| //===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines some helpful functions for dealing with the possibility of |
| // Unix signals occurring while your program is running. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is extremely careful to only do signal-safe things while in a |
| // signal handler. In particular, memory allocation and acquiring a mutex |
| // while in a signal handler should never occur. ManagedStatic isn't usable from |
| // a signal handler for 2 reasons: |
| // |
| // 1. Creating a new one allocates. |
| // 2. The signal handler could fire while llvm_shutdown is being processed, in |
| // which case the ManagedStatic is in an unknown state because it could |
| // already have been destroyed, or be in the process of being destroyed. |
| // |
| // Modifying the behavior of the signal handlers (such as registering new ones) |
| // can acquire a mutex, but all this guarantees is that the signal handler |
| // behavior is only modified by one thread at a time. A signal handler can still |
| // fire while this occurs! |
| // |
| // Adding work to a signal handler requires lock-freedom (and assume atomics are |
| // always lock-free) because the signal handler could fire while new work is |
| // being added. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Unix.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Config/config.h" |
| #include "llvm/Demangle/Demangle.h" |
| #include "llvm/Support/ExitCodes.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/FileUtilities.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Mutex.h" |
| #include "llvm/Support/Program.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <string> |
| #ifdef HAVE_BACKTRACE |
| #include BACKTRACE_HEADER // For backtrace(). |
| #endif |
| #if HAVE_SIGNAL_H |
| #include <signal.h> |
| #endif |
| #if HAVE_SYS_STAT_H |
| #include <sys/stat.h> |
| #endif |
| #if HAVE_DLFCN_H |
| #include <dlfcn.h> |
| #endif |
| #if HAVE_MACH_MACH_H |
| #include <mach/mach.h> |
| #endif |
| #if HAVE_LINK_H |
| #include <link.h> |
| #endif |
| #ifdef HAVE__UNWIND_BACKTRACE |
| // FIXME: We should be able to use <unwind.h> for any target that has an |
| // _Unwind_Backtrace function, but on FreeBSD the configure test passes |
| // despite the function not existing, and on Android, <unwind.h> conflicts |
| // with <link.h>. |
| #ifdef __GLIBC__ |
| #include <unwind.h> |
| #else |
| #undef HAVE__UNWIND_BACKTRACE |
| #endif |
| #endif |
| |
| using namespace llvm; |
| |
| static void SignalHandler(int Sig); // defined below. |
| static void InfoSignalHandler(int Sig); // defined below. |
| |
| using SignalHandlerFunctionType = void (*)(); |
| /// The function to call if ctrl-c is pressed. |
| static std::atomic<SignalHandlerFunctionType> InterruptFunction = |
| ATOMIC_VAR_INIT(nullptr); |
| static std::atomic<SignalHandlerFunctionType> InfoSignalFunction = |
| ATOMIC_VAR_INIT(nullptr); |
| /// The function to call on SIGPIPE (one-time use only). |
| static std::atomic<SignalHandlerFunctionType> OneShotPipeSignalFunction = |
| ATOMIC_VAR_INIT(nullptr); |
| |
| namespace { |
| /// Signal-safe removal of files. |
| /// Inserting and erasing from the list isn't signal-safe, but removal of files |
| /// themselves is signal-safe. Memory is freed when the head is freed, deletion |
| /// is therefore not signal-safe either. |
| class FileToRemoveList { |
| std::atomic<char *> Filename = ATOMIC_VAR_INIT(nullptr); |
| std::atomic<FileToRemoveList *> Next = ATOMIC_VAR_INIT(nullptr); |
| |
| FileToRemoveList() = default; |
| // Not signal-safe. |
| FileToRemoveList(const std::string &str) : Filename(strdup(str.c_str())) {} |
| |
| public: |
| // Not signal-safe. |
| ~FileToRemoveList() { |
| if (FileToRemoveList *N = Next.exchange(nullptr)) |
| delete N; |
| if (char *F = Filename.exchange(nullptr)) |
| free(F); |
| } |
| |
| // Not signal-safe. |
| static void insert(std::atomic<FileToRemoveList *> &Head, |
| const std::string &Filename) { |
| // Insert the new file at the end of the list. |
| FileToRemoveList *NewHead = new FileToRemoveList(Filename); |
| std::atomic<FileToRemoveList *> *InsertionPoint = &Head; |
| FileToRemoveList *OldHead = nullptr; |
| while (!InsertionPoint->compare_exchange_strong(OldHead, NewHead)) { |
| InsertionPoint = &OldHead->Next; |
| OldHead = nullptr; |
| } |
| } |
| |
| // Not signal-safe. |
| static void erase(std::atomic<FileToRemoveList *> &Head, |
| const std::string &Filename) { |
| // Use a lock to avoid concurrent erase: the comparison would access |
| // free'd memory. |
| static ManagedStatic<sys::SmartMutex<true>> Lock; |
| sys::SmartScopedLock<true> Writer(*Lock); |
| |
| for (FileToRemoveList *Current = Head.load(); Current; |
| Current = Current->Next.load()) { |
| if (char *OldFilename = Current->Filename.load()) { |
| if (OldFilename != Filename) |
| continue; |
| // Leave an empty filename. |
| OldFilename = Current->Filename.exchange(nullptr); |
| // The filename might have become null between the time we |
| // compared it and we exchanged it. |
| if (OldFilename) |
| free(OldFilename); |
| } |
| } |
| } |
| |
| // Signal-safe. |
| static void removeAllFiles(std::atomic<FileToRemoveList *> &Head) { |
| // If cleanup were to occur while we're removing files we'd have a bad time. |
| // Make sure we're OK by preventing cleanup from doing anything while we're |
| // removing files. If cleanup races with us and we win we'll have a leak, |
| // but we won't crash. |
| FileToRemoveList *OldHead = Head.exchange(nullptr); |
| |
| for (FileToRemoveList *currentFile = OldHead; currentFile; |
| currentFile = currentFile->Next.load()) { |
| // If erasing was occuring while we're trying to remove files we'd look |
| // at free'd data. Take away the path and put it back when done. |
| if (char *path = currentFile->Filename.exchange(nullptr)) { |
| // Get the status so we can determine if it's a file or directory. If we |
| // can't stat the file, ignore it. |
| struct stat buf; |
| if (stat(path, &buf) != 0) |
| continue; |
| |
| // If this is not a regular file, ignore it. We want to prevent removal |
| // of special files like /dev/null, even if the compiler is being run |
| // with the super-user permissions. |
| if (!S_ISREG(buf.st_mode)) |
| continue; |
| |
| // Otherwise, remove the file. We ignore any errors here as there is |
| // nothing else we can do. |
| unlink(path); |
| |
| // We're done removing the file, erasing can safely proceed. |
| currentFile->Filename.exchange(path); |
| } |
| } |
| |
| // We're done removing files, cleanup can safely proceed. |
| Head.exchange(OldHead); |
| } |
| }; |
| static std::atomic<FileToRemoveList *> FilesToRemove = ATOMIC_VAR_INIT(nullptr); |
| |
| /// Clean up the list in a signal-friendly manner. |
| /// Recall that signals can fire during llvm_shutdown. If this occurs we should |
| /// either clean something up or nothing at all, but we shouldn't crash! |
| struct FilesToRemoveCleanup { |
| // Not signal-safe. |
| ~FilesToRemoveCleanup() { |
| FileToRemoveList *Head = FilesToRemove.exchange(nullptr); |
| if (Head) |
| delete Head; |
| } |
| }; |
| } // namespace |
| |
| static StringRef Argv0; |
| |
| /// Signals that represent requested termination. There's no bug or failure, or |
| /// if there is, it's not our direct responsibility. For whatever reason, our |
| /// continued execution is no longer desirable. |
| static const int IntSigs[] = {SIGHUP, SIGINT, SIGTERM, SIGUSR2}; |
| |
| /// Signals that represent that we have a bug, and our prompt termination has |
| /// been ordered. |
| static const int KillSigs[] = {SIGILL, |
| SIGTRAP, |
| SIGABRT, |
| SIGFPE, |
| SIGBUS, |
| SIGSEGV, |
| SIGQUIT |
| #ifdef SIGSYS |
| , |
| SIGSYS |
| #endif |
| #ifdef SIGXCPU |
| , |
| SIGXCPU |
| #endif |
| #ifdef SIGXFSZ |
| , |
| SIGXFSZ |
| #endif |
| #ifdef SIGEMT |
| , |
| SIGEMT |
| #endif |
| }; |
| |
| /// Signals that represent requests for status. |
| static const int InfoSigs[] = {SIGUSR1 |
| #ifdef SIGINFO |
| , |
| SIGINFO |
| #endif |
| }; |
| |
| static const size_t NumSigs = std::size(IntSigs) + std::size(KillSigs) + |
| std::size(InfoSigs) + 1 /* SIGPIPE */; |
| |
| static std::atomic<unsigned> NumRegisteredSignals = ATOMIC_VAR_INIT(0); |
| static struct { |
| struct sigaction SA; |
| int SigNo; |
| } RegisteredSignalInfo[NumSigs]; |
| |
| #if defined(HAVE_SIGALTSTACK) |
| // Hold onto both the old and new alternate signal stack so that it's not |
| // reported as a leak. We don't make any attempt to remove our alt signal |
| // stack if we remove our signal handlers; that can't be done reliably if |
| // someone else is also trying to do the same thing. |
| static stack_t OldAltStack; |
| LLVM_ATTRIBUTE_USED static void *NewAltStackPointer; |
| |
| static void CreateSigAltStack() { |
| const size_t AltStackSize = MINSIGSTKSZ + 64 * 1024; |
| |
| // If we're executing on the alternate stack, or we already have an alternate |
| // signal stack that we're happy with, there's nothing for us to do. Don't |
| // reduce the size, some other part of the process might need a larger stack |
| // than we do. |
| if (sigaltstack(nullptr, &OldAltStack) != 0 || |
| OldAltStack.ss_flags & SS_ONSTACK || |
| (OldAltStack.ss_sp && OldAltStack.ss_size >= AltStackSize)) |
| return; |
| |
| stack_t AltStack = {}; |
| AltStack.ss_sp = static_cast<char *>(safe_malloc(AltStackSize)); |
| NewAltStackPointer = AltStack.ss_sp; // Save to avoid reporting a leak. |
| AltStack.ss_size = AltStackSize; |
| if (sigaltstack(&AltStack, &OldAltStack) != 0) |
| free(AltStack.ss_sp); |
| } |
| #else |
| static void CreateSigAltStack() {} |
| #endif |
| |
| static void RegisterHandlers() { // Not signal-safe. |
| // The mutex prevents other threads from registering handlers while we're |
| // doing it. We also have to protect the handlers and their count because |
| // a signal handler could fire while we're registeting handlers. |
| static ManagedStatic<sys::SmartMutex<true>> SignalHandlerRegistrationMutex; |
| sys::SmartScopedLock<true> Guard(*SignalHandlerRegistrationMutex); |
| |
| // If the handlers are already registered, we're done. |
| if (NumRegisteredSignals.load() != 0) |
| return; |
| |
| // Create an alternate stack for signal handling. This is necessary for us to |
| // be able to reliably handle signals due to stack overflow. |
| CreateSigAltStack(); |
| |
| enum class SignalKind { IsKill, IsInfo }; |
| auto registerHandler = [&](int Signal, SignalKind Kind) { |
| unsigned Index = NumRegisteredSignals.load(); |
| assert(Index < std::size(RegisteredSignalInfo) && |
| "Out of space for signal handlers!"); |
| |
| struct sigaction NewHandler; |
| |
| switch (Kind) { |
| case SignalKind::IsKill: |
| NewHandler.sa_handler = SignalHandler; |
| NewHandler.sa_flags = SA_NODEFER | SA_RESETHAND | SA_ONSTACK; |
| break; |
| case SignalKind::IsInfo: |
| NewHandler.sa_handler = InfoSignalHandler; |
| NewHandler.sa_flags = SA_ONSTACK; |
| break; |
| } |
| sigemptyset(&NewHandler.sa_mask); |
| |
| // Install the new handler, save the old one in RegisteredSignalInfo. |
| sigaction(Signal, &NewHandler, &RegisteredSignalInfo[Index].SA); |
| RegisteredSignalInfo[Index].SigNo = Signal; |
| ++NumRegisteredSignals; |
| }; |
| |
| for (auto S : IntSigs) |
| registerHandler(S, SignalKind::IsKill); |
| for (auto S : KillSigs) |
| registerHandler(S, SignalKind::IsKill); |
| if (OneShotPipeSignalFunction) |
| registerHandler(SIGPIPE, SignalKind::IsKill); |
| for (auto S : InfoSigs) |
| registerHandler(S, SignalKind::IsInfo); |
| } |
| |
| void sys::unregisterHandlers() { |
| // Restore all of the signal handlers to how they were before we showed up. |
| for (unsigned i = 0, e = NumRegisteredSignals.load(); i != e; ++i) { |
| sigaction(RegisteredSignalInfo[i].SigNo, &RegisteredSignalInfo[i].SA, |
| nullptr); |
| --NumRegisteredSignals; |
| } |
| } |
| |
| /// Process the FilesToRemove list. |
| static void RemoveFilesToRemove() { |
| FileToRemoveList::removeAllFiles(FilesToRemove); |
| } |
| |
| void sys::CleanupOnSignal(uintptr_t Context) { |
| int Sig = (int)Context; |
| |
| if (llvm::is_contained(InfoSigs, Sig)) { |
| InfoSignalHandler(Sig); |
| return; |
| } |
| |
| RemoveFilesToRemove(); |
| |
| if (llvm::is_contained(IntSigs, Sig) || Sig == SIGPIPE) |
| return; |
| |
| llvm::sys::RunSignalHandlers(); |
| } |
| |
| // The signal handler that runs. |
| static void SignalHandler(int Sig) { |
| // Restore the signal behavior to default, so that the program actually |
| // crashes when we return and the signal reissues. This also ensures that if |
| // we crash in our signal handler that the program will terminate immediately |
| // instead of recursing in the signal handler. |
| sys::unregisterHandlers(); |
| |
| // Unmask all potentially blocked kill signals. |
| sigset_t SigMask; |
| sigfillset(&SigMask); |
| sigprocmask(SIG_UNBLOCK, &SigMask, nullptr); |
| |
| { |
| RemoveFilesToRemove(); |
| |
| if (Sig == SIGPIPE) |
| if (auto OldOneShotPipeFunction = |
| OneShotPipeSignalFunction.exchange(nullptr)) |
| return OldOneShotPipeFunction(); |
| |
| bool IsIntSig = llvm::is_contained(IntSigs, Sig); |
| if (IsIntSig) |
| if (auto OldInterruptFunction = InterruptFunction.exchange(nullptr)) |
| return OldInterruptFunction(); |
| |
| if (Sig == SIGPIPE || IsIntSig) { |
| raise(Sig); // Execute the default handler. |
| return; |
| } |
| } |
| |
| // Otherwise if it is a fault (like SEGV) run any handler. |
| llvm::sys::RunSignalHandlers(); |
| |
| #ifdef __s390__ |
| // On S/390, certain signals are delivered with PSW Address pointing to |
| // *after* the faulting instruction. Simply returning from the signal |
| // handler would continue execution after that point, instead of |
| // re-raising the signal. Raise the signal manually in those cases. |
| if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP) |
| raise(Sig); |
| #endif |
| } |
| |
| static void InfoSignalHandler(int Sig) { |
| SaveAndRestore SaveErrnoDuringASignalHandler(errno); |
| if (SignalHandlerFunctionType CurrentInfoFunction = InfoSignalFunction) |
| CurrentInfoFunction(); |
| } |
| |
| void llvm::sys::RunInterruptHandlers() { RemoveFilesToRemove(); } |
| |
| void llvm::sys::SetInterruptFunction(void (*IF)()) { |
| InterruptFunction.exchange(IF); |
| RegisterHandlers(); |
| } |
| |
| void llvm::sys::SetInfoSignalFunction(void (*Handler)()) { |
| InfoSignalFunction.exchange(Handler); |
| RegisterHandlers(); |
| } |
| |
| void llvm::sys::SetOneShotPipeSignalFunction(void (*Handler)()) { |
| OneShotPipeSignalFunction.exchange(Handler); |
| RegisterHandlers(); |
| } |
| |
| void llvm::sys::DefaultOneShotPipeSignalHandler() { |
| // Send a special return code that drivers can check for, from sysexits.h. |
| exit(EX_IOERR); |
| } |
| |
| // The public API |
| bool llvm::sys::RemoveFileOnSignal(StringRef Filename, std::string *ErrMsg) { |
| // Ensure that cleanup will occur as soon as one file is added. |
| static ManagedStatic<FilesToRemoveCleanup> FilesToRemoveCleanup; |
| *FilesToRemoveCleanup; |
| FileToRemoveList::insert(FilesToRemove, Filename.str()); |
| RegisterHandlers(); |
| return false; |
| } |
| |
| // The public API |
| void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) { |
| FileToRemoveList::erase(FilesToRemove, Filename.str()); |
| } |
| |
| /// Add a function to be called when a signal is delivered to the process. The |
| /// handler can have a cookie passed to it to identify what instance of the |
| /// handler it is. |
| void llvm::sys::AddSignalHandler(sys::SignalHandlerCallback FnPtr, |
| void *Cookie) { // Signal-safe. |
| insertSignalHandler(FnPtr, Cookie); |
| RegisterHandlers(); |
| } |
| |
| #if defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && HAVE_LINK_H && \ |
| (defined(__linux__) || defined(__FreeBSD__) || \ |
| defined(__FreeBSD_kernel__) || defined(__NetBSD__)) |
| struct DlIteratePhdrData { |
| void **StackTrace; |
| int depth; |
| bool first; |
| const char **modules; |
| intptr_t *offsets; |
| const char *main_exec_name; |
| }; |
| |
| static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) { |
| DlIteratePhdrData *data = (DlIteratePhdrData *)arg; |
| const char *name = data->first ? data->main_exec_name : info->dlpi_name; |
| data->first = false; |
| for (int i = 0; i < info->dlpi_phnum; i++) { |
| const auto *phdr = &info->dlpi_phdr[i]; |
| if (phdr->p_type != PT_LOAD) |
| continue; |
| intptr_t beg = info->dlpi_addr + phdr->p_vaddr; |
| intptr_t end = beg + phdr->p_memsz; |
| for (int j = 0; j < data->depth; j++) { |
| if (data->modules[j]) |
| continue; |
| intptr_t addr = (intptr_t)data->StackTrace[j]; |
| if (beg <= addr && addr < end) { |
| data->modules[j] = name; |
| data->offsets[j] = addr - info->dlpi_addr; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /// If this is an ELF platform, we can find all loaded modules and their virtual |
| /// addresses with dl_iterate_phdr. |
| static bool findModulesAndOffsets(void **StackTrace, int Depth, |
| const char **Modules, intptr_t *Offsets, |
| const char *MainExecutableName, |
| StringSaver &StrPool) { |
| DlIteratePhdrData data = {StackTrace, Depth, true, |
| Modules, Offsets, MainExecutableName}; |
| dl_iterate_phdr(dl_iterate_phdr_cb, &data); |
| return true; |
| } |
| #else |
| /// This platform does not have dl_iterate_phdr, so we do not yet know how to |
| /// find all loaded DSOs. |
| static bool findModulesAndOffsets(void **StackTrace, int Depth, |
| const char **Modules, intptr_t *Offsets, |
| const char *MainExecutableName, |
| StringSaver &StrPool) { |
| return false; |
| } |
| #endif // defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && ... |
| |
| #if ENABLE_BACKTRACES && defined(HAVE__UNWIND_BACKTRACE) |
| static int unwindBacktrace(void **StackTrace, int MaxEntries) { |
| if (MaxEntries < 0) |
| return 0; |
| |
| // Skip the first frame ('unwindBacktrace' itself). |
| int Entries = -1; |
| |
| auto HandleFrame = [&](_Unwind_Context *Context) -> _Unwind_Reason_Code { |
| // Apparently we need to detect reaching the end of the stack ourselves. |
| void *IP = (void *)_Unwind_GetIP(Context); |
| if (!IP) |
| return _URC_END_OF_STACK; |
| |
| assert(Entries < MaxEntries && "recursively called after END_OF_STACK?"); |
| if (Entries >= 0) |
| StackTrace[Entries] = IP; |
| |
| if (++Entries == MaxEntries) |
| return _URC_END_OF_STACK; |
| return _URC_NO_REASON; |
| }; |
| |
| _Unwind_Backtrace( |
| [](_Unwind_Context *Context, void *Handler) { |
| return (*static_cast<decltype(HandleFrame) *>(Handler))(Context); |
| }, |
| static_cast<void *>(&HandleFrame)); |
| return std::max(Entries, 0); |
| } |
| #endif |
| |
| // In the case of a program crash or fault, print out a stack trace so that the |
| // user has an indication of why and where we died. |
| // |
| // On glibc systems we have the 'backtrace' function, which works nicely, but |
| // doesn't demangle symbols. |
| void llvm::sys::PrintStackTrace(raw_ostream &OS, int Depth) { |
| #if ENABLE_BACKTRACES |
| static void *StackTrace[256]; |
| int depth = 0; |
| #if defined(HAVE_BACKTRACE) |
| // Use backtrace() to output a backtrace on Linux systems with glibc. |
| if (!depth) |
| depth = backtrace(StackTrace, static_cast<int>(std::size(StackTrace))); |
| #endif |
| #if defined(HAVE__UNWIND_BACKTRACE) |
| // Try _Unwind_Backtrace() if backtrace() failed. |
| if (!depth) |
| depth = |
| unwindBacktrace(StackTrace, static_cast<int>(std::size(StackTrace))); |
| #endif |
| if (!depth) |
| return; |
| // If "Depth" is not provided by the caller, use the return value of |
| // backtrace() for printing a symbolized stack trace. |
| if (!Depth) |
| Depth = depth; |
| if (printSymbolizedStackTrace(Argv0, StackTrace, Depth, OS)) |
| return; |
| OS << "Stack dump without symbol names (ensure you have llvm-symbolizer in " |
| "your PATH or set the environment var `LLVM_SYMBOLIZER_PATH` to point " |
| "to it):\n"; |
| #if HAVE_DLFCN_H && HAVE_DLADDR |
| int width = 0; |
| for (int i = 0; i < depth; ++i) { |
| Dl_info dlinfo; |
| dladdr(StackTrace[i], &dlinfo); |
| const char *name = strrchr(dlinfo.dli_fname, '/'); |
| |
| int nwidth; |
| if (!name) |
| nwidth = strlen(dlinfo.dli_fname); |
| else |
| nwidth = strlen(name) - 1; |
| |
| if (nwidth > width) |
| width = nwidth; |
| } |
| |
| for (int i = 0; i < depth; ++i) { |
| Dl_info dlinfo; |
| dladdr(StackTrace[i], &dlinfo); |
| |
| OS << format("%-2d", i); |
| |
| const char *name = strrchr(dlinfo.dli_fname, '/'); |
| if (!name) |
| OS << format(" %-*s", width, dlinfo.dli_fname); |
| else |
| OS << format(" %-*s", width, name + 1); |
| |
| OS << format(" %#0*lx", (int)(sizeof(void *) * 2) + 2, |
| (unsigned long)StackTrace[i]); |
| |
| if (dlinfo.dli_sname != nullptr) { |
| OS << ' '; |
| int res; |
| char *d = itaniumDemangle(dlinfo.dli_sname, nullptr, nullptr, &res); |
| if (!d) |
| OS << dlinfo.dli_sname; |
| else |
| OS << d; |
| free(d); |
| |
| OS << format(" + %tu", (static_cast<const char *>(StackTrace[i]) - |
| static_cast<const char *>(dlinfo.dli_saddr))); |
| } |
| OS << '\n'; |
| } |
| #elif defined(HAVE_BACKTRACE) |
| backtrace_symbols_fd(StackTrace, Depth, STDERR_FILENO); |
| #endif |
| #endif |
| } |
| |
| static void PrintStackTraceSignalHandler(void *) { |
| sys::PrintStackTrace(llvm::errs()); |
| } |
| |
| void llvm::sys::DisableSystemDialogsOnCrash() {} |
| |
| /// When an error signal (such as SIGABRT or SIGSEGV) is delivered to the |
| /// process, print a stack trace and then exit. |
| void llvm::sys::PrintStackTraceOnErrorSignal(StringRef Argv0, |
| bool DisableCrashReporting) { |
| ::Argv0 = Argv0; |
| |
| AddSignalHandler(PrintStackTraceSignalHandler, nullptr); |
| |
| #if defined(__APPLE__) && ENABLE_CRASH_OVERRIDES |
| // Environment variable to disable any kind of crash dialog. |
| if (DisableCrashReporting || getenv("LLVM_DISABLE_CRASH_REPORT")) { |
| mach_port_t self = mach_task_self(); |
| |
| exception_mask_t mask = EXC_MASK_CRASH; |
| |
| kern_return_t ret = task_set_exception_ports( |
| self, mask, MACH_PORT_NULL, |
| EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES, THREAD_STATE_NONE); |
| (void)ret; |
| } |
| #endif |
| } |