blob: 810874b629adddeba5407b49e6890f2cfca5fade [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "SamplerCore.hpp"
#include "Constants.hpp"
#include "Common/Debug.hpp"
namespace
{
void applySwizzle(sw::SwizzleType swizzle, sw::Short4& s, const sw::Vector4s& c)
{
switch(swizzle)
{
case sw::SWIZZLE_RED: s = c.x; break;
case sw::SWIZZLE_GREEN: s = c.y; break;
case sw::SWIZZLE_BLUE: s = c.z; break;
case sw::SWIZZLE_ALPHA: s = c.w; break;
case sw::SWIZZLE_ZERO: s = sw::Short4(0x0000); break;
case sw::SWIZZLE_ONE: s = sw::Short4(0x1000); break;
default: ASSERT(false);
}
}
void applySwizzle(sw::SwizzleType swizzle, sw::Float4& f, const sw::Vector4f& c)
{
switch(swizzle)
{
case sw::SWIZZLE_RED: f = c.x; break;
case sw::SWIZZLE_GREEN: f = c.y; break;
case sw::SWIZZLE_BLUE: f = c.z; break;
case sw::SWIZZLE_ALPHA: f = c.w; break;
case sw::SWIZZLE_ZERO: f = sw::Float4(0.0f, 0.0f, 0.0f, 0.0f); break;
case sw::SWIZZLE_ONE: f = sw::Float4(1.0f, 1.0f, 1.0f, 1.0f); break;
default: ASSERT(false);
}
}
}
namespace sw
{
extern bool colorsDefaultToZero;
SamplerCore::SamplerCore(Pointer<Byte> &constants, const Sampler::State &state) : constants(constants), state(state)
{
}
Vector4s SamplerCore::sampleTexture(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Float4 &bias, Vector4f &dsx, Vector4f &dsy)
{
return sampleTexture(texture, u, v, w, q, q, dsx, dsy, (dsx), Implicit, true);
}
Vector4s SamplerCore::sampleTexture(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Float4 &bias, Vector4f &dsx, Vector4f &dsy, Vector4f &offset, SamplerFunction function, bool fixed12)
{
Vector4s c;
#if PERF_PROFILE
AddAtomic(Pointer<Long>(&profiler.texOperations), 4);
if(state.compressedFormat)
{
AddAtomic(Pointer<Long>(&profiler.compressedTex), 4);
}
#endif
if(state.textureType == TEXTURE_NULL)
{
c.x = Short4(0x0000);
c.y = Short4(0x0000);
c.z = Short4(0x0000);
if(fixed12) // FIXME: Convert to fixed12 at higher level, when required
{
c.w = Short4(0x1000);
}
else
{
c.w = Short4(0xFFFFu); // FIXME
}
}
else
{
Float4 uuuu = u;
Float4 vvvv = v;
Float4 wwww = w;
Float4 qqqq = q;
Int face[4];
Float lod;
Float anisotropy;
Float4 uDelta;
Float4 vDelta;
if(state.textureType != TEXTURE_3D)
{
if(state.textureType != TEXTURE_CUBE)
{
computeLod(texture, lod, anisotropy, uDelta, vDelta, uuuu, vvvv, bias.x, dsx, dsy, function);
}
else
{
Float4 M;
cubeFace(face, uuuu, vvvv, u, v, w, M);
computeLodCube(texture, lod, u, v, w, bias.x, dsx, dsy, M, function);
}
}
else
{
computeLod3D(texture, lod, uuuu, vvvv, wwww, bias.x, dsx, dsy, function);
}
if(!hasFloatTexture())
{
c = sampleFilter(texture, uuuu, vvvv, wwww, offset, lod, anisotropy, uDelta, vDelta, face, function);
}
else
{
Vector4f cf = sampleFloatFilter(texture, uuuu, vvvv, wwww, qqqq, offset, lod, anisotropy, uDelta, vDelta, face, function);
convertFixed12(c, cf);
}
if(fixed12)
{
if(!hasFloatTexture())
{
if(state.textureFormat == FORMAT_R5G6B5)
{
c.x = MulHigh(As<UShort4>(c.x), UShort4(0x10000000 / 0xF800));
c.y = MulHigh(As<UShort4>(c.y), UShort4(0x10000000 / 0xFC00));
c.z = MulHigh(As<UShort4>(c.z), UShort4(0x10000000 / 0xF800));
}
else
{
for(int component = 0; component < textureComponentCount(); component++)
{
if(hasUnsignedTextureComponent(component))
{
c[component] = As<UShort4>(c[component]) >> 4;
}
else
{
c[component] = c[component] >> 3;
}
}
}
}
if(state.textureFilter != FILTER_GATHER)
{
int componentCount = textureComponentCount();
short defaultColorValue = colorsDefaultToZero ? 0x0000 : 0x1000;
switch(state.textureFormat)
{
case FORMAT_R8_SNORM:
case FORMAT_G8R8_SNORM:
case FORMAT_X8B8G8R8_SNORM:
case FORMAT_A8B8G8R8_SNORM:
case FORMAT_R8:
case FORMAT_R5G6B5:
case FORMAT_G8R8:
case FORMAT_R8I:
case FORMAT_R8UI:
case FORMAT_G8R8I:
case FORMAT_G8R8UI:
case FORMAT_X8B8G8R8I:
case FORMAT_X8B8G8R8UI:
case FORMAT_A8B8G8R8I:
case FORMAT_A8B8G8R8UI:
case FORMAT_R16I:
case FORMAT_R16UI:
case FORMAT_G16R16:
case FORMAT_G16R16I:
case FORMAT_G16R16UI:
case FORMAT_X16B16G16R16I:
case FORMAT_X16B16G16R16UI:
case FORMAT_A16B16G16R16:
case FORMAT_A16B16G16R16I:
case FORMAT_A16B16G16R16UI:
case FORMAT_R32I:
case FORMAT_R32UI:
case FORMAT_G32R32I:
case FORMAT_G32R32UI:
case FORMAT_X32B32G32R32I:
case FORMAT_X32B32G32R32UI:
case FORMAT_A32B32G32R32I:
case FORMAT_A32B32G32R32UI:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
case FORMAT_YV12_BT601:
case FORMAT_YV12_BT709:
case FORMAT_YV12_JFIF:
if(componentCount < 2) c.y = Short4(defaultColorValue);
if(componentCount < 3) c.z = Short4(defaultColorValue);
if(componentCount < 4) c.w = Short4(0x1000);
break;
case FORMAT_A8:
c.w = c.x;
c.x = Short4(0x0000);
c.y = Short4(0x0000);
c.z = Short4(0x0000);
break;
case FORMAT_L8:
case FORMAT_L16:
c.y = c.x;
c.z = c.x;
c.w = Short4(0x1000);
break;
case FORMAT_A8L8:
c.w = c.y;
c.y = c.x;
c.z = c.x;
break;
case FORMAT_R32F:
c.y = Short4(defaultColorValue);
case FORMAT_G32R32F:
c.z = Short4(defaultColorValue);
case FORMAT_X32B32G32R32F:
case FORMAT_X32B32G32R32F_UNSIGNED:
c.w = Short4(0x1000);
case FORMAT_A32B32G32R32F:
break;
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32F_SHADOW:
case FORMAT_D32FS8_SHADOW:
c.y = c.x;
c.z = c.x;
c.w = c.x;
break;
default:
ASSERT(false);
}
}
if((state.swizzleR != SWIZZLE_RED) ||
(state.swizzleG != SWIZZLE_GREEN) ||
(state.swizzleB != SWIZZLE_BLUE) ||
(state.swizzleA != SWIZZLE_ALPHA))
{
const Vector4s col(c);
applySwizzle(state.swizzleR, c.x, col);
applySwizzle(state.swizzleG, c.y, col);
applySwizzle(state.swizzleB, c.z, col);
applySwizzle(state.swizzleA, c.w, col);
}
}
}
return c;
}
Vector4f SamplerCore::sampleTexture(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Float4 &bias, Vector4f &dsx, Vector4f &dsy, Vector4f &offset, SamplerFunction function)
{
Vector4f c;
#if PERF_PROFILE
AddAtomic(Pointer<Long>(&profiler.texOperations), 4);
if(state.compressedFormat)
{
AddAtomic(Pointer<Long>(&profiler.compressedTex), 4);
}
#endif
if(state.textureType == TEXTURE_NULL)
{
c.x = Float4(0.0f);
c.y = Float4(0.0f);
c.z = Float4(0.0f);
c.w = Float4(1.0f);
}
else
{
// FIXME: YUV is not supported by the floating point path
bool forceFloatFiltering = state.highPrecisionFiltering && !hasYuvFormat() && (state.textureFilter != FILTER_POINT);
bool seamlessCube = (state.addressingModeU == ADDRESSING_SEAMLESS);
bool rectangleTexture = (state.textureType == TEXTURE_RECTANGLE);
if(hasFloatTexture() || hasUnnormalizedIntegerTexture() || forceFloatFiltering || seamlessCube || rectangleTexture) // FIXME: Mostly identical to integer sampling
{
Float4 uuuu = u;
Float4 vvvv = v;
Float4 wwww = w;
Float4 qqqq = q;
Int face[4];
Float lod;
Float anisotropy;
Float4 uDelta;
Float4 vDelta;
if(state.textureType != TEXTURE_3D)
{
if(state.textureType != TEXTURE_CUBE)
{
computeLod(texture, lod, anisotropy, uDelta, vDelta, uuuu, vvvv, bias.x, dsx, dsy, function);
}
else
{
Float4 M;
cubeFace(face, uuuu, vvvv, u, v, w, M);
computeLodCube(texture, lod, u, v, w, bias.x, dsx, dsy, M, function);
}
}
else
{
computeLod3D(texture, lod, uuuu, vvvv, wwww, bias.x, dsx, dsy, function);
}
c = sampleFloatFilter(texture, uuuu, vvvv, wwww, qqqq, offset, lod, anisotropy, uDelta, vDelta, face, function);
if(!hasFloatTexture() && !hasUnnormalizedIntegerTexture())
{
if(has16bitTextureFormat())
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
c.x *= Float4(1.0f / 0xF800);
c.y *= Float4(1.0f / 0xFC00);
c.z *= Float4(1.0f / 0xF800);
break;
default:
ASSERT(false);
}
}
else
{
for(int component = 0; component < textureComponentCount(); component++)
{
c[component] *= Float4(hasUnsignedTextureComponent(component) ? 1.0f / 0xFFFF : 1.0f / 0x7FFF);
}
}
}
}
else
{
Vector4s cs = sampleTexture(texture, u, v, w, q, bias, dsx, dsy, offset, function, false);
if(state.textureFormat == FORMAT_R5G6B5)
{
c.x = Float4(As<UShort4>(cs.x)) * Float4(1.0f / 0xF800);
c.y = Float4(As<UShort4>(cs.y)) * Float4(1.0f / 0xFC00);
c.z = Float4(As<UShort4>(cs.z)) * Float4(1.0f / 0xF800);
}
else
{
for(int component = 0; component < textureComponentCount(); component++)
{
if(hasUnsignedTextureComponent(component))
{
convertUnsigned16(c[component], cs[component]);
}
else
{
convertSigned15(c[component], cs[component]);
}
}
}
}
int componentCount = textureComponentCount();
float defaultColorValue = colorsDefaultToZero ? 0.0f : 1.0f;
if(state.textureFilter != FILTER_GATHER)
{
switch(state.textureFormat)
{
case FORMAT_R8I:
case FORMAT_R8UI:
case FORMAT_R16I:
case FORMAT_R16UI:
case FORMAT_R32I:
case FORMAT_R32UI:
c.y = As<Float4>(UInt4(0));
case FORMAT_G8R8I:
case FORMAT_G8R8UI:
case FORMAT_G16R16I:
case FORMAT_G16R16UI:
case FORMAT_G32R32I:
case FORMAT_G32R32UI:
c.z = As<Float4>(UInt4(0));
case FORMAT_X8B8G8R8I:
case FORMAT_X8B8G8R8UI:
case FORMAT_X16B16G16R16I:
case FORMAT_X16B16G16R16UI:
case FORMAT_X32B32G32R32I:
case FORMAT_X32B32G32R32UI:
c.w = As<Float4>(UInt4(1));
case FORMAT_A8B8G8R8I:
case FORMAT_A8B8G8R8UI:
case FORMAT_A16B16G16R16I:
case FORMAT_A16B16G16R16UI:
case FORMAT_A32B32G32R32I:
case FORMAT_A32B32G32R32UI:
break;
case FORMAT_R8_SNORM:
case FORMAT_G8R8_SNORM:
case FORMAT_X8B8G8R8_SNORM:
case FORMAT_A8B8G8R8_SNORM:
case FORMAT_R8:
case FORMAT_R5G6B5:
case FORMAT_G8R8:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
case FORMAT_YV12_BT601:
case FORMAT_YV12_BT709:
case FORMAT_YV12_JFIF:
if(componentCount < 2) c.y = Float4(defaultColorValue);
if(componentCount < 3) c.z = Float4(defaultColorValue);
if(componentCount < 4) c.w = Float4(1.0f);
break;
case FORMAT_A8:
c.w = c.x;
c.x = Float4(0.0f);
c.y = Float4(0.0f);
c.z = Float4(0.0f);
break;
case FORMAT_L8:
case FORMAT_L16:
c.y = c.x;
c.z = c.x;
c.w = Float4(1.0f);
break;
case FORMAT_A8L8:
c.w = c.y;
c.y = c.x;
c.z = c.x;
break;
case FORMAT_R32F:
c.y = Float4(defaultColorValue);
case FORMAT_G32R32F:
c.z = Float4(defaultColorValue);
case FORMAT_X32B32G32R32F:
case FORMAT_X32B32G32R32F_UNSIGNED:
c.w = Float4(1.0f);
case FORMAT_A32B32G32R32F:
break;
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32F_SHADOW:
case FORMAT_D32FS8_SHADOW:
c.y = Float4(0.0f);
c.z = Float4(0.0f);
c.w = Float4(1.0f);
break;
default:
ASSERT(false);
}
}
if((state.swizzleR != SWIZZLE_RED) ||
(state.swizzleG != SWIZZLE_GREEN) ||
(state.swizzleB != SWIZZLE_BLUE) ||
(state.swizzleA != SWIZZLE_ALPHA))
{
const Vector4f col(c);
applySwizzle(state.swizzleR, c.x, col);
applySwizzle(state.swizzleG, c.y, col);
applySwizzle(state.swizzleB, c.z, col);
applySwizzle(state.swizzleA, c.w, col);
}
}
return c;
}
Vector4f SamplerCore::textureSize(Pointer<Byte> &texture, Float4 &lod)
{
Vector4f size;
for(int i = 0; i < 4; ++i)
{
Int baseLevel = *Pointer<Int>(texture + OFFSET(Texture, baseLevel));
Int index = Min(As<UInt>(As<Int>(Extract(lod, i)) + baseLevel), MIPMAP_LEVELS - 1);
Pointer<Byte> mipmap = texture + OFFSET(Texture, mipmap) + index * sizeof(Mipmap);
size.x = Insert(size.x, As<Float>(Int(*Pointer<Short>(mipmap + OFFSET(Mipmap, width)))), i);
size.y = Insert(size.y, As<Float>(Int(*Pointer<Short>(mipmap + OFFSET(Mipmap, height)))), i);
size.z = Insert(size.z, As<Float>(Int(*Pointer<Short>(mipmap + OFFSET(Mipmap, depth)))), i);
}
return size;
}
void SamplerCore::border(Short4 &mask, Float4 &coordinates)
{
Int4 border = As<Int4>(CmpLT(Abs(coordinates - Float4(0.5f)), Float4(0.5f)));
mask = As<Short4>(Int2(As<Int4>(PackSigned(border, border))));
}
void SamplerCore::border(Int4 &mask, Float4 &coordinates)
{
mask = As<Int4>(CmpLT(Abs(coordinates - Float4(0.5f)), Float4(0.5f)));
}
Short4 SamplerCore::offsetSample(Short4 &uvw, Pointer<Byte> &mipmap, int halfOffset, bool wrap, int count, Float &lod)
{
Short4 offset = *Pointer<Short4>(mipmap + halfOffset);
if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT)
{
offset &= Short4(CmpNLE(Float4(lod), Float4(0.0f)));
}
else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR)
{
offset &= Short4(CmpLE(Float4(lod), Float4(0.0f)));
}
if(wrap)
{
switch(count)
{
case -1: return uvw - offset;
case 0: return uvw;
case +1: return uvw + offset;
case 2: return uvw + offset + offset;
}
}
else // Clamp or mirror
{
switch(count)
{
case -1: return SubSat(As<UShort4>(uvw), As<UShort4>(offset));
case 0: return uvw;
case +1: return AddSat(As<UShort4>(uvw), As<UShort4>(offset));
case 2: return AddSat(AddSat(As<UShort4>(uvw), As<UShort4>(offset)), As<UShort4>(offset));
}
}
return uvw;
}
Vector4s SamplerCore::sampleFilter(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Int face[4], SamplerFunction function)
{
Vector4s c = sampleAniso(texture, u, v, w, offset, lod, anisotropy, uDelta, vDelta, face, false, function);
if(function == Fetch)
{
return c;
}
if(state.mipmapFilter == MIPMAP_LINEAR)
{
Vector4s cc = sampleAniso(texture, u, v, w, offset, lod, anisotropy, uDelta, vDelta, face, true, function);
lod *= Float(1 << 16);
UShort4 utri = UShort4(Float4(lod)); // FIXME: Optimize
Short4 stri = utri >> 1; // FIXME: Optimize
if(hasUnsignedTextureComponent(0)) cc.x = MulHigh(As<UShort4>(cc.x), utri); else cc.x = MulHigh(cc.x, stri);
if(hasUnsignedTextureComponent(1)) cc.y = MulHigh(As<UShort4>(cc.y), utri); else cc.y = MulHigh(cc.y, stri);
if(hasUnsignedTextureComponent(2)) cc.z = MulHigh(As<UShort4>(cc.z), utri); else cc.z = MulHigh(cc.z, stri);
if(hasUnsignedTextureComponent(3)) cc.w = MulHigh(As<UShort4>(cc.w), utri); else cc.w = MulHigh(cc.w, stri);
utri = ~utri;
stri = Short4(0x7FFF) - stri;
if(hasUnsignedTextureComponent(0)) c.x = MulHigh(As<UShort4>(c.x), utri); else c.x = MulHigh(c.x, stri);
if(hasUnsignedTextureComponent(1)) c.y = MulHigh(As<UShort4>(c.y), utri); else c.y = MulHigh(c.y, stri);
if(hasUnsignedTextureComponent(2)) c.z = MulHigh(As<UShort4>(c.z), utri); else c.z = MulHigh(c.z, stri);
if(hasUnsignedTextureComponent(3)) c.w = MulHigh(As<UShort4>(c.w), utri); else c.w = MulHigh(c.w, stri);
c.x += cc.x;
c.y += cc.y;
c.z += cc.z;
c.w += cc.w;
if(!hasUnsignedTextureComponent(0)) c.x += c.x;
if(!hasUnsignedTextureComponent(1)) c.y += c.y;
if(!hasUnsignedTextureComponent(2)) c.z += c.z;
if(!hasUnsignedTextureComponent(3)) c.w += c.w;
}
Short4 borderMask;
if(state.addressingModeU == ADDRESSING_BORDER)
{
Short4 u0;
border(u0, u);
borderMask = u0;
}
if(state.addressingModeV == ADDRESSING_BORDER)
{
Short4 v0;
border(v0, v);
if(state.addressingModeU == ADDRESSING_BORDER)
{
borderMask &= v0;
}
else
{
borderMask = v0;
}
}
if(state.addressingModeW == ADDRESSING_BORDER && state.textureType == TEXTURE_3D)
{
Short4 s0;
border(s0, w);
if(state.addressingModeU == ADDRESSING_BORDER ||
state.addressingModeV == ADDRESSING_BORDER)
{
borderMask &= s0;
}
else
{
borderMask = s0;
}
}
if(state.addressingModeU == ADDRESSING_BORDER ||
state.addressingModeV == ADDRESSING_BORDER ||
(state.addressingModeW == ADDRESSING_BORDER && state.textureType == TEXTURE_3D))
{
Short4 b;
c.x = (borderMask & c.x) | (~borderMask & (*Pointer<Short4>(texture + OFFSET(Texture,borderColor4[0])) >> (hasUnsignedTextureComponent(0) ? 0 : 1)));
c.y = (borderMask & c.y) | (~borderMask & (*Pointer<Short4>(texture + OFFSET(Texture,borderColor4[1])) >> (hasUnsignedTextureComponent(1) ? 0 : 1)));
c.z = (borderMask & c.z) | (~borderMask & (*Pointer<Short4>(texture + OFFSET(Texture,borderColor4[2])) >> (hasUnsignedTextureComponent(2) ? 0 : 1)));
c.w = (borderMask & c.w) | (~borderMask & (*Pointer<Short4>(texture + OFFSET(Texture,borderColor4[3])) >> (hasUnsignedTextureComponent(3) ? 0 : 1)));
}
return c;
}
Vector4s SamplerCore::sampleAniso(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Int face[4], bool secondLOD, SamplerFunction function)
{
Vector4s c;
if(state.textureFilter != FILTER_ANISOTROPIC || function == Lod || function == Fetch)
{
c = sampleQuad(texture, u, v, w, offset, lod, face, secondLOD, function);
}
else
{
Int a = RoundInt(anisotropy);
Vector4s cSum;
cSum.x = Short4(0);
cSum.y = Short4(0);
cSum.z = Short4(0);
cSum.w = Short4(0);
Float4 A = *Pointer<Float4>(constants + OFFSET(Constants,uvWeight) + 16 * a);
Float4 B = *Pointer<Float4>(constants + OFFSET(Constants,uvStart) + 16 * a);
UShort4 cw = *Pointer<UShort4>(constants + OFFSET(Constants,cWeight) + 8 * a);
Short4 sw = Short4(cw >> 1);
Float4 du = uDelta;
Float4 dv = vDelta;
Float4 u0 = u + B * du;
Float4 v0 = v + B * dv;
du *= A;
dv *= A;
Int i = 0;
Do
{
c = sampleQuad(texture, u0, v0, w, offset, lod, face, secondLOD, function);
u0 += du;
v0 += dv;
if(hasUnsignedTextureComponent(0)) cSum.x += As<Short4>(MulHigh(As<UShort4>(c.x), cw)); else cSum.x += MulHigh(c.x, sw);
if(hasUnsignedTextureComponent(1)) cSum.y += As<Short4>(MulHigh(As<UShort4>(c.y), cw)); else cSum.y += MulHigh(c.y, sw);
if(hasUnsignedTextureComponent(2)) cSum.z += As<Short4>(MulHigh(As<UShort4>(c.z), cw)); else cSum.z += MulHigh(c.z, sw);
if(hasUnsignedTextureComponent(3)) cSum.w += As<Short4>(MulHigh(As<UShort4>(c.w), cw)); else cSum.w += MulHigh(c.w, sw);
i++;
}
Until(i >= a);
if(hasUnsignedTextureComponent(0)) c.x = cSum.x; else c.x = AddSat(cSum.x, cSum.x);
if(hasUnsignedTextureComponent(1)) c.y = cSum.y; else c.y = AddSat(cSum.y, cSum.y);
if(hasUnsignedTextureComponent(2)) c.z = cSum.z; else c.z = AddSat(cSum.z, cSum.z);
if(hasUnsignedTextureComponent(3)) c.w = cSum.w; else c.w = AddSat(cSum.w, cSum.w);
}
return c;
}
Vector4s SamplerCore::sampleQuad(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, Int face[4], bool secondLOD, SamplerFunction function)
{
if(state.textureType != TEXTURE_3D)
{
return sampleQuad2D(texture, u, v, w, offset, lod, face, secondLOD, function);
}
else
{
return sample3D(texture, u, v, w, offset, lod, secondLOD, function);
}
}
Vector4s SamplerCore::sampleQuad2D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, Int face[4], bool secondLOD, SamplerFunction function)
{
Vector4s c;
int componentCount = textureComponentCount();
bool gather = state.textureFilter == FILTER_GATHER;
Pointer<Byte> mipmap;
Pointer<Byte> buffer[4];
selectMipmap(texture, buffer, mipmap, lod, face, secondLOD);
bool texelFetch = (function == Fetch);
Short4 uuuu = texelFetch ? Short4(As<Int4>(u)) : address(u, state.addressingModeU, mipmap);
Short4 vvvv = texelFetch ? Short4(As<Int4>(v)) : address(v, state.addressingModeV, mipmap);
Short4 wwww = texelFetch ? Short4(As<Int4>(w)) : address(w, state.addressingModeW, mipmap);
if(state.textureFilter == FILTER_POINT || texelFetch)
{
c = sampleTexel(uuuu, vvvv, wwww, offset, mipmap, buffer, function);
}
else
{
Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, gather ? 0 : -1, lod);
Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, gather ? 0 : -1, lod);
Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, gather ? 2 : +1, lod);
Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, gather ? 2 : +1, lod);
Vector4s c0 = sampleTexel(uuuu0, vvvv0, wwww, offset, mipmap, buffer, function);
Vector4s c1 = sampleTexel(uuuu1, vvvv0, wwww, offset, mipmap, buffer, function);
Vector4s c2 = sampleTexel(uuuu0, vvvv1, wwww, offset, mipmap, buffer, function);
Vector4s c3 = sampleTexel(uuuu1, vvvv1, wwww, offset, mipmap, buffer, function);
if(!gather) // Blend
{
// Fractions
UShort4 f0u = As<UShort4>(uuuu0) * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,width));
UShort4 f0v = As<UShort4>(vvvv0) * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,height));
UShort4 f1u = ~f0u;
UShort4 f1v = ~f0v;
UShort4 f0u0v = MulHigh(f0u, f0v);
UShort4 f1u0v = MulHigh(f1u, f0v);
UShort4 f0u1v = MulHigh(f0u, f1v);
UShort4 f1u1v = MulHigh(f1u, f1v);
// Signed fractions
Short4 f1u1vs;
Short4 f0u1vs;
Short4 f1u0vs;
Short4 f0u0vs;
if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3))
{
f1u1vs = f1u1v >> 1;
f0u1vs = f0u1v >> 1;
f1u0vs = f1u0v >> 1;
f0u0vs = f0u0v >> 1;
}
// Bilinear interpolation
if(componentCount >= 1)
{
if(has16bitTextureComponents() && hasUnsignedTextureComponent(0))
{
c0.x = As<UShort4>(c0.x) - MulHigh(As<UShort4>(c0.x), f0u) + MulHigh(As<UShort4>(c1.x), f0u);
c2.x = As<UShort4>(c2.x) - MulHigh(As<UShort4>(c2.x), f0u) + MulHigh(As<UShort4>(c3.x), f0u);
c.x = As<UShort4>(c0.x) - MulHigh(As<UShort4>(c0.x), f0v) + MulHigh(As<UShort4>(c2.x), f0v);
}
else
{
if(hasUnsignedTextureComponent(0))
{
c0.x = MulHigh(As<UShort4>(c0.x), f1u1v);
c1.x = MulHigh(As<UShort4>(c1.x), f0u1v);
c2.x = MulHigh(As<UShort4>(c2.x), f1u0v);
c3.x = MulHigh(As<UShort4>(c3.x), f0u0v);
}
else
{
c0.x = MulHigh(c0.x, f1u1vs);
c1.x = MulHigh(c1.x, f0u1vs);
c2.x = MulHigh(c2.x, f1u0vs);
c3.x = MulHigh(c3.x, f0u0vs);
}
c.x = (c0.x + c1.x) + (c2.x + c3.x);
if(!hasUnsignedTextureComponent(0)) c.x = AddSat(c.x, c.x); // Correct for signed fractions
}
}
if(componentCount >= 2)
{
if(has16bitTextureComponents() && hasUnsignedTextureComponent(1))
{
c0.y = As<UShort4>(c0.y) - MulHigh(As<UShort4>(c0.y), f0u) + MulHigh(As<UShort4>(c1.y), f0u);
c2.y = As<UShort4>(c2.y) - MulHigh(As<UShort4>(c2.y), f0u) + MulHigh(As<UShort4>(c3.y), f0u);
c.y = As<UShort4>(c0.y) - MulHigh(As<UShort4>(c0.y), f0v) + MulHigh(As<UShort4>(c2.y), f0v);
}
else
{
if(hasUnsignedTextureComponent(1))
{
c0.y = MulHigh(As<UShort4>(c0.y), f1u1v);
c1.y = MulHigh(As<UShort4>(c1.y), f0u1v);
c2.y = MulHigh(As<UShort4>(c2.y), f1u0v);
c3.y = MulHigh(As<UShort4>(c3.y), f0u0v);
}
else
{
c0.y = MulHigh(c0.y, f1u1vs);
c1.y = MulHigh(c1.y, f0u1vs);
c2.y = MulHigh(c2.y, f1u0vs);
c3.y = MulHigh(c3.y, f0u0vs);
}
c.y = (c0.y + c1.y) + (c2.y + c3.y);
if(!hasUnsignedTextureComponent(1)) c.y = AddSat(c.y, c.y); // Correct for signed fractions
}
}
if(componentCount >= 3)
{
if(has16bitTextureComponents() && hasUnsignedTextureComponent(2))
{
c0.z = As<UShort4>(c0.z) - MulHigh(As<UShort4>(c0.z), f0u) + MulHigh(As<UShort4>(c1.z), f0u);
c2.z = As<UShort4>(c2.z) - MulHigh(As<UShort4>(c2.z), f0u) + MulHigh(As<UShort4>(c3.z), f0u);
c.z = As<UShort4>(c0.z) - MulHigh(As<UShort4>(c0.z), f0v) + MulHigh(As<UShort4>(c2.z), f0v);
}
else
{
if(hasUnsignedTextureComponent(2))
{
c0.z = MulHigh(As<UShort4>(c0.z), f1u1v);
c1.z = MulHigh(As<UShort4>(c1.z), f0u1v);
c2.z = MulHigh(As<UShort4>(c2.z), f1u0v);
c3.z = MulHigh(As<UShort4>(c3.z), f0u0v);
}
else
{
c0.z = MulHigh(c0.z, f1u1vs);
c1.z = MulHigh(c1.z, f0u1vs);
c2.z = MulHigh(c2.z, f1u0vs);
c3.z = MulHigh(c3.z, f0u0vs);
}
c.z = (c0.z + c1.z) + (c2.z + c3.z);
if(!hasUnsignedTextureComponent(2)) c.z = AddSat(c.z, c.z); // Correct for signed fractions
}
}
if(componentCount >= 4)
{
if(has16bitTextureComponents() && hasUnsignedTextureComponent(3))
{
c0.w = As<UShort4>(c0.w) - MulHigh(As<UShort4>(c0.w), f0u) + MulHigh(As<UShort4>(c1.w), f0u);
c2.w = As<UShort4>(c2.w) - MulHigh(As<UShort4>(c2.w), f0u) + MulHigh(As<UShort4>(c3.w), f0u);
c.w = As<UShort4>(c0.w) - MulHigh(As<UShort4>(c0.w), f0v) + MulHigh(As<UShort4>(c2.w), f0v);
}
else
{
if(hasUnsignedTextureComponent(3))
{
c0.w = MulHigh(As<UShort4>(c0.w), f1u1v);
c1.w = MulHigh(As<UShort4>(c1.w), f0u1v);
c2.w = MulHigh(As<UShort4>(c2.w), f1u0v);
c3.w = MulHigh(As<UShort4>(c3.w), f0u0v);
}
else
{
c0.w = MulHigh(c0.w, f1u1vs);
c1.w = MulHigh(c1.w, f0u1vs);
c2.w = MulHigh(c2.w, f1u0vs);
c3.w = MulHigh(c3.w, f0u0vs);
}
c.w = (c0.w + c1.w) + (c2.w + c3.w);
if(!hasUnsignedTextureComponent(3)) c.w = AddSat(c.w, c.w); // Correct for signed fractions
}
}
}
else
{
c.x = c1.x;
c.y = c2.x;
c.z = c3.x;
c.w = c0.x;
}
}
return c;
}
Vector4s SamplerCore::sample3D(Pointer<Byte> &texture, Float4 &u_, Float4 &v_, Float4 &w_, Vector4f &offset, Float &lod, bool secondLOD, SamplerFunction function)
{
Vector4s c_;
int componentCount = textureComponentCount();
Pointer<Byte> mipmap;
Pointer<Byte> buffer[4];
Int face[4];
selectMipmap(texture, buffer, mipmap, lod, face, secondLOD);
bool texelFetch = (function == Fetch);
Short4 uuuu = texelFetch ? Short4(As<Int4>(u_)) : address(u_, state.addressingModeU, mipmap);
Short4 vvvv = texelFetch ? Short4(As<Int4>(v_)) : address(v_, state.addressingModeV, mipmap);
Short4 wwww = texelFetch ? Short4(As<Int4>(w_)) : address(w_, state.addressingModeW, mipmap);
if(state.textureFilter == FILTER_POINT || texelFetch)
{
c_ = sampleTexel(uuuu, vvvv, wwww, offset, mipmap, buffer, function);
}
else
{
Vector4s c[2][2][2];
Short4 u[2][2][2];
Short4 v[2][2][2];
Short4 s[2][2][2];
for(int i = 0; i < 2; i++)
{
for(int j = 0; j < 2; j++)
{
for(int k = 0; k < 2; k++)
{
u[i][j][k] = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, i * 2 - 1, lod);
v[i][j][k] = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, j * 2 - 1, lod);
s[i][j][k] = offsetSample(wwww, mipmap, OFFSET(Mipmap,wHalf), state.addressingModeW == ADDRESSING_WRAP, k * 2 - 1, lod);
}
}
}
// Fractions
UShort4 f0u = As<UShort4>(u[0][0][0]) * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,width));
UShort4 f0v = As<UShort4>(v[0][0][0]) * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,height));
UShort4 f0s = As<UShort4>(s[0][0][0]) * *Pointer<UShort4>(mipmap + OFFSET(Mipmap,depth));
UShort4 f1u = ~f0u;
UShort4 f1v = ~f0v;
UShort4 f1s = ~f0s;
UShort4 f[2][2][2];
Short4 fs[2][2][2];
f[1][1][1] = MulHigh(f1u, f1v);
f[0][1][1] = MulHigh(f0u, f1v);
f[1][0][1] = MulHigh(f1u, f0v);
f[0][0][1] = MulHigh(f0u, f0v);
f[1][1][0] = MulHigh(f1u, f1v);
f[0][1][0] = MulHigh(f0u, f1v);
f[1][0][0] = MulHigh(f1u, f0v);
f[0][0][0] = MulHigh(f0u, f0v);
f[1][1][1] = MulHigh(f[1][1][1], f1s);
f[0][1][1] = MulHigh(f[0][1][1], f1s);
f[1][0][1] = MulHigh(f[1][0][1], f1s);
f[0][0][1] = MulHigh(f[0][0][1], f1s);
f[1][1][0] = MulHigh(f[1][1][0], f0s);
f[0][1][0] = MulHigh(f[0][1][0], f0s);
f[1][0][0] = MulHigh(f[1][0][0], f0s);
f[0][0][0] = MulHigh(f[0][0][0], f0s);
// Signed fractions
if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3))
{
fs[0][0][0] = f[0][0][0] >> 1;
fs[0][0][1] = f[0][0][1] >> 1;
fs[0][1][0] = f[0][1][0] >> 1;
fs[0][1][1] = f[0][1][1] >> 1;
fs[1][0][0] = f[1][0][0] >> 1;
fs[1][0][1] = f[1][0][1] >> 1;
fs[1][1][0] = f[1][1][0] >> 1;
fs[1][1][1] = f[1][1][1] >> 1;
}
for(int i = 0; i < 2; i++)
{
for(int j = 0; j < 2; j++)
{
for(int k = 0; k < 2; k++)
{
c[i][j][k] = sampleTexel(u[i][j][k], v[i][j][k], s[i][j][k], offset, mipmap, buffer, function);
if(componentCount >= 1) { if(hasUnsignedTextureComponent(0)) c[i][j][k].x = MulHigh(As<UShort4>(c[i][j][k].x), f[1 - i][1 - j][1 - k]); else c[i][j][k].x = MulHigh(c[i][j][k].x, fs[1 - i][1 - j][1 - k]); }
if(componentCount >= 2) { if(hasUnsignedTextureComponent(1)) c[i][j][k].y = MulHigh(As<UShort4>(c[i][j][k].y), f[1 - i][1 - j][1 - k]); else c[i][j][k].y = MulHigh(c[i][j][k].y, fs[1 - i][1 - j][1 - k]); }
if(componentCount >= 3) { if(hasUnsignedTextureComponent(2)) c[i][j][k].z = MulHigh(As<UShort4>(c[i][j][k].z), f[1 - i][1 - j][1 - k]); else c[i][j][k].z = MulHigh(c[i][j][k].z, fs[1 - i][1 - j][1 - k]); }
if(componentCount >= 4) { if(hasUnsignedTextureComponent(3)) c[i][j][k].w = MulHigh(As<UShort4>(c[i][j][k].w), f[1 - i][1 - j][1 - k]); else c[i][j][k].w = MulHigh(c[i][j][k].w, fs[1 - i][1 - j][1 - k]); }
if(i != 0 || j != 0 || k != 0)
{
if(componentCount >= 1) c[0][0][0].x += c[i][j][k].x;
if(componentCount >= 2) c[0][0][0].y += c[i][j][k].y;
if(componentCount >= 3) c[0][0][0].z += c[i][j][k].z;
if(componentCount >= 4) c[0][0][0].w += c[i][j][k].w;
}
}
}
}
if(componentCount >= 1) c_.x = c[0][0][0].x;
if(componentCount >= 2) c_.y = c[0][0][0].y;
if(componentCount >= 3) c_.z = c[0][0][0].z;
if(componentCount >= 4) c_.w = c[0][0][0].w;
// Correct for signed fractions
if(componentCount >= 1) if(!hasUnsignedTextureComponent(0)) c_.x = AddSat(c_.x, c_.x);
if(componentCount >= 2) if(!hasUnsignedTextureComponent(1)) c_.y = AddSat(c_.y, c_.y);
if(componentCount >= 3) if(!hasUnsignedTextureComponent(2)) c_.z = AddSat(c_.z, c_.z);
if(componentCount >= 4) if(!hasUnsignedTextureComponent(3)) c_.w = AddSat(c_.w, c_.w);
}
return c_;
}
Vector4f SamplerCore::sampleFloatFilter(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &offset, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Int face[4], SamplerFunction function)
{
Vector4f c = sampleFloatAniso(texture, u, v, w, q, offset, lod, anisotropy, uDelta, vDelta, face, false, function);
if(function == Fetch)
{
return c;
}
if(state.mipmapFilter == MIPMAP_LINEAR)
{
Vector4f cc = sampleFloatAniso(texture, u, v, w, q, offset, lod, anisotropy, uDelta, vDelta, face, true, function);
Float4 lod4 = Float4(Frac(lod));
c.x = (cc.x - c.x) * lod4 + c.x;
c.y = (cc.y - c.y) * lod4 + c.y;
c.z = (cc.z - c.z) * lod4 + c.z;
c.w = (cc.w - c.w) * lod4 + c.w;
}
Int4 borderMask;
if(state.addressingModeU == ADDRESSING_BORDER)
{
Int4 u0;
border(u0, u);
borderMask = u0;
}
if(state.addressingModeV == ADDRESSING_BORDER)
{
Int4 v0;
border(v0, v);
if(state.addressingModeU == ADDRESSING_BORDER)
{
borderMask &= v0;
}
else
{
borderMask = v0;
}
}
if(state.addressingModeW == ADDRESSING_BORDER && state.textureType == TEXTURE_3D)
{
Int4 s0;
border(s0, w);
if(state.addressingModeU == ADDRESSING_BORDER ||
state.addressingModeV == ADDRESSING_BORDER)
{
borderMask &= s0;
}
else
{
borderMask = s0;
}
}
if(state.addressingModeU == ADDRESSING_BORDER ||
state.addressingModeV == ADDRESSING_BORDER ||
(state.addressingModeW == ADDRESSING_BORDER && state.textureType == TEXTURE_3D))
{
Int4 b;
c.x = As<Float4>((borderMask & As<Int4>(c.x)) | (~borderMask & *Pointer<Int4>(texture + OFFSET(Texture,borderColorF[0]))));
c.y = As<Float4>((borderMask & As<Int4>(c.y)) | (~borderMask & *Pointer<Int4>(texture + OFFSET(Texture,borderColorF[1]))));
c.z = As<Float4>((borderMask & As<Int4>(c.z)) | (~borderMask & *Pointer<Int4>(texture + OFFSET(Texture,borderColorF[2]))));
c.w = As<Float4>((borderMask & As<Int4>(c.w)) | (~borderMask & *Pointer<Int4>(texture + OFFSET(Texture,borderColorF[3]))));
}
return c;
}
Vector4f SamplerCore::sampleFloatAniso(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &offset, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Int face[4], bool secondLOD, SamplerFunction function)
{
Vector4f c;
if(state.textureFilter != FILTER_ANISOTROPIC || function == Lod || function == Fetch)
{
c = sampleFloat(texture, u, v, w, q, offset, lod, face, secondLOD, function);
}
else
{
Int a = RoundInt(anisotropy);
Vector4f cSum;
cSum.x = Float4(0.0f);
cSum.y = Float4(0.0f);
cSum.z = Float4(0.0f);
cSum.w = Float4(0.0f);
Float4 A = *Pointer<Float4>(constants + OFFSET(Constants,uvWeight) + 16 * a);
Float4 B = *Pointer<Float4>(constants + OFFSET(Constants,uvStart) + 16 * a);
Float4 du = uDelta;
Float4 dv = vDelta;
Float4 u0 = u + B * du;
Float4 v0 = v + B * dv;
du *= A;
dv *= A;
Int i = 0;
Do
{
c = sampleFloat(texture, u0, v0, w, q, offset, lod, face, secondLOD, function);
u0 += du;
v0 += dv;
cSum.x += c.x * A;
cSum.y += c.y * A;
cSum.z += c.z * A;
cSum.w += c.w * A;
i++;
}
Until(i >= a);
c.x = cSum.x;
c.y = cSum.y;
c.z = cSum.z;
c.w = cSum.w;
}
return c;
}
Vector4f SamplerCore::sampleFloat(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &offset, Float &lod, Int face[4], bool secondLOD, SamplerFunction function)
{
if(state.textureType != TEXTURE_3D)
{
return sampleFloat2D(texture, u, v, w, q, offset, lod, face, secondLOD, function);
}
else
{
return sampleFloat3D(texture, u, v, w, offset, lod, secondLOD, function);
}
}
Vector4f SamplerCore::sampleFloat2D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &offset, Float &lod, Int face[4], bool secondLOD, SamplerFunction function)
{
Vector4f c;
int componentCount = textureComponentCount();
bool gather = state.textureFilter == FILTER_GATHER;
Pointer<Byte> mipmap;
Pointer<Byte> buffer[4];
selectMipmap(texture, buffer, mipmap, lod, face, secondLOD);
Int4 x0, x1, y0, y1, z0;
Float4 fu, fv;
Int4 filter = computeFilterOffset(lod);
address(u, x0, x1, fu, mipmap, offset.x, filter, OFFSET(Mipmap, width), state.addressingModeU, function);
address(v, y0, y1, fv, mipmap, offset.y, filter, OFFSET(Mipmap, height), state.addressingModeV, function);
address(w, z0, z0, fv, mipmap, offset.z, filter, OFFSET(Mipmap, depth), state.addressingModeW, function);
Int4 pitchP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, pitchP), 16);
y0 *= pitchP;
if(hasThirdCoordinate())
{
Int4 sliceP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, sliceP), 16);
z0 *= sliceP;
}
if(state.textureFilter == FILTER_POINT || (function == Fetch))
{
c = sampleTexel(x0, y0, z0, q, mipmap, buffer, function);
}
else
{
y1 *= pitchP;
Vector4f c0 = sampleTexel(x0, y0, z0, q, mipmap, buffer, function);
Vector4f c1 = sampleTexel(x1, y0, z0, q, mipmap, buffer, function);
Vector4f c2 = sampleTexel(x0, y1, z0, q, mipmap, buffer, function);
Vector4f c3 = sampleTexel(x1, y1, z0, q, mipmap, buffer, function);
if(!gather) // Blend
{
if(componentCount >= 1) c0.x = c0.x + fu * (c1.x - c0.x);
if(componentCount >= 2) c0.y = c0.y + fu * (c1.y - c0.y);
if(componentCount >= 3) c0.z = c0.z + fu * (c1.z - c0.z);
if(componentCount >= 4) c0.w = c0.w + fu * (c1.w - c0.w);
if(componentCount >= 1) c2.x = c2.x + fu * (c3.x - c2.x);
if(componentCount >= 2) c2.y = c2.y + fu * (c3.y - c2.y);
if(componentCount >= 3) c2.z = c2.z + fu * (c3.z - c2.z);
if(componentCount >= 4) c2.w = c2.w + fu * (c3.w - c2.w);
if(componentCount >= 1) c.x = c0.x + fv * (c2.x - c0.x);
if(componentCount >= 2) c.y = c0.y + fv * (c2.y - c0.y);
if(componentCount >= 3) c.z = c0.z + fv * (c2.z - c0.z);
if(componentCount >= 4) c.w = c0.w + fv * (c2.w - c0.w);
}
else
{
c.x = c1.x;
c.y = c2.x;
c.z = c3.x;
c.w = c0.x;
}
}
return c;
}
Vector4f SamplerCore::sampleFloat3D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, bool secondLOD, SamplerFunction function)
{
Vector4f c;
int componentCount = textureComponentCount();
Pointer<Byte> mipmap;
Pointer<Byte> buffer[4];
Int face[4];
selectMipmap(texture, buffer, mipmap, lod, face, secondLOD);
Int4 x0, x1, y0, y1, z0, z1;
Float4 fu, fv, fw;
Int4 filter = computeFilterOffset(lod);
address(u, x0, x1, fu, mipmap, offset.x, filter, OFFSET(Mipmap, width), state.addressingModeU, function);
address(v, y0, y1, fv, mipmap, offset.y, filter, OFFSET(Mipmap, height), state.addressingModeV, function);
address(w, z0, z1, fw, mipmap, offset.z, filter, OFFSET(Mipmap, depth), state.addressingModeW, function);
Int4 pitchP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, pitchP), 16);
Int4 sliceP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, sliceP), 16);
y0 *= pitchP;
z0 *= sliceP;
if(state.textureFilter == FILTER_POINT || (function == Fetch))
{
c = sampleTexel(x0, y0, z0, w, mipmap, buffer, function);
}
else
{
y1 *= pitchP;
z1 *= sliceP;
Vector4f c0 = sampleTexel(x0, y0, z0, w, mipmap, buffer, function);
Vector4f c1 = sampleTexel(x1, y0, z0, w, mipmap, buffer, function);
Vector4f c2 = sampleTexel(x0, y1, z0, w, mipmap, buffer, function);
Vector4f c3 = sampleTexel(x1, y1, z0, w, mipmap, buffer, function);
Vector4f c4 = sampleTexel(x0, y0, z1, w, mipmap, buffer, function);
Vector4f c5 = sampleTexel(x1, y0, z1, w, mipmap, buffer, function);
Vector4f c6 = sampleTexel(x0, y1, z1, w, mipmap, buffer, function);
Vector4f c7 = sampleTexel(x1, y1, z1, w, mipmap, buffer, function);
// Blend first slice
if(componentCount >= 1) c0.x = c0.x + fu * (c1.x - c0.x);
if(componentCount >= 2) c0.y = c0.y + fu * (c1.y - c0.y);
if(componentCount >= 3) c0.z = c0.z + fu * (c1.z - c0.z);
if(componentCount >= 4) c0.w = c0.w + fu * (c1.w - c0.w);
if(componentCount >= 1) c2.x = c2.x + fu * (c3.x - c2.x);
if(componentCount >= 2) c2.y = c2.y + fu * (c3.y - c2.y);
if(componentCount >= 3) c2.z = c2.z + fu * (c3.z - c2.z);
if(componentCount >= 4) c2.w = c2.w + fu * (c3.w - c2.w);
if(componentCount >= 1) c0.x = c0.x + fv * (c2.x - c0.x);
if(componentCount >= 2) c0.y = c0.y + fv * (c2.y - c0.y);
if(componentCount >= 3) c0.z = c0.z + fv * (c2.z - c0.z);
if(componentCount >= 4) c0.w = c0.w + fv * (c2.w - c0.w);
// Blend second slice
if(componentCount >= 1) c4.x = c4.x + fu * (c5.x - c4.x);
if(componentCount >= 2) c4.y = c4.y + fu * (c5.y - c4.y);
if(componentCount >= 3) c4.z = c4.z + fu * (c5.z - c4.z);
if(componentCount >= 4) c4.w = c4.w + fu * (c5.w - c4.w);
if(componentCount >= 1) c6.x = c6.x + fu * (c7.x - c6.x);
if(componentCount >= 2) c6.y = c6.y + fu * (c7.y - c6.y);
if(componentCount >= 3) c6.z = c6.z + fu * (c7.z - c6.z);
if(componentCount >= 4) c6.w = c6.w + fu * (c7.w - c6.w);
if(componentCount >= 1) c4.x = c4.x + fv * (c6.x - c4.x);
if(componentCount >= 2) c4.y = c4.y + fv * (c6.y - c4.y);
if(componentCount >= 3) c4.z = c4.z + fv * (c6.z - c4.z);
if(componentCount >= 4) c4.w = c4.w + fv * (c6.w - c4.w);
// Blend slices
if(componentCount >= 1) c.x = c0.x + fw * (c4.x - c0.x);
if(componentCount >= 2) c.y = c0.y + fw * (c4.y - c0.y);
if(componentCount >= 3) c.z = c0.z + fw * (c4.z - c0.z);
if(componentCount >= 4) c.w = c0.w + fw * (c4.w - c0.w);
}
return c;
}
Float SamplerCore::log2sqrt(Float lod)
{
// log2(sqrt(lod)) // Equals 0.25 * log2(lod^2).
lod *= lod; // Squaring doubles the exponent and produces an extra bit of precision.
lod = Float(As<Int>(lod)) - Float(0x3F800000); // Interpret as integer and subtract the exponent bias.
lod *= As<Float>(Int(0x33000000)); // Scale by 0.25 * 2^-23 (mantissa length).
return lod;
}
Float SamplerCore::log2(Float lod)
{
lod *= lod; // Squaring doubles the exponent and produces an extra bit of precision.
lod = Float(As<Int>(lod)) - Float(0x3F800000); // Interpret as integer and subtract the exponent bias.
lod *= As<Float>(Int(0x33800000)); // Scale by 0.5 * 2^-23 (mantissa length).
return lod;
}
void SamplerCore::computeLod(Pointer<Byte> &texture, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Float4 &uuuu, Float4 &vvvv, const Float &lodBias, Vector4f &dsx, Vector4f &dsy, SamplerFunction function)
{
if(function != Lod && function != Fetch)
{
Float4 duvdxy;
if(function != Grad) // Implicit
{
duvdxy = Float4(uuuu.yz, vvvv.yz) - Float4(uuuu.xx, vvvv.xx);
}
else
{
Float4 dudxy = Float4(dsx.x.xx, dsy.x.xx);
Float4 dvdxy = Float4(dsx.y.xx, dsy.y.xx);
duvdxy = Float4(dudxy.xz, dvdxy.xz);
}
// Scale by texture dimensions and global LOD.
Float4 dUVdxy = duvdxy * *Pointer<Float4>(texture + OFFSET(Texture,widthHeightLOD));
Float4 dUV2dxy = dUVdxy * dUVdxy;
Float4 dUV2 = dUV2dxy.xy + dUV2dxy.zw;
lod = Max(Float(dUV2.x), Float(dUV2.y)); // Square length of major axis
if(state.textureFilter == FILTER_ANISOTROPIC)
{
Float det = Abs(Float(dUVdxy.x) * Float(dUVdxy.w) - Float(dUVdxy.y) * Float(dUVdxy.z));
Float4 dudx = duvdxy.xxxx;
Float4 dudy = duvdxy.yyyy;
Float4 dvdx = duvdxy.zzzz;
Float4 dvdy = duvdxy.wwww;
Int4 mask = As<Int4>(CmpNLT(dUV2.x, dUV2.y));
uDelta = As<Float4>((As<Int4>(dudx) & mask) | ((As<Int4>(dudy) & ~mask)));
vDelta = As<Float4>((As<Int4>(dvdx) & mask) | ((As<Int4>(dvdy) & ~mask)));
anisotropy = lod * Rcp_pp(det);
anisotropy = Min(anisotropy, *Pointer<Float>(texture + OFFSET(Texture,maxAnisotropy)));
lod *= Rcp_pp(anisotropy * anisotropy);
}
lod = log2sqrt(lod); // log2(sqrt(lod))
if(function == Bias)
{
lod += lodBias;
}
}
else if(function == Lod)
{
lod = lodBias;
}
else if(function == Fetch)
{
// TODO: Eliminate int-float-int conversion.
lod = Float(As<Int>(lodBias));
}
else if(function == Base)
{
lod = Float(0);
}
else assert(false);
lod = Max(lod, *Pointer<Float>(texture + OFFSET(Texture, minLod)));
lod = Min(lod, *Pointer<Float>(texture + OFFSET(Texture, maxLod)));
}
void SamplerCore::computeLodCube(Pointer<Byte> &texture, Float &lod, Float4 &u, Float4 &v, Float4 &w, const Float &lodBias, Vector4f &dsx, Vector4f &dsy, Float4 &M, SamplerFunction function)
{
if(function != Lod && function != Fetch)
{
Float4 dudxy, dvdxy, dsdxy;
if(function != Grad) // Implicit
{
Float4 U = u * M;
Float4 V = v * M;
Float4 W = w * M;
dudxy = Abs(U - U.xxxx);
dvdxy = Abs(V - V.xxxx);
dsdxy = Abs(W - W.xxxx);
}
else
{
dudxy = Float4(dsx.x.xx, dsy.x.xx);
dvdxy = Float4(dsx.y.xx, dsy.y.xx);
dsdxy = Float4(dsx.z.xx, dsy.z.xx);
dudxy = Abs(dudxy * Float4(M.x));
dvdxy = Abs(dvdxy * Float4(M.x));
dsdxy = Abs(dsdxy * Float4(M.x));
}
// Compute the largest Manhattan distance in two dimensions.
// This takes the footprint across adjacent faces into account.
Float4 duvdxy = dudxy + dvdxy;
Float4 dusdxy = dudxy + dsdxy;
Float4 dvsdxy = dvdxy + dsdxy;
dudxy = Max(Max(duvdxy, dusdxy), dvsdxy);
lod = Max(Float(dudxy.y), Float(dudxy.z)); // FIXME: Max(dudxy.y, dudxy.z);
// Scale by texture dimension and global LOD.
lod *= *Pointer<Float>(texture + OFFSET(Texture,widthLOD));
lod = log2(lod);
if(function == Bias)
{
lod += lodBias;
}
}
else if(function == Lod)
{
lod = lodBias;
}
else if(function == Fetch)
{
// TODO: Eliminate int-float-int conversion.
lod = Float(As<Int>(lodBias));
}
else if(function == Base)
{
lod = Float(0);
}
else assert(false);
lod = Max(lod, *Pointer<Float>(texture + OFFSET(Texture, minLod)));
lod = Min(lod, *Pointer<Float>(texture + OFFSET(Texture, maxLod)));
}
void SamplerCore::computeLod3D(Pointer<Byte> &texture, Float &lod, Float4 &uuuu, Float4 &vvvv, Float4 &wwww, const Float &lodBias, Vector4f &dsx, Vector4f &dsy, SamplerFunction function)
{
if(function != Lod && function != Fetch)
{
Float4 dudxy, dvdxy, dsdxy;
if(function != Grad) // Implicit
{
dudxy = uuuu - uuuu.xxxx;
dvdxy = vvvv - vvvv.xxxx;
dsdxy = wwww - wwww.xxxx;
}
else
{
dudxy = Float4(dsx.x.xx, dsy.x.xx);
dvdxy = Float4(dsx.y.xx, dsy.y.xx);
dsdxy = Float4(dsx.z.xx, dsy.z.xx);
}
// Scale by texture dimensions and global LOD.
dudxy *= *Pointer<Float4>(texture + OFFSET(Texture,widthLOD));
dvdxy *= *Pointer<Float4>(texture + OFFSET(Texture,heightLOD));
dsdxy *= *Pointer<Float4>(texture + OFFSET(Texture,depthLOD));
dudxy *= dudxy;
dvdxy *= dvdxy;
dsdxy *= dsdxy;
dudxy += dvdxy;
dudxy += dsdxy;
lod = Max(Float(dudxy.y), Float(dudxy.z)); // FIXME: Max(dudxy.y, dudxy.z);
lod = log2sqrt(lod); // log2(sqrt(lod))
if(function == Bias)
{
lod += lodBias;
}
}
else if(function == Lod)
{
lod = lodBias;
}
else if(function == Fetch)
{
// TODO: Eliminate int-float-int conversion.
lod = Float(As<Int>(lodBias));
}
else if(function == Base)
{
lod = Float(0);
}
else assert(false);
lod = Max(lod, *Pointer<Float>(texture + OFFSET(Texture, minLod)));
lod = Min(lod, *Pointer<Float>(texture + OFFSET(Texture, maxLod)));
}
void SamplerCore::cubeFace(Int face[4], Float4 &U, Float4 &V, Float4 &x, Float4 &y, Float4 &z, Float4 &M)
{
Int4 xn = CmpLT(x, Float4(0.0f)); // x < 0
Int4 yn = CmpLT(y, Float4(0.0f)); // y < 0
Int4 zn = CmpLT(z, Float4(0.0f)); // z < 0
Float4 absX = Abs(x);
Float4 absY = Abs(y);
Float4 absZ = Abs(z);
Int4 xy = CmpNLE(absX, absY); // abs(x) > abs(y)
Int4 yz = CmpNLE(absY, absZ); // abs(y) > abs(z)
Int4 zx = CmpNLE(absZ, absX); // abs(z) > abs(x)
Int4 xMajor = xy & ~zx; // abs(x) > abs(y) && abs(x) > abs(z)
Int4 yMajor = yz & ~xy; // abs(y) > abs(z) && abs(y) > abs(x)
Int4 zMajor = zx & ~yz; // abs(z) > abs(x) && abs(z) > abs(y)
// FACE_POSITIVE_X = 000b
// FACE_NEGATIVE_X = 001b
// FACE_POSITIVE_Y = 010b
// FACE_NEGATIVE_Y = 011b
// FACE_POSITIVE_Z = 100b
// FACE_NEGATIVE_Z = 101b
Int yAxis = SignMask(yMajor);
Int zAxis = SignMask(zMajor);
Int4 n = ((xn & xMajor) | (yn & yMajor) | (zn & zMajor)) & Int4(0x80000000);
Int negative = SignMask(n);
face[0] = *Pointer<Int>(constants + OFFSET(Constants,transposeBit0) + negative * 4);
face[0] |= *Pointer<Int>(constants + OFFSET(Constants,transposeBit1) + yAxis * 4);
face[0] |= *Pointer<Int>(constants + OFFSET(Constants,transposeBit2) + zAxis * 4);
face[1] = (face[0] >> 4) & 0x7;
face[2] = (face[0] >> 8) & 0x7;
face[3] = (face[0] >> 12) & 0x7;
face[0] &= 0x7;
M = Max(Max(absX, absY), absZ);
// U = xMajor ? (neg ^ -z) : ((zMajor & neg) ^ x)
U = As<Float4>((xMajor & (n ^ As<Int4>(-z))) | (~xMajor & ((zMajor & n) ^ As<Int4>(x))));
// V = !yMajor ? -y : (n ^ z)
V = As<Float4>((~yMajor & As<Int4>(-y)) | (yMajor & (n ^ As<Int4>(z))));
M = reciprocal(M) * Float4(0.5f);
U = U * M + Float4(0.5f);
V = V * M + Float4(0.5f);
}
Short4 SamplerCore::applyOffset(Short4 &uvw, Float4 &offset, const Int4 &whd, AddressingMode mode)
{
Int4 tmp = Int4(As<UShort4>(uvw));
tmp = tmp + As<Int4>(offset);
switch(mode)
{
case AddressingMode::ADDRESSING_WRAP:
tmp = (tmp + whd * Int4(-MIN_PROGRAM_TEXEL_OFFSET)) % whd;
break;
case AddressingMode::ADDRESSING_CLAMP:
case AddressingMode::ADDRESSING_MIRROR:
case AddressingMode::ADDRESSING_MIRRORONCE:
case AddressingMode::ADDRESSING_BORDER: // FIXME: Implement and test ADDRESSING_MIRROR, ADDRESSING_MIRRORONCE, ADDRESSING_BORDER
tmp = Min(Max(tmp, Int4(0)), whd - Int4(1));
break;
case ADDRESSING_TEXELFETCH:
break;
case AddressingMode::ADDRESSING_SEAMLESS:
ASSERT(false); // Cube sampling doesn't support offset.
default:
ASSERT(false);
}
return As<Short4>(UShort4(tmp));
}
void SamplerCore::computeIndices(UInt index[4], Short4 uuuu, Short4 vvvv, Short4 wwww, Vector4f &offset, const Pointer<Byte> &mipmap, SamplerFunction function)
{
bool texelFetch = (function == Fetch);
bool hasOffset = (function.option == Offset);
if(!texelFetch)
{
uuuu = MulHigh(As<UShort4>(uuuu), *Pointer<UShort4>(mipmap + OFFSET(Mipmap, width)));
vvvv = MulHigh(As<UShort4>(vvvv), *Pointer<UShort4>(mipmap + OFFSET(Mipmap, height)));
}
if(hasOffset)
{
UShort4 w = *Pointer<UShort4>(mipmap + OFFSET(Mipmap, width));
uuuu = applyOffset(uuuu, offset.x, Int4(w), texelFetch ? ADDRESSING_TEXELFETCH : state.addressingModeU);
UShort4 h = *Pointer<UShort4>(mipmap + OFFSET(Mipmap, height));
vvvv = applyOffset(vvvv, offset.y, Int4(h), texelFetch ? ADDRESSING_TEXELFETCH : state.addressingModeV);
}
Short4 uuu2 = uuuu;
uuuu = As<Short4>(UnpackLow(uuuu, vvvv));
uuu2 = As<Short4>(UnpackHigh(uuu2, vvvv));
uuuu = As<Short4>(MulAdd(uuuu, *Pointer<Short4>(mipmap + OFFSET(Mipmap,onePitchP))));
uuu2 = As<Short4>(MulAdd(uuu2, *Pointer<Short4>(mipmap + OFFSET(Mipmap,onePitchP))));
if(hasThirdCoordinate())
{
if(state.textureType != TEXTURE_2D_ARRAY)
{
if(!texelFetch)
{
wwww = MulHigh(As<UShort4>(wwww), *Pointer<UShort4>(mipmap + OFFSET(Mipmap, depth)));
}
if(hasOffset)
{
UShort4 d = *Pointer<UShort4>(mipmap + OFFSET(Mipmap, depth));
wwww = applyOffset(wwww, offset.z, Int4(d), texelFetch ? ADDRESSING_TEXELFETCH : state.addressingModeW);
}
}
UInt4 uv(As<UInt2>(uuuu), As<UInt2>(uuu2));
uv += As<UInt4>(Int4(As<UShort4>(wwww))) * *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sliceP));
index[0] = Extract(As<Int4>(uv), 0);
index[1] = Extract(As<Int4>(uv), 1);
index[2] = Extract(As<Int4>(uv), 2);
index[3] = Extract(As<Int4>(uv), 3);
}
else
{
index[0] = Extract(As<Int2>(uuuu), 0);
index[1] = Extract(As<Int2>(uuuu), 1);
index[2] = Extract(As<Int2>(uuu2), 0);
index[3] = Extract(As<Int2>(uuu2), 1);
}
if(texelFetch)
{
Int size = Int(*Pointer<Int>(mipmap + OFFSET(Mipmap, sliceP)));
if(hasThirdCoordinate())
{
size *= Int(*Pointer<Short>(mipmap + OFFSET(Mipmap, depth)));
}
UInt min = 0;
UInt max = size - 1;
for(int i = 0; i < 4; i++)
{
index[i] = Min(Max(index[i], min), max);
}
}
}
void SamplerCore::computeIndices(UInt index[4], Int4& uuuu, Int4& vvvv, Int4& wwww, const Pointer<Byte> &mipmap, SamplerFunction function)
{
UInt4 indices = uuuu + vvvv;
if(hasThirdCoordinate())
{
indices += As<UInt4>(wwww);
}
for(int i = 0; i < 4; i++)
{
index[i] = Extract(As<Int4>(indices), i);
}
}
Vector4s SamplerCore::sampleTexel(UInt index[4], Pointer<Byte> buffer[4])
{
Vector4s c;
int f0 = state.textureType == TEXTURE_CUBE ? 0 : 0;
int f1 = state.textureType == TEXTURE_CUBE ? 1 : 0;
int f2 = state.textureType == TEXTURE_CUBE ? 2 : 0;
int f3 = state.textureType == TEXTURE_CUBE ? 3 : 0;
if(has16bitTextureFormat())
{
c.x = Insert(c.x, Pointer<Short>(buffer[f0])[index[0]], 0);
c.x = Insert(c.x, Pointer<Short>(buffer[f1])[index[1]], 1);
c.x = Insert(c.x, Pointer<Short>(buffer[f2])[index[2]], 2);
c.x = Insert(c.x, Pointer<Short>(buffer[f3])[index[3]], 3);
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
c.z = (c.x & Short4(0x001Fu)) << 11;
c.y = (c.x & Short4(0x07E0u)) << 5;
c.x = (c.x & Short4(0xF800u));
break;
default:
ASSERT(false);
}
}
else if(has8bitTextureComponents())
{
switch(textureComponentCount())
{
case 4:
{
Byte4 c0 = Pointer<Byte4>(buffer[f0])[index[0]];
Byte4 c1 = Pointer<Byte4>(buffer[f1])[index[1]];
Byte4 c2 = Pointer<Byte4>(buffer[f2])[index[2]];
Byte4 c3 = Pointer<Byte4>(buffer[f3])[index[3]];
c.x = Unpack(c0, c1);
c.y = Unpack(c2, c3);
switch(state.textureFormat)
{
case FORMAT_A8R8G8B8:
c.z = As<Short4>(UnpackLow(c.x, c.y));
c.x = As<Short4>(UnpackHigh(c.x, c.y));
c.y = c.z;
c.w = c.x;
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(c.z));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(c.y));
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(c.x));
c.w = UnpackHigh(As<Byte8>(c.w), As<Byte8>(c.w));
break;
case FORMAT_A8B8G8R8:
case FORMAT_A8B8G8R8I:
case FORMAT_A8B8G8R8_SNORM:
case FORMAT_Q8W8V8U8:
case FORMAT_SRGB8_A8:
c.z = As<Short4>(UnpackHigh(c.x, c.y));
c.x = As<Short4>(UnpackLow(c.x, c.y));
c.y = c.x;
c.w = c.z;
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(c.x));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(c.y));
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(c.z));
c.w = UnpackHigh(As<Byte8>(c.w), As<Byte8>(c.w));
// Propagate sign bit
if(state.textureFormat == FORMAT_A8B8G8R8I)
{
c.x >>= 8;
c.y >>= 8;
c.z >>= 8;
c.w >>= 8;
}
break;
case FORMAT_A8B8G8R8UI:
c.z = As<Short4>(UnpackHigh(c.x, c.y));
c.x = As<Short4>(UnpackLow(c.x, c.y));
c.y = c.x;
c.w = c.z;
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(Short4(0)));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(Short4(0)));
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(Short4(0)));
c.w = UnpackHigh(As<Byte8>(c.w), As<Byte8>(Short4(0)));
break;
default:
ASSERT(false);
}
}
break;
case 3:
{
Byte4 c0 = Pointer<Byte4>(buffer[f0])[index[0]];
Byte4 c1 = Pointer<Byte4>(buffer[f1])[index[1]];
Byte4 c2 = Pointer<Byte4>(buffer[f2])[index[2]];
Byte4 c3 = Pointer<Byte4>(buffer[f3])[index[3]];
c.x = Unpack(c0, c1);
c.y = Unpack(c2, c3);
switch(state.textureFormat)
{
case FORMAT_X8R8G8B8:
c.z = As<Short4>(UnpackLow(c.x, c.y));
c.x = As<Short4>(UnpackHigh(c.x, c.y));
c.y = c.z;
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(c.z));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(c.y));
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(c.x));
break;
case FORMAT_X8B8G8R8_SNORM:
case FORMAT_X8B8G8R8I:
case FORMAT_X8B8G8R8:
case FORMAT_X8L8V8U8:
case FORMAT_SRGB8_X8:
c.z = As<Short4>(UnpackHigh(c.x, c.y));
c.x = As<Short4>(UnpackLow(c.x, c.y));
c.y = c.x;
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(c.x));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(c.y));
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(c.z));
// Propagate sign bit
if(state.textureFormat == FORMAT_X8B8G8R8I)
{
c.x >>= 8;
c.y >>= 8;
c.z >>= 8;
}
break;
case FORMAT_X8B8G8R8UI:
c.z = As<Short4>(UnpackHigh(c.x, c.y));
c.x = As<Short4>(UnpackLow(c.x, c.y));
c.y = c.x;
c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(Short4(0)));
c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(Short4(0)));
c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(Short4(0)));
break;
default:
ASSERT(false);
}
}
break;
case 2:
c.x = Insert(c.x, Pointer<Short>(buffer[f0])[index[0]], 0);
c.x = Insert(c.x, Pointer<Short>(buffer[f1])[index[1]], 1);
c.x = Insert(c.x, Pointer<Short>(buffer[f2])[index[2]], 2);
c.x = Insert(c.x, Pointer<Short>(buffer[f3])[index[3]], 3);
switch(state.textureFormat)
{
case FORMAT_G8R8:
case FORMAT_G8R8_SNORM:
case FORMAT_V8U8:
case FORMAT_A8L8:
c.y = (c.x & Short4(0xFF00u)) | As<Short4>(As<UShort4>(c.x) >> 8);
c.x = (c.x & Short4(0x00FFu)) | (c.x << 8);
break;
case FORMAT_G8R8I:
c.y = c.x >> 8;
c.x = (c.x << 8) >> 8; // Propagate sign bit
break;
case FORMAT_G8R8UI:
c.y = As<Short4>(As<UShort4>(c.x) >> 8);
c.x &= Short4(0x00FFu);
break;
default:
ASSERT(false);
}
break;
case 1:
{
Int c0 = Int(*Pointer<Byte>(buffer[f0] + index[0]));
Int c1 = Int(*Pointer<Byte>(buffer[f1] + index[1]));
Int c2 = Int(*Pointer<Byte>(buffer[f2] + index[2]));
Int c3 = Int(*Pointer<Byte>(buffer[f3] + index[3]));
c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); // TODO (b/148295813) : Optimize with pshufb
switch(state.textureFormat)
{
case FORMAT_R8I:
case FORMAT_R8UI:
{
Int zero(0);
c.x = Unpack(As<Byte4>(c0), As<Byte4>(zero));
// Propagate sign bit
if(state.textureFormat == FORMAT_R8I)
{
c.x = (c.x << 8) >> 8;
}
}
break;
default:
c.x = Unpack(As<Byte4>(c0));
break;
}
}
break;
default:
ASSERT(false);
}
}
else if(has16bitTextureComponents())
{
switch(textureComponentCount())
{
case 4:
c.x = Pointer<Short4>(buffer[f0])[index[0]];
c.y = Pointer<Short4>(buffer[f1])[index[1]];
c.z = Pointer<Short4>(buffer[f2])[index[2]];
c.w = Pointer<Short4>(buffer[f3])[index[3]];
transpose4x4(c.x, c.y, c.z, c.w);
break;
case 3:
c.x = Pointer<Short4>(buffer[f0])[index[0]];
c.y = Pointer<Short4>(buffer[f1])[index[1]];
c.z = Pointer<Short4>(buffer[f2])[index[2]];
c.w = Pointer<Short4>(buffer[f3])[index[3]];
transpose4x3(c.x, c.y, c.z, c.w);
break;
case 2:
c.x = *Pointer<Short4>(buffer[f0] + 4 * index[0]);
c.x = As<Short4>(UnpackLow(c.x, *Pointer<Short4>(buffer[f1] + 4 * index[1])));
c.z = *Pointer<Short4>(buffer[f2] + 4 * index[2]);
c.z = As<Short4>(UnpackLow(c.z, *Pointer<Short4>(buffer[f3] + 4 * index[3])));
c.y = c.x;
c.x = UnpackLow(As<Int2>(c.x), As<Int2>(c.z));
c.y = UnpackHigh(As<Int2>(c.y), As<Int2>(c.z));
break;
case 1:
c.x = Insert(c.x, Pointer<Short>(buffer[f0])[index[0]], 0);
c.x = Insert(c.x, Pointer<Short>(buffer[f1])[index[1]], 1);
c.x = Insert(c.x, Pointer<Short>(buffer[f2])[index[2]], 2);
c.x = Insert(c.x, Pointer<Short>(buffer[f3])[index[3]], 3);
break;
default:
ASSERT(false);
}
}
else ASSERT(false);
if(state.sRGB)
{
if(state.textureFormat == FORMAT_R5G6B5)
{
sRGBtoLinear16_5_16(c.x);
sRGBtoLinear16_6_16(c.y);
sRGBtoLinear16_5_16(c.z);
}
else
{
for(int i = 0; i < textureComponentCount(); i++)
{
if(isRGBComponent(i))
{
sRGBtoLinear16_8_16(c[i]);
}
}
}
}
return c;
}
Vector4s SamplerCore::sampleTexel(Short4 &uuuu, Short4 &vvvv, Short4 &wwww, Vector4f &offset, Pointer<Byte> &mipmap, Pointer<Byte> buffer[4], SamplerFunction function)
{
Vector4s c;
UInt index[4];
computeIndices(index, uuuu, vvvv, wwww, offset, mipmap, function);
if(hasYuvFormat())
{
// Generic YPbPr to RGB transformation
// R = Y + 2 * (1 - Kr) * Pr
// G = Y - 2 * Kb * (1 - Kb) / Kg * Pb - 2 * Kr * (1 - Kr) / Kg * Pr
// B = Y + 2 * (1 - Kb) * Pb
float Kb = 0.114f;
float Kr = 0.299f;
int studioSwing = 1;
switch(state.textureFormat)
{
case FORMAT_YV12_BT601:
Kb = 0.114f;
Kr = 0.299f;
studioSwing = 1;
break;
case FORMAT_YV12_BT709:
Kb = 0.0722f;
Kr = 0.2126f;
studioSwing = 1;
break;
case FORMAT_YV12_JFIF:
Kb = 0.114f;
Kr = 0.299f;
studioSwing = 0;
break;
default:
ASSERT(false);
}
const float Kg = 1.0f - Kr - Kb;
const float Rr = 2 * (1 - Kr);
const float Gb = -2 * Kb * (1 - Kb) / Kg;
const float Gr = -2 * Kr * (1 - Kr) / Kg;
const float Bb = 2 * (1 - Kb);
// Scaling and bias for studio-swing range: Y = [16 .. 235], U/V = [16 .. 240]
const float Yy = studioSwing ? 255.0f / (235 - 16) : 1.0f;
const float Uu = studioSwing ? 255.0f / (240 - 16) : 1.0f;
const float Vv = studioSwing ? 255.0f / (240 - 16) : 1.0f;
const float Rv = Vv * Rr;
const float Gu = Uu * Gb;
const float Gv = Vv * Gr;
const float Bu = Uu * Bb;
const float R0 = (studioSwing * -16 * Yy - 128 * Rv) / 255;
const float G0 = (studioSwing * -16 * Yy - 128 * Gu - 128 * Gv) / 255;
const float B0 = (studioSwing * -16 * Yy - 128 * Bu) / 255;
Int c0 = Int(buffer[0][index[0]]);
Int c1 = Int(buffer[0][index[1]]);
Int c2 = Int(buffer[0][index[2]]);
Int c3 = Int(buffer[0][index[3]]);
c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); // TODO (b/148295813) : Optimize with pshufb
UShort4 Y = As<UShort4>(Unpack(As<Byte4>(c0)));
computeIndices(index, uuuu, vvvv, wwww, offset, mipmap + sizeof(Mipmap), function);
c0 = Int(buffer[1][index[0]]);
c1 = Int(buffer[1][index[1]]);
c2 = Int(buffer[1][index[2]]);
c3 = Int(buffer[1][index[3]]);
c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); // TODO (b/148295813) : Optimize with pshufb
UShort4 V = As<UShort4>(Unpack(As<Byte4>(c0)));
c0 = Int(buffer[2][index[0]]);
c1 = Int(buffer[2][index[1]]);
c2 = Int(buffer[2][index[2]]);
c3 = Int(buffer[2][index[3]]);
c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); // TODO (b/148295813) : Optimize with pshufb
UShort4 U = As<UShort4>(Unpack(As<Byte4>(c0)));
const UShort4 yY = UShort4(iround(Yy * 0x4000));
const UShort4 rV = UShort4(iround(Rv * 0x4000));
const UShort4 gU = UShort4(iround(-Gu * 0x4000));
const UShort4 gV = UShort4(iround(-Gv * 0x4000));
const UShort4 bU = UShort4(iround(Bu * 0x4000));
const UShort4 r0 = UShort4(iround(-R0 * 0x4000));
const UShort4 g0 = UShort4(iround(G0 * 0x4000));
const UShort4 b0 = UShort4(iround(-B0 * 0x4000));
UShort4 y = MulHigh(Y, yY);
UShort4 r = SubSat(y + MulHigh(V, rV), r0);
UShort4 g = SubSat(y + g0, MulHigh(U, gU) + MulHigh(V, gV));
UShort4 b = SubSat(y + MulHigh(U, bU), b0);
c.x = Min(r, UShort4(0x3FFF)) << 2;
c.y = Min(g, UShort4(0x3FFF)) << 2;
c.z = Min(b, UShort4(0x3FFF)) << 2;
}
else
{
return sampleTexel(index, buffer);
}
return c;
}
Vector4f SamplerCore::sampleTexel(Int4 &uuuu, Int4 &vvvv, Int4 &wwww, Float4 &z, Pointer<Byte> &mipmap, Pointer<Byte> buffer[4], SamplerFunction function)
{
Vector4f c;
UInt index[4];
computeIndices(index, uuuu, vvvv, wwww, mipmap, function);
if(hasFloatTexture() || has32bitIntegerTextureComponents())
{
int f0 = state.textureType == TEXTURE_CUBE ? 0 : 0;
int f1 = state.textureType == TEXTURE_CUBE ? 1 : 0;
int f2 = state.textureType == TEXTURE_CUBE ? 2 : 0;
int f3 = state.textureType == TEXTURE_CUBE ? 3 : 0;
// Read texels
switch(textureComponentCount())
{
case 4:
c.x = *Pointer<Float4>(buffer[f0] + index[0] * 16, 16);
c.y = *Pointer<Float4>(buffer[f1] + index[1] * 16, 16);
c.z = *Pointer<Float4>(buffer[f2] + index[2] * 16, 16);
c.w = *Pointer<Float4>(buffer[f3] + index[3] * 16, 16);
transpose4x4(c.x, c.y, c.z, c.w);
break;
case 3:
c.x = *Pointer<Float4>(buffer[f0] + index[0] * 16, 16);
c.y = *Pointer<Float4>(buffer[f1] + index[1] * 16, 16);
c.z = *Pointer<Float4>(buffer[f2] + index[2] * 16, 16);
c.w = *Pointer<Float4>(buffer[f3] + index[3] * 16, 16);
transpose4x3(c.x, c.y, c.z, c.w);
break;
case 2:
// FIXME: Optimal shuffling?
c.x.xy = *Pointer<Float4>(buffer[f0] + index[0] * 8);
c.x.zw = *Pointer<Float4>(buffer[f1] + index[1] * 8 - 8);
c.z.xy = *Pointer<Float4>(buffer[f2] + index[2] * 8);
c.z.zw = *Pointer<Float4>(buffer[f3] + index[3] * 8 - 8);
c.y = c.x;
c.x = Float4(c.x.xz, c.z.xz);
c.y = Float4(c.y.yw, c.z.yw);
break;
case 1:
// FIXME: Optimal shuffling?
c.x.x = *Pointer<Float>(buffer[f0] + index[0] * 4);
c.x.y = *Pointer<Float>(buffer[f1] + index[1] * 4);
c.x.z = *Pointer<Float>(buffer[f2] + index[2] * 4);
c.x.w = *Pointer<Float>(buffer[f3] + index[3] * 4);
break;
default:
ASSERT(false);
}
if(state.compare != COMPARE_BYPASS)
{
Float4 ref = z;
if(!hasFloatTexture())
{
ref = Min(Max(ref, Float4(0.0f)), Float4(1.0f));
}
Int4 boolean;
switch(state.compare)
{
case COMPARE_LESSEQUAL: boolean = CmpLE(ref, c.x); break;
case COMPARE_GREATEREQUAL: boolean = CmpNLT(ref, c.x); break;
case COMPARE_LESS: boolean = CmpLT(ref, c.x); break;
case COMPARE_GREATER: boolean = CmpNLE(ref, c.x); break;
case COMPARE_EQUAL: boolean = CmpEQ(ref, c.x); break;
case COMPARE_NOTEQUAL: boolean = CmpNEQ(ref, c.x); break;
case COMPARE_ALWAYS: boolean = Int4(-1); break;
case COMPARE_NEVER: boolean = Int4(0); break;
default: ASSERT(false);
}
c.x = As<Float4>(boolean & As<Int4>(Float4(1.0f)));
c.y = Float4(0.0f);
c.z = Float4(0.0f);
c.w = Float4(1.0f);
}
}
else
{
ASSERT(!hasYuvFormat());
Vector4s cs = sampleTexel(index, buffer);
bool isInteger = Surface::isNonNormalizedInteger(state.textureFormat);
int componentCount = textureComponentCount();
for(int n = 0; n < componentCount; n++)
{
if(hasUnsignedTextureComponent(n))
{
if(isInteger)
{
c[n] = As<Float4>(Int4(As<UShort4>(cs[n])));
}
else
{
c[n] = Float4(As<UShort4>(cs[n]));
}
}
else
{
if(isInteger)
{
c[n] = As<Float4>(Int4(cs[n]));
}
else
{
c[n] = Float4(cs[n]);
}
}
}
}
return c;
}
void SamplerCore::selectMipmap(Pointer<Byte> &texture, Pointer<Byte> buffer[4], Pointer<Byte> &mipmap, Float &lod, Int face[4], bool secondLOD)
{
if(state.mipmapFilter == MIPMAP_NONE)
{
mipmap = texture + OFFSET(Texture,mipmap[0]);
}
else
{
Int ilod;
if(state.mipmapFilter == MIPMAP_POINT)
{
ilod = RoundInt(lod);
}
else // MIPMAP_LINEAR
{
ilod = Int(lod);
}
mipmap = texture + OFFSET(Texture,mipmap) + ilod * sizeof(Mipmap) + secondLOD * sizeof(Mipmap);
}
if(state.textureType != TEXTURE_CUBE)
{
buffer[0] = *Pointer<Pointer<Byte> >(mipmap + OFFSET(Mipmap,buffer[0]));
if(hasYuvFormat())
{
buffer[1] = *Pointer<Pointer<Byte> >(mipmap + OFFSET(Mipmap,buffer[1]));
buffer[2] = *Pointer<Pointer<Byte> >(mipmap + OFFSET(Mipmap,buffer[2]));
}
}
else
{
for(int i = 0; i < 4; i++)
{
buffer[i] = *Pointer<Pointer<Byte> >(mipmap + OFFSET(Mipmap,buffer) + face[i] * sizeof(void*));
}
}
}
Int4 SamplerCore::computeFilterOffset(Float &lod)
{
Int4 filter = -1;
if(state.textureFilter == FILTER_POINT)
{
filter = 0;
}
else if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT)
{
filter = CmpNLE(Float4(lod), Float4(0.0f));
}
else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR)
{
filter = CmpLE(Float4(lod), Float4(0.0f));
}
return filter;
}
Short4 SamplerCore::address(Float4 &uw, AddressingMode addressingMode, Pointer<Byte> &mipmap)
{
if(addressingMode == ADDRESSING_LAYER && state.textureType != TEXTURE_2D_ARRAY)
{
return Short4(); // Unused
}
else if(addressingMode == ADDRESSING_LAYER && state.textureType == TEXTURE_2D_ARRAY)
{
return Min(Max(Short4(RoundInt(uw)), Short4(0)), *Pointer<Short4>(mipmap + OFFSET(Mipmap, depth)) - Short4(1));
}
else if(addressingMode == ADDRESSING_CLAMP || addressingMode == ADDRESSING_BORDER)
{
Float4 clamp = Min(Max(uw, Float4(0.0f)), Float4(65535.0f / 65536.0f));
return Short4(Int4(clamp * Float4(1 << 16)));
}
else if(addressingMode == ADDRESSING_MIRROR)
{
Int4 convert = Int4(uw * Float4(1 << 16));
Int4 mirror = (convert << 15) >> 31;
convert ^= mirror;
return Short4(convert);
}
else if(addressingMode == ADDRESSING_MIRRORONCE)
{
// Absolute value
Int4 convert = Int4(Abs(uw * Float4(1 << 16)));
// Clamp
convert -= Int4(0x00008000, 0x00008000, 0x00008000, 0x00008000);
convert = As<Int4>(PackSigned(convert, convert));
return As<Short4>(Int2(convert)) + Short4(0x8000u);
}
else // Wrap
{
return Short4(Int4(uw * Float4(1 << 16)));
}
}
void SamplerCore::address(Float4 &uvw, Int4 &xyz0, Int4 &xyz1, Float4 &f, Pointer<Byte> &mipmap, Float4 &texOffset, Int4 &filter, int whd, AddressingMode addressingMode, SamplerFunction function)
{
if(addressingMode == ADDRESSING_LAYER && state.textureType != TEXTURE_2D_ARRAY)
{
return; // Unused
}
Int4 dim = Int4(*Pointer<Short4>(mipmap + whd, 16));
Int4 maxXYZ = dim - Int4(1);
if(function == Fetch)
{
xyz0 = Min(Max(((function.option == Offset) && (addressingMode != ADDRESSING_LAYER)) ? As<Int4>(uvw) + As<Int4>(texOffset) : As<Int4>(uvw), Int4(0)), maxXYZ);
}
else if(addressingMode == ADDRESSING_LAYER && state.textureType == TEXTURE_2D_ARRAY) // Note: Offset does not apply to array layers
{
xyz0 = Min(Max(RoundInt(uvw), Int4(0)), maxXYZ);
}
else
{
const int halfBits = 0x3EFFFFFF; // Value just under 0.5f
const int oneBits = 0x3F7FFFFF; // Value just under 1.0f
const int twoBits = 0x3FFFFFFF; // Value just under 2.0f
Float4 coord = uvw;
if(state.textureType == TEXTURE_RECTANGLE)
{
// According to https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_texture_rectangle.txt
// "CLAMP_TO_EDGE causes the s coordinate to be clamped to the range[0.5, wt - 0.5].
// CLAMP_TO_EDGE causes the t coordinate to be clamped to the range[0.5, ht - 0.5]."
// Unless SwiftShader implements support for ADDRESSING_BORDER, other modes should be equivalent
// to CLAMP_TO_EDGE. Rectangle textures have no support for any MIRROR or REPEAT modes.
coord = Min(Max(coord, Float4(0.5f)), Float4(dim) - Float4(0.5f));
}
else
{
switch(addressingMode)
{
case ADDRESSING_CLAMP:
case ADDRESSING_BORDER:
case ADDRESSING_SEAMLESS:
{
// While cube face coordinates are nominally already in the
// [0, 1] range due to the projection, and numerical
// imprecision is tolerated due to the border of pixels for
// seamless filtering, this isn't true for inf and NaN
// values. So we always clamp.
Float4 one = As<Float4>(Int4(oneBits));
coord = Min(Max(coord, Float4(0.0f)), one);
}
break;
case ADDRESSING_MIRROR:
{
Float4 half = As<Float4>(Int4(halfBits));
Float4 one = As<Float4>(Int4(oneBits));
Float4 two = As<Float4>(Int4(twoBits));
coord = one - Abs(two * Frac(coord * half) - one);
}
break;
case ADDRESSING_MIRRORONCE:
{
Float4 half = As<Float4>(Int4(halfBits));
Float4 one = As<Float4>(Int4(oneBits));
Float4 two = As<Float4>(Int4(twoBits));
coord = one - Abs(two * Frac(Min(Max(coord, -one), two) * half) - one);
}
break;
default: // Wrap
coord = Frac(coord);
break;
}
coord = coord * Float4(dim);
}
if(state.textureFilter == FILTER_POINT ||
state.textureFilter == FILTER_GATHER)
{
xyz0 = Int4(coord);
}
else
{
if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR ||
state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT)
{
coord -= As<Float4>(As<Int4>(Float4(0.5f)) & filter);
}
else
{
coord -= Float4(0.5f);
}
Float4 floor = Floor(coord);
xyz0 = Int4(floor);
f = coord - floor;
}
if(function.option == Offset)
{
xyz0 += As<Int4>(texOffset);
}
if(addressingMode == ADDRESSING_SEAMLESS)
{
xyz0 += Int4(1);
}
xyz1 = xyz0 - filter; // Increment
if(function.option == Offset)
{
switch(addressingMode)
{
case ADDRESSING_SEAMLESS:
ASSERT(false); // Cube sampling doesn't support offset.
case ADDRESSING_MIRROR:
case ADDRESSING_MIRRORONCE:
case ADDRESSING_BORDER:
// FIXME: Implement ADDRESSING_MIRROR, ADDRESSING_MIRRORONCE, and ADDRESSING_BORDER.
// Fall through to Clamp.
case ADDRESSING_CLAMP:
xyz0 = Min(Max(xyz0, Int4(0)), maxXYZ);
xyz1 = Min(Max(xyz1, Int4(0)), maxXYZ);
break;
default: // Wrap
xyz0 = (xyz0 + dim * Int4(-MIN_PROGRAM_TEXEL_OFFSET)) % dim;
xyz1 = (xyz1 + dim * Int4(-MIN_PROGRAM_TEXEL_OFFSET)) % dim;
break;
}
}
else if(state.textureFilter != FILTER_POINT)
{
switch(addressingMode)
{
case ADDRESSING_SEAMLESS:
break;
case ADDRESSING_MIRROR:
case ADDRESSING_MIRRORONCE:
case ADDRESSING_BORDER:
case ADDRESSING_CLAMP:
xyz0 = Max(xyz0, Int4(0));
xyz1 = Min(xyz1, maxXYZ);
break;
default: // Wrap
{
Int4 under = CmpLT(xyz0, Int4(0));
xyz0 = (under & maxXYZ) | (~under & xyz0); // xyz < 0 ? dim - 1 : xyz // TODO: IfThenElse()
Int4 nover = CmpLT(xyz1, dim);
xyz1 = nover & xyz1; // xyz >= dim ? 0 : xyz
}
break;
}
}
}
}
void SamplerCore::convertFixed12(Short4 &cs, Float4 &cf)
{
cs = RoundShort4(cf * Float4(0x1000));
}
void SamplerCore::convertFixed12(Vector4s &cs, Vector4f &cf)
{
convertFixed12(cs.x, cf.x);
convertFixed12(cs.y, cf.y);
convertFixed12(cs.z, cf.z);
convertFixed12(cs.w, cf.w);
}
void SamplerCore::convertSigned12(Float4 &cf, Short4 &cs)
{
cf = Float4(cs) * Float4(1.0f / 0x0FFE);
}
// void SamplerCore::convertSigned12(Vector4f &cf, Vector4s &cs)
// {
// convertSigned12(cf.x, cs.x);
// convertSigned12(cf.y, cs.y);
// convertSigned12(cf.z, cs.z);
// convertSigned12(cf.w, cs.w);
// }
void SamplerCore::convertSigned15(Float4 &cf, Short4 &cs)
{
cf = Float4(cs) * Float4(1.0f / 0x7FFF);
}
void SamplerCore::convertUnsigned16(Float4 &cf, Short4 &cs)
{
cf = Float4(As<UShort4>(cs)) * Float4(1.0f / 0xFFFF);
}
void SamplerCore::sRGBtoLinear16_8_16(Short4 &c)
{
c = As<UShort4>(c) >> 8;
Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants,sRGBtoLinear8_16));
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3);
}
void SamplerCore::sRGBtoLinear16_6_16(Short4 &c)
{
c = As<UShort4>(c) >> 10;
Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants,sRGBtoLinear6_16));
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3);
}
void SamplerCore::sRGBtoLinear16_5_16(Short4 &c)
{
c = As<UShort4>(c) >> 11;
Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants,sRGBtoLinear5_16));
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2);
c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3);
}
bool SamplerCore::hasFloatTexture() const
{
return Surface::isFloatFormat(state.textureFormat);
}
bool SamplerCore::hasUnnormalizedIntegerTexture() const
{
return Surface::isNonNormalizedInteger(state.textureFormat);
}
bool SamplerCore::hasUnsignedTextureComponent(int component) const
{
return Surface::isUnsignedComponent(state.textureFormat, component);
}
int SamplerCore::textureComponentCount() const
{
return Surface::componentCount(state.textureFormat);
}
bool SamplerCore::hasThirdCoordinate() const
{
return (state.textureType == TEXTURE_3D) || (state.textureType == TEXTURE_2D_ARRAY);
}
bool SamplerCore::has16bitTextureFormat() const
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
return true;
case FORMAT_R8_SNORM:
case FORMAT_G8R8_SNORM:
case FORMAT_X8B8G8R8_SNORM:
case FORMAT_A8B8G8R8_SNORM:
case FORMAT_R8I:
case FORMAT_R8UI:
case FORMAT_G8R8I:
case FORMAT_G8R8UI:
case FORMAT_X8B8G8R8I:
case FORMAT_X8B8G8R8UI:
case FORMAT_A8B8G8R8I:
case FORMAT_A8B8G8R8UI:
case FORMAT_R32I:
case FORMAT_R32UI:
case FORMAT_G32R32I:
case FORMAT_G32R32UI:
case FORMAT_X32B32G32R32I:
case FORMAT_X32B32G32R32UI:
case FORMAT_A32B32G32R32I:
case FORMAT_A32B32G32R32UI:
case FORMAT_G8R8:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_X32B32G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_X32B32G32R32F_UNSIGNED:
case FORMAT_A8:
case FORMAT_R8:
case FORMAT_L8:
case FORMAT_A8L8:
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32F_SHADOW:
case FORMAT_D32FS8_SHADOW:
case FORMAT_L16:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
case FORMAT_R16I:
case FORMAT_R16UI:
case FORMAT_G16R16I:
case FORMAT_G16R16UI:
case FORMAT_X16B16G16R16I:
case FORMAT_X16B16G16R16UI:
case FORMAT_A16B16G16R16I:
case FORMAT_A16B16G16R16UI:
case FORMAT_YV12_BT601:
case FORMAT_YV12_BT709:
case FORMAT_YV12_JFIF:
return false;
default:
ASSERT(false);
}
return false;
}
bool SamplerCore::has8bitTextureComponents() const
{
switch(state.textureFormat)
{
case FORMAT_G8R8:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_A8:
case FORMAT_R8:
case FORMAT_L8:
case FORMAT_A8L8:
case FORMAT_R8_SNORM:
case FORMAT_G8R8_SNORM:
case FORMAT_X8B8G8R8_SNORM:
case FORMAT_A8B8G8R8_SNORM:
case FORMAT_R8I:
case FORMAT_R8UI:
case FORMAT_G8R8I:
case FORMAT_G8R8UI:
case FORMAT_X8B8G8R8I:
case FORMAT_X8B8G8R8UI:
case FORMAT_A8B8G8R8I:
case FORMAT_A8B8G8R8UI:
return true;
case FORMAT_R5G6B5:
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_X32B32G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_X32B32G32R32F_UNSIGNED:
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32F_SHADOW:
case FORMAT_D32FS8_SHADOW:
case FORMAT_L16:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
case FORMAT_R32I:
case FORMAT_R32UI:
case FORMAT_G32R32I:
case FORMAT_G32R32UI:
case FORMAT_X32B32G32R32I:
case FORMAT_X32B32G32R32UI:
case FORMAT_A32B32G32R32I:
case FORMAT_A32B32G32R32UI:
case FORMAT_R16I:
case FORMAT_R16UI:
case FORMAT_G16R16I:
case FORMAT_G16R16UI:
case FORMAT_X16B16G16R16I:
case FORMAT_X16B16G16R16UI:
case FORMAT_A16B16G16R16I:
case FORMAT_A16B16G16R16UI:
case FORMAT_YV12_BT601:
case FORMAT_YV12_BT709:
case FORMAT_YV12_JFIF:
return false;
default:
ASSERT(false);
}
return false;
}
bool SamplerCore::has16bitTextureComponents() const
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
case FORMAT_R8_SNORM:
case FORMAT_G8R8_SNORM:
case FORMAT_X8B8G8R8_SNORM:
case FORMAT_A8B8G8R8_SNORM:
case FORMAT_R8I:
case FORMAT_R8UI:
case FORMAT_G8R8I:
case FORMAT_G8R8UI:
case FORMAT_X8B8G8R8I:
case FORMAT_X8B8G8R8UI:
case FORMAT_A8B8G8R8I:
case FORMAT_A8B8G8R8UI:
case FORMAT_R32I:
case FORMAT_R32UI:
case FORMAT_G32R32I:
case FORMAT_G32R32UI:
case FORMAT_X32B32G32R32I:
case FORMAT_X32B32G32R32UI:
case FORMAT_A32B32G32R32I:
case FORMAT_A32B32G32R32UI:
case FORMAT_G8R8:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_X32B32G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_X32B32G32R32F_UNSIGNED:
case FORMAT_A8:
case FORMAT_R8:
case FORMAT_L8:
case FORMAT_A8L8:
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32F_SHADOW:
case FORMAT_D32FS8_SHADOW:
case FORMAT_YV12_BT601:
case FORMAT_YV12_BT709:
case FORMAT_YV12_JFIF:
return false;
case FORMAT_L16:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
case FORMAT_R16I:
case FORMAT_R16UI:
case FORMAT_G16R16I:
case FORMAT_G16R16UI:
case FORMAT_X16B16G16R16I:
case FORMAT_X16B16G16R16UI:
case FORMAT_A16B16G16R16I:
case FORMAT_A16B16G16R16UI:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
return true;
default:
ASSERT(false);
}
return false;
}
bool SamplerCore::has32bitIntegerTextureComponents() const
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5:
case FORMAT_R8_SNORM:
case FORMAT_G8R8_SNORM:
case FORMAT_X8B8G8R8_SNORM:
case FORMAT_A8B8G8R8_SNORM:
case FORMAT_R8I:
case FORMAT_R8UI:
case FORMAT_G8R8I:
case FORMAT_G8R8UI:
case FORMAT_X8B8G8R8I:
case FORMAT_X8B8G8R8UI:
case FORMAT_A8B8G8R8I:
case FORMAT_A8B8G8R8UI:
case FORMAT_G8R8:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_L16:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
case FORMAT_R16I:
case FORMAT_R16UI:
case FORMAT_G16R16I:
case FORMAT_G16R16UI:
case FORMAT_X16B16G16R16I:
case FORMAT_X16B16G16R16UI:
case FORMAT_A16B16G16R16I:
case FORMAT_A16B16G16R16UI:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_X32B32G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_X32B32G32R32F_UNSIGNED:
case FORMAT_A8:
case FORMAT_R8:
case FORMAT_L8:
case FORMAT_A8L8:
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32F_SHADOW:
case FORMAT_D32FS8_SHADOW:
case FORMAT_YV12_BT601:
case FORMAT_YV12_BT709:
case FORMAT_YV12_JFIF:
return false;
case FORMAT_R32I:
case FORMAT_R32UI:
case FORMAT_G32R32I:
case FORMAT_G32R32UI:
case FORMAT_X32B32G32R32I:
case FORMAT_X32B32G32R32UI:
case FORMAT_A32B32G32R32I:
case FORMAT_A32B32G32R32UI:
return true;
default:
ASSERT(false);
}
return false;
}
bool SamplerCore::hasYuvFormat() const
{
switch(state.textureFormat)
{
case FORMAT_YV12_BT601:
case FORMAT_YV12_BT709:
case FORMAT_YV12_JFIF:
return true;
case FORMAT_R5G6B5:
case FORMAT_R8_SNORM:
case FORMAT_G8R8_SNORM:
case FORMAT_X8B8G8R8_SNORM:
case FORMAT_A8B8G8R8_SNORM:
case FORMAT_R8I:
case FORMAT_R8UI:
case FORMAT_G8R8I:
case FORMAT_G8R8UI:
case FORMAT_X8B8G8R8I:
case FORMAT_X8B8G8R8UI:
case FORMAT_A8B8G8R8I:
case FORMAT_A8B8G8R8UI:
case FORMAT_R32I:
case FORMAT_R32UI:
case FORMAT_G32R32I:
case FORMAT_G32R32UI:
case FORMAT_X32B32G32R32I:
case FORMAT_X32B32G32R32UI:
case FORMAT_A32B32G32R32I:
case FORMAT_A32B32G32R32UI:
case FORMAT_G8R8:
case FORMAT_X8R8G8B8:
case FORMAT_X8B8G8R8:
case FORMAT_A8R8G8B8:
case FORMAT_A8B8G8R8:
case FORMAT_SRGB8_X8:
case FORMAT_SRGB8_A8:
case FORMAT_V8U8:
case FORMAT_Q8W8V8U8:
case FORMAT_X8L8V8U8:
case FORMAT_R32F:
case FORMAT_G32R32F:
case FORMAT_X32B32G32R32F:
case FORMAT_A32B32G32R32F:
case FORMAT_X32B32G32R32F_UNSIGNED:
case FORMAT_A8:
case FORMAT_R8:
case FORMAT_L8:
case FORMAT_A8L8:
case FORMAT_D32F_LOCKABLE:
case FORMAT_D32FS8_TEXTURE:
case FORMAT_D32F_SHADOW:
case FORMAT_D32FS8_SHADOW:
case FORMAT_L16:
case FORMAT_G16R16:
case FORMAT_A16B16G16R16:
case FORMAT_R16I:
case FORMAT_R16UI:
case FORMAT_G16R16I:
case FORMAT_G16R16UI:
case FORMAT_X16B16G16R16I:
case FORMAT_X16B16G16R16UI:
case FORMAT_A16B16G16R16I:
case FORMAT_A16B16G16R16UI:
case FORMAT_V16U16:
case FORMAT_A16W16V16U16:
case FORMAT_Q16W16V16U16:
return false;
default:
ASSERT(false);
}
return false;
}
bool SamplerCore::isRGBComponent(int component) const
{
switch(state.textureFormat)
{
case FORMAT_R5G6B5: return component < 3;
case FORMAT_R8_SNORM: return component < 1;
case FORMAT_G8R8_SNORM: return component < 2;
case FORMAT_X8B8G8R8_SNORM: return component < 3;
case FORMAT_A8B8G8R8_SNORM: return component < 3;
case FORMAT_R8I: return component < 1;
case FORMAT_R8UI: return component < 1;
case FORMAT_G8R8I: return component < 2;
case FORMAT_G8R8UI: return component < 2;
case FORMAT_X8B8G8R8I: return component < 3;
case FORMAT_X8B8G8R8UI: return component < 3;
case FORMAT_A8B8G8R8I: return component < 3;
case FORMAT_A8B8G8R8UI: return component < 3;
case FORMAT_R32I: return component < 1;
case FORMAT_R32UI: return component < 1;
case FORMAT_G32R32I: return component < 2;
case FORMAT_G32R32UI: return component < 2;
case FORMAT_X32B32G32R32I: return component < 3;
case FORMAT_X32B32G32R32UI: return component < 3;
case FORMAT_A32B32G32R32I: return component < 3;
case FORMAT_A32B32G32R32UI: return component < 3;
case FORMAT_G8R8: return component < 2;
case FORMAT_X8R8G8B8: return component < 3;
case FORMAT_X8B8G8R8: return component < 3;
case FORMAT_A8R8G8B8: return component < 3;
case FORMAT_A8B8G8R8: return component < 3;
case FORMAT_SRGB8_X8: return component < 3;
case FORMAT_SRGB8_A8: return component < 3;
case FORMAT_V8U8: return false;
case FORMAT_Q8W8V8U8: return false;
case FORMAT_X8L8V8U8: return false;
case FORMAT_R32F: return component < 1;
case FORMAT_G32R32F: return component < 2;
case FORMAT_X32B32G32R32F: return component < 3;
case FORMAT_A32B32G32R32F: return component < 3;
case FORMAT_X32B32G32R32F_UNSIGNED: return component < 3;
case FORMAT_A8: return false;
case FORMAT_R8: return component < 1;
case FORMAT_L8: return component < 1;
case FORMAT_A8L8: return component < 1;
case FORMAT_D32F_LOCKABLE: return false;
case FORMAT_D32FS8_TEXTURE: return false;
case FORMAT_D32F_SHADOW: return false;
case FORMAT_D32FS8_SHADOW: return false;
case FORMAT_L16: return component < 1;
case FORMAT_G16R16: return component < 2;
case FORMAT_A16B16G16R16: return component < 3;
case FORMAT_R16I: return component < 1;
case FORMAT_R16UI: return component < 1;
case FORMAT_G16R16I: return component < 2;
case FORMAT_G16R16UI: return component < 2;
case FORMAT_X16B16G16R16I: return component < 3;
case FORMAT_X16B16G16R16UI: return component < 3;
case FORMAT_A16B16G16R16I: return component < 3;
case FORMAT_A16B16G16R16UI: return component < 3;
case FORMAT_V16U16: return false;
case FORMAT_A16W16V16U16: return false;
case FORMAT_Q16W16V16U16: return false;
case FORMAT_YV12_BT601: return component < 3;
case FORMAT_YV12_BT709: return component < 3;
case FORMAT_YV12_JFIF: return component < 3;
default:
ASSERT(false);
}
return false;
}
}