(false);
}
void PixelProcessor::setGatherEnable(unsigned int sampler, bool enable)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setGatherEnable(enable);
}
else ASSERT(false);
}
void PixelProcessor::setAddressingModeU(unsigned int sampler, AddressingMode addressMode)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setAddressingModeU(addressMode);
}
else ASSERT(false);
}
void PixelProcessor::setAddressingModeV(unsigned int sampler, AddressingMode addressMode)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setAddressingModeV(addressMode);
}
else ASSERT(false);
}
void PixelProcessor::setAddressingModeW(unsigned int sampler, AddressingMode addressMode)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setAddressingModeW(addressMode);
}
else ASSERT(false);
}
void PixelProcessor::setReadSRGB(unsigned int sampler, bool sRGB)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setReadSRGB(sRGB);
}
else ASSERT(false);
}
void PixelProcessor::setMipmapLOD(unsigned int sampler, float bias)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setMipmapLOD(bias);
}
else ASSERT(false);
}
void PixelProcessor::setBorderColor(unsigned int sampler, const Color<float> &borderColor)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setBorderColor(borderColor);
}
else ASSERT(false);
}
void PixelProcessor::setMaxAnisotropy(unsigned int sampler, float maxAnisotropy)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setMaxAnisotropy(maxAnisotropy);
}
else ASSERT(false);
}
void PixelProcessor::setHighPrecisionFiltering(unsigned int sampler, bool highPrecisionFiltering)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setHighPrecisionFiltering(highPrecisionFiltering);
}
else ASSERT(false);
}
void PixelProcessor::setSwizzleR(unsigned int sampler, SwizzleType swizzleR)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setSwizzleR(swizzleR);
}
else ASSERT(false);
}
void PixelProcessor::setSwizzleG(unsigned int sampler, SwizzleType swizzleG)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setSwizzleG(swizzleG);
}
else ASSERT(false);
}
void PixelProcessor::setSwizzleB(unsigned int sampler, SwizzleType swizzleB)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setSwizzleB(swizzleB);
}
else ASSERT(false);
}
void PixelProcessor::setSwizzleA(unsigned int sampler, SwizzleType swizzleA)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setSwizzleA(swizzleA);
}
else ASSERT(false);
}
void PixelProcessor::setCompareFunc(unsigned int sampler, CompareFunc compFunc)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setCompareFunc(compFunc);
}
else ASSERT(false);
}
void PixelProcessor::setBaseLevel(unsigned int sampler, int baseLevel)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setBaseLevel(baseLevel);
}
else ASSERT(false);
}
void PixelProcessor::setMaxLevel(unsigned int sampler, int maxLevel)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setMaxLevel(maxLevel);
}
else ASSERT(false);
}
void PixelProcessor::setMinLod(unsigned int sampler, float minLod)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setMinLod(minLod);
}
else ASSERT(false);
}
void PixelProcessor::setMaxLod(unsigned int sampler, float maxLod)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setMaxLod(maxLod);
}
else ASSERT(false);
}
void PixelProcessor::setSyncRequired(unsigned int sampler, bool isSincRequired)
{
if(sampler < TEXTURE_IMAGE_UNITS)
{
context->sampler[sampler].setSyncRequired(isSincRequired);
}
else ASSERT(false);
}
void PixelProcessor::setWriteSRGB(bool sRGB)
{
context->setWriteSRGB(sRGB);
}
void PixelProcessor::setColorLogicOpEnabled(bool colorLogicOpEnabled)
{
context->setColorLogicOpEnabled(colorLogicOpEnabled);
}
void PixelProcessor::setLogicalOperation(LogicalOperation logicalOperation)
{
context->setLogicalOperation(logicalOperation);
}
void PixelProcessor::setDepthBufferEnable(bool depthBufferEnable)
{
context->setDepthBufferEnable(depthBufferEnable);
}
void PixelProcessor::setDepthCompare(DepthCompareMode depthCompareMode)
{
context->depthCompareMode = depthCompareMode;
}
void PixelProcessor::setAlphaCompare(AlphaCompareMode alphaCompareMode)
{
context->alphaCompareMode = alphaCompareMode;
}
void PixelProcessor::setDepthWriteEnable(bool depthWriteEnable)
{
context->depthWriteEnable = depthWriteEnable;
}
void PixelProcessor::setAlphaTestEnable(bool alphaTestEnable)
{
context->alphaTestEnable = alphaTestEnable;
}
void PixelProcessor::setCullMode(CullMode cullMode, bool frontFacingCCW)
{
context->cullMode = cullMode;
context->frontFacingCCW = frontFacingCCW;
}
void PixelProcessor::setColorWriteMask(int index, int rgbaMask)
{
context->setColorWriteMask(index, rgbaMask);
}
void PixelProcessor::setStencilEnable(bool stencilEnable)
{
context->stencilEnable = stencilEnable;
}
void PixelProcessor::setStencilCompare(StencilCompareMode stencilCompareMode)
{
context->stencilCompareMode = stencilCompareMode;
}
void PixelProcessor::setStencilReference(int stencilReference)
{
context->stencilReference = stencilReference;
stencil.set(stencilReference, context->stencilMask, context->stencilWriteMask);
}
void PixelProcessor::setStencilReferenceCCW(int stencilReferenceCCW)
{
context->stencilReferenceCCW = stencilReferenceCCW;
stencilCCW.set(stencilReferenceCCW, context->stencilMaskCCW, context->stencilWriteMaskCCW);
}
void PixelProcessor::setStencilMask(int stencilMask)
{
context->stencilMask = stencilMask;
stencil.set(context->stencilReference, stencilMask, context->stencilWriteMask);
}
void PixelProcessor::setStencilMaskCCW(int stencilMaskCCW)
{
context->stencilMaskCCW = stencilMaskCCW;
stencilCCW.set(context->stencilReferenceCCW, stencilMaskCCW, context->stencilWriteMaskCCW);
}
void PixelProcessor::setStencilFailOperation(StencilOperation stencilFailOperation)
{
context->stencilFailOperation = stencilFailOperation;
}
void PixelProcessor::setStencilPassOperation(StencilOperation stencilPassOperation)
{
context->stencilPassOperation = stencilPassOperation;
}
void PixelProcessor::setStencilZFailOperation(StencilOperation stencilZFailOperation)
{
context->stencilZFailOperation = stencilZFailOperation;
}
void PixelProcessor::setStencilWriteMask(int stencilWriteMask)
{
context->stencilWriteMask = stencilWriteMask;
stencil.set(context->stencilReference, context->stencilMask, stencilWriteMask);
}
void PixelProcessor::setStencilWriteMaskCCW(int stencilWriteMaskCCW)
{
context->stencilWriteMaskCCW = stencilWriteMaskCCW;
stencilCCW.set(context->stencilReferenceCCW, context->stencilMaskCCW, stencilWriteMaskCCW);
}
void PixelProcessor::setTwoSidedStencil(bool enable)
{
context->twoSidedStencil = enable;
}
void PixelProcessor::setStencilCompareCCW(StencilCompareMode stencilCompareMode)
{
context->stencilCompareModeCCW = stencilCompareMode;
}
void PixelProcessor::setStencilFailOperationCCW(StencilOperation stencilFailOperation)
{
context->stencilFailOperationCCW = stencilFailOperation;
}
void PixelProcessor::setStencilPassOperationCCW(StencilOperation stencilPassOperation)
{
context->stencilPassOperationCCW = stencilPassOperation;
}
void PixelProcessor::setStencilZFailOperationCCW(StencilOperation stencilZFailOperation)
{
context->stencilZFailOperationCCW = stencilZFailOperation;
}
void PixelProcessor::setTextureFactor(const Color<float> &textureFactor)
{
// FIXME: Compact into generic function // FIXME: Clamp
short textureFactorR = iround(4095 * textureFactor.r);
short textureFactorG = iround(4095 * textureFactor.g);
short textureFactorB = iround(4095 * textureFactor.b);
short textureFactorA = iround(4095 * textureFactor.a);
factor.textureFactor4[0][0] = textureFactorR;
factor.textureFactor4[0][1] = textureFactorR;
factor.textureFactor4[0][2] = textureFactorR;
factor.textureFactor4[0][3] = textureFactorR;
factor.textureFactor4[1][0] = textureFactorG;
factor.textureFactor4[1][1] = textureFactorG;
factor.textureFactor4[1][2] = textureFactorG;
factor.textureFactor4[1][3] = textureFactorG;
factor.textureFactor4[2][0] = textureFactorB;
factor.textureFactor4[2][1] = textureFactorB;
factor.textureFactor4[2][2] = textureFactorB;
factor.textureFactor4[2][3] = textureFactorB;
factor.textureFactor4[3][0] = textureFactorA;
factor.textureFactor4[3][1] = textureFactorA;
factor.textureFactor4[3][2] = textureFactorA;
factor.textureFactor4[3][3] = textureFactorA;
}
void PixelProcessor::setBlendConstant(const Color<float> &blendConstant)
{
// FIXME: Compact into generic function // FIXME: Clamp
short blendConstantR = iround(65535 * blendConstant.r);
short blendConstantG = iround(65535 * blendConstant.g);
short blendConstantB = iround(65535 * blendConstant.b);
short blendConstantA = iround(65535 * blendConstant.a);
factor.blendConstant4W[0][0] = blendConstantR;
factor.blendConstant4W[0][1] = blendConstantR;
factor.blendConstant4W[0][2] = blendConstantR;
factor.blendConstant4W[0][3] = blendConstantR;
factor.blendConstant4W[1][0] = blendConstantG;
factor.blendConstant4W[1][1] = blendConstantG;
factor.blendConstant4W[1][2] = blendConstantG;
factor.blendConstant4W[1][3] = blendConstantG;
factor.blendConstant4W[2][0] = blendConstantB;
factor.blendConstant4W[2][1] = blendConstantB;
factor.blendConstant4W[2][2] = blendConstantB;
factor.blendConstant4W[2][3] = blendConstantB;
factor.blendConstant4W[3][0] = blendConstantA;
factor.blendConstant4W[3][1] = blendConstantA;
factor.blendConstant4W[3][2] = blendConstantA;
factor.blendConstant4W[3][3] = blendConstantA;
// FIXME: Compact into generic function // FIXME: Clamp
short invBlendConstantR = iround(65535 * (1 - blendConstant.r));
short invBlendConstantG = iround(65535 * (1 - blendConstant.g));
short invBlendConstantB = iround(65535 * (1 - blendConstant.b));
short invBlendConstantA = iround(65535 * (1 - blendConstant.a));
factor.invBlendConstant4W[0][0] = invBlendConstantR;
factor.invBlendConstant4W[0][1] = invBlendConstantR;
factor.invBlendConstant4W[0][2] = invBlendConstantR;
factor.invBlendConstant4W[0][3] = invBlendConstantR;
factor.invBlendConstant4W[1][0] = invBlendConstantG;
factor.invBlendConstant4W[1][1] = invBlendConstantG;
factor.invBlendConstant4W[1][2] = invBlendConstantG;
factor.invBlendConstant4W[1][3] = invBlendConstantG;
factor.invBlendConstant4W[2][0] = invBlendConstantB;
factor.invBlendConstant4W[2][1] = invBlendConstantB;
factor.invBlendConstant4W[2][2] = invBlendConstantB;
factor.invBlendConstant4W[2][3] = invBlendConstantB;
factor.invBlendConstant4W[3][0] = invBlendConstantA;
factor.invBlendConstant4W[3][1] = invBlendConstantA;
factor.invBlendConstant4W[3][2] = invBlendConstantA;
factor.invBlendConstant4W[3][3] = invBlendConstantA;
factor.blendConstant4F[0][0] = blendConstant.r;
factor.blendConstant4F[0][1] = blendConstant.r;
factor.blendConstant4F[0][2] = blendConstant.r;
factor.blendConstant4F[0][3] = blendConstant.r;
factor.blendConstant4F[1][0] = blendConstant.g;
factor.blendConstant4F[1][1] = blendConstant.g;
factor.blendConstant4F[1][2] = blendConstant.g;
factor.blendConstant4F[1][3] = blendConstant.g;
factor.blendConstant4F[2][0] = blendConstant.b;
factor.blendConstant4F[2][1] = blendConstant.b;
factor.blendConstant4F[2][2] = blendConstant.b;
factor.blendConstant4F[2][3] = blendConstant.b;
factor.blendConstant4F[3][0] = blendConstant.a;
factor.blendConstant4F[3][1] = blendConstant.a;
factor.blendConstant4F[3][2] = blendConstant.a;
factor.blendConstant4F[3][3] = blendConstant.a;
factor.invBlendConstant4F[0][0] = 1 - blendConstant.r;
factor.invBlendConstant4F[0][1] = 1 - blendConstant.r;
factor.invBlendConstant4F[0][2] = 1 - blendConstant.r;
factor.invBlendConstant4F[0][3] = 1 - blendConstant.r;
factor.invBlendConstant4F[1][0] = 1 - blendConstant.g;
factor.invBlendConstant4F[1][1] = 1 - blendConstant.g;
factor.invBlendConstant4F[1][2] = 1 - blendConstant.g;
factor.invBlendConstant4F[1][3] = 1 - blendConstant.g;
factor.invBlendConstant4F[2][0] = 1 - blendConstant.b;
factor.invBlendConstant4F[2][1] = 1 - blendConstant.b;
factor.invBlendConstant4F[2][2] = 1 - blendConstant.b;
factor.invBlendConstant4F[2][3] = 1 - blendConstant.b;
factor.invBlendConstant4F[3][0] = 1 - blendConstant.a;
factor.invBlendConstant4F[3][1] = 1 - blendConstant.a;
factor.invBlendConstant4F[3][2] = 1 - blendConstant.a;
factor.invBlendConstant4F[3][3] = 1 - blendConstant.a;
}
void PixelProcessor::setFillMode(FillMode fillMode)
{
context->fillMode = fillMode;
}
void PixelProcessor::setShadingMode(ShadingMode shadingMode)
{
context->shadingMode = shadingMode;
}
void PixelProcessor::setAlphaBlendEnable(bool alphaBlendEnable)
{
context->setAlphaBlendEnable(alphaBlendEnable);
}
void PixelProcessor::setSourceBlendFactor(BlendFactor sourceBlendFactor)
{
context->setSourceBlendFactor(sourceBlendFactor);
}
void PixelProcessor::setDestBlendFactor(BlendFactor destBlendFactor)
{
context->setDestBlendFactor(destBlendFactor);
}
void PixelProcessor::setBlendOperation(BlendOperation blendOperation)
{
context->setBlendOperation(blendOperation);
}
void PixelProcessor::setSeparateAlphaBlendEnable(bool separateAlphaBlendEnable)
{
context->setSeparateAlphaBlendEnable(separateAlphaBlendEnable);
}
void PixelProcessor::setSourceBlendFactorAlpha(BlendFactor sourceBlendFactorAlpha)
{
context->setSourceBlendFactorAlpha(sourceBlendFactorAlpha);
}
void PixelProcessor::setDestBlendFactorAlpha(BlendFactor destBlendFactorAlpha)
{
context->setDestBlendFactorAlpha(destBlendFactorAlpha);
}
void PixelProcessor::setBlendOperationAlpha(BlendOperation blendOperationAlpha)
{
context->setBlendOperationAlpha(blendOperationAlpha);
}
void PixelProcessor::setAlphaReference(float alphaReference)
{
context->alphaReference = alphaReference;
factor.alphaReference4[0] = (word)iround(alphaReference * 0x1000 / 0xFF);
factor.alphaReference4[1] = (word)iround(alphaReference * 0x1000 / 0xFF);
factor.alphaReference4[2] = (word)iround(alphaReference * 0x1000 / 0xFF);
factor.alphaReference4[3] = (word)iround(alphaReference * 0x1000 / 0xFF);
}
void PixelProcessor::setGlobalMipmapBias(float bias)
{
context->setGlobalMipmapBias(bias);
}
void PixelProcessor::setFogStart(float start)
{
setFogRanges(start, context->fogEnd);
}
void PixelProcessor::setFogEnd(float end)
{
setFogRanges(context->fogStart, end);
}
void PixelProcessor::setFogColor(Color<float> fogColor)
{
// TODO: Compact into generic function
word fogR = (unsigned short)(65535 * fogColor.r);
word fogG = (unsigned short)(65535 * fogColor.g);
word fogB = (unsigned short)(65535 * fogColor.b);
fog.color4[0][0] = fogR;
fog.color4[0][1] = fogR;
fog.color4[0][2] = fogR;
fog.color4[0][3] = fogR;
fog.color4[1][0] = fogG;
fog.color4[1][1] = fogG;
fog.color4[1][2] = fogG;
fog.color4[1][3] = fogG;
fog.color4[2][0] = fogB;
fog.color4[2][1] = fogB;
fog.color4[2][2] = fogB;
fog.color4[2][3] = fogB;
fog.colorF[0] = replicate(fogColor.r);
fog.colorF[1] = replicate(fogColor.g);
fog.colorF[2] = replicate(fogColor.b);
}
void PixelProcessor::setFogDensity(float fogDensity)
{
fog.densityE = replicate(-fogDensity * 1.442695f); // 1/e^x = 2^(-x*1.44)
fog.density2E = replicate(-fogDensity * fogDensity * 1.442695f);
}
void PixelProcessor::setPixelFogMode(FogMode fogMode)
{
context->pixelFogMode = fogMode;
}
void PixelProcessor::setPerspectiveCorrection(bool perspectiveEnable)
{
perspectiveCorrection = perspectiveEnable;
}
void PixelProcessor::setOcclusionEnabled(bool enable)
{
context->occlusionEnabled = enable;
}
void PixelProcessor::setRoutineCacheSize(int cacheSize)
{
delete routineCache;
routineCache = new RoutineCache<State>(clamp(cacheSize, 1, 65536));
}
void PixelProcessor::setFogRanges(float start, float end)
{
context->fogStart = start;
context->fogEnd = end;
if(start == end)
{
end += 0.001f; // Hack: ensure there is a small range
}
float fogScale = -1.0f / (end - start);
float fogOffset = end * -fogScale;
fog.scale = replicate(fogScale);
fog.offset = replicate(fogOffset);
}
const PixelProcessor::State PixelProcessor::update() const
{
State state;
if(context->pixelShader)
{
state.shaderID = context->pixelShader->getSerialID();
}
else
{
state.shaderID = 0;
}
state.depthOverride = context->pixelShader && context->pixelShader->depthOverride();
state.shaderContainsKill = context->pixelShader ? context->pixelShader->containsKill() : false;
if(context->alphaTestActive())
{
state.alphaCompareMode = context->alphaCompareMode;
state.transparencyAntialiasing = context->getMultiSampleCount() > 1 ? transparencyAntialiasing : TRANSPARENCY_NONE;
}
state.depthWriteEnable = context->depthWriteActive();
if(context->stencilActive())
{
state.stencilActive = true;
state.stencilCompareMode = context->stencilCompareMode;
state.stencilFailOperation = context->stencilFailOperation;
state.stencilPassOperation = context->stencilPassOperation;
state.stencilZFailOperation = context->stencilZFailOperation;
state.noStencilMask = (context->stencilMask == 0xFF);
state.noStencilWriteMask = (context->stencilWriteMask == 0xFF);
state.stencilWriteMasked = (context->stencilWriteMask == 0x00);
state.twoSidedStencil = context->twoSidedStencil;
state.stencilCompareModeCCW = context->twoSidedStencil ? context->stencilCompareModeCCW : state.stencilCompareMode;
state.stencilFailOperationCCW = context->twoSidedStencil ? context->stencilFailOperationCCW : state.stencilFailOperation;
state.stencilPassOperationCCW = context->twoSidedStencil ? context->stencilPassOperationCCW : state.stencilPassOperation;
state.stencilZFailOperationCCW = context->twoSidedStencil ? context->stencilZFailOperationCCW : state.stencilZFailOperation;
state.noStencilMaskCCW = context->twoSidedStencil ? (context->stencilMaskCCW == 0xFF) : state.noStencilMask;
state.noStencilWriteMaskCCW = context->twoSidedStencil ? (context->stencilWriteMaskCCW == 0xFF) : state.noStencilWriteMask;
state.stencilWriteMaskedCCW = context->twoSidedStencil ? (context->stencilWriteMaskCCW == 0x00) : state.stencilWriteMasked;
}
if(context->depthBufferActive())
{
state.depthTestActive = true;
state.depthCompareMode = context->depthCompareMode;
state.quadLayoutDepthBuffer = Surface::hasQuadLayout(context->depthBuffer->getInternalFormat());
}
state.occlusionEnabled = context->occlusionEnabled;
state.fogActive = context->fogActive();
state.pixelFogMode = context->pixelFogActive();
state.wBasedFog = context->wBasedFog && context->pixelFogActive() != FOG_NONE;
state.perspective = context->perspectiveActive();
state.depthClamp = (context->depthBias != 0.0f) || (context->slopeDepthBias != 0.0f);
if(context->alphaBlendActive())
{
state.alphaBlendActive = true;
state.sourceBlendFactor = context->sourceBlendFactor();
state.destBlendFactor = context->destBlendFactor();
state.blendOperation = context->blendOperation();
state.sourceBlendFactorAlpha = context->sourceBlendFactorAlpha();
state.destBlendFactorAlpha = context->destBlendFactorAlpha();
state.blendOperationAlpha = context->blendOperationAlpha();
}
state.logicalOperation = context->colorLogicOp();
for(int i = 0; i < RENDERTARGETS; i++)
{
state.colorWriteMask |= context->colorWriteActive(i) << (4 * i);
state.targetFormat[i] = context->renderTargetInternalFormat(i);
}
state.writeSRGB = context->writeSRGB && context->renderTarget[0] && Surface::isSRGBwritable(context->renderTarget[0]->getExternalFormat());
state.multiSample = context->getMultiSampleCount();
state.multiSampleMask = context->multiSampleMask;
if(state.multiSample > 1 && context->pixelShader)
{
state.centroid = context->pixelShader->containsCentroid();
}
state.frontFaceCCW = context->frontFacingCCW;
if(!context->pixelShader)
{
for(unsigned int i = 0; i < 8; i++)
{
state.textureStage[i] = context->textureStage[i].textureStageState();
}
state.specularAdd = context->specularActive() && context->specularEnable;
}
for(unsigned int i = 0; i < 16; i++)
{
if(context->pixelShader)
{
if(context->pixelShader->usesSampler(i))
{
state.sampler[i] = context->sampler[i].samplerState();
}
}
else
{
if(i < 8 && state.textureStage[i].stageOperation != TextureStage::STAGE_DISABLE)
{
state.sampler[i] = context->sampler[i].samplerState();
}
else break;
}
}
const bool point = context->isDrawPoint(true);
const bool sprite = context->pointSpriteActive();
const bool flatShading = (context->shadingMode == SHADING_FLAT) || point;
if(context->pixelShaderModel() < 0x0300)
{
for(int coordinate = 0; coordinate < 8; coordinate++)
{
for(int component = 0; component < 4; component++)
{
if(context->textureActive(coordinate, component))
{
state.texture[coordinate].component |= 1 << component;
if(point && !sprite)
{
state.texture[coordinate].flat |= 1 << component;
}
}
}
if(context->textureTransformProject[coordinate] && context->pixelShaderModel() <= 0x0103)
{
if(context->textureTransformCount[coordinate] == 2)
{
state.texture[coordinate].project = 1;
}
else if(context->textureTransformCount[coordinate] == 3)
{
state.texture[coordinate].project = 2;
}
else if(context->textureTransformCount[coordinate] == 4 || context->textureTransformCount[coordinate] == 0)
{
state.texture[coordinate].project = 3;
}
}
}
for(int color = 0; color < 2; color++)
{
for(int component = 0; component < 4; component++)
{
if(context->colorActive(color, component))
{
state.color[color].component |= 1 << component;
if(point || flatShading)
{
state.color[color].flat |= 1 << component;
}
}
}
}
if(context->fogActive())
{
state.fog.component = true;
if(point)
{
state.fog.flat = true;
}
}
}
else
{
for(int interpolant = 0; interpolant < MAX_FRAGMENT_INPUTS; interpolant++)
{
for(int component = 0; component < 4; component++)
{
const Shader::Semantic &semantic = context->pixelShader->getInput(interpolant, component);
if(semantic.active())
{
bool flat = point;
switch(semantic.usage)
{
case Shader::USAGE_TEXCOORD: flat = point && !sprite; break;
case Shader::USAGE_COLOR: flat = semantic.flat || flatShading; break;
}
state.interpolant[interpolant].component |= 1 << component;
if(flat)
{
state.interpolant[interpolant].flat |= 1 << component;
}
}
}
}
}
if(state.centroid)
{
for(int interpolant = 0; interpolant < MAX_FRAGMENT_INPUTS; interpolant++)
{
for(int component = 0; component < 4; component++)
{
state.interpolant[interpolant].centroid = context->pixelShader->getInput(interpolant, 0).centroid;
}
}
}
state.hash = state.computeHash();
return state;
}
std::shared_ptr<Routine> PixelProcessor::routine(const State &state)
{
auto routine = routineCache->query(state);
if(!routine)
{
const bool integerPipeline = (context->pixelShaderModel() <= 0x0104);
QuadRasterizer *generator = nullptr;
if(integerPipeline)
{
generator = new PixelPipeline(state, context->pixelShader);
}
else
{
generator = new PixelProgram(state, context->pixelShader);
}
generator->generate();
routine = (*generator)("PixelRoutine_%0.8X", state.shaderID);
delete generator;
routineCache->add(state, routine);
}
return routine;
}
}