blob: bf74f2736d32a7a51c191109510e02d79a77f9aa [file] [log] [blame]
// Copyright 2019 The Marl Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This is an example application that uses Marl to parallelize the calculation
// of a Julia fractal.
#include "marl/defer.h"
#include "marl/scheduler.h"
#include "marl/thread.h"
#include "marl/waitgroup.h"
#include <fstream>
#include <math.h>
#include <stdint.h>
// A color formed from a red, green and blue component.
template <typename T>
struct Color {
T r, g, b;
inline Color<T>& operator+=(const Color<T>& rhs) {
r += rhs.r;
g += rhs.g;
b += rhs.b;
return *this;
}
inline Color<T>& operator/=(T rhs) {
r /= rhs;
g /= rhs;
b /= rhs;
return *this;
}
};
// colorize returns a 'rainbow-color' for the scalar v.
inline Color<float> colorize(float v) {
constexpr float PI = 3.141592653589793f;
constexpr float PI_2_THIRDS = 2.0f * PI / 3.0f;
return Color<float>{
0.5f + 0.5f * cosf(v + 0 * PI_2_THIRDS),
0.5f + 0.5f * cosf(v + 1 * PI_2_THIRDS),
0.5f + 0.5f * cosf(v + 2 * PI_2_THIRDS),
};
}
// lerp returns the linear interpolation between min and max using the weight x.
inline float lerp(float x, float min, float max) {
return min + x * (max - min);
}
// julia calculates the Julia-set fractal value for the given coordinate and
// constant. See https://en.wikipedia.org/wiki/Julia_set for more information.
Color<float> julia(float x, float y, float cx, float cy) {
for (int i = 0; i < 1000; i++) {
if (x * x + y * y > 4) {
return colorize(sqrtf(static_cast<float>(i)));
}
auto xtemp = x * x - y * y;
y = 2 * x * y + cy;
x = xtemp + cx;
}
return {};
}
// writeBMP writes the given image as a bitmap to the given file, returning
// true on success and false on error.
bool writeBMP(const Color<uint8_t>* texels,
int width,
int height,
const char* path) {
auto file = fopen(path, "wb");
if (!file) {
fprintf(stderr, "Could not open file '%s'\n", path);
return false;
}
defer(fclose(file));
bool ok = true;
auto put4 = [&](uint32_t val) { ok = ok && fwrite(&val, 1, 4, file) == 4; };
auto put2 = [&](uint16_t val) { ok = ok && fwrite(&val, 1, 2, file) == 2; };
auto put1 = [&](uint8_t val) { ok = ok && fwrite(&val, 1, 1, file) == 1; };
const uint32_t padding = -(3 * width) & 3U; // in bytes
const uint32_t stride = 3 * width + padding; // in bytes
const uint32_t offset = 54;
// Bitmap file header
put1('B'); // header field
put1('M');
put4(offset + stride * height * 3); // size in bytes
put4(0); // reserved
put4(offset);
// BITMAPINFOHEADER
put4(40); // size of header in bytes
put4(width); // width in pixels
put4(height); // height in pixels
put2(1); // number of color planes
put2(24); // bits per pixel
put4(0); // compression scheme (none)
put4(0); // size
put4(72); // horizontal resolution
put4(72); // vertical resolution
put4(0); // color pallete size
put4(0); // 'important colors' count
for (int y = height - 1; y >= 0; y--) {
for (int x = 0; x < width; x++) {
auto& texel = texels[x + y * width];
put1(texel.b);
put1(texel.g);
put1(texel.r);
}
for (uint32_t i = 0; i < padding; i++) {
put1(0);
}
}
return ok;
}
// Constants used for rendering the fractal.
constexpr uint32_t imageWidth = 2048;
constexpr uint32_t imageHeight = 2048;
constexpr int samplesPerPixelW = 3;
constexpr int samplesPerPixelH = 3;
constexpr float windowMinX = -0.5f;
constexpr float windowMaxX = +0.5f;
constexpr float windowMinY = -0.5f;
constexpr float windowMaxY = +0.5f;
constexpr float cx = -0.8f;
constexpr float cy = 0.156f;
int main(int argc, const char** argv) {
// Create a marl scheduler using the full number of logical cpus.
// Bind this scheduler to the main thread so we can call marl::schedule()
marl::Scheduler scheduler;
scheduler.setWorkerThreadCount(marl::Thread::numLogicalCPUs());
scheduler.bind();
defer(scheduler.unbind()); // unbind before destructing the scheduler.
// Allocate the image.
auto pixels = new Color<uint8_t>[imageWidth * imageHeight];
defer(delete[] pixels); // free memory before returning.
// Create a wait group that will be used to synchronize the tasks.
// The wait group is constructed with an initial count of imageHeight as
// there will be a total of imageHeight tasks.
marl::WaitGroup wg(imageHeight);
// For each line of the image...
for (uint32_t y = 0; y < imageHeight; y++) {
// Schedule a task to calculate the image for this line.
// These may run concurrently across hardware threads.
marl::schedule([=] {
// Before this task returns, decrement the wait group counter.
// This is used to indicate that the task is done.
defer(wg.done());
for (uint32_t x = 0; x < imageWidth; x++) {
// Calculate the fractal pixel color.
Color<float> color = {};
for (int sy = 0; sy < samplesPerPixelH; sy++) {
auto fy = float(y) + (sy / float(samplesPerPixelH));
for (int sx = 0; sx < samplesPerPixelW; sx++) {
auto fx = float(x) + (sx / float(samplesPerPixelW));
auto dx = float(fx) / float(imageWidth);
auto dy = float(fy) / float(imageHeight);
color += julia(lerp(dx, windowMinX, windowMaxX),
lerp(dy, windowMinY, windowMaxY), cx, cy);
}
}
color /= samplesPerPixelW * samplesPerPixelH;
pixels[x + y * imageWidth] = {static_cast<uint8_t>(color.r * 255),
static_cast<uint8_t>(color.g * 255),
static_cast<uint8_t>(color.b * 255)};
}
});
}
// Wait until all image lines have been calculated.
wg.wait();
// Write the image to "fractal.bmp".
if (!writeBMP(pixels, imageWidth, imageHeight, "fractal.bmp")) {
return 1;
}
// All done.
return 0;
}