blob: 3c654962bd63089ee3443b809e4f6571b5587ece [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkPipeline.hpp"
#include "VkDestroy.hpp"
#include "VkDevice.hpp"
#include "VkPipelineCache.hpp"
#include "VkPipelineLayout.hpp"
#include "VkRenderPass.hpp"
#include "VkShaderModule.hpp"
#include "VkStringify.hpp"
#include "Pipeline/ComputeProgram.hpp"
#include "Pipeline/SpirvShader.hpp"
#include "marl/trace.h"
#include "spirv-tools/optimizer.hpp"
#include <iostream>
namespace {
// preprocessSpirv applies and freezes specializations into constants, and inlines all functions.
std::vector<uint32_t> preprocessSpirv(
std::vector<uint32_t> const &code,
VkSpecializationInfo const *specializationInfo,
bool optimize)
{
spvtools::Optimizer opt{ vk::SPIRV_VERSION };
opt.SetMessageConsumer([](spv_message_level_t level, const char *source, const spv_position_t &position, const char *message) {
switch(level)
{
case SPV_MSG_FATAL: sw::warn("SPIR-V FATAL: %d:%d %s\n", int(position.line), int(position.column), message);
case SPV_MSG_INTERNAL_ERROR: sw::warn("SPIR-V INTERNAL_ERROR: %d:%d %s\n", int(position.line), int(position.column), message);
case SPV_MSG_ERROR: sw::warn("SPIR-V ERROR: %d:%d %s\n", int(position.line), int(position.column), message);
case SPV_MSG_WARNING: sw::warn("SPIR-V WARNING: %d:%d %s\n", int(position.line), int(position.column), message);
case SPV_MSG_INFO: sw::trace("SPIR-V INFO: %d:%d %s\n", int(position.line), int(position.column), message);
case SPV_MSG_DEBUG: sw::trace("SPIR-V DEBUG: %d:%d %s\n", int(position.line), int(position.column), message);
default: sw::trace("SPIR-V MESSAGE: %d:%d %s\n", int(position.line), int(position.column), message);
}
});
// If the pipeline uses specialization, apply the specializations before freezing
if(specializationInfo)
{
std::unordered_map<uint32_t, std::vector<uint32_t>> specializations;
for(auto i = 0u; i < specializationInfo->mapEntryCount; ++i)
{
auto const &e = specializationInfo->pMapEntries[i];
auto value_ptr =
static_cast<uint32_t const *>(specializationInfo->pData) + e.offset / sizeof(uint32_t);
specializations.emplace(e.constantID,
std::vector<uint32_t>{ value_ptr, value_ptr + e.size / sizeof(uint32_t) });
}
opt.RegisterPass(spvtools::CreateSetSpecConstantDefaultValuePass(specializations));
}
if(optimize)
{
// Full optimization list taken from spirv-opt.
opt.RegisterPerformancePasses();
}
spvtools::OptimizerOptions optimizerOptions = {};
#if defined(NDEBUG)
optimizerOptions.set_run_validator(false);
#else
optimizerOptions.set_run_validator(true);
spvtools::ValidatorOptions validatorOptions = {};
validatorOptions.SetScalarBlockLayout(true); // VK_EXT_scalar_block_layout
validatorOptions.SetUniformBufferStandardLayout(true); // VK_KHR_uniform_buffer_standard_layout
optimizerOptions.set_validator_options(validatorOptions);
#endif
std::vector<uint32_t> optimized;
opt.Run(code.data(), code.size(), &optimized, optimizerOptions);
if(false)
{
spvtools::SpirvTools core(vk::SPIRV_VERSION);
std::string preOpt;
core.Disassemble(code, &preOpt, SPV_BINARY_TO_TEXT_OPTION_NONE);
std::string postOpt;
core.Disassemble(optimized, &postOpt, SPV_BINARY_TO_TEXT_OPTION_NONE);
std::cout << "PRE-OPT: " << preOpt << std::endl
<< "POST-OPT: " << postOpt << std::endl;
}
return optimized;
}
std::shared_ptr<sw::SpirvShader> createShader(
const vk::PipelineCache::SpirvShaderKey &key,
const vk::ShaderModule *module,
bool robustBufferAccess,
const std::shared_ptr<vk::dbg::Context> &dbgctx)
{
// Do not optimize the shader if we have a debugger context.
// Optimization passes are likely to damage debug information, and reorder
// instructions.
const bool optimize = !dbgctx;
auto code = preprocessSpirv(key.getInsns(), key.getSpecializationInfo(), optimize);
ASSERT(code.size() > 0);
// If the pipeline has specialization constants, assume they're unique and
// use a new serial ID so the shader gets recompiled.
uint32_t codeSerialID = (key.getSpecializationInfo() ? vk::ShaderModule::nextSerialID() : module->getSerialID());
// TODO(b/119409619): use allocator.
return std::make_shared<sw::SpirvShader>(codeSerialID, key.getPipelineStage(), key.getEntryPointName().c_str(),
code, key.getRenderPass(), key.getSubpassIndex(), robustBufferAccess, dbgctx);
}
std::shared_ptr<sw::ComputeProgram> createProgram(vk::Device *device, const vk::PipelineCache::ComputeProgramKey &key)
{
MARL_SCOPED_EVENT("createProgram");
vk::DescriptorSet::Bindings descriptorSets; // FIXME(b/129523279): Delay code generation until invoke time.
// TODO(b/119409619): use allocator.
auto program = std::make_shared<sw::ComputeProgram>(device, key.getShader(), key.getLayout(), descriptorSets);
program->generate();
program->finalize("ComputeProgram");
return program;
}
} // anonymous namespace
namespace vk {
Pipeline::Pipeline(PipelineLayout *layout, Device *device)
: layout(layout)
, device(device)
, robustBufferAccess(device->getEnabledFeatures().robustBufferAccess)
{
layout->incRefCount();
}
void Pipeline::destroy(const VkAllocationCallbacks *pAllocator)
{
destroyPipeline(pAllocator);
vk::release(static_cast<VkPipelineLayout>(*layout), pAllocator);
}
GraphicsPipeline::GraphicsPipeline(const VkGraphicsPipelineCreateInfo *pCreateInfo, void *mem, Device *device)
: Pipeline(vk::Cast(pCreateInfo->layout), device)
, state(device, pCreateInfo, layout, robustBufferAccess)
, inputs(pCreateInfo->pVertexInputState)
{
}
void GraphicsPipeline::destroyPipeline(const VkAllocationCallbacks *pAllocator)
{
vertexShader.reset();
fragmentShader.reset();
}
size_t GraphicsPipeline::ComputeRequiredAllocationSize(const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
return 0;
}
void GraphicsPipeline::getIndexBuffers(uint32_t count, uint32_t first, bool indexed, std::vector<std::pair<uint32_t, void *>> *indexBuffers) const
{
indexBuffer.getIndexBuffers(state.getTopology(), count, first, indexed, state.hasPrimitiveRestartEnable(), indexBuffers);
}
bool GraphicsPipeline::containsImageWrite() const
{
return (vertexShader.get() && vertexShader->containsImageWrite()) ||
(fragmentShader.get() && fragmentShader->containsImageWrite());
}
void GraphicsPipeline::setShader(const VkShaderStageFlagBits &stage, const std::shared_ptr<sw::SpirvShader> spirvShader)
{
switch(stage)
{
case VK_SHADER_STAGE_VERTEX_BIT:
ASSERT(vertexShader.get() == nullptr);
vertexShader = spirvShader;
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
ASSERT(fragmentShader.get() == nullptr);
fragmentShader = spirvShader;
break;
default:
UNSUPPORTED("Unsupported stage");
break;
}
}
const std::shared_ptr<sw::SpirvShader> GraphicsPipeline::getShader(const VkShaderStageFlagBits &stage) const
{
switch(stage)
{
case VK_SHADER_STAGE_VERTEX_BIT:
return vertexShader;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return fragmentShader;
default:
UNSUPPORTED("Unsupported stage");
return fragmentShader;
}
}
void GraphicsPipeline::compileShaders(const VkAllocationCallbacks *pAllocator, const VkGraphicsPipelineCreateInfo *pCreateInfo, PipelineCache *pPipelineCache)
{
for(auto pStage = pCreateInfo->pStages; pStage != pCreateInfo->pStages + pCreateInfo->stageCount; pStage++)
{
if(pStage->flags != 0)
{
// Vulkan 1.2: "flags must be 0"
UNSUPPORTED("pStage->flags %d", int(pStage->flags));
}
const ShaderModule *module = vk::Cast(pStage->module);
const PipelineCache::SpirvShaderKey key(pStage->stage, pStage->pName, module->getCode(),
vk::Cast(pCreateInfo->renderPass), pCreateInfo->subpass,
pStage->pSpecializationInfo);
auto pipelineStage = key.getPipelineStage();
if(pPipelineCache)
{
auto shader = pPipelineCache->getOrCreateShader(key, [&] {
return createShader(key, module, robustBufferAccess, device->getDebuggerContext());
});
setShader(pipelineStage, shader);
}
else
{
auto shader = createShader(key, module, robustBufferAccess, device->getDebuggerContext());
setShader(pipelineStage, shader);
}
}
}
ComputePipeline::ComputePipeline(const VkComputePipelineCreateInfo *pCreateInfo, void *mem, Device *device)
: Pipeline(vk::Cast(pCreateInfo->layout), device)
{
}
void ComputePipeline::destroyPipeline(const VkAllocationCallbacks *pAllocator)
{
shader.reset();
program.reset();
}
size_t ComputePipeline::ComputeRequiredAllocationSize(const VkComputePipelineCreateInfo *pCreateInfo)
{
return 0;
}
void ComputePipeline::compileShaders(const VkAllocationCallbacks *pAllocator, const VkComputePipelineCreateInfo *pCreateInfo, PipelineCache *pPipelineCache)
{
auto &stage = pCreateInfo->stage;
const ShaderModule *module = vk::Cast(stage.module);
ASSERT(shader.get() == nullptr);
ASSERT(program.get() == nullptr);
const PipelineCache::SpirvShaderKey shaderKey(
stage.stage, stage.pName, module->getCode(), nullptr, 0, stage.pSpecializationInfo);
if(pPipelineCache)
{
shader = pPipelineCache->getOrCreateShader(shaderKey, [&] {
return createShader(shaderKey, module, robustBufferAccess, device->getDebuggerContext());
});
const PipelineCache::ComputeProgramKey programKey(shader.get(), layout);
program = pPipelineCache->getOrCreateComputeProgram(programKey, [&] {
return createProgram(device, programKey);
});
}
else
{
shader = createShader(shaderKey, module, robustBufferAccess, device->getDebuggerContext());
const PipelineCache::ComputeProgramKey programKey(shader.get(), layout);
program = createProgram(device, programKey);
}
}
void ComputePipeline::run(uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ,
uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ,
vk::DescriptorSet::Array const &descriptorSetObjects,
vk::DescriptorSet::Bindings const &descriptorSets,
vk::DescriptorSet::DynamicOffsets const &descriptorDynamicOffsets,
vk::Pipeline::PushConstantStorage const &pushConstants)
{
ASSERT_OR_RETURN(program != nullptr);
program->run(
descriptorSetObjects, descriptorSets, descriptorDynamicOffsets, pushConstants,
baseGroupX, baseGroupY, baseGroupZ,
groupCountX, groupCountY, groupCountZ);
}
} // namespace vk