| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef sw_Types_hpp |
| #define sw_Types_hpp |
| |
| #include <cassert> |
| #include <limits> |
| #include <type_traits> |
| |
| // GCC warns against bitfields not fitting the entire range of an enum with a fixed underlying type of unsigned int, which gets promoted to an error with -Werror and cannot be suppressed. |
| // However, GCC already defaults to using unsigned int as the underlying type of an unscoped enum without a fixed underlying type. So we can just omit it. |
| #if defined(__GNUC__) && !defined(__clang__) |
| namespace { |
| enum E |
| { |
| }; |
| static_assert(!std::numeric_limits<std::underlying_type<E>::type>::is_signed, "expected unscoped enum whose underlying type is not fixed to be unsigned"); |
| } // namespace |
| # define ENUM_UNDERLYING_TYPE_UNSIGNED_INT |
| #else |
| # define ENUM_UNDERLYING_TYPE_UNSIGNED_INT : unsigned int |
| #endif |
| |
| #if defined(_MSC_VER) |
| typedef signed __int8 int8_t; |
| typedef signed __int16 int16_t; |
| typedef signed __int32 int32_t; |
| typedef signed __int64 int64_t; |
| typedef unsigned __int8 uint8_t; |
| typedef unsigned __int16 uint16_t; |
| typedef unsigned __int32 uint32_t; |
| typedef unsigned __int64 uint64_t; |
| # define ALIGN(bytes, type) __declspec(align(bytes)) type |
| #else |
| # include <stdint.h> |
| # define ALIGN(bytes, type) type __attribute__((aligned(bytes))) |
| #endif |
| |
| namespace sw { |
| |
| // assert_cast<> is like a static_cast<> which asserts that no information was lost. |
| template<typename To, typename From> |
| To assert_cast(From x) |
| { |
| To y = static_cast<To>(x); |
| assert(static_cast<From>(y) == x); |
| |
| return y; |
| } |
| |
| // https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
| constexpr inline uint32_t bit_ceil(uint32_t i) |
| { |
| i--; |
| i |= i >> 1; |
| i |= i >> 2; |
| i |= i >> 4; |
| i |= i >> 8; |
| i |= i >> 16; |
| i++; |
| return i; |
| } |
| |
| typedef ALIGN(1, uint8_t) byte; |
| typedef ALIGN(2, uint16_t) word; |
| typedef ALIGN(4, uint32_t) dword; |
| typedef ALIGN(8, uint64_t) qword; |
| typedef ALIGN(1, int8_t) sbyte; |
| |
| template<typename T, int N> |
| struct alignas(sizeof(T) * bit_ceil(N)) vec |
| { |
| vec() = default; |
| |
| constexpr explicit vec(T replicate) |
| { |
| for(int i = 0; i < N; i++) |
| { |
| v[i] = replicate; |
| } |
| } |
| |
| template<typename... ARGS> |
| constexpr vec(T arg0, ARGS... args) |
| : v{ arg0, args... } |
| { |
| } |
| |
| // Require explicit use of replicate constructor. |
| vec &operator=(T) = delete; |
| |
| T &operator[](int i) |
| { |
| return v[i]; |
| } |
| |
| const T &operator[](int i) const |
| { |
| return v[i]; |
| } |
| |
| T v[N]; |
| }; |
| |
| template<typename T> |
| struct alignas(sizeof(T) * 4) vec<T, 4> |
| { |
| vec() = default; |
| |
| constexpr explicit vec(T replicate) |
| : x(replicate) |
| , y(replicate) |
| , z(replicate) |
| , w(replicate) |
| { |
| } |
| |
| constexpr vec(T x, T y, T z, T w) |
| : x(x) |
| , y(y) |
| , z(z) |
| , w(w) |
| { |
| } |
| |
| // Require explicit use of replicate constructor. |
| vec &operator=(T) = delete; |
| |
| T &operator[](int i) |
| { |
| return v[i]; |
| } |
| |
| const T &operator[](int i) const |
| { |
| return v[i]; |
| } |
| |
| union |
| { |
| T v[4]; |
| |
| struct |
| { |
| T x; |
| T y; |
| T z; |
| T w; |
| }; |
| }; |
| }; |
| |
| template<typename T, int N> |
| bool operator==(const vec<T, N> &a, const vec<T, N> &b) |
| { |
| for(int i = 0; i < N; i++) |
| { |
| if(a.v[i] != b.v[i]) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| template<typename T, int N> |
| bool operator!=(const vec<T, N> &a, const vec<T, N> &b) |
| { |
| return !(a == b); |
| } |
| |
| template<typename T> |
| using vec2 = vec<T, 2>; |
| template<typename T> |
| using vec3 = vec<T, 3>; // aligned to 4 elements |
| template<typename T> |
| using vec4 = vec<T, 4>; |
| template<typename T> |
| using vec8 = vec<T, 8>; |
| template<typename T> |
| using vec16 = vec<T, 16>; |
| |
| using int2 = vec2<int>; |
| using uint2 = vec2<unsigned int>; |
| using float2 = vec2<float>; |
| using dword2 = vec2<dword>; |
| using qword2 = vec2<qword>; |
| |
| // Note: These vec3<T> types all use 4-element alignment - i.e. they have |
| // identical memory layout to vec4<T>, except they do not have a 4th component. |
| using int3 = vec3<int>; |
| using uint3 = vec3<unsigned int>; |
| using float3 = vec3<float>; |
| using dword3 = vec3<dword>; |
| |
| using int4 = vec4<int>; |
| using uint4 = vec4<unsigned int>; |
| using float4 = vec4<float>; |
| using byte4 = vec4<byte>; |
| using sbyte4 = vec4<sbyte>; |
| using short4 = vec4<short>; |
| using ushort4 = vec4<unsigned short>; |
| using word4 = vec4<word>; |
| using dword4 = vec4<dword>; |
| |
| using byte8 = vec8<byte>; |
| using sbyte8 = vec8<sbyte>; |
| using short8 = vec8<short>; |
| using ushort8 = vec8<unsigned short>; |
| |
| using byte16 = vec16<byte>; |
| using sbyte16 = vec16<sbyte>; |
| |
| inline constexpr float4 vector(float x, float y, float z, float w) |
| { |
| return float4{ x, y, z, w }; |
| } |
| |
| inline constexpr float4 replicate(float f) |
| { |
| return vector(f, f, f, f); |
| } |
| |
| } // namespace sw |
| |
| #endif // sw_Types_hpp |