blob: 88ae2a517139fa27b4bb45b7daf76d00617400c5 [file] [log] [blame]
//===- subzero/crosstest/test_arith_main.cpp - Driver for tests -----------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Driver for crosstesting arithmetic operations
//
//===----------------------------------------------------------------------===//
/* crosstest.py --test=test_arith.cpp --test=test_arith_frem.ll \
--test=test_arith_sqrt.ll --driver=test_arith_main.cpp \
--prefix=Subzero_ --output=test_arith */
#include <stdint.h>
#include <cfloat>
#include <climits> // CHAR_BIT
#include <cmath> // fmodf
#include <cstring> // memcmp
#include <iostream>
#include <limits>
// Include test_arith.h twice - once normally, and once within the
// Subzero_ namespace, corresponding to the llc and Subzero translated
// object files, respectively.
#include "test_arith.h"
namespace Subzero_ {
#include "test_arith.h"
}
#include "insertelement.h"
#include "xdefs.h"
template <class T> bool inputsMayTriggerException(T Value1, T Value2) {
// Avoid HW divide-by-zero exception.
if (Value2 == 0)
return true;
// Avoid HW overflow exception (on x86-32). TODO: adjust
// for other architecture.
if (Value1 == std::numeric_limits<T>::min() && Value2 == -1)
return true;
return false;
}
template <typename TypeUnsigned, typename TypeSigned>
void testsInt(size_t &TotalTests, size_t &Passes, size_t &Failures) {
typedef TypeUnsigned (*FuncTypeUnsigned)(TypeUnsigned, TypeUnsigned);
typedef TypeSigned (*FuncTypeSigned)(TypeSigned, TypeSigned);
volatile unsigned Values[] = INT_VALUE_ARRAY;
const static size_t NumValues = sizeof(Values) / sizeof(*Values);
static struct {
// For functions that operate on unsigned values, the
// FuncLlcSigned and FuncSzSigned fields are NULL. For functions
// that operate on signed values, the FuncLlcUnsigned and
// FuncSzUnsigned fields are NULL.
const char *Name;
FuncTypeUnsigned FuncLlcUnsigned;
FuncTypeUnsigned FuncSzUnsigned;
FuncTypeSigned FuncLlcSigned;
FuncTypeSigned FuncSzSigned;
bool ExcludeDivExceptions; // for divide related tests
} Funcs[] = {
#define X(inst, op, isdiv, isshift) \
{STR(inst), test##inst, Subzero_::test##inst, NULL, NULL, isdiv},
UINTOP_TABLE
#undef X
#define X(inst, op, isdiv, isshift) \
{STR(inst), NULL, NULL, test##inst, Subzero_::test##inst, isdiv},
SINTOP_TABLE
#undef X
#define X(mult_by) \
{"Mult-By-" STR(mult_by), \
testMultiplyBy##mult_by, \
Subzero_::testMultiplyBy##mult_by, \
NULL, \
NULL, \
false}, \
{"Mult-By-Neg-" STR(mult_by), \
testMultiplyByNeg##mult_by, \
Subzero_::testMultiplyByNeg##mult_by, \
NULL, \
NULL, \
false},
MULIMM_TABLE};
#undef X
const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs);
if (sizeof(TypeUnsigned) <= sizeof(uint32_t)) {
// This is the "normal" version of the loop nest, for 32-bit or
// narrower types.
for (size_t f = 0; f < NumFuncs; ++f) {
for (size_t i = 0; i < NumValues; ++i) {
for (size_t j = 0; j < NumValues; ++j) {
TypeUnsigned Value1 = Values[i];
TypeUnsigned Value2 = Values[j];
// Avoid HW divide-by-zero exception.
if (Funcs[f].ExcludeDivExceptions &&
inputsMayTriggerException<TypeSigned>(Value1, Value2))
continue;
++TotalTests;
TypeUnsigned ResultSz, ResultLlc;
if (Funcs[f].FuncSzUnsigned) {
ResultSz = Funcs[f].FuncSzUnsigned(Value1, Value2);
ResultLlc = Funcs[f].FuncLlcUnsigned(Value1, Value2);
} else {
ResultSz = Funcs[f].FuncSzSigned(Value1, Value2);
ResultLlc = Funcs[f].FuncLlcSigned(Value1, Value2);
}
if (ResultSz == ResultLlc) {
++Passes;
} else {
++Failures;
std::cout << "test" << Funcs[f].Name
<< (CHAR_BIT * sizeof(TypeUnsigned)) << "(" << Value1
<< ", " << Value2 << "): sz=" << (unsigned)ResultSz
<< " llc=" << (unsigned)ResultLlc << "\n";
}
}
}
}
} else {
// This is the 64-bit version. Test values are synthesized from
// the 32-bit values in Values[].
for (size_t f = 0; f < NumFuncs; ++f) {
for (size_t iLo = 0; iLo < NumValues; ++iLo) {
for (size_t iHi = 0; iHi < NumValues; ++iHi) {
for (size_t jLo = 0; jLo < NumValues; ++jLo) {
for (size_t jHi = 0; jHi < NumValues; ++jHi) {
TypeUnsigned Value1 =
(((TypeUnsigned)Values[iHi]) << 32) + Values[iLo];
TypeUnsigned Value2 =
(((TypeUnsigned)Values[jHi]) << 32) + Values[jLo];
if (Funcs[f].ExcludeDivExceptions &&
inputsMayTriggerException<TypeSigned>(Value1, Value2))
continue;
++TotalTests;
TypeUnsigned ResultSz, ResultLlc;
if (Funcs[f].FuncSzUnsigned) {
ResultSz = Funcs[f].FuncSzUnsigned(Value1, Value2);
ResultLlc = Funcs[f].FuncLlcUnsigned(Value1, Value2);
} else {
ResultSz = Funcs[f].FuncSzSigned(Value1, Value2);
ResultLlc = Funcs[f].FuncLlcSigned(Value1, Value2);
}
if (ResultSz == ResultLlc) {
++Passes;
} else {
++Failures;
std::cout << "test" << Funcs[f].Name
<< (CHAR_BIT * sizeof(TypeUnsigned)) << "(" << Value1
<< ", " << Value2 << "): sz=" << (uint64)ResultSz
<< " llc=" << (uint64)ResultLlc << "\n";
}
}
}
}
}
}
}
}
const static size_t MaxTestsPerFunc = 100000;
template <typename TypeUnsignedLabel, typename TypeSignedLabel>
void testsVecInt(size_t &TotalTests, size_t &Passes, size_t &Failures) {
typedef typename Vectors<TypeUnsignedLabel>::Ty TypeUnsigned;
typedef typename Vectors<TypeSignedLabel>::Ty TypeSigned;
typedef typename Vectors<TypeUnsignedLabel>::ElementTy ElementTypeUnsigned;
typedef typename Vectors<TypeSignedLabel>::ElementTy ElementTypeSigned;
typedef TypeUnsigned (*FuncTypeUnsigned)(TypeUnsigned, TypeUnsigned);
typedef TypeSigned (*FuncTypeSigned)(TypeSigned, TypeSigned);
volatile unsigned Values[] = INT_VALUE_ARRAY;
const static size_t NumValues = sizeof(Values) / sizeof(*Values);
static struct {
// For functions that operate on unsigned values, the
// FuncLlcSigned and FuncSzSigned fields are NULL. For functions
// that operate on signed values, the FuncLlcUnsigned and
// FuncSzUnsigned fields are NULL.
const char *Name;
FuncTypeUnsigned FuncLlcUnsigned;
FuncTypeUnsigned FuncSzUnsigned;
FuncTypeSigned FuncLlcSigned;
FuncTypeSigned FuncSzSigned;
bool ExcludeDivExceptions; // for divide related tests
bool MaskShiftOperations; // for shift related tests
} Funcs[] = {
#define X(inst, op, isdiv, isshift) \
{STR(inst), test##inst, Subzero_::test##inst, NULL, NULL, isdiv, isshift},
UINTOP_TABLE
#undef X
#define X(inst, op, isdiv, isshift) \
{STR(inst), NULL, NULL, test##inst, Subzero_::test##inst, isdiv, isshift},
SINTOP_TABLE
#undef X
};
const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs);
const static size_t NumElementsInType = Vectors<TypeUnsigned>::NumElements;
for (size_t f = 0; f < NumFuncs; ++f) {
PRNG Index;
for (size_t i = 0; i < MaxTestsPerFunc; ++i) {
// Initialize the test vectors.
TypeUnsigned Value1, Value2;
for (size_t j = 0; j < NumElementsInType; ++j) {
ElementTypeUnsigned Element1 = Values[Index() % NumValues];
ElementTypeUnsigned Element2 = Values[Index() % NumValues];
if (Funcs[f].ExcludeDivExceptions &&
inputsMayTriggerException<ElementTypeSigned>(Element1, Element2))
continue;
if (Funcs[f].MaskShiftOperations)
Element2 &= CHAR_BIT * sizeof(ElementTypeUnsigned) - 1;
setElement(Value1, j, Element1);
setElement(Value2, j, Element2);
}
// Perform the test.
TypeUnsigned ResultSz, ResultLlc;
++TotalTests;
if (Funcs[f].FuncSzUnsigned) {
ResultSz = Funcs[f].FuncSzUnsigned(Value1, Value2);
ResultLlc = Funcs[f].FuncLlcUnsigned(Value1, Value2);
} else {
ResultSz = Funcs[f].FuncSzSigned(Value1, Value2);
ResultLlc = Funcs[f].FuncLlcSigned(Value1, Value2);
}
if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) {
++Passes;
} else {
++Failures;
std::cout << "test" << Funcs[f].Name << "v" << NumElementsInType << "i"
<< (CHAR_BIT * sizeof(ElementTypeUnsigned)) << "("
<< vectAsString<TypeUnsignedLabel>(Value1) << ","
<< vectAsString<TypeUnsignedLabel>(Value2)
<< "): sz=" << vectAsString<TypeUnsignedLabel>(ResultSz)
<< " llc=" << vectAsString<TypeUnsignedLabel>(ResultLlc)
<< "\n";
}
}
}
}
template <typename Type>
void testsFp(size_t &TotalTests, size_t &Passes, size_t &Failures) {
static const Type NegInf = -1.0 / 0.0;
static const Type PosInf = 1.0 / 0.0;
static const Type Nan = 0.0 / 0.0;
static const Type NegNan = -0.0 / 0.0;
volatile Type Values[] = FP_VALUE_ARRAY(NegInf, PosInf, NegNan, Nan);
const static size_t NumValues = sizeof(Values) / sizeof(*Values);
typedef Type (*FuncType)(Type, Type);
static struct {
const char *Name;
FuncType FuncLlc;
FuncType FuncSz;
} Funcs[] = {
#define X(inst, op, func) \
{STR(inst), (FuncType)test##inst, (FuncType)Subzero_::test##inst},
FPOP_TABLE
#undef X
};
const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs);
for (size_t f = 0; f < NumFuncs; ++f) {
for (size_t i = 0; i < NumValues; ++i) {
for (size_t j = 0; j < NumValues; ++j) {
Type Value1 = Values[i];
Type Value2 = Values[j];
++TotalTests;
Type ResultSz = Funcs[f].FuncSz(Value1, Value2);
Type ResultLlc = Funcs[f].FuncLlc(Value1, Value2);
// Compare results using memcmp() in case they are both NaN.
if (!memcmp(&ResultSz, &ResultLlc, sizeof(Type))) {
++Passes;
} else {
++Failures;
std::cout << std::fixed << "test" << Funcs[f].Name
<< (CHAR_BIT * sizeof(Type)) << "(" << Value1 << ", "
<< Value2 << "): sz=" << ResultSz << " llc=" << ResultLlc
<< "\n";
}
}
}
}
for (size_t i = 0; i < NumValues; ++i) {
Type Value = Values[i];
++TotalTests;
Type ResultSz = Subzero_::mySqrt(Value);
Type ResultLlc = mySqrt(Value);
// Compare results using memcmp() in case they are both NaN.
if (!memcmp(&ResultSz, &ResultLlc, sizeof(Type))) {
++Passes;
} else {
++Failures;
std::cout << std::fixed << "test_sqrt" << (CHAR_BIT * sizeof(Type)) << "("
<< Value << "): sz=" << ResultSz << " llc=" << ResultLlc
<< "\n";
}
++TotalTests;
ResultSz = Subzero_::myFabs(Value);
ResultLlc = myFabs(Value);
// Compare results using memcmp() in case they are both NaN.
if (!memcmp(&ResultSz, &ResultLlc, sizeof(Type))) {
++Passes;
} else {
++Failures;
std::cout << std::fixed << "test_fabs" << (CHAR_BIT * sizeof(Type)) << "("
<< Value << "): sz=" << ResultSz << " llc=" << ResultLlc
<< "\n";
}
}
}
void testsVecFp(size_t &TotalTests, size_t &Passes, size_t &Failures) {
static const float NegInf = -1.0 / 0.0;
static const float PosInf = 1.0 / 0.0;
static const float Nan = 0.0 / 0.0;
static const float NegNan = -0.0 / 0.0;
volatile float Values[] = FP_VALUE_ARRAY(NegInf, PosInf, NegNan, Nan);
const static size_t NumValues = sizeof(Values) / sizeof(*Values);
typedef v4f32 (*FuncType)(v4f32, v4f32);
static struct {
const char *Name;
FuncType FuncLlc;
FuncType FuncSz;
} Funcs[] = {
#define X(inst, op, func) \
{STR(inst), (FuncType)test##inst, (FuncType)Subzero_::test##inst},
FPOP_TABLE
#undef X
};
const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs);
const static size_t NumElementsInType = 4;
for (size_t f = 0; f < NumFuncs; ++f) {
PRNG Index;
for (size_t i = 0; i < MaxTestsPerFunc; ++i) {
// Initialize the test vectors.
v4f32 Value1, Value2;
for (size_t j = 0; j < NumElementsInType; ++j) {
setElement(Value1, j, Values[Index() % NumValues]);
setElement(Value2, j, Values[Index() % NumValues]);
}
// Perform the test.
v4f32 ResultSz = Funcs[f].FuncSz(Value1, Value2);
v4f32 ResultLlc = Funcs[f].FuncLlc(Value1, Value2);
++TotalTests;
if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) {
++Passes;
} else {
++Failures;
std::cout << "test" << Funcs[f].Name << "v4f32"
<< "(" << vectAsString<v4f32>(Value1) << ","
<< vectAsString<v4f32>(Value2)
<< "): sz=" << vectAsString<v4f32>(ResultSz) << " llc"
<< vectAsString<v4f32>(ResultLlc) << "\n";
}
// Special case for unary fabs operation. Use Value1, ignore Value2.
ResultSz = Subzero_::myFabs(Value1);
ResultLlc = myFabs(Value1);
++TotalTests;
if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) {
++Passes;
} else {
++Failures;
std::cout << "test_fabs_v4f32"
<< "(" << vectAsString<v4f32>(Value1)
<< "): sz=" << vectAsString<v4f32>(ResultSz) << " llc"
<< vectAsString<v4f32>(ResultLlc) << "\n";
}
}
}
}
int main(int argc, char *argv[]) {
size_t TotalTests = 0;
size_t Passes = 0;
size_t Failures = 0;
testsInt<bool, bool>(TotalTests, Passes, Failures);
testsInt<uint8_t, myint8_t>(TotalTests, Passes, Failures);
testsInt<uint16_t, int16_t>(TotalTests, Passes, Failures);
testsInt<uint32_t, int32_t>(TotalTests, Passes, Failures);
testsInt<uint64, int64>(TotalTests, Passes, Failures);
testsVecInt<v4ui32, v4si32>(TotalTests, Passes, Failures);
testsVecInt<v8ui16, v8si16>(TotalTests, Passes, Failures);
testsVecInt<v16ui8, v16si8>(TotalTests, Passes, Failures);
testsFp<float>(TotalTests, Passes, Failures);
testsFp<double>(TotalTests, Passes, Failures);
testsVecFp(TotalTests, Passes, Failures);
std::cout << "TotalTests=" << TotalTests << " Passes=" << Passes
<< " Failures=" << Failures << "\n";
return Failures;
}