Add SwiftShader source to repo

Oct 6 code drop from Transgaming
Review URL: https://chromereviews.googleplex.com/3846015
diff --git a/src/LLVM/lib/Bitcode/Makefile b/src/LLVM/lib/Bitcode/Makefile
new file mode 100644
index 0000000..2d6b5ad
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Makefile
@@ -0,0 +1,14 @@
+##===- lib/Bitcode/Makefile --------------------------------*- Makefile -*-===##
+#
+#                     The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../..
+PARALLEL_DIRS = Reader Writer
+
+include $(LEVEL)/Makefile.common
+
diff --git a/src/LLVM/lib/Bitcode/Reader/BitReader.cpp b/src/LLVM/lib/Bitcode/Reader/BitReader.cpp
new file mode 100644
index 0000000..15844c0
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Reader/BitReader.cpp
@@ -0,0 +1,88 @@
+//===-- BitReader.cpp -----------------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm-c/BitReader.h"
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <string>
+#include <cstring>
+
+using namespace llvm;
+
+/* Builds a module from the bitcode in the specified memory buffer, returning a
+   reference to the module via the OutModule parameter. Returns 0 on success.
+   Optionally returns a human-readable error message via OutMessage. */
+LLVMBool LLVMParseBitcode(LLVMMemoryBufferRef MemBuf,
+                          LLVMModuleRef *OutModule, char **OutMessage) {
+  return LLVMParseBitcodeInContext(wrap(&getGlobalContext()), MemBuf, OutModule,
+                                   OutMessage);
+}
+
+LLVMBool LLVMParseBitcodeInContext(LLVMContextRef ContextRef,
+                                   LLVMMemoryBufferRef MemBuf,
+                                   LLVMModuleRef *OutModule,
+                                   char **OutMessage) {
+  std::string Message;
+  
+  *OutModule = wrap(ParseBitcodeFile(unwrap(MemBuf), *unwrap(ContextRef),
+                                     &Message));
+  if (!*OutModule) {
+    if (OutMessage)
+      *OutMessage = strdup(Message.c_str());
+    return 1;
+  }
+  
+  return 0;
+}
+
+/* Reads a module from the specified path, returning via the OutModule parameter
+   a module provider which performs lazy deserialization. Returns 0 on success.
+   Optionally returns a human-readable error message via OutMessage. */ 
+LLVMBool LLVMGetBitcodeModuleInContext(LLVMContextRef ContextRef,
+                                       LLVMMemoryBufferRef MemBuf,
+                                       LLVMModuleRef *OutM,
+                                       char **OutMessage) {
+  std::string Message;
+  
+  *OutM = wrap(getLazyBitcodeModule(unwrap(MemBuf), *unwrap(ContextRef),
+                                    &Message));
+  if (!*OutM) {
+    if (OutMessage)
+      *OutMessage = strdup(Message.c_str());
+    return 1;
+  }
+  
+  return 0;
+
+}
+
+LLVMBool LLVMGetBitcodeModule(LLVMMemoryBufferRef MemBuf, LLVMModuleRef *OutM,
+                              char **OutMessage) {
+  return LLVMGetBitcodeModuleInContext(LLVMGetGlobalContext(), MemBuf, OutM,
+                                       OutMessage);
+}
+
+/* Deprecated: Use LLVMGetBitcodeModuleInContext instead. */
+LLVMBool LLVMGetBitcodeModuleProviderInContext(LLVMContextRef ContextRef,
+                                               LLVMMemoryBufferRef MemBuf,
+                                               LLVMModuleProviderRef *OutMP,
+                                               char **OutMessage) {
+  return LLVMGetBitcodeModuleInContext(ContextRef, MemBuf,
+                                       reinterpret_cast<LLVMModuleRef*>(OutMP),
+                                       OutMessage);
+}
+
+/* Deprecated: Use LLVMGetBitcodeModule instead. */
+LLVMBool LLVMGetBitcodeModuleProvider(LLVMMemoryBufferRef MemBuf,
+                                      LLVMModuleProviderRef *OutMP,
+                                      char **OutMessage) {
+  return LLVMGetBitcodeModuleProviderInContext(LLVMGetGlobalContext(), MemBuf,
+                                               OutMP, OutMessage);
+}
diff --git a/src/LLVM/lib/Bitcode/Reader/BitcodeReader.cpp b/src/LLVM/lib/Bitcode/Reader/BitcodeReader.cpp
new file mode 100644
index 0000000..8f999a6
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -0,0 +1,2501 @@
+//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header defines the BitcodeReader class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "BitcodeReader.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Module.h"
+#include "llvm/Operator.h"
+#include "llvm/AutoUpgrade.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/OperandTraits.h"
+using namespace llvm;
+
+void BitcodeReader::FreeState() {
+  if (BufferOwned)
+    delete Buffer;
+  Buffer = 0;
+  std::vector<PATypeHolder>().swap(TypeList);
+  ValueList.clear();
+  MDValueList.clear();
+
+  std::vector<AttrListPtr>().swap(MAttributes);
+  std::vector<BasicBlock*>().swap(FunctionBBs);
+  std::vector<Function*>().swap(FunctionsWithBodies);
+  DeferredFunctionInfo.clear();
+  MDKindMap.clear();
+}
+
+//===----------------------------------------------------------------------===//
+//  Helper functions to implement forward reference resolution, etc.
+//===----------------------------------------------------------------------===//
+
+/// ConvertToString - Convert a string from a record into an std::string, return
+/// true on failure.
+template<typename StrTy>
+static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
+                            StrTy &Result) {
+  if (Idx > Record.size())
+    return true;
+
+  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
+    Result += (char)Record[i];
+  return false;
+}
+
+static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
+  switch (Val) {
+  default: // Map unknown/new linkages to external
+  case 0:  return GlobalValue::ExternalLinkage;
+  case 1:  return GlobalValue::WeakAnyLinkage;
+  case 2:  return GlobalValue::AppendingLinkage;
+  case 3:  return GlobalValue::InternalLinkage;
+  case 4:  return GlobalValue::LinkOnceAnyLinkage;
+  case 5:  return GlobalValue::DLLImportLinkage;
+  case 6:  return GlobalValue::DLLExportLinkage;
+  case 7:  return GlobalValue::ExternalWeakLinkage;
+  case 8:  return GlobalValue::CommonLinkage;
+  case 9:  return GlobalValue::PrivateLinkage;
+  case 10: return GlobalValue::WeakODRLinkage;
+  case 11: return GlobalValue::LinkOnceODRLinkage;
+  case 12: return GlobalValue::AvailableExternallyLinkage;
+  case 13: return GlobalValue::LinkerPrivateLinkage;
+  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
+  }
+}
+
+static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
+  switch (Val) {
+  default: // Map unknown visibilities to default.
+  case 0: return GlobalValue::DefaultVisibility;
+  case 1: return GlobalValue::HiddenVisibility;
+  case 2: return GlobalValue::ProtectedVisibility;
+  }
+}
+
+static int GetDecodedCastOpcode(unsigned Val) {
+  switch (Val) {
+  default: return -1;
+  case bitc::CAST_TRUNC   : return Instruction::Trunc;
+  case bitc::CAST_ZEXT    : return Instruction::ZExt;
+  case bitc::CAST_SEXT    : return Instruction::SExt;
+  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
+  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
+  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
+  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
+  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
+  case bitc::CAST_FPEXT   : return Instruction::FPExt;
+  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
+  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
+  case bitc::CAST_BITCAST : return Instruction::BitCast;
+  }
+}
+static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
+  switch (Val) {
+  default: return -1;
+  case bitc::BINOP_ADD:
+    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
+  case bitc::BINOP_SUB:
+    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
+  case bitc::BINOP_MUL:
+    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
+  case bitc::BINOP_UDIV: return Instruction::UDiv;
+  case bitc::BINOP_SDIV:
+    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
+  case bitc::BINOP_UREM: return Instruction::URem;
+  case bitc::BINOP_SREM:
+    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
+  case bitc::BINOP_SHL:  return Instruction::Shl;
+  case bitc::BINOP_LSHR: return Instruction::LShr;
+  case bitc::BINOP_ASHR: return Instruction::AShr;
+  case bitc::BINOP_AND:  return Instruction::And;
+  case bitc::BINOP_OR:   return Instruction::Or;
+  case bitc::BINOP_XOR:  return Instruction::Xor;
+  }
+}
+
+namespace llvm {
+namespace {
+  /// @brief A class for maintaining the slot number definition
+  /// as a placeholder for the actual definition for forward constants defs.
+  class ConstantPlaceHolder : public ConstantExpr {
+    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
+    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
+  public:
+    // allocate space for exactly one operand
+    void *operator new(size_t s) {
+      return User::operator new(s, 1);
+    }
+    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
+      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
+      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
+    }
+
+    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
+    static inline bool classof(const ConstantPlaceHolder *) { return true; }
+    static bool classof(const Value *V) {
+      return isa<ConstantExpr>(V) &&
+             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
+    }
+
+
+    /// Provide fast operand accessors
+    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+  };
+}
+
+// FIXME: can we inherit this from ConstantExpr?
+template <>
+struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
+};
+}
+
+
+void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
+  if (Idx == size()) {
+    push_back(V);
+    return;
+  }
+
+  if (Idx >= size())
+    resize(Idx+1);
+
+  WeakVH &OldV = ValuePtrs[Idx];
+  if (OldV == 0) {
+    OldV = V;
+    return;
+  }
+
+  // Handle constants and non-constants (e.g. instrs) differently for
+  // efficiency.
+  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
+    ResolveConstants.push_back(std::make_pair(PHC, Idx));
+    OldV = V;
+  } else {
+    // If there was a forward reference to this value, replace it.
+    Value *PrevVal = OldV;
+    OldV->replaceAllUsesWith(V);
+    delete PrevVal;
+  }
+}
+
+
+Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
+                                                    const Type *Ty) {
+  if (Idx >= size())
+    resize(Idx + 1);
+
+  if (Value *V = ValuePtrs[Idx]) {
+    assert(Ty == V->getType() && "Type mismatch in constant table!");
+    return cast<Constant>(V);
+  }
+
+  // Create and return a placeholder, which will later be RAUW'd.
+  Constant *C = new ConstantPlaceHolder(Ty, Context);
+  ValuePtrs[Idx] = C;
+  return C;
+}
+
+Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
+  if (Idx >= size())
+    resize(Idx + 1);
+
+  if (Value *V = ValuePtrs[Idx]) {
+    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
+    return V;
+  }
+
+  // No type specified, must be invalid reference.
+  if (Ty == 0) return 0;
+
+  // Create and return a placeholder, which will later be RAUW'd.
+  Value *V = new Argument(Ty);
+  ValuePtrs[Idx] = V;
+  return V;
+}
+
+/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
+/// resolves any forward references.  The idea behind this is that we sometimes
+/// get constants (such as large arrays) which reference *many* forward ref
+/// constants.  Replacing each of these causes a lot of thrashing when
+/// building/reuniquing the constant.  Instead of doing this, we look at all the
+/// uses and rewrite all the place holders at once for any constant that uses
+/// a placeholder.
+void BitcodeReaderValueList::ResolveConstantForwardRefs() {
+  // Sort the values by-pointer so that they are efficient to look up with a
+  // binary search.
+  std::sort(ResolveConstants.begin(), ResolveConstants.end());
+
+  SmallVector<Constant*, 64> NewOps;
+
+  while (!ResolveConstants.empty()) {
+    Value *RealVal = operator[](ResolveConstants.back().second);
+    Constant *Placeholder = ResolveConstants.back().first;
+    ResolveConstants.pop_back();
+
+    // Loop over all users of the placeholder, updating them to reference the
+    // new value.  If they reference more than one placeholder, update them all
+    // at once.
+    while (!Placeholder->use_empty()) {
+      Value::use_iterator UI = Placeholder->use_begin();
+      User *U = *UI;
+
+      // If the using object isn't uniqued, just update the operands.  This
+      // handles instructions and initializers for global variables.
+      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
+        UI.getUse().set(RealVal);
+        continue;
+      }
+
+      // Otherwise, we have a constant that uses the placeholder.  Replace that
+      // constant with a new constant that has *all* placeholder uses updated.
+      Constant *UserC = cast<Constant>(U);
+      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
+           I != E; ++I) {
+        Value *NewOp;
+        if (!isa<ConstantPlaceHolder>(*I)) {
+          // Not a placeholder reference.
+          NewOp = *I;
+        } else if (*I == Placeholder) {
+          // Common case is that it just references this one placeholder.
+          NewOp = RealVal;
+        } else {
+          // Otherwise, look up the placeholder in ResolveConstants.
+          ResolveConstantsTy::iterator It =
+            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
+                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
+                                                            0));
+          assert(It != ResolveConstants.end() && It->first == *I);
+          NewOp = operator[](It->second);
+        }
+
+        NewOps.push_back(cast<Constant>(NewOp));
+      }
+
+      // Make the new constant.
+      Constant *NewC;
+      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
+        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
+                                        NewOps.size());
+      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
+        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
+                                         UserCS->getType()->isPacked());
+      } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) {
+        NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]);
+      } else if (isa<ConstantVector>(UserC)) {
+        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
+      } else {
+        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
+        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
+                                                          NewOps.size());
+      }
+
+      UserC->replaceAllUsesWith(NewC);
+      UserC->destroyConstant();
+      NewOps.clear();
+    }
+
+    // Update all ValueHandles, they should be the only users at this point.
+    Placeholder->replaceAllUsesWith(RealVal);
+    delete Placeholder;
+  }
+}
+
+void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
+  if (Idx == size()) {
+    push_back(V);
+    return;
+  }
+
+  if (Idx >= size())
+    resize(Idx+1);
+
+  WeakVH &OldV = MDValuePtrs[Idx];
+  if (OldV == 0) {
+    OldV = V;
+    return;
+  }
+
+  // If there was a forward reference to this value, replace it.
+  Value *PrevVal = OldV;
+  OldV->replaceAllUsesWith(V);
+  delete PrevVal;
+  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
+  // value for Idx.
+  MDValuePtrs[Idx] = V;
+}
+
+Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
+  if (Idx >= size())
+    resize(Idx + 1);
+
+  if (Value *V = MDValuePtrs[Idx]) {
+    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
+    return V;
+  }
+
+  // Create and return a placeholder, which will later be RAUW'd.
+  Value *V = new Argument(Type::getMetadataTy(Context));
+  MDValuePtrs[Idx] = V;
+  return V;
+}
+
+const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
+  // If the TypeID is in range, return it.
+  if (ID < TypeList.size())
+    return TypeList[ID].get();
+  if (!isTypeTable) return 0;
+
+  // The type table allows forward references.  Push as many Opaque types as
+  // needed to get up to ID.
+  while (TypeList.size() <= ID)
+    TypeList.push_back(OpaqueType::get(Context));
+  return TypeList.back().get();
+}
+
+//===----------------------------------------------------------------------===//
+//  Functions for parsing blocks from the bitcode file
+//===----------------------------------------------------------------------===//
+
+bool BitcodeReader::ParseAttributeBlock() {
+  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
+    return Error("Malformed block record");
+
+  if (!MAttributes.empty())
+    return Error("Multiple PARAMATTR blocks found!");
+
+  SmallVector<uint64_t, 64> Record;
+
+  SmallVector<AttributeWithIndex, 8> Attrs;
+
+  // Read all the records.
+  while (1) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK) {
+      if (Stream.ReadBlockEnd())
+        return Error("Error at end of PARAMATTR block");
+      return false;
+    }
+
+    if (Code == bitc::ENTER_SUBBLOCK) {
+      // No known subblocks, always skip them.
+      Stream.ReadSubBlockID();
+      if (Stream.SkipBlock())
+        return Error("Malformed block record");
+      continue;
+    }
+
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+
+    // Read a record.
+    Record.clear();
+    switch (Stream.ReadRecord(Code, Record)) {
+    default:  // Default behavior: ignore.
+      break;
+    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
+      if (Record.size() & 1)
+        return Error("Invalid ENTRY record");
+
+      // FIXME : Remove this autoupgrade code in LLVM 3.0.
+      // If Function attributes are using index 0 then transfer them
+      // to index ~0. Index 0 is used for return value attributes but used to be
+      // used for function attributes.
+      Attributes RetAttribute = Attribute::None;
+      Attributes FnAttribute = Attribute::None;
+      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+        // FIXME: remove in LLVM 3.0
+        // The alignment is stored as a 16-bit raw value from bits 31--16.
+        // We shift the bits above 31 down by 11 bits.
+
+        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
+        if (Alignment && !isPowerOf2_32(Alignment))
+          return Error("Alignment is not a power of two.");
+
+        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
+        if (Alignment)
+          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
+        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
+        Record[i+1] = ReconstitutedAttr;
+
+        if (Record[i] == 0)
+          RetAttribute = Record[i+1];
+        else if (Record[i] == ~0U)
+          FnAttribute = Record[i+1];
+      }
+
+      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
+                              Attribute::ReadOnly|Attribute::ReadNone);
+
+      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
+          (RetAttribute & OldRetAttrs) != 0) {
+        if (FnAttribute == Attribute::None) { // add a slot so they get added.
+          Record.push_back(~0U);
+          Record.push_back(0);
+        }
+
+        FnAttribute  |= RetAttribute & OldRetAttrs;
+        RetAttribute &= ~OldRetAttrs;
+      }
+
+      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+        if (Record[i] == 0) {
+          if (RetAttribute != Attribute::None)
+            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
+        } else if (Record[i] == ~0U) {
+          if (FnAttribute != Attribute::None)
+            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
+        } else if (Record[i+1] != Attribute::None)
+          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
+      }
+
+      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
+      Attrs.clear();
+      break;
+    }
+    }
+  }
+}
+
+
+bool BitcodeReader::ParseTypeTable() {
+  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
+    return Error("Malformed block record");
+
+  if (!TypeList.empty())
+    return Error("Multiple TYPE_BLOCKs found!");
+
+  SmallVector<uint64_t, 64> Record;
+  unsigned NumRecords = 0;
+
+  // Read all the records for this type table.
+  while (1) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK) {
+      if (NumRecords != TypeList.size())
+        return Error("Invalid type forward reference in TYPE_BLOCK");
+      if (Stream.ReadBlockEnd())
+        return Error("Error at end of type table block");
+      return false;
+    }
+
+    if (Code == bitc::ENTER_SUBBLOCK) {
+      // No known subblocks, always skip them.
+      Stream.ReadSubBlockID();
+      if (Stream.SkipBlock())
+        return Error("Malformed block record");
+      continue;
+    }
+
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+
+    // Read a record.
+    Record.clear();
+    const Type *ResultTy = 0;
+    switch (Stream.ReadRecord(Code, Record)) {
+    default:  // Default behavior: unknown type.
+      ResultTy = 0;
+      break;
+    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
+      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
+      // type list.  This allows us to reserve space.
+      if (Record.size() < 1)
+        return Error("Invalid TYPE_CODE_NUMENTRY record");
+      TypeList.reserve(Record[0]);
+      continue;
+    case bitc::TYPE_CODE_VOID:      // VOID
+      ResultTy = Type::getVoidTy(Context);
+      break;
+    case bitc::TYPE_CODE_FLOAT:     // FLOAT
+      ResultTy = Type::getFloatTy(Context);
+      break;
+    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
+      ResultTy = Type::getDoubleTy(Context);
+      break;
+    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
+      ResultTy = Type::getX86_FP80Ty(Context);
+      break;
+    case bitc::TYPE_CODE_FP128:     // FP128
+      ResultTy = Type::getFP128Ty(Context);
+      break;
+    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
+      ResultTy = Type::getPPC_FP128Ty(Context);
+      break;
+    case bitc::TYPE_CODE_LABEL:     // LABEL
+      ResultTy = Type::getLabelTy(Context);
+      break;
+    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
+      ResultTy = 0;
+      break;
+    case bitc::TYPE_CODE_METADATA:  // METADATA
+      ResultTy = Type::getMetadataTy(Context);
+      break;
+    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
+      if (Record.size() < 1)
+        return Error("Invalid Integer type record");
+
+      ResultTy = IntegerType::get(Context, Record[0]);
+      break;
+    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
+                                    //          [pointee type, address space]
+      if (Record.size() < 1)
+        return Error("Invalid POINTER type record");
+      unsigned AddressSpace = 0;
+      if (Record.size() == 2)
+        AddressSpace = Record[1];
+      ResultTy = PointerType::get(getTypeByID(Record[0], true),
+                                        AddressSpace);
+      break;
+    }
+    case bitc::TYPE_CODE_FUNCTION: {
+      // FIXME: attrid is dead, remove it in LLVM 3.0
+      // FUNCTION: [vararg, attrid, retty, paramty x N]
+      if (Record.size() < 3)
+        return Error("Invalid FUNCTION type record");
+      std::vector<const Type*> ArgTys;
+      for (unsigned i = 3, e = Record.size(); i != e; ++i)
+        ArgTys.push_back(getTypeByID(Record[i], true));
+
+      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
+                                   Record[0]);
+      break;
+    }
+    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
+      if (Record.size() < 1)
+        return Error("Invalid STRUCT type record");
+      std::vector<const Type*> EltTys;
+      for (unsigned i = 1, e = Record.size(); i != e; ++i)
+        EltTys.push_back(getTypeByID(Record[i], true));
+      ResultTy = StructType::get(Context, EltTys, Record[0]);
+      break;
+    }
+    case bitc::TYPE_CODE_UNION: {  // UNION: [eltty x N]
+      SmallVector<const Type*, 8> EltTys;
+      for (unsigned i = 0, e = Record.size(); i != e; ++i)
+        EltTys.push_back(getTypeByID(Record[i], true));
+      ResultTy = UnionType::get(&EltTys[0], EltTys.size());
+      break;
+    }
+    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
+      if (Record.size() < 2)
+        return Error("Invalid ARRAY type record");
+      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
+      break;
+    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
+      if (Record.size() < 2)
+        return Error("Invalid VECTOR type record");
+      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
+      break;
+    }
+
+    if (NumRecords == TypeList.size()) {
+      // If this is a new type slot, just append it.
+      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
+      ++NumRecords;
+    } else if (ResultTy == 0) {
+      // Otherwise, this was forward referenced, so an opaque type was created,
+      // but the result type is actually just an opaque.  Leave the one we
+      // created previously.
+      ++NumRecords;
+    } else {
+      // Otherwise, this was forward referenced, so an opaque type was created.
+      // Resolve the opaque type to the real type now.
+      assert(NumRecords < TypeList.size() && "Typelist imbalance");
+      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
+
+      // Don't directly push the new type on the Tab. Instead we want to replace
+      // the opaque type we previously inserted with the new concrete value. The
+      // refinement from the abstract (opaque) type to the new type causes all
+      // uses of the abstract type to use the concrete type (NewTy). This will
+      // also cause the opaque type to be deleted.
+      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
+
+      // This should have replaced the old opaque type with the new type in the
+      // value table... or with a preexisting type that was already in the
+      // system.  Let's just make sure it did.
+      assert(TypeList[NumRecords-1].get() != OldTy &&
+             "refineAbstractType didn't work!");
+    }
+  }
+}
+
+
+bool BitcodeReader::ParseTypeSymbolTable() {
+  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
+    return Error("Malformed block record");
+
+  SmallVector<uint64_t, 64> Record;
+
+  // Read all the records for this type table.
+  std::string TypeName;
+  while (1) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK) {
+      if (Stream.ReadBlockEnd())
+        return Error("Error at end of type symbol table block");
+      return false;
+    }
+
+    if (Code == bitc::ENTER_SUBBLOCK) {
+      // No known subblocks, always skip them.
+      Stream.ReadSubBlockID();
+      if (Stream.SkipBlock())
+        return Error("Malformed block record");
+      continue;
+    }
+
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+
+    // Read a record.
+    Record.clear();
+    switch (Stream.ReadRecord(Code, Record)) {
+    default:  // Default behavior: unknown type.
+      break;
+    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
+      if (ConvertToString(Record, 1, TypeName))
+        return Error("Invalid TST_ENTRY record");
+      unsigned TypeID = Record[0];
+      if (TypeID >= TypeList.size())
+        return Error("Invalid Type ID in TST_ENTRY record");
+
+      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
+      TypeName.clear();
+      break;
+    }
+  }
+}
+
+bool BitcodeReader::ParseValueSymbolTable() {
+  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
+    return Error("Malformed block record");
+
+  SmallVector<uint64_t, 64> Record;
+
+  // Read all the records for this value table.
+  SmallString<128> ValueName;
+  while (1) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK) {
+      if (Stream.ReadBlockEnd())
+        return Error("Error at end of value symbol table block");
+      return false;
+    }
+    if (Code == bitc::ENTER_SUBBLOCK) {
+      // No known subblocks, always skip them.
+      Stream.ReadSubBlockID();
+      if (Stream.SkipBlock())
+        return Error("Malformed block record");
+      continue;
+    }
+
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+
+    // Read a record.
+    Record.clear();
+    switch (Stream.ReadRecord(Code, Record)) {
+    default:  // Default behavior: unknown type.
+      break;
+    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
+      if (ConvertToString(Record, 1, ValueName))
+        return Error("Invalid VST_ENTRY record");
+      unsigned ValueID = Record[0];
+      if (ValueID >= ValueList.size())
+        return Error("Invalid Value ID in VST_ENTRY record");
+      Value *V = ValueList[ValueID];
+
+      V->setName(StringRef(ValueName.data(), ValueName.size()));
+      ValueName.clear();
+      break;
+    }
+    case bitc::VST_CODE_BBENTRY: {
+      if (ConvertToString(Record, 1, ValueName))
+        return Error("Invalid VST_BBENTRY record");
+      BasicBlock *BB = getBasicBlock(Record[0]);
+      if (BB == 0)
+        return Error("Invalid BB ID in VST_BBENTRY record");
+
+      BB->setName(StringRef(ValueName.data(), ValueName.size()));
+      ValueName.clear();
+      break;
+    }
+    }
+  }
+}
+
+bool BitcodeReader::ParseMetadata() {
+  unsigned NextMDValueNo = MDValueList.size();
+
+  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
+    return Error("Malformed block record");
+
+  SmallVector<uint64_t, 64> Record;
+
+  // Read all the records.
+  while (1) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK) {
+      if (Stream.ReadBlockEnd())
+        return Error("Error at end of PARAMATTR block");
+      return false;
+    }
+
+    if (Code == bitc::ENTER_SUBBLOCK) {
+      // No known subblocks, always skip them.
+      Stream.ReadSubBlockID();
+      if (Stream.SkipBlock())
+        return Error("Malformed block record");
+      continue;
+    }
+
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+
+    bool IsFunctionLocal = false;
+    // Read a record.
+    Record.clear();
+    switch (Stream.ReadRecord(Code, Record)) {
+    default:  // Default behavior: ignore.
+      break;
+    case bitc::METADATA_NAME: {
+      // Read named of the named metadata.
+      unsigned NameLength = Record.size();
+      SmallString<8> Name;
+      Name.resize(NameLength);
+      for (unsigned i = 0; i != NameLength; ++i)
+        Name[i] = Record[i];
+      Record.clear();
+      Code = Stream.ReadCode();
+
+      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
+      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
+        assert ( 0 && "Inavlid Named Metadata record");
+
+      // Read named metadata elements.
+      unsigned Size = Record.size();
+      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
+      for (unsigned i = 0; i != Size; ++i) {
+        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
+        if (MD == 0)
+          return Error("Malformed metadata record");
+        NMD->addOperand(MD);
+      }
+      break;
+    }
+    case bitc::METADATA_FN_NODE:
+      IsFunctionLocal = true;
+      // fall-through
+    case bitc::METADATA_NODE: {
+      if (Record.size() % 2 == 1)
+        return Error("Invalid METADATA_NODE record");
+
+      unsigned Size = Record.size();
+      SmallVector<Value*, 8> Elts;
+      for (unsigned i = 0; i != Size; i += 2) {
+        const Type *Ty = getTypeByID(Record[i], false);
+        if (Ty->isMetadataTy())
+          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
+        else if (!Ty->isVoidTy())
+          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
+        else
+          Elts.push_back(NULL);
+      }
+      Value *V = MDNode::getWhenValsUnresolved(Context,
+                                               Elts.data(), Elts.size(),
+                                               IsFunctionLocal);
+      IsFunctionLocal = false;
+      MDValueList.AssignValue(V, NextMDValueNo++);
+      break;
+    }
+    case bitc::METADATA_STRING: {
+      unsigned MDStringLength = Record.size();
+      SmallString<8> String;
+      String.resize(MDStringLength);
+      for (unsigned i = 0; i != MDStringLength; ++i)
+        String[i] = Record[i];
+      Value *V = MDString::get(Context,
+                               StringRef(String.data(), String.size()));
+      MDValueList.AssignValue(V, NextMDValueNo++);
+      break;
+    }
+    case bitc::METADATA_KIND: {
+      unsigned RecordLength = Record.size();
+      if (Record.empty() || RecordLength < 2)
+        return Error("Invalid METADATA_KIND record");
+      SmallString<8> Name;
+      Name.resize(RecordLength-1);
+      unsigned Kind = Record[0];
+      for (unsigned i = 1; i != RecordLength; ++i)
+        Name[i-1] = Record[i];
+      
+      unsigned NewKind = TheModule->getMDKindID(Name.str());
+      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
+        return Error("Conflicting METADATA_KIND records");
+      break;
+    }
+    }
+  }
+}
+
+/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
+/// the LSB for dense VBR encoding.
+static uint64_t DecodeSignRotatedValue(uint64_t V) {
+  if ((V & 1) == 0)
+    return V >> 1;
+  if (V != 1)
+    return -(V >> 1);
+  // There is no such thing as -0 with integers.  "-0" really means MININT.
+  return 1ULL << 63;
+}
+
+/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
+/// values and aliases that we can.
+bool BitcodeReader::ResolveGlobalAndAliasInits() {
+  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
+  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
+
+  GlobalInitWorklist.swap(GlobalInits);
+  AliasInitWorklist.swap(AliasInits);
+
+  while (!GlobalInitWorklist.empty()) {
+    unsigned ValID = GlobalInitWorklist.back().second;
+    if (ValID >= ValueList.size()) {
+      // Not ready to resolve this yet, it requires something later in the file.
+      GlobalInits.push_back(GlobalInitWorklist.back());
+    } else {
+      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
+        GlobalInitWorklist.back().first->setInitializer(C);
+      else
+        return Error("Global variable initializer is not a constant!");
+    }
+    GlobalInitWorklist.pop_back();
+  }
+
+  while (!AliasInitWorklist.empty()) {
+    unsigned ValID = AliasInitWorklist.back().second;
+    if (ValID >= ValueList.size()) {
+      AliasInits.push_back(AliasInitWorklist.back());
+    } else {
+      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
+        AliasInitWorklist.back().first->setAliasee(C);
+      else
+        return Error("Alias initializer is not a constant!");
+    }
+    AliasInitWorklist.pop_back();
+  }
+  return false;
+}
+
+bool BitcodeReader::ParseConstants() {
+  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
+    return Error("Malformed block record");
+
+  SmallVector<uint64_t, 64> Record;
+
+  // Read all the records for this value table.
+  const Type *CurTy = Type::getInt32Ty(Context);
+  unsigned NextCstNo = ValueList.size();
+  while (1) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK)
+      break;
+
+    if (Code == bitc::ENTER_SUBBLOCK) {
+      // No known subblocks, always skip them.
+      Stream.ReadSubBlockID();
+      if (Stream.SkipBlock())
+        return Error("Malformed block record");
+      continue;
+    }
+
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+
+    // Read a record.
+    Record.clear();
+    Value *V = 0;
+    unsigned BitCode = Stream.ReadRecord(Code, Record);
+    switch (BitCode) {
+    default:  // Default behavior: unknown constant
+    case bitc::CST_CODE_UNDEF:     // UNDEF
+      V = UndefValue::get(CurTy);
+      break;
+    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
+      if (Record.empty())
+        return Error("Malformed CST_SETTYPE record");
+      if (Record[0] >= TypeList.size())
+        return Error("Invalid Type ID in CST_SETTYPE record");
+      CurTy = TypeList[Record[0]];
+      continue;  // Skip the ValueList manipulation.
+    case bitc::CST_CODE_NULL:      // NULL
+      V = Constant::getNullValue(CurTy);
+      break;
+    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
+      if (!CurTy->isIntegerTy() || Record.empty())
+        return Error("Invalid CST_INTEGER record");
+      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
+      break;
+    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
+      if (!CurTy->isIntegerTy() || Record.empty())
+        return Error("Invalid WIDE_INTEGER record");
+
+      unsigned NumWords = Record.size();
+      SmallVector<uint64_t, 8> Words;
+      Words.resize(NumWords);
+      for (unsigned i = 0; i != NumWords; ++i)
+        Words[i] = DecodeSignRotatedValue(Record[i]);
+      V = ConstantInt::get(Context,
+                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
+                           NumWords, &Words[0]));
+      break;
+    }
+    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
+      if (Record.empty())
+        return Error("Invalid FLOAT record");
+      if (CurTy->isFloatTy())
+        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
+      else if (CurTy->isDoubleTy())
+        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
+      else if (CurTy->isX86_FP80Ty()) {
+        // Bits are not stored the same way as a normal i80 APInt, compensate.
+        uint64_t Rearrange[2];
+        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
+        Rearrange[1] = Record[0] >> 48;
+        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
+      } else if (CurTy->isFP128Ty())
+        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
+      else if (CurTy->isPPC_FP128Ty())
+        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
+      else
+        V = UndefValue::get(CurTy);
+      break;
+    }
+
+    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
+      if (Record.empty())
+        return Error("Invalid CST_AGGREGATE record");
+
+      unsigned Size = Record.size();
+      std::vector<Constant*> Elts;
+
+      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
+        for (unsigned i = 0; i != Size; ++i)
+          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
+                                                     STy->getElementType(i)));
+        V = ConstantStruct::get(STy, Elts);
+      } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) {
+        uint64_t Index = Record[0];
+        Constant *Val = ValueList.getConstantFwdRef(Record[1],
+                                        UnTy->getElementType(Index));
+        V = ConstantUnion::get(UnTy, Val);
+      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
+        const Type *EltTy = ATy->getElementType();
+        for (unsigned i = 0; i != Size; ++i)
+          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
+        V = ConstantArray::get(ATy, Elts);
+      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
+        const Type *EltTy = VTy->getElementType();
+        for (unsigned i = 0; i != Size; ++i)
+          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
+        V = ConstantVector::get(Elts);
+      } else {
+        V = UndefValue::get(CurTy);
+      }
+      break;
+    }
+    case bitc::CST_CODE_STRING: { // STRING: [values]
+      if (Record.empty())
+        return Error("Invalid CST_AGGREGATE record");
+
+      const ArrayType *ATy = cast<ArrayType>(CurTy);
+      const Type *EltTy = ATy->getElementType();
+
+      unsigned Size = Record.size();
+      std::vector<Constant*> Elts;
+      for (unsigned i = 0; i != Size; ++i)
+        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
+      V = ConstantArray::get(ATy, Elts);
+      break;
+    }
+    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
+      if (Record.empty())
+        return Error("Invalid CST_AGGREGATE record");
+
+      const ArrayType *ATy = cast<ArrayType>(CurTy);
+      const Type *EltTy = ATy->getElementType();
+
+      unsigned Size = Record.size();
+      std::vector<Constant*> Elts;
+      for (unsigned i = 0; i != Size; ++i)
+        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
+      Elts.push_back(Constant::getNullValue(EltTy));
+      V = ConstantArray::get(ATy, Elts);
+      break;
+    }
+    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
+      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
+      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
+      if (Opc < 0) {
+        V = UndefValue::get(CurTy);  // Unknown binop.
+      } else {
+        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
+        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
+        unsigned Flags = 0;
+        if (Record.size() >= 4) {
+          if (Opc == Instruction::Add ||
+              Opc == Instruction::Sub ||
+              Opc == Instruction::Mul) {
+            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
+              Flags |= OverflowingBinaryOperator::NoSignedWrap;
+            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
+              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
+          } else if (Opc == Instruction::SDiv) {
+            if (Record[3] & (1 << bitc::SDIV_EXACT))
+              Flags |= SDivOperator::IsExact;
+          }
+        }
+        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
+      }
+      break;
+    }
+    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
+      if (Record.size() < 3) return Error("Invalid CE_CAST record");
+      int Opc = GetDecodedCastOpcode(Record[0]);
+      if (Opc < 0) {
+        V = UndefValue::get(CurTy);  // Unknown cast.
+      } else {
+        const Type *OpTy = getTypeByID(Record[1]);
+        if (!OpTy) return Error("Invalid CE_CAST record");
+        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
+        V = ConstantExpr::getCast(Opc, Op, CurTy);
+      }
+      break;
+    }
+    case bitc::CST_CODE_CE_INBOUNDS_GEP:
+    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
+      if (Record.size() & 1) return Error("Invalid CE_GEP record");
+      SmallVector<Constant*, 16> Elts;
+      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+        const Type *ElTy = getTypeByID(Record[i]);
+        if (!ElTy) return Error("Invalid CE_GEP record");
+        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
+      }
+      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
+        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
+                                                   Elts.size()-1);
+      else
+        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
+                                           Elts.size()-1);
+      break;
+    }
+    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
+      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
+      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
+                                                              Type::getInt1Ty(Context)),
+                                  ValueList.getConstantFwdRef(Record[1],CurTy),
+                                  ValueList.getConstantFwdRef(Record[2],CurTy));
+      break;
+    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
+      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
+      const VectorType *OpTy =
+        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
+      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
+      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
+      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
+      V = ConstantExpr::getExtractElement(Op0, Op1);
+      break;
+    }
+    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
+      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
+      if (Record.size() < 3 || OpTy == 0)
+        return Error("Invalid CE_INSERTELT record");
+      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
+      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
+                                                  OpTy->getElementType());
+      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
+      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
+      break;
+    }
+    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
+      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
+      if (Record.size() < 3 || OpTy == 0)
+        return Error("Invalid CE_SHUFFLEVEC record");
+      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
+      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
+      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
+                                                 OpTy->getNumElements());
+      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
+      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
+      break;
+    }
+    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
+      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
+      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
+      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
+        return Error("Invalid CE_SHUFVEC_EX record");
+      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
+      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
+      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
+                                                 RTy->getNumElements());
+      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
+      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
+      break;
+    }
+    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
+      if (Record.size() < 4) return Error("Invalid CE_CMP record");
+      const Type *OpTy = getTypeByID(Record[0]);
+      if (OpTy == 0) return Error("Invalid CE_CMP record");
+      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
+      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
+
+      if (OpTy->isFPOrFPVectorTy())
+        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
+      else
+        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
+      break;
+    }
+    case bitc::CST_CODE_INLINEASM: {
+      if (Record.size() < 2) return Error("Invalid INLINEASM record");
+      std::string AsmStr, ConstrStr;
+      bool HasSideEffects = Record[0] & 1;
+      bool IsAlignStack = Record[0] >> 1;
+      unsigned AsmStrSize = Record[1];
+      if (2+AsmStrSize >= Record.size())
+        return Error("Invalid INLINEASM record");
+      unsigned ConstStrSize = Record[2+AsmStrSize];
+      if (3+AsmStrSize+ConstStrSize > Record.size())
+        return Error("Invalid INLINEASM record");
+
+      for (unsigned i = 0; i != AsmStrSize; ++i)
+        AsmStr += (char)Record[2+i];
+      for (unsigned i = 0; i != ConstStrSize; ++i)
+        ConstrStr += (char)Record[3+AsmStrSize+i];
+      const PointerType *PTy = cast<PointerType>(CurTy);
+      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
+                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
+      break;
+    }
+    case bitc::CST_CODE_BLOCKADDRESS:{
+      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
+      const Type *FnTy = getTypeByID(Record[0]);
+      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
+      Function *Fn =
+        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
+      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
+      
+      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
+                                                  Type::getInt8Ty(Context),
+                                            false, GlobalValue::InternalLinkage,
+                                                  0, "");
+      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
+      V = FwdRef;
+      break;
+    }  
+    }
+
+    ValueList.AssignValue(V, NextCstNo);
+    ++NextCstNo;
+  }
+
+  if (NextCstNo != ValueList.size())
+    return Error("Invalid constant reference!");
+
+  if (Stream.ReadBlockEnd())
+    return Error("Error at end of constants block");
+
+  // Once all the constants have been read, go through and resolve forward
+  // references.
+  ValueList.ResolveConstantForwardRefs();
+  return false;
+}
+
+/// RememberAndSkipFunctionBody - When we see the block for a function body,
+/// remember where it is and then skip it.  This lets us lazily deserialize the
+/// functions.
+bool BitcodeReader::RememberAndSkipFunctionBody() {
+  // Get the function we are talking about.
+  if (FunctionsWithBodies.empty())
+    return Error("Insufficient function protos");
+
+  Function *Fn = FunctionsWithBodies.back();
+  FunctionsWithBodies.pop_back();
+
+  // Save the current stream state.
+  uint64_t CurBit = Stream.GetCurrentBitNo();
+  DeferredFunctionInfo[Fn] = CurBit;
+
+  // Skip over the function block for now.
+  if (Stream.SkipBlock())
+    return Error("Malformed block record");
+  return false;
+}
+
+bool BitcodeReader::ParseModule() {
+  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
+    return Error("Malformed block record");
+
+  SmallVector<uint64_t, 64> Record;
+  std::vector<std::string> SectionTable;
+  std::vector<std::string> GCTable;
+
+  // Read all the records for this module.
+  while (!Stream.AtEndOfStream()) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK) {
+      if (Stream.ReadBlockEnd())
+        return Error("Error at end of module block");
+
+      // Patch the initializers for globals and aliases up.
+      ResolveGlobalAndAliasInits();
+      if (!GlobalInits.empty() || !AliasInits.empty())
+        return Error("Malformed global initializer set");
+      if (!FunctionsWithBodies.empty())
+        return Error("Too few function bodies found");
+
+      // Look for intrinsic functions which need to be upgraded at some point
+      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
+           FI != FE; ++FI) {
+        Function* NewFn;
+        if (UpgradeIntrinsicFunction(FI, NewFn))
+          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
+      }
+
+      // Force deallocation of memory for these vectors to favor the client that
+      // want lazy deserialization.
+      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
+      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
+      std::vector<Function*>().swap(FunctionsWithBodies);
+      return false;
+    }
+
+    if (Code == bitc::ENTER_SUBBLOCK) {
+      switch (Stream.ReadSubBlockID()) {
+      default:  // Skip unknown content.
+        if (Stream.SkipBlock())
+          return Error("Malformed block record");
+        break;
+      case bitc::BLOCKINFO_BLOCK_ID:
+        if (Stream.ReadBlockInfoBlock())
+          return Error("Malformed BlockInfoBlock");
+        break;
+      case bitc::PARAMATTR_BLOCK_ID:
+        if (ParseAttributeBlock())
+          return true;
+        break;
+      case bitc::TYPE_BLOCK_ID:
+        if (ParseTypeTable())
+          return true;
+        break;
+      case bitc::TYPE_SYMTAB_BLOCK_ID:
+        if (ParseTypeSymbolTable())
+          return true;
+        break;
+      case bitc::VALUE_SYMTAB_BLOCK_ID:
+        if (ParseValueSymbolTable())
+          return true;
+        break;
+      case bitc::CONSTANTS_BLOCK_ID:
+        if (ParseConstants() || ResolveGlobalAndAliasInits())
+          return true;
+        break;
+      case bitc::METADATA_BLOCK_ID:
+        if (ParseMetadata())
+          return true;
+        break;
+      case bitc::FUNCTION_BLOCK_ID:
+        // If this is the first function body we've seen, reverse the
+        // FunctionsWithBodies list.
+        if (!HasReversedFunctionsWithBodies) {
+          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
+          HasReversedFunctionsWithBodies = true;
+        }
+
+        if (RememberAndSkipFunctionBody())
+          return true;
+        break;
+      }
+      continue;
+    }
+
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+
+    // Read a record.
+    switch (Stream.ReadRecord(Code, Record)) {
+    default: break;  // Default behavior, ignore unknown content.
+    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
+      if (Record.size() < 1)
+        return Error("Malformed MODULE_CODE_VERSION");
+      // Only version #0 is supported so far.
+      if (Record[0] != 0)
+        return Error("Unknown bitstream version!");
+      break;
+    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
+      std::string S;
+      if (ConvertToString(Record, 0, S))
+        return Error("Invalid MODULE_CODE_TRIPLE record");
+      TheModule->setTargetTriple(S);
+      break;
+    }
+    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
+      std::string S;
+      if (ConvertToString(Record, 0, S))
+        return Error("Invalid MODULE_CODE_DATALAYOUT record");
+      TheModule->setDataLayout(S);
+      break;
+    }
+    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
+      std::string S;
+      if (ConvertToString(Record, 0, S))
+        return Error("Invalid MODULE_CODE_ASM record");
+      TheModule->setModuleInlineAsm(S);
+      break;
+    }
+    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
+      std::string S;
+      if (ConvertToString(Record, 0, S))
+        return Error("Invalid MODULE_CODE_DEPLIB record");
+      TheModule->addLibrary(S);
+      break;
+    }
+    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
+      std::string S;
+      if (ConvertToString(Record, 0, S))
+        return Error("Invalid MODULE_CODE_SECTIONNAME record");
+      SectionTable.push_back(S);
+      break;
+    }
+    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
+      std::string S;
+      if (ConvertToString(Record, 0, S))
+        return Error("Invalid MODULE_CODE_GCNAME record");
+      GCTable.push_back(S);
+      break;
+    }
+    // GLOBALVAR: [pointer type, isconst, initid,
+    //             linkage, alignment, section, visibility, threadlocal]
+    case bitc::MODULE_CODE_GLOBALVAR: {
+      if (Record.size() < 6)
+        return Error("Invalid MODULE_CODE_GLOBALVAR record");
+      const Type *Ty = getTypeByID(Record[0]);
+      if (!Ty->isPointerTy())
+        return Error("Global not a pointer type!");
+      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
+      Ty = cast<PointerType>(Ty)->getElementType();
+
+      bool isConstant = Record[1];
+      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
+      unsigned Alignment = (1 << Record[4]) >> 1;
+      std::string Section;
+      if (Record[5]) {
+        if (Record[5]-1 >= SectionTable.size())
+          return Error("Invalid section ID");
+        Section = SectionTable[Record[5]-1];
+      }
+      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
+      if (Record.size() > 6)
+        Visibility = GetDecodedVisibility(Record[6]);
+      bool isThreadLocal = false;
+      if (Record.size() > 7)
+        isThreadLocal = Record[7];
+
+      GlobalVariable *NewGV =
+        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
+                           isThreadLocal, AddressSpace);
+      NewGV->setAlignment(Alignment);
+      if (!Section.empty())
+        NewGV->setSection(Section);
+      NewGV->setVisibility(Visibility);
+      NewGV->setThreadLocal(isThreadLocal);
+
+      ValueList.push_back(NewGV);
+
+      // Remember which value to use for the global initializer.
+      if (unsigned InitID = Record[2])
+        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
+      break;
+    }
+    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
+    //             alignment, section, visibility, gc]
+    case bitc::MODULE_CODE_FUNCTION: {
+      if (Record.size() < 8)
+        return Error("Invalid MODULE_CODE_FUNCTION record");
+      const Type *Ty = getTypeByID(Record[0]);
+      if (!Ty->isPointerTy())
+        return Error("Function not a pointer type!");
+      const FunctionType *FTy =
+        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
+      if (!FTy)
+        return Error("Function not a pointer to function type!");
+
+      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
+                                        "", TheModule);
+
+      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
+      bool isProto = Record[2];
+      Func->setLinkage(GetDecodedLinkage(Record[3]));
+      Func->setAttributes(getAttributes(Record[4]));
+
+      Func->setAlignment((1 << Record[5]) >> 1);
+      if (Record[6]) {
+        if (Record[6]-1 >= SectionTable.size())
+          return Error("Invalid section ID");
+        Func->setSection(SectionTable[Record[6]-1]);
+      }
+      Func->setVisibility(GetDecodedVisibility(Record[7]));
+      if (Record.size() > 8 && Record[8]) {
+        if (Record[8]-1 > GCTable.size())
+          return Error("Invalid GC ID");
+        Func->setGC(GCTable[Record[8]-1].c_str());
+      }
+      ValueList.push_back(Func);
+
+      // If this is a function with a body, remember the prototype we are
+      // creating now, so that we can match up the body with them later.
+      if (!isProto)
+        FunctionsWithBodies.push_back(Func);
+      break;
+    }
+    // ALIAS: [alias type, aliasee val#, linkage]
+    // ALIAS: [alias type, aliasee val#, linkage, visibility]
+    case bitc::MODULE_CODE_ALIAS: {
+      if (Record.size() < 3)
+        return Error("Invalid MODULE_ALIAS record");
+      const Type *Ty = getTypeByID(Record[0]);
+      if (!Ty->isPointerTy())
+        return Error("Function not a pointer type!");
+
+      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
+                                           "", 0, TheModule);
+      // Old bitcode files didn't have visibility field.
+      if (Record.size() > 3)
+        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
+      ValueList.push_back(NewGA);
+      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
+      break;
+    }
+    /// MODULE_CODE_PURGEVALS: [numvals]
+    case bitc::MODULE_CODE_PURGEVALS:
+      // Trim down the value list to the specified size.
+      if (Record.size() < 1 || Record[0] > ValueList.size())
+        return Error("Invalid MODULE_PURGEVALS record");
+      ValueList.shrinkTo(Record[0]);
+      break;
+    }
+    Record.clear();
+  }
+
+  return Error("Premature end of bitstream");
+}
+
+bool BitcodeReader::ParseBitcodeInto(Module *M) {
+  TheModule = 0;
+
+  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
+  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
+
+  if (Buffer->getBufferSize() & 3) {
+    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
+      return Error("Invalid bitcode signature");
+    else
+      return Error("Bitcode stream should be a multiple of 4 bytes in length");
+  }
+
+  // If we have a wrapper header, parse it and ignore the non-bc file contents.
+  // The magic number is 0x0B17C0DE stored in little endian.
+  if (isBitcodeWrapper(BufPtr, BufEnd))
+    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
+      return Error("Invalid bitcode wrapper header");
+
+  StreamFile.init(BufPtr, BufEnd);
+  Stream.init(StreamFile);
+
+  // Sniff for the signature.
+  if (Stream.Read(8) != 'B' ||
+      Stream.Read(8) != 'C' ||
+      Stream.Read(4) != 0x0 ||
+      Stream.Read(4) != 0xC ||
+      Stream.Read(4) != 0xE ||
+      Stream.Read(4) != 0xD)
+    return Error("Invalid bitcode signature");
+
+  // We expect a number of well-defined blocks, though we don't necessarily
+  // need to understand them all.
+  while (!Stream.AtEndOfStream()) {
+    unsigned Code = Stream.ReadCode();
+
+    if (Code != bitc::ENTER_SUBBLOCK)
+      return Error("Invalid record at top-level");
+
+    unsigned BlockID = Stream.ReadSubBlockID();
+
+    // We only know the MODULE subblock ID.
+    switch (BlockID) {
+    case bitc::BLOCKINFO_BLOCK_ID:
+      if (Stream.ReadBlockInfoBlock())
+        return Error("Malformed BlockInfoBlock");
+      break;
+    case bitc::MODULE_BLOCK_ID:
+      // Reject multiple MODULE_BLOCK's in a single bitstream.
+      if (TheModule)
+        return Error("Multiple MODULE_BLOCKs in same stream");
+      TheModule = M;
+      if (ParseModule())
+        return true;
+      break;
+    default:
+      if (Stream.SkipBlock())
+        return Error("Malformed block record");
+      break;
+    }
+  }
+
+  return false;
+}
+
+/// ParseMetadataAttachment - Parse metadata attachments.
+bool BitcodeReader::ParseMetadataAttachment() {
+  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
+    return Error("Malformed block record");
+
+  SmallVector<uint64_t, 64> Record;
+  while(1) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK) {
+      if (Stream.ReadBlockEnd())
+        return Error("Error at end of PARAMATTR block");
+      break;
+    }
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+    // Read a metadata attachment record.
+    Record.clear();
+    switch (Stream.ReadRecord(Code, Record)) {
+    default:  // Default behavior: ignore.
+      break;
+    case bitc::METADATA_ATTACHMENT: {
+      unsigned RecordLength = Record.size();
+      if (Record.empty() || (RecordLength - 1) % 2 == 1)
+        return Error ("Invalid METADATA_ATTACHMENT reader!");
+      Instruction *Inst = InstructionList[Record[0]];
+      for (unsigned i = 1; i != RecordLength; i = i+2) {
+        unsigned Kind = Record[i];
+        DenseMap<unsigned, unsigned>::iterator I =
+          MDKindMap.find(Kind);
+        if (I == MDKindMap.end())
+          return Error("Invalid metadata kind ID");
+        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
+        Inst->setMetadata(I->second, cast<MDNode>(Node));
+      }
+      break;
+    }
+    }
+  }
+  return false;
+}
+
+/// ParseFunctionBody - Lazily parse the specified function body block.
+bool BitcodeReader::ParseFunctionBody(Function *F) {
+  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
+    return Error("Malformed block record");
+
+  InstructionList.clear();
+  unsigned ModuleValueListSize = ValueList.size();
+
+  // Add all the function arguments to the value table.
+  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
+    ValueList.push_back(I);
+
+  unsigned NextValueNo = ValueList.size();
+  BasicBlock *CurBB = 0;
+  unsigned CurBBNo = 0;
+
+  DebugLoc LastLoc;
+  
+  // Read all the records.
+  SmallVector<uint64_t, 64> Record;
+  while (1) {
+    unsigned Code = Stream.ReadCode();
+    if (Code == bitc::END_BLOCK) {
+      if (Stream.ReadBlockEnd())
+        return Error("Error at end of function block");
+      break;
+    }
+
+    if (Code == bitc::ENTER_SUBBLOCK) {
+      switch (Stream.ReadSubBlockID()) {
+      default:  // Skip unknown content.
+        if (Stream.SkipBlock())
+          return Error("Malformed block record");
+        break;
+      case bitc::CONSTANTS_BLOCK_ID:
+        if (ParseConstants()) return true;
+        NextValueNo = ValueList.size();
+        break;
+      case bitc::VALUE_SYMTAB_BLOCK_ID:
+        if (ParseValueSymbolTable()) return true;
+        break;
+      case bitc::METADATA_ATTACHMENT_ID:
+        if (ParseMetadataAttachment()) return true;
+        break;
+      case bitc::METADATA_BLOCK_ID:
+        if (ParseMetadata()) return true;
+        break;
+      }
+      continue;
+    }
+
+    if (Code == bitc::DEFINE_ABBREV) {
+      Stream.ReadAbbrevRecord();
+      continue;
+    }
+
+    // Read a record.
+    Record.clear();
+    Instruction *I = 0;
+    unsigned BitCode = Stream.ReadRecord(Code, Record);
+    switch (BitCode) {
+    default: // Default behavior: reject
+      return Error("Unknown instruction");
+    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
+      if (Record.size() < 1 || Record[0] == 0)
+        return Error("Invalid DECLAREBLOCKS record");
+      // Create all the basic blocks for the function.
+      FunctionBBs.resize(Record[0]);
+      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
+        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
+      CurBB = FunctionBBs[0];
+      continue;
+
+        
+    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
+      // This record indicates that the last instruction is at the same
+      // location as the previous instruction with a location.
+      I = 0;
+        
+      // Get the last instruction emitted.
+      if (CurBB && !CurBB->empty())
+        I = &CurBB->back();
+      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
+               !FunctionBBs[CurBBNo-1]->empty())
+        I = &FunctionBBs[CurBBNo-1]->back();
+        
+      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
+      I->setDebugLoc(LastLoc);
+      I = 0;
+      continue;
+        
+    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
+      I = 0;     // Get the last instruction emitted.
+      if (CurBB && !CurBB->empty())
+        I = &CurBB->back();
+      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
+               !FunctionBBs[CurBBNo-1]->empty())
+        I = &FunctionBBs[CurBBNo-1]->back();
+      if (I == 0 || Record.size() < 4)
+        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
+      
+      unsigned Line = Record[0], Col = Record[1];
+      unsigned ScopeID = Record[2], IAID = Record[3];
+      
+      MDNode *Scope = 0, *IA = 0;
+      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
+      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
+      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
+      I->setDebugLoc(LastLoc);
+      I = 0;
+      continue;
+    }
+
+    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
+      unsigned OpNum = 0;
+      Value *LHS, *RHS;
+      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
+          getValue(Record, OpNum, LHS->getType(), RHS) ||
+          OpNum+1 > Record.size())
+        return Error("Invalid BINOP record");
+
+      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
+      if (Opc == -1) return Error("Invalid BINOP record");
+      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+      InstructionList.push_back(I);
+      if (OpNum < Record.size()) {
+        if (Opc == Instruction::Add ||
+            Opc == Instruction::Sub ||
+            Opc == Instruction::Mul) {
+          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
+            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
+          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
+            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
+        } else if (Opc == Instruction::SDiv) {
+          if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
+            cast<BinaryOperator>(I)->setIsExact(true);
+        }
+      }
+      break;
+    }
+    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
+      unsigned OpNum = 0;
+      Value *Op;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+          OpNum+2 != Record.size())
+        return Error("Invalid CAST record");
+
+      const Type *ResTy = getTypeByID(Record[OpNum]);
+      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
+      if (Opc == -1 || ResTy == 0)
+        return Error("Invalid CAST record");
+      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
+      InstructionList.push_back(I);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
+    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
+      unsigned OpNum = 0;
+      Value *BasePtr;
+      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
+        return Error("Invalid GEP record");
+
+      SmallVector<Value*, 16> GEPIdx;
+      while (OpNum != Record.size()) {
+        Value *Op;
+        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+          return Error("Invalid GEP record");
+        GEPIdx.push_back(Op);
+      }
+
+      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
+      InstructionList.push_back(I);
+      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
+        cast<GetElementPtrInst>(I)->setIsInBounds(true);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
+                                       // EXTRACTVAL: [opty, opval, n x indices]
+      unsigned OpNum = 0;
+      Value *Agg;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
+        return Error("Invalid EXTRACTVAL record");
+
+      SmallVector<unsigned, 4> EXTRACTVALIdx;
+      for (unsigned RecSize = Record.size();
+           OpNum != RecSize; ++OpNum) {
+        uint64_t Index = Record[OpNum];
+        if ((unsigned)Index != Index)
+          return Error("Invalid EXTRACTVAL index");
+        EXTRACTVALIdx.push_back((unsigned)Index);
+      }
+
+      I = ExtractValueInst::Create(Agg,
+                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_INSERTVAL: {
+                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
+      unsigned OpNum = 0;
+      Value *Agg;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
+        return Error("Invalid INSERTVAL record");
+      Value *Val;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
+        return Error("Invalid INSERTVAL record");
+
+      SmallVector<unsigned, 4> INSERTVALIdx;
+      for (unsigned RecSize = Record.size();
+           OpNum != RecSize; ++OpNum) {
+        uint64_t Index = Record[OpNum];
+        if ((unsigned)Index != Index)
+          return Error("Invalid INSERTVAL index");
+        INSERTVALIdx.push_back((unsigned)Index);
+      }
+
+      I = InsertValueInst::Create(Agg, Val,
+                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
+      // obsolete form of select
+      // handles select i1 ... in old bitcode
+      unsigned OpNum = 0;
+      Value *TrueVal, *FalseVal, *Cond;
+      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
+          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
+          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
+        return Error("Invalid SELECT record");
+
+      I = SelectInst::Create(Cond, TrueVal, FalseVal);
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
+      // new form of select
+      // handles select i1 or select [N x i1]
+      unsigned OpNum = 0;
+      Value *TrueVal, *FalseVal, *Cond;
+      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
+          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
+          getValueTypePair(Record, OpNum, NextValueNo, Cond))
+        return Error("Invalid SELECT record");
+
+      // select condition can be either i1 or [N x i1]
+      if (const VectorType* vector_type =
+          dyn_cast<const VectorType>(Cond->getType())) {
+        // expect <n x i1>
+        if (vector_type->getElementType() != Type::getInt1Ty(Context))
+          return Error("Invalid SELECT condition type");
+      } else {
+        // expect i1
+        if (Cond->getType() != Type::getInt1Ty(Context))
+          return Error("Invalid SELECT condition type");
+      }
+
+      I = SelectInst::Create(Cond, TrueVal, FalseVal);
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
+      unsigned OpNum = 0;
+      Value *Vec, *Idx;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
+          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
+        return Error("Invalid EXTRACTELT record");
+      I = ExtractElementInst::Create(Vec, Idx);
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
+      unsigned OpNum = 0;
+      Value *Vec, *Elt, *Idx;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
+          getValue(Record, OpNum,
+                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
+          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
+        return Error("Invalid INSERTELT record");
+      I = InsertElementInst::Create(Vec, Elt, Idx);
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
+      unsigned OpNum = 0;
+      Value *Vec1, *Vec2, *Mask;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
+          getValue(Record, OpNum, Vec1->getType(), Vec2))
+        return Error("Invalid SHUFFLEVEC record");
+
+      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
+        return Error("Invalid SHUFFLEVEC record");
+      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
+      // Old form of ICmp/FCmp returning bool
+      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
+      // both legal on vectors but had different behaviour.
+    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
+      // FCmp/ICmp returning bool or vector of bool
+
+      unsigned OpNum = 0;
+      Value *LHS, *RHS;
+      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
+          getValue(Record, OpNum, LHS->getType(), RHS) ||
+          OpNum+1 != Record.size())
+        return Error("Invalid CMP record");
+
+      if (LHS->getType()->isFPOrFPVectorTy())
+        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
+      else
+        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
+      if (Record.size() != 2)
+        return Error("Invalid GETRESULT record");
+      unsigned OpNum = 0;
+      Value *Op;
+      getValueTypePair(Record, OpNum, NextValueNo, Op);
+      unsigned Index = Record[1];
+      I = ExtractValueInst::Create(Op, Index);
+      InstructionList.push_back(I);
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
+      {
+        unsigned Size = Record.size();
+        if (Size == 0) {
+          I = ReturnInst::Create(Context);
+          InstructionList.push_back(I);
+          break;
+        }
+
+        unsigned OpNum = 0;
+        SmallVector<Value *,4> Vs;
+        do {
+          Value *Op = NULL;
+          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+            return Error("Invalid RET record");
+          Vs.push_back(Op);
+        } while(OpNum != Record.size());
+
+        const Type *ReturnType = F->getReturnType();
+        if (Vs.size() > 1 ||
+            (ReturnType->isStructTy() &&
+             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
+          Value *RV = UndefValue::get(ReturnType);
+          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
+            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
+            InstructionList.push_back(I);
+            CurBB->getInstList().push_back(I);
+            ValueList.AssignValue(I, NextValueNo++);
+            RV = I;
+          }
+          I = ReturnInst::Create(Context, RV);
+          InstructionList.push_back(I);
+          break;
+        }
+
+        I = ReturnInst::Create(Context, Vs[0]);
+        InstructionList.push_back(I);
+        break;
+      }
+    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
+      if (Record.size() != 1 && Record.size() != 3)
+        return Error("Invalid BR record");
+      BasicBlock *TrueDest = getBasicBlock(Record[0]);
+      if (TrueDest == 0)
+        return Error("Invalid BR record");
+
+      if (Record.size() == 1) {
+        I = BranchInst::Create(TrueDest);
+        InstructionList.push_back(I);
+      }
+      else {
+        BasicBlock *FalseDest = getBasicBlock(Record[1]);
+        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
+        if (FalseDest == 0 || Cond == 0)
+          return Error("Invalid BR record");
+        I = BranchInst::Create(TrueDest, FalseDest, Cond);
+        InstructionList.push_back(I);
+      }
+      break;
+    }
+    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
+      if (Record.size() < 3 || (Record.size() & 1) == 0)
+        return Error("Invalid SWITCH record");
+      const Type *OpTy = getTypeByID(Record[0]);
+      Value *Cond = getFnValueByID(Record[1], OpTy);
+      BasicBlock *Default = getBasicBlock(Record[2]);
+      if (OpTy == 0 || Cond == 0 || Default == 0)
+        return Error("Invalid SWITCH record");
+      unsigned NumCases = (Record.size()-3)/2;
+      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
+      InstructionList.push_back(SI);
+      for (unsigned i = 0, e = NumCases; i != e; ++i) {
+        ConstantInt *CaseVal =
+          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
+        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
+        if (CaseVal == 0 || DestBB == 0) {
+          delete SI;
+          return Error("Invalid SWITCH record!");
+        }
+        SI->addCase(CaseVal, DestBB);
+      }
+      I = SI;
+      break;
+    }
+    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
+      if (Record.size() < 2)
+        return Error("Invalid INDIRECTBR record");
+      const Type *OpTy = getTypeByID(Record[0]);
+      Value *Address = getFnValueByID(Record[1], OpTy);
+      if (OpTy == 0 || Address == 0)
+        return Error("Invalid INDIRECTBR record");
+      unsigned NumDests = Record.size()-2;
+      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
+      InstructionList.push_back(IBI);
+      for (unsigned i = 0, e = NumDests; i != e; ++i) {
+        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
+          IBI->addDestination(DestBB);
+        } else {
+          delete IBI;
+          return Error("Invalid INDIRECTBR record!");
+        }
+      }
+      I = IBI;
+      break;
+    }
+        
+    case bitc::FUNC_CODE_INST_INVOKE: {
+      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
+      if (Record.size() < 4) return Error("Invalid INVOKE record");
+      AttrListPtr PAL = getAttributes(Record[0]);
+      unsigned CCInfo = Record[1];
+      BasicBlock *NormalBB = getBasicBlock(Record[2]);
+      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
+
+      unsigned OpNum = 4;
+      Value *Callee;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
+        return Error("Invalid INVOKE record");
+
+      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
+      const FunctionType *FTy = !CalleeTy ? 0 :
+        dyn_cast<FunctionType>(CalleeTy->getElementType());
+
+      // Check that the right number of fixed parameters are here.
+      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
+          Record.size() < OpNum+FTy->getNumParams())
+        return Error("Invalid INVOKE record");
+
+      SmallVector<Value*, 16> Ops;
+      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
+        if (Ops.back() == 0) return Error("Invalid INVOKE record");
+      }
+
+      if (!FTy->isVarArg()) {
+        if (Record.size() != OpNum)
+          return Error("Invalid INVOKE record");
+      } else {
+        // Read type/value pairs for varargs params.
+        while (OpNum != Record.size()) {
+          Value *Op;
+          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+            return Error("Invalid INVOKE record");
+          Ops.push_back(Op);
+        }
+      }
+
+      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
+                             Ops.begin(), Ops.end());
+      InstructionList.push_back(I);
+      cast<InvokeInst>(I)->setCallingConv(
+        static_cast<CallingConv::ID>(CCInfo));
+      cast<InvokeInst>(I)->setAttributes(PAL);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
+      I = new UnwindInst(Context);
+      InstructionList.push_back(I);
+      break;
+    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
+      I = new UnreachableInst(Context);
+      InstructionList.push_back(I);
+      break;
+    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
+      if (Record.size() < 1 || ((Record.size()-1)&1))
+        return Error("Invalid PHI record");
+      const Type *Ty = getTypeByID(Record[0]);
+      if (!Ty) return Error("Invalid PHI record");
+
+      PHINode *PN = PHINode::Create(Ty);
+      InstructionList.push_back(PN);
+      PN->reserveOperandSpace((Record.size()-1)/2);
+
+      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
+        Value *V = getFnValueByID(Record[1+i], Ty);
+        BasicBlock *BB = getBasicBlock(Record[2+i]);
+        if (!V || !BB) return Error("Invalid PHI record");
+        PN->addIncoming(V, BB);
+      }
+      I = PN;
+      break;
+    }
+
+    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
+      // Autoupgrade malloc instruction to malloc call.
+      // FIXME: Remove in LLVM 3.0.
+      if (Record.size() < 3)
+        return Error("Invalid MALLOC record");
+      const PointerType *Ty =
+        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
+      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
+      if (!Ty || !Size) return Error("Invalid MALLOC record");
+      if (!CurBB) return Error("Invalid malloc instruction with no BB");
+      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
+      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
+      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
+      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
+                                 AllocSize, Size, NULL);
+      InstructionList.push_back(I);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
+      unsigned OpNum = 0;
+      Value *Op;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+          OpNum != Record.size())
+        return Error("Invalid FREE record");
+      if (!CurBB) return Error("Invalid free instruction with no BB");
+      I = CallInst::CreateFree(Op, CurBB);
+      InstructionList.push_back(I);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
+      // For backward compatibility, tolerate a lack of an opty, and use i32.
+      // LLVM 3.0: Remove this.
+      if (Record.size() < 3 || Record.size() > 4)
+        return Error("Invalid ALLOCA record");
+      unsigned OpNum = 0;
+      const PointerType *Ty =
+        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
+      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
+                                              Type::getInt32Ty(Context);
+      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
+      unsigned Align = Record[OpNum++];
+      if (!Ty || !Size) return Error("Invalid ALLOCA record");
+      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
+      InstructionList.push_back(I);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
+      unsigned OpNum = 0;
+      Value *Op;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+          OpNum+2 != Record.size())
+        return Error("Invalid LOAD record");
+
+      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+      InstructionList.push_back(I);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
+      unsigned OpNum = 0;
+      Value *Val, *Ptr;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
+          getValue(Record, OpNum,
+                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
+          OpNum+2 != Record.size())
+        return Error("Invalid STORE record");
+
+      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+      InstructionList.push_back(I);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
+      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
+      unsigned OpNum = 0;
+      Value *Val, *Ptr;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
+          getValue(Record, OpNum,
+                   PointerType::getUnqual(Val->getType()), Ptr)||
+          OpNum+2 != Record.size())
+        return Error("Invalid STORE record");
+
+      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+      InstructionList.push_back(I);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_CALL: {
+      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
+      if (Record.size() < 3)
+        return Error("Invalid CALL record");
+
+      AttrListPtr PAL = getAttributes(Record[0]);
+      unsigned CCInfo = Record[1];
+
+      unsigned OpNum = 2;
+      Value *Callee;
+      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
+        return Error("Invalid CALL record");
+
+      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
+      const FunctionType *FTy = 0;
+      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
+      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
+        return Error("Invalid CALL record");
+
+      SmallVector<Value*, 16> Args;
+      // Read the fixed params.
+      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
+          Args.push_back(getBasicBlock(Record[OpNum]));
+        else
+          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
+        if (Args.back() == 0) return Error("Invalid CALL record");
+      }
+
+      // Read type/value pairs for varargs params.
+      if (!FTy->isVarArg()) {
+        if (OpNum != Record.size())
+          return Error("Invalid CALL record");
+      } else {
+        while (OpNum != Record.size()) {
+          Value *Op;
+          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+            return Error("Invalid CALL record");
+          Args.push_back(Op);
+        }
+      }
+
+      I = CallInst::Create(Callee, Args.begin(), Args.end());
+      InstructionList.push_back(I);
+      cast<CallInst>(I)->setCallingConv(
+        static_cast<CallingConv::ID>(CCInfo>>1));
+      cast<CallInst>(I)->setTailCall(CCInfo & 1);
+      cast<CallInst>(I)->setAttributes(PAL);
+      break;
+    }
+    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
+      if (Record.size() < 3)
+        return Error("Invalid VAARG record");
+      const Type *OpTy = getTypeByID(Record[0]);
+      Value *Op = getFnValueByID(Record[1], OpTy);
+      const Type *ResTy = getTypeByID(Record[2]);
+      if (!OpTy || !Op || !ResTy)
+        return Error("Invalid VAARG record");
+      I = new VAArgInst(Op, ResTy);
+      InstructionList.push_back(I);
+      break;
+    }
+    }
+
+    // Add instruction to end of current BB.  If there is no current BB, reject
+    // this file.
+    if (CurBB == 0) {
+      delete I;
+      return Error("Invalid instruction with no BB");
+    }
+    CurBB->getInstList().push_back(I);
+
+    // If this was a terminator instruction, move to the next block.
+    if (isa<TerminatorInst>(I)) {
+      ++CurBBNo;
+      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
+    }
+
+    // Non-void values get registered in the value table for future use.
+    if (I && !I->getType()->isVoidTy())
+      ValueList.AssignValue(I, NextValueNo++);
+  }
+
+  // Check the function list for unresolved values.
+  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
+    if (A->getParent() == 0) {
+      // We found at least one unresolved value.  Nuke them all to avoid leaks.
+      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
+        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
+          A->replaceAllUsesWith(UndefValue::get(A->getType()));
+          delete A;
+        }
+      }
+      return Error("Never resolved value found in function!");
+    }
+  }
+
+  // See if anything took the address of blocks in this function.  If so,
+  // resolve them now.
+  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
+    BlockAddrFwdRefs.find(F);
+  if (BAFRI != BlockAddrFwdRefs.end()) {
+    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
+    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
+      unsigned BlockIdx = RefList[i].first;
+      if (BlockIdx >= FunctionBBs.size())
+        return Error("Invalid blockaddress block #");
+    
+      GlobalVariable *FwdRef = RefList[i].second;
+      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
+      FwdRef->eraseFromParent();
+    }
+    
+    BlockAddrFwdRefs.erase(BAFRI);
+  }
+  
+  // Trim the value list down to the size it was before we parsed this function.
+  ValueList.shrinkTo(ModuleValueListSize);
+  std::vector<BasicBlock*>().swap(FunctionBBs);
+
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// GVMaterializer implementation
+//===----------------------------------------------------------------------===//
+
+
+bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
+  if (const Function *F = dyn_cast<Function>(GV)) {
+    return F->isDeclaration() &&
+      DeferredFunctionInfo.count(const_cast<Function*>(F));
+  }
+  return false;
+}
+
+bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
+  Function *F = dyn_cast<Function>(GV);
+  // If it's not a function or is already material, ignore the request.
+  if (!F || !F->isMaterializable()) return false;
+
+  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
+  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
+
+  // Move the bit stream to the saved position of the deferred function body.
+  Stream.JumpToBit(DFII->second);
+
+  if (ParseFunctionBody(F)) {
+    if (ErrInfo) *ErrInfo = ErrorString;
+    return true;
+  }
+
+  // Upgrade any old intrinsic calls in the function.
+  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
+       E = UpgradedIntrinsics.end(); I != E; ++I) {
+    if (I->first != I->second) {
+      for (Value::use_iterator UI = I->first->use_begin(),
+           UE = I->first->use_end(); UI != UE; ) {
+        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
+          UpgradeIntrinsicCall(CI, I->second);
+      }
+    }
+  }
+
+  return false;
+}
+
+bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
+  const Function *F = dyn_cast<Function>(GV);
+  if (!F || F->isDeclaration())
+    return false;
+  return DeferredFunctionInfo.count(const_cast<Function*>(F));
+}
+
+void BitcodeReader::Dematerialize(GlobalValue *GV) {
+  Function *F = dyn_cast<Function>(GV);
+  // If this function isn't dematerializable, this is a noop.
+  if (!F || !isDematerializable(F))
+    return;
+
+  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
+
+  // Just forget the function body, we can remat it later.
+  F->deleteBody();
+}
+
+
+bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
+  assert(M == TheModule &&
+         "Can only Materialize the Module this BitcodeReader is attached to.");
+  // Iterate over the module, deserializing any functions that are still on
+  // disk.
+  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
+       F != E; ++F)
+    if (F->isMaterializable() &&
+        Materialize(F, ErrInfo))
+      return true;
+
+  // Upgrade any intrinsic calls that slipped through (should not happen!) and
+  // delete the old functions to clean up. We can't do this unless the entire
+  // module is materialized because there could always be another function body
+  // with calls to the old function.
+  for (std::vector<std::pair<Function*, Function*> >::iterator I =
+       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
+    if (I->first != I->second) {
+      for (Value::use_iterator UI = I->first->use_begin(),
+           UE = I->first->use_end(); UI != UE; ) {
+        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
+          UpgradeIntrinsicCall(CI, I->second);
+      }
+      if (!I->first->use_empty())
+        I->first->replaceAllUsesWith(I->second);
+      I->first->eraseFromParent();
+    }
+  }
+  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
+
+  // Check debug info intrinsics.
+  CheckDebugInfoIntrinsics(TheModule);
+
+  return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// External interface
+//===----------------------------------------------------------------------===//
+
+/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
+///
+Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
+                                   LLVMContext& Context,
+                                   std::string *ErrMsg) {
+  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
+  BitcodeReader *R = new BitcodeReader(Buffer, Context);
+  M->setMaterializer(R);
+  if (R->ParseBitcodeInto(M)) {
+    if (ErrMsg)
+      *ErrMsg = R->getErrorString();
+
+    delete M;  // Also deletes R.
+    return 0;
+  }
+  // Have the BitcodeReader dtor delete 'Buffer'.
+  R->setBufferOwned(true);
+  return M;
+}
+
+/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
+/// If an error occurs, return null and fill in *ErrMsg if non-null.
+Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
+                               std::string *ErrMsg){
+  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
+  if (!M) return 0;
+
+  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
+  // there was an error.
+  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
+
+  // Read in the entire module, and destroy the BitcodeReader.
+  if (M->MaterializeAllPermanently(ErrMsg)) {
+    delete M;
+    return NULL;
+  }
+  return M;
+}
diff --git a/src/LLVM/lib/Bitcode/Reader/BitcodeReader.h b/src/LLVM/lib/Bitcode/Reader/BitcodeReader.h
new file mode 100644
index 0000000..a5ab5d2
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Reader/BitcodeReader.h
@@ -0,0 +1,270 @@
+//===- BitcodeReader.h - Internal BitcodeReader impl ------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header defines the BitcodeReader class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BITCODE_READER_H
+#define BITCODE_READER_H
+
+#include "llvm/GVMaterializer.h"
+#include "llvm/Attributes.h"
+#include "llvm/Type.h"
+#include "llvm/OperandTraits.h"
+#include "llvm/Bitcode/BitstreamReader.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/ADT/DenseMap.h"
+#include <vector>
+
+namespace llvm {
+  class MemoryBuffer;
+  class LLVMContext;
+  
+//===----------------------------------------------------------------------===//
+//                          BitcodeReaderValueList Class
+//===----------------------------------------------------------------------===//
+
+class BitcodeReaderValueList {
+  std::vector<WeakVH> ValuePtrs;
+  
+  /// ResolveConstants - As we resolve forward-referenced constants, we add
+  /// information about them to this vector.  This allows us to resolve them in
+  /// bulk instead of resolving each reference at a time.  See the code in
+  /// ResolveConstantForwardRefs for more information about this.
+  ///
+  /// The key of this vector is the placeholder constant, the value is the slot
+  /// number that holds the resolved value.
+  typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
+  ResolveConstantsTy ResolveConstants;
+  LLVMContext& Context;
+public:
+  BitcodeReaderValueList(LLVMContext& C) : Context(C) {}
+  ~BitcodeReaderValueList() {
+    assert(ResolveConstants.empty() && "Constants not resolved?");
+  }
+
+  // vector compatibility methods
+  unsigned size() const { return ValuePtrs.size(); }
+  void resize(unsigned N) { ValuePtrs.resize(N); }
+  void push_back(Value *V) {
+    ValuePtrs.push_back(V);
+  }
+  
+  void clear() {
+    assert(ResolveConstants.empty() && "Constants not resolved?");
+    ValuePtrs.clear();
+  }
+  
+  Value *operator[](unsigned i) const {
+    assert(i < ValuePtrs.size());
+    return ValuePtrs[i];
+  }
+  
+  Value *back() const { return ValuePtrs.back(); }
+    void pop_back() { ValuePtrs.pop_back(); }
+  bool empty() const { return ValuePtrs.empty(); }
+  void shrinkTo(unsigned N) {
+    assert(N <= size() && "Invalid shrinkTo request!");
+    ValuePtrs.resize(N);
+  }
+  
+  Constant *getConstantFwdRef(unsigned Idx, const Type *Ty);
+  Value *getValueFwdRef(unsigned Idx, const Type *Ty);
+  
+  void AssignValue(Value *V, unsigned Idx);
+  
+  /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
+  /// resolves any forward references.
+  void ResolveConstantForwardRefs();
+};
+
+
+//===----------------------------------------------------------------------===//
+//                          BitcodeReaderMDValueList Class
+//===----------------------------------------------------------------------===//
+
+class BitcodeReaderMDValueList {
+  std::vector<WeakVH> MDValuePtrs;
+  
+  LLVMContext &Context;
+public:
+  BitcodeReaderMDValueList(LLVMContext& C) : Context(C) {}
+
+  // vector compatibility methods
+  unsigned size() const       { return MDValuePtrs.size(); }
+  void resize(unsigned N)     { MDValuePtrs.resize(N); }
+  void push_back(Value *V)    { MDValuePtrs.push_back(V);  }
+  void clear()                { MDValuePtrs.clear();  }
+  Value *back() const         { return MDValuePtrs.back(); }
+  void pop_back()             { MDValuePtrs.pop_back(); }
+  bool empty() const          { return MDValuePtrs.empty(); }
+  
+  Value *operator[](unsigned i) const {
+    assert(i < MDValuePtrs.size());
+    return MDValuePtrs[i];
+  }
+  
+  void shrinkTo(unsigned N) {
+    assert(N <= size() && "Invalid shrinkTo request!");
+    MDValuePtrs.resize(N);
+  }
+
+  Value *getValueFwdRef(unsigned Idx);
+  void AssignValue(Value *V, unsigned Idx);
+};
+
+class BitcodeReader : public GVMaterializer {
+  LLVMContext &Context;
+  Module *TheModule;
+  MemoryBuffer *Buffer;
+  bool BufferOwned;
+  BitstreamReader StreamFile;
+  BitstreamCursor Stream;
+  
+  const char *ErrorString;
+  
+  std::vector<PATypeHolder> TypeList;
+  BitcodeReaderValueList ValueList;
+  BitcodeReaderMDValueList MDValueList;
+  SmallVector<Instruction *, 64> InstructionList;
+
+  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
+  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
+  
+  /// MAttributes - The set of attributes by index.  Index zero in the
+  /// file is for null, and is thus not represented here.  As such all indices
+  /// are off by one.
+  std::vector<AttrListPtr> MAttributes;
+  
+  /// FunctionBBs - While parsing a function body, this is a list of the basic
+  /// blocks for the function.
+  std::vector<BasicBlock*> FunctionBBs;
+  
+  // When reading the module header, this list is populated with functions that
+  // have bodies later in the file.
+  std::vector<Function*> FunctionsWithBodies;
+
+  // When intrinsic functions are encountered which require upgrading they are 
+  // stored here with their replacement function.
+  typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
+  UpgradedIntrinsicMap UpgradedIntrinsics;
+
+  // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
+  DenseMap<unsigned, unsigned> MDKindMap;
+  
+  // After the module header has been read, the FunctionsWithBodies list is 
+  // reversed.  This keeps track of whether we've done this yet.
+  bool HasReversedFunctionsWithBodies;
+  
+  /// DeferredFunctionInfo - When function bodies are initially scanned, this
+  /// map contains info about where to find deferred function body in the
+  /// stream.
+  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
+  
+  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
+  /// are resolved lazily when functions are loaded.
+  typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
+  DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
+  
+public:
+  explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C)
+    : Context(C), TheModule(0), Buffer(buffer), BufferOwned(false),
+      ErrorString(0), ValueList(C), MDValueList(C) {
+    HasReversedFunctionsWithBodies = false;
+  }
+  ~BitcodeReader() {
+    FreeState();
+  }
+  
+  void FreeState();
+  
+  /// setBufferOwned - If this is true, the reader will destroy the MemoryBuffer
+  /// when the reader is destroyed.
+  void setBufferOwned(bool Owned) { BufferOwned = Owned; }
+  
+  virtual bool isMaterializable(const GlobalValue *GV) const;
+  virtual bool isDematerializable(const GlobalValue *GV) const;
+  virtual bool Materialize(GlobalValue *GV, std::string *ErrInfo = 0);
+  virtual bool MaterializeModule(Module *M, std::string *ErrInfo = 0);
+  virtual void Dematerialize(GlobalValue *GV);
+
+  bool Error(const char *Str) {
+    ErrorString = Str;
+    return true;
+  }
+  const char *getErrorString() const { return ErrorString; }
+  
+  /// @brief Main interface to parsing a bitcode buffer.
+  /// @returns true if an error occurred.
+  bool ParseBitcodeInto(Module *M);
+private:
+  const Type *getTypeByID(unsigned ID, bool isTypeTable = false);
+  Value *getFnValueByID(unsigned ID, const Type *Ty) {
+    if (Ty == Type::getMetadataTy(Context))
+      return MDValueList.getValueFwdRef(ID);
+    else
+      return ValueList.getValueFwdRef(ID, Ty);
+  }
+  BasicBlock *getBasicBlock(unsigned ID) const {
+    if (ID >= FunctionBBs.size()) return 0; // Invalid ID
+    return FunctionBBs[ID];
+  }
+  AttrListPtr getAttributes(unsigned i) const {
+    if (i-1 < MAttributes.size())
+      return MAttributes[i-1];
+    return AttrListPtr();
+  }
+  
+  /// getValueTypePair - Read a value/type pair out of the specified record from
+  /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
+  /// Return true on failure.
+  bool getValueTypePair(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
+                        unsigned InstNum, Value *&ResVal) {
+    if (Slot == Record.size()) return true;
+    unsigned ValNo = (unsigned)Record[Slot++];
+    if (ValNo < InstNum) {
+      // If this is not a forward reference, just return the value we already
+      // have.
+      ResVal = getFnValueByID(ValNo, 0);
+      return ResVal == 0;
+    } else if (Slot == Record.size()) {
+      return true;
+    }
+    
+    unsigned TypeNo = (unsigned)Record[Slot++];
+    ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
+    return ResVal == 0;
+  }
+  bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
+                const Type *Ty, Value *&ResVal) {
+    if (Slot == Record.size()) return true;
+    unsigned ValNo = (unsigned)Record[Slot++];
+    ResVal = getFnValueByID(ValNo, Ty);
+    return ResVal == 0;
+  }
+
+  
+  bool ParseModule();
+  bool ParseAttributeBlock();
+  bool ParseTypeTable();
+  bool ParseTypeSymbolTable();
+  bool ParseValueSymbolTable();
+  bool ParseConstants();
+  bool RememberAndSkipFunctionBody();
+  bool ParseFunctionBody(Function *F);
+  bool ResolveGlobalAndAliasInits();
+  bool ParseMetadata();
+  bool ParseMetadataAttachment();
+};
+  
+} // End llvm namespace
+
+#endif
diff --git a/src/LLVM/lib/Bitcode/Reader/CMakeLists.txt b/src/LLVM/lib/Bitcode/Reader/CMakeLists.txt
new file mode 100644
index 0000000..693d431
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Reader/CMakeLists.txt
@@ -0,0 +1,4 @@
+add_llvm_library(LLVMBitReader
+  BitReader.cpp
+  BitcodeReader.cpp
+  )
diff --git a/src/LLVM/lib/Bitcode/Reader/Makefile b/src/LLVM/lib/Bitcode/Reader/Makefile
new file mode 100644
index 0000000..59af8d5
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Reader/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Bitcode/Reader/Makefile -------------------------*- Makefile -*-===##
+#
+#                     The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMBitReader
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
diff --git a/src/LLVM/lib/Bitcode/Writer/BitWriter.cpp b/src/LLVM/lib/Bitcode/Writer/BitWriter.cpp
new file mode 100644
index 0000000..4288422
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Writer/BitWriter.cpp
@@ -0,0 +1,40 @@
+//===-- BitWriter.cpp -----------------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm-c/BitWriter.h"
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+
+/*===-- Operations on modules ---------------------------------------------===*/
+
+int LLVMWriteBitcodeToFile(LLVMModuleRef M, const char *Path) {
+  std::string ErrorInfo;
+  raw_fd_ostream OS(Path, ErrorInfo,
+                    raw_fd_ostream::F_Binary);
+  
+  if (!ErrorInfo.empty())
+    return -1;
+  
+  WriteBitcodeToFile(unwrap(M), OS);
+  return 0;
+}
+
+int LLVMWriteBitcodeToFD(LLVMModuleRef M, int FD, int ShouldClose,
+                         int Unbuffered) {
+  raw_fd_ostream OS(FD, ShouldClose, Unbuffered);
+  
+  WriteBitcodeToFile(unwrap(M), OS);
+  return 0;
+}
+
+int LLVMWriteBitcodeToFileHandle(LLVMModuleRef M, int FileHandle) {
+  return LLVMWriteBitcodeToFD(M, FileHandle, true, false);
+}
diff --git a/src/LLVM/lib/Bitcode/Writer/BitcodeWriter.cpp b/src/LLVM/lib/Bitcode/Writer/BitcodeWriter.cpp
new file mode 100644
index 0000000..776c2d4
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -0,0 +1,1694 @@
+//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "ValueEnumerator.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Operator.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Program.h"
+using namespace llvm;
+
+/// These are manifest constants used by the bitcode writer. They do not need to
+/// be kept in sync with the reader, but need to be consistent within this file.
+enum {
+  CurVersion = 0,
+
+  // VALUE_SYMTAB_BLOCK abbrev id's.
+  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+  VST_ENTRY_7_ABBREV,
+  VST_ENTRY_6_ABBREV,
+  VST_BBENTRY_6_ABBREV,
+
+  // CONSTANTS_BLOCK abbrev id's.
+  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+  CONSTANTS_INTEGER_ABBREV,
+  CONSTANTS_CE_CAST_Abbrev,
+  CONSTANTS_NULL_Abbrev,
+
+  // FUNCTION_BLOCK abbrev id's.
+  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+  FUNCTION_INST_BINOP_ABBREV,
+  FUNCTION_INST_BINOP_FLAGS_ABBREV,
+  FUNCTION_INST_CAST_ABBREV,
+  FUNCTION_INST_RET_VOID_ABBREV,
+  FUNCTION_INST_RET_VAL_ABBREV,
+  FUNCTION_INST_UNREACHABLE_ABBREV
+};
+
+
+static unsigned GetEncodedCastOpcode(unsigned Opcode) {
+  switch (Opcode) {
+  default: llvm_unreachable("Unknown cast instruction!");
+  case Instruction::Trunc   : return bitc::CAST_TRUNC;
+  case Instruction::ZExt    : return bitc::CAST_ZEXT;
+  case Instruction::SExt    : return bitc::CAST_SEXT;
+  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
+  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
+  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
+  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
+  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
+  case Instruction::FPExt   : return bitc::CAST_FPEXT;
+  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
+  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
+  case Instruction::BitCast : return bitc::CAST_BITCAST;
+  }
+}
+
+static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
+  switch (Opcode) {
+  default: llvm_unreachable("Unknown binary instruction!");
+  case Instruction::Add:
+  case Instruction::FAdd: return bitc::BINOP_ADD;
+  case Instruction::Sub:
+  case Instruction::FSub: return bitc::BINOP_SUB;
+  case Instruction::Mul:
+  case Instruction::FMul: return bitc::BINOP_MUL;
+  case Instruction::UDiv: return bitc::BINOP_UDIV;
+  case Instruction::FDiv:
+  case Instruction::SDiv: return bitc::BINOP_SDIV;
+  case Instruction::URem: return bitc::BINOP_UREM;
+  case Instruction::FRem:
+  case Instruction::SRem: return bitc::BINOP_SREM;
+  case Instruction::Shl:  return bitc::BINOP_SHL;
+  case Instruction::LShr: return bitc::BINOP_LSHR;
+  case Instruction::AShr: return bitc::BINOP_ASHR;
+  case Instruction::And:  return bitc::BINOP_AND;
+  case Instruction::Or:   return bitc::BINOP_OR;
+  case Instruction::Xor:  return bitc::BINOP_XOR;
+  }
+}
+
+
+
+static void WriteStringRecord(unsigned Code, const std::string &Str,
+                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
+  SmallVector<unsigned, 64> Vals;
+
+  // Code: [strchar x N]
+  for (unsigned i = 0, e = Str.size(); i != e; ++i)
+    Vals.push_back(Str[i]);
+
+  // Emit the finished record.
+  Stream.EmitRecord(Code, Vals, AbbrevToUse);
+}
+
+// Emit information about parameter attributes.
+static void WriteAttributeTable(const ValueEnumerator &VE,
+                                BitstreamWriter &Stream) {
+  const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
+  if (Attrs.empty()) return;
+
+  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
+
+  SmallVector<uint64_t, 64> Record;
+  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
+    const AttrListPtr &A = Attrs[i];
+    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
+      const AttributeWithIndex &PAWI = A.getSlot(i);
+      Record.push_back(PAWI.Index);
+
+      // FIXME: remove in LLVM 3.0
+      // Store the alignment in the bitcode as a 16-bit raw value instead of a
+      // 5-bit log2 encoded value. Shift the bits above the alignment up by
+      // 11 bits.
+      uint64_t FauxAttr = PAWI.Attrs & 0xffff;
+      if (PAWI.Attrs & Attribute::Alignment)
+        FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
+      FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
+
+      Record.push_back(FauxAttr);
+    }
+
+    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+/// WriteTypeTable - Write out the type table for a module.
+static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
+
+  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
+  SmallVector<uint64_t, 64> TypeVals;
+
+  // Abbrev for TYPE_CODE_POINTER.
+  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
+  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
+
+  // Abbrev for TYPE_CODE_FUNCTION.
+  Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
+  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
+
+  // Abbrev for TYPE_CODE_STRUCT.
+  Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
+
+  // Abbrev for TYPE_CODE_UNION.
+  Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_UNION));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  unsigned UnionAbbrev = Stream.EmitAbbrev(Abbv);
+
+  // Abbrev for TYPE_CODE_ARRAY.
+  Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
+
+  // Emit an entry count so the reader can reserve space.
+  TypeVals.push_back(TypeList.size());
+  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
+  TypeVals.clear();
+
+  // Loop over all of the types, emitting each in turn.
+  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
+    const Type *T = TypeList[i].first;
+    int AbbrevToUse = 0;
+    unsigned Code = 0;
+
+    switch (T->getTypeID()) {
+    default: llvm_unreachable("Unknown type!");
+    case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
+    case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
+    case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
+    case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
+    case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
+    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
+    case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
+    case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
+    case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
+    case Type::IntegerTyID:
+      // INTEGER: [width]
+      Code = bitc::TYPE_CODE_INTEGER;
+      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
+      break;
+    case Type::PointerTyID: {
+      const PointerType *PTy = cast<PointerType>(T);
+      // POINTER: [pointee type, address space]
+      Code = bitc::TYPE_CODE_POINTER;
+      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
+      unsigned AddressSpace = PTy->getAddressSpace();
+      TypeVals.push_back(AddressSpace);
+      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
+      break;
+    }
+    case Type::FunctionTyID: {
+      const FunctionType *FT = cast<FunctionType>(T);
+      // FUNCTION: [isvararg, attrid, retty, paramty x N]
+      Code = bitc::TYPE_CODE_FUNCTION;
+      TypeVals.push_back(FT->isVarArg());
+      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
+      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
+      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
+        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
+      AbbrevToUse = FunctionAbbrev;
+      break;
+    }
+    case Type::StructTyID: {
+      const StructType *ST = cast<StructType>(T);
+      // STRUCT: [ispacked, eltty x N]
+      Code = bitc::TYPE_CODE_STRUCT;
+      TypeVals.push_back(ST->isPacked());
+      // Output all of the element types.
+      for (StructType::element_iterator I = ST->element_begin(),
+           E = ST->element_end(); I != E; ++I)
+        TypeVals.push_back(VE.getTypeID(*I));
+      AbbrevToUse = StructAbbrev;
+      break;
+    }
+    case Type::UnionTyID: {
+      const UnionType *UT = cast<UnionType>(T);
+      // UNION: [eltty x N]
+      Code = bitc::TYPE_CODE_UNION;
+      // Output all of the element types.
+      for (UnionType::element_iterator I = UT->element_begin(),
+           E = UT->element_end(); I != E; ++I)
+        TypeVals.push_back(VE.getTypeID(*I));
+      AbbrevToUse = UnionAbbrev;
+      break;
+    }
+    case Type::ArrayTyID: {
+      const ArrayType *AT = cast<ArrayType>(T);
+      // ARRAY: [numelts, eltty]
+      Code = bitc::TYPE_CODE_ARRAY;
+      TypeVals.push_back(AT->getNumElements());
+      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
+      AbbrevToUse = ArrayAbbrev;
+      break;
+    }
+    case Type::VectorTyID: {
+      const VectorType *VT = cast<VectorType>(T);
+      // VECTOR [numelts, eltty]
+      Code = bitc::TYPE_CODE_VECTOR;
+      TypeVals.push_back(VT->getNumElements());
+      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
+      break;
+    }
+    }
+
+    // Emit the finished record.
+    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
+    TypeVals.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+static unsigned getEncodedLinkage(const GlobalValue *GV) {
+  switch (GV->getLinkage()) {
+  default: llvm_unreachable("Invalid linkage!");
+  case GlobalValue::ExternalLinkage:            return 0;
+  case GlobalValue::WeakAnyLinkage:             return 1;
+  case GlobalValue::AppendingLinkage:           return 2;
+  case GlobalValue::InternalLinkage:            return 3;
+  case GlobalValue::LinkOnceAnyLinkage:         return 4;
+  case GlobalValue::DLLImportLinkage:           return 5;
+  case GlobalValue::DLLExportLinkage:           return 6;
+  case GlobalValue::ExternalWeakLinkage:        return 7;
+  case GlobalValue::CommonLinkage:              return 8;
+  case GlobalValue::PrivateLinkage:             return 9;
+  case GlobalValue::WeakODRLinkage:             return 10;
+  case GlobalValue::LinkOnceODRLinkage:         return 11;
+  case GlobalValue::AvailableExternallyLinkage: return 12;
+  case GlobalValue::LinkerPrivateLinkage:       return 13;
+  case GlobalValue::LinkerPrivateWeakLinkage:   return 14;
+  }
+}
+
+static unsigned getEncodedVisibility(const GlobalValue *GV) {
+  switch (GV->getVisibility()) {
+  default: llvm_unreachable("Invalid visibility!");
+  case GlobalValue::DefaultVisibility:   return 0;
+  case GlobalValue::HiddenVisibility:    return 1;
+  case GlobalValue::ProtectedVisibility: return 2;
+  }
+}
+
+// Emit top-level description of module, including target triple, inline asm,
+// descriptors for global variables, and function prototype info.
+static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
+                            BitstreamWriter &Stream) {
+  // Emit the list of dependent libraries for the Module.
+  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
+    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
+
+  // Emit various pieces of data attached to a module.
+  if (!M->getTargetTriple().empty())
+    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
+                      0/*TODO*/, Stream);
+  if (!M->getDataLayout().empty())
+    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
+                      0/*TODO*/, Stream);
+  if (!M->getModuleInlineAsm().empty())
+    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
+                      0/*TODO*/, Stream);
+
+  // Emit information about sections and GC, computing how many there are. Also
+  // compute the maximum alignment value.
+  std::map<std::string, unsigned> SectionMap;
+  std::map<std::string, unsigned> GCMap;
+  unsigned MaxAlignment = 0;
+  unsigned MaxGlobalType = 0;
+  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
+       GV != E; ++GV) {
+    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
+    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
+
+    if (!GV->hasSection()) continue;
+    // Give section names unique ID's.
+    unsigned &Entry = SectionMap[GV->getSection()];
+    if (Entry != 0) continue;
+    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
+                      0/*TODO*/, Stream);
+    Entry = SectionMap.size();
+  }
+  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
+    if (F->hasSection()) {
+      // Give section names unique ID's.
+      unsigned &Entry = SectionMap[F->getSection()];
+      if (!Entry) {
+        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
+                          0/*TODO*/, Stream);
+        Entry = SectionMap.size();
+      }
+    }
+    if (F->hasGC()) {
+      // Same for GC names.
+      unsigned &Entry = GCMap[F->getGC()];
+      if (!Entry) {
+        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
+                          0/*TODO*/, Stream);
+        Entry = GCMap.size();
+      }
+    }
+  }
+
+  // Emit abbrev for globals, now that we know # sections and max alignment.
+  unsigned SimpleGVarAbbrev = 0;
+  if (!M->global_empty()) {
+    // Add an abbrev for common globals with no visibility or thread localness.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                              Log2_32_Ceil(MaxGlobalType+1)));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
+    if (MaxAlignment == 0)                                      // Alignment.
+      Abbv->Add(BitCodeAbbrevOp(0));
+    else {
+      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
+      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                               Log2_32_Ceil(MaxEncAlignment+1)));
+    }
+    if (SectionMap.empty())                                    // Section.
+      Abbv->Add(BitCodeAbbrevOp(0));
+    else
+      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                               Log2_32_Ceil(SectionMap.size()+1)));
+    // Don't bother emitting vis + thread local.
+    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
+  }
+
+  // Emit the global variable information.
+  SmallVector<unsigned, 64> Vals;
+  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
+       GV != E; ++GV) {
+    unsigned AbbrevToUse = 0;
+
+    // GLOBALVAR: [type, isconst, initid,
+    //             linkage, alignment, section, visibility, threadlocal]
+    Vals.push_back(VE.getTypeID(GV->getType()));
+    Vals.push_back(GV->isConstant());
+    Vals.push_back(GV->isDeclaration() ? 0 :
+                   (VE.getValueID(GV->getInitializer()) + 1));
+    Vals.push_back(getEncodedLinkage(GV));
+    Vals.push_back(Log2_32(GV->getAlignment())+1);
+    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
+    if (GV->isThreadLocal() ||
+        GV->getVisibility() != GlobalValue::DefaultVisibility) {
+      Vals.push_back(getEncodedVisibility(GV));
+      Vals.push_back(GV->isThreadLocal());
+    } else {
+      AbbrevToUse = SimpleGVarAbbrev;
+    }
+
+    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
+    Vals.clear();
+  }
+
+  // Emit the function proto information.
+  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+    // FUNCTION:  [type, callingconv, isproto, paramattr,
+    //             linkage, alignment, section, visibility, gc]
+    Vals.push_back(VE.getTypeID(F->getType()));
+    Vals.push_back(F->getCallingConv());
+    Vals.push_back(F->isDeclaration());
+    Vals.push_back(getEncodedLinkage(F));
+    Vals.push_back(VE.getAttributeID(F->getAttributes()));
+    Vals.push_back(Log2_32(F->getAlignment())+1);
+    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
+    Vals.push_back(getEncodedVisibility(F));
+    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
+
+    unsigned AbbrevToUse = 0;
+    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
+    Vals.clear();
+  }
+
+
+  // Emit the alias information.
+  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
+       AI != E; ++AI) {
+    Vals.push_back(VE.getTypeID(AI->getType()));
+    Vals.push_back(VE.getValueID(AI->getAliasee()));
+    Vals.push_back(getEncodedLinkage(AI));
+    Vals.push_back(getEncodedVisibility(AI));
+    unsigned AbbrevToUse = 0;
+    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
+    Vals.clear();
+  }
+}
+
+static uint64_t GetOptimizationFlags(const Value *V) {
+  uint64_t Flags = 0;
+
+  if (const OverflowingBinaryOperator *OBO =
+        dyn_cast<OverflowingBinaryOperator>(V)) {
+    if (OBO->hasNoSignedWrap())
+      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
+    if (OBO->hasNoUnsignedWrap())
+      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
+  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
+    if (Div->isExact())
+      Flags |= 1 << bitc::SDIV_EXACT;
+  }
+
+  return Flags;
+}
+
+static void WriteMDNode(const MDNode *N,
+                        const ValueEnumerator &VE,
+                        BitstreamWriter &Stream,
+                        SmallVector<uint64_t, 64> &Record) {
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+    if (N->getOperand(i)) {
+      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
+      Record.push_back(VE.getValueID(N->getOperand(i)));
+    } else {
+      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
+      Record.push_back(0);
+    }
+  }
+  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
+                                           bitc::METADATA_NODE;
+  Stream.EmitRecord(MDCode, Record, 0);
+  Record.clear();
+}
+
+static void WriteModuleMetadata(const Module *M,
+                                const ValueEnumerator &VE,
+                                BitstreamWriter &Stream) {
+  const ValueEnumerator::ValueList &Vals = VE.getMDValues();
+  bool StartedMetadataBlock = false;
+  unsigned MDSAbbrev = 0;
+  SmallVector<uint64_t, 64> Record;
+  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+
+    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
+      if (!N->isFunctionLocal() || !N->getFunction()) {
+        if (!StartedMetadataBlock) {
+          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+          StartedMetadataBlock = true;
+        }
+        WriteMDNode(N, VE, Stream, Record);
+      }
+    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
+      if (!StartedMetadataBlock)  {
+        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+
+        // Abbrev for METADATA_STRING.
+        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
+        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+        MDSAbbrev = Stream.EmitAbbrev(Abbv);
+        StartedMetadataBlock = true;
+      }
+
+      // Code: [strchar x N]
+      Record.append(MDS->begin(), MDS->end());
+
+      // Emit the finished record.
+      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
+      Record.clear();
+    }
+  }
+
+  // Write named metadata.
+  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
+       E = M->named_metadata_end(); I != E; ++I) {
+    const NamedMDNode *NMD = I;
+    if (!StartedMetadataBlock)  {
+      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+      StartedMetadataBlock = true;
+    }
+
+    // Write name.
+    StringRef Str = NMD->getName();
+    for (unsigned i = 0, e = Str.size(); i != e; ++i)
+      Record.push_back(Str[i]);
+    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
+    Record.clear();
+
+    // Write named metadata operands.
+    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
+      Record.push_back(VE.getValueID(NMD->getOperand(i)));
+    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
+    Record.clear();
+  }
+
+  if (StartedMetadataBlock)
+    Stream.ExitBlock();
+}
+
+static void WriteFunctionLocalMetadata(const Function &F,
+                                       const ValueEnumerator &VE,
+                                       BitstreamWriter &Stream) {
+  bool StartedMetadataBlock = false;
+  SmallVector<uint64_t, 64> Record;
+  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
+  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
+    if (const MDNode *N = Vals[i])
+      if (N->isFunctionLocal() && N->getFunction() == &F) {
+        if (!StartedMetadataBlock) {
+          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+          StartedMetadataBlock = true;
+        }
+        WriteMDNode(N, VE, Stream, Record);
+      }
+      
+  if (StartedMetadataBlock)
+    Stream.ExitBlock();
+}
+
+static void WriteMetadataAttachment(const Function &F,
+                                    const ValueEnumerator &VE,
+                                    BitstreamWriter &Stream) {
+  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
+
+  SmallVector<uint64_t, 64> Record;
+
+  // Write metadata attachments
+  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
+  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
+  
+  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+         I != E; ++I) {
+      MDs.clear();
+      I->getAllMetadataOtherThanDebugLoc(MDs);
+      
+      // If no metadata, ignore instruction.
+      if (MDs.empty()) continue;
+
+      Record.push_back(VE.getInstructionID(I));
+      
+      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
+        Record.push_back(MDs[i].first);
+        Record.push_back(VE.getValueID(MDs[i].second));
+      }
+      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+      Record.clear();
+    }
+
+  Stream.ExitBlock();
+}
+
+static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
+  SmallVector<uint64_t, 64> Record;
+
+  // Write metadata kinds
+  // METADATA_KIND - [n x [id, name]]
+  SmallVector<StringRef, 4> Names;
+  M->getMDKindNames(Names);
+  
+  if (Names.empty()) return;
+
+  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+  
+  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
+    Record.push_back(MDKindID);
+    StringRef KName = Names[MDKindID];
+    Record.append(KName.begin(), KName.end());
+    
+    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+static void WriteConstants(unsigned FirstVal, unsigned LastVal,
+                           const ValueEnumerator &VE,
+                           BitstreamWriter &Stream, bool isGlobal) {
+  if (FirstVal == LastVal) return;
+
+  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
+
+  unsigned AggregateAbbrev = 0;
+  unsigned String8Abbrev = 0;
+  unsigned CString7Abbrev = 0;
+  unsigned CString6Abbrev = 0;
+  // If this is a constant pool for the module, emit module-specific abbrevs.
+  if (isGlobal) {
+    // Abbrev for CST_CODE_AGGREGATE.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
+    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
+
+    // Abbrev for CST_CODE_STRING.
+    Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+    String8Abbrev = Stream.EmitAbbrev(Abbv);
+    // Abbrev for CST_CODE_CSTRING.
+    Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+    CString7Abbrev = Stream.EmitAbbrev(Abbv);
+    // Abbrev for CST_CODE_CSTRING.
+    Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    CString6Abbrev = Stream.EmitAbbrev(Abbv);
+  }
+
+  SmallVector<uint64_t, 64> Record;
+
+  const ValueEnumerator::ValueList &Vals = VE.getValues();
+  const Type *LastTy = 0;
+  for (unsigned i = FirstVal; i != LastVal; ++i) {
+    const Value *V = Vals[i].first;
+    // If we need to switch types, do so now.
+    if (V->getType() != LastTy) {
+      LastTy = V->getType();
+      Record.push_back(VE.getTypeID(LastTy));
+      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
+                        CONSTANTS_SETTYPE_ABBREV);
+      Record.clear();
+    }
+
+    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+      Record.push_back(unsigned(IA->hasSideEffects()) |
+                       unsigned(IA->isAlignStack()) << 1);
+
+      // Add the asm string.
+      const std::string &AsmStr = IA->getAsmString();
+      Record.push_back(AsmStr.size());
+      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
+        Record.push_back(AsmStr[i]);
+
+      // Add the constraint string.
+      const std::string &ConstraintStr = IA->getConstraintString();
+      Record.push_back(ConstraintStr.size());
+      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
+        Record.push_back(ConstraintStr[i]);
+      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
+      Record.clear();
+      continue;
+    }
+    const Constant *C = cast<Constant>(V);
+    unsigned Code = -1U;
+    unsigned AbbrevToUse = 0;
+    if (C->isNullValue()) {
+      Code = bitc::CST_CODE_NULL;
+    } else if (isa<UndefValue>(C)) {
+      Code = bitc::CST_CODE_UNDEF;
+    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
+      if (IV->getBitWidth() <= 64) {
+        uint64_t V = IV->getSExtValue();
+        if ((int64_t)V >= 0)
+          Record.push_back(V << 1);
+        else
+          Record.push_back((-V << 1) | 1);
+        Code = bitc::CST_CODE_INTEGER;
+        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
+      } else {                             // Wide integers, > 64 bits in size.
+        // We have an arbitrary precision integer value to write whose
+        // bit width is > 64. However, in canonical unsigned integer
+        // format it is likely that the high bits are going to be zero.
+        // So, we only write the number of active words.
+        unsigned NWords = IV->getValue().getActiveWords();
+        const uint64_t *RawWords = IV->getValue().getRawData();
+        for (unsigned i = 0; i != NWords; ++i) {
+          int64_t V = RawWords[i];
+          if (V >= 0)
+            Record.push_back(V << 1);
+          else
+            Record.push_back((-V << 1) | 1);
+        }
+        Code = bitc::CST_CODE_WIDE_INTEGER;
+      }
+    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+      Code = bitc::CST_CODE_FLOAT;
+      const Type *Ty = CFP->getType();
+      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
+        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+      } else if (Ty->isX86_FP80Ty()) {
+        // api needed to prevent premature destruction
+        // bits are not in the same order as a normal i80 APInt, compensate.
+        APInt api = CFP->getValueAPF().bitcastToAPInt();
+        const uint64_t *p = api.getRawData();
+        Record.push_back((p[1] << 48) | (p[0] >> 16));
+        Record.push_back(p[0] & 0xffffLL);
+      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
+        APInt api = CFP->getValueAPF().bitcastToAPInt();
+        const uint64_t *p = api.getRawData();
+        Record.push_back(p[0]);
+        Record.push_back(p[1]);
+      } else {
+        assert (0 && "Unknown FP type!");
+      }
+    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+      const ConstantArray *CA = cast<ConstantArray>(C);
+      // Emit constant strings specially.
+      unsigned NumOps = CA->getNumOperands();
+      // If this is a null-terminated string, use the denser CSTRING encoding.
+      if (CA->getOperand(NumOps-1)->isNullValue()) {
+        Code = bitc::CST_CODE_CSTRING;
+        --NumOps;  // Don't encode the null, which isn't allowed by char6.
+      } else {
+        Code = bitc::CST_CODE_STRING;
+        AbbrevToUse = String8Abbrev;
+      }
+      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
+      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
+      for (unsigned i = 0; i != NumOps; ++i) {
+        unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
+        Record.push_back(V);
+        isCStr7 &= (V & 128) == 0;
+        if (isCStrChar6)
+          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
+      }
+
+      if (isCStrChar6)
+        AbbrevToUse = CString6Abbrev;
+      else if (isCStr7)
+        AbbrevToUse = CString7Abbrev;
+    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
+               isa<ConstantVector>(V)) {
+      Code = bitc::CST_CODE_AGGREGATE;
+      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
+        Record.push_back(VE.getValueID(C->getOperand(i)));
+      AbbrevToUse = AggregateAbbrev;
+    } else if (isa<ConstantUnion>(C)) {
+      Code = bitc::CST_CODE_AGGREGATE;
+
+      // Unions only have one entry but we must send type along with it.
+      const Type *EntryKind = C->getOperand(0)->getType();
+
+      const UnionType *UnTy = cast<UnionType>(C->getType());
+      int UnionIndex = UnTy->getElementTypeIndex(EntryKind);
+      assert(UnionIndex != -1 && "Constant union contains invalid entry");
+
+      Record.push_back(UnionIndex);
+      Record.push_back(VE.getValueID(C->getOperand(0)));
+
+      AbbrevToUse = AggregateAbbrev;
+    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+      switch (CE->getOpcode()) {
+      default:
+        if (Instruction::isCast(CE->getOpcode())) {
+          Code = bitc::CST_CODE_CE_CAST;
+          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
+          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+          Record.push_back(VE.getValueID(C->getOperand(0)));
+          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
+        } else {
+          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
+          Code = bitc::CST_CODE_CE_BINOP;
+          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
+          Record.push_back(VE.getValueID(C->getOperand(0)));
+          Record.push_back(VE.getValueID(C->getOperand(1)));
+          uint64_t Flags = GetOptimizationFlags(CE);
+          if (Flags != 0)
+            Record.push_back(Flags);
+        }
+        break;
+      case Instruction::GetElementPtr:
+        Code = bitc::CST_CODE_CE_GEP;
+        if (cast<GEPOperator>(C)->isInBounds())
+          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
+        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
+          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
+          Record.push_back(VE.getValueID(C->getOperand(i)));
+        }
+        break;
+      case Instruction::Select:
+        Code = bitc::CST_CODE_CE_SELECT;
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        Record.push_back(VE.getValueID(C->getOperand(2)));
+        break;
+      case Instruction::ExtractElement:
+        Code = bitc::CST_CODE_CE_EXTRACTELT;
+        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        break;
+      case Instruction::InsertElement:
+        Code = bitc::CST_CODE_CE_INSERTELT;
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        Record.push_back(VE.getValueID(C->getOperand(2)));
+        break;
+      case Instruction::ShuffleVector:
+        // If the return type and argument types are the same, this is a
+        // standard shufflevector instruction.  If the types are different,
+        // then the shuffle is widening or truncating the input vectors, and
+        // the argument type must also be encoded.
+        if (C->getType() == C->getOperand(0)->getType()) {
+          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+        } else {
+          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
+          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+        }
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        Record.push_back(VE.getValueID(C->getOperand(2)));
+        break;
+      case Instruction::ICmp:
+      case Instruction::FCmp:
+        Code = bitc::CST_CODE_CE_CMP;
+        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+        Record.push_back(VE.getValueID(C->getOperand(0)));
+        Record.push_back(VE.getValueID(C->getOperand(1)));
+        Record.push_back(CE->getPredicate());
+        break;
+      }
+    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
+      assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
+             "Malformed blockaddress");
+      Code = bitc::CST_CODE_BLOCKADDRESS;
+      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
+      Record.push_back(VE.getValueID(BA->getFunction()));
+      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
+    } else {
+#ifndef NDEBUG
+      C->dump();
+#endif
+      llvm_unreachable("Unknown constant!");
+    }
+    Stream.EmitRecord(Code, Record, AbbrevToUse);
+    Record.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+static void WriteModuleConstants(const ValueEnumerator &VE,
+                                 BitstreamWriter &Stream) {
+  const ValueEnumerator::ValueList &Vals = VE.getValues();
+
+  // Find the first constant to emit, which is the first non-globalvalue value.
+  // We know globalvalues have been emitted by WriteModuleInfo.
+  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+    if (!isa<GlobalValue>(Vals[i].first)) {
+      WriteConstants(i, Vals.size(), VE, Stream, true);
+      return;
+    }
+  }
+}
+
+/// PushValueAndType - The file has to encode both the value and type id for
+/// many values, because we need to know what type to create for forward
+/// references.  However, most operands are not forward references, so this type
+/// field is not needed.
+///
+/// This function adds V's value ID to Vals.  If the value ID is higher than the
+/// instruction ID, then it is a forward reference, and it also includes the
+/// type ID.
+static bool PushValueAndType(const Value *V, unsigned InstID,
+                             SmallVector<unsigned, 64> &Vals,
+                             ValueEnumerator &VE) {
+  unsigned ValID = VE.getValueID(V);
+  Vals.push_back(ValID);
+  if (ValID >= InstID) {
+    Vals.push_back(VE.getTypeID(V->getType()));
+    return true;
+  }
+  return false;
+}
+
+/// WriteInstruction - Emit an instruction to the specified stream.
+static void WriteInstruction(const Instruction &I, unsigned InstID,
+                             ValueEnumerator &VE, BitstreamWriter &Stream,
+                             SmallVector<unsigned, 64> &Vals) {
+  unsigned Code = 0;
+  unsigned AbbrevToUse = 0;
+  VE.setInstructionID(&I);
+  switch (I.getOpcode()) {
+  default:
+    if (Instruction::isCast(I.getOpcode())) {
+      Code = bitc::FUNC_CODE_INST_CAST;
+      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
+      Vals.push_back(VE.getTypeID(I.getType()));
+      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
+    } else {
+      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
+      Code = bitc::FUNC_CODE_INST_BINOP;
+      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
+      Vals.push_back(VE.getValueID(I.getOperand(1)));
+      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
+      uint64_t Flags = GetOptimizationFlags(&I);
+      if (Flags != 0) {
+        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
+          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
+        Vals.push_back(Flags);
+      }
+    }
+    break;
+
+  case Instruction::GetElementPtr:
+    Code = bitc::FUNC_CODE_INST_GEP;
+    if (cast<GEPOperator>(&I)->isInBounds())
+      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
+    break;
+  case Instruction::ExtractValue: {
+    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
+    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
+      Vals.push_back(*i);
+    break;
+  }
+  case Instruction::InsertValue: {
+    Code = bitc::FUNC_CODE_INST_INSERTVAL;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
+    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
+    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
+      Vals.push_back(*i);
+    break;
+  }
+  case Instruction::Select:
+    Code = bitc::FUNC_CODE_INST_VSELECT;
+    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(2)));
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    break;
+  case Instruction::ExtractElement:
+    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(1)));
+    break;
+  case Instruction::InsertElement:
+    Code = bitc::FUNC_CODE_INST_INSERTELT;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(1)));
+    Vals.push_back(VE.getValueID(I.getOperand(2)));
+    break;
+  case Instruction::ShuffleVector:
+    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(1)));
+    Vals.push_back(VE.getValueID(I.getOperand(2)));
+    break;
+  case Instruction::ICmp:
+  case Instruction::FCmp:
+    // compare returning Int1Ty or vector of Int1Ty
+    Code = bitc::FUNC_CODE_INST_CMP2;
+    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+    Vals.push_back(VE.getValueID(I.getOperand(1)));
+    Vals.push_back(cast<CmpInst>(I).getPredicate());
+    break;
+
+  case Instruction::Ret:
+    {
+      Code = bitc::FUNC_CODE_INST_RET;
+      unsigned NumOperands = I.getNumOperands();
+      if (NumOperands == 0)
+        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
+      else if (NumOperands == 1) {
+        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
+      } else {
+        for (unsigned i = 0, e = NumOperands; i != e; ++i)
+          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
+      }
+    }
+    break;
+  case Instruction::Br:
+    {
+      Code = bitc::FUNC_CODE_INST_BR;
+      BranchInst &II = cast<BranchInst>(I);
+      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
+      if (II.isConditional()) {
+        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
+        Vals.push_back(VE.getValueID(II.getCondition()));
+      }
+    }
+    break;
+  case Instruction::Switch:
+    Code = bitc::FUNC_CODE_INST_SWITCH;
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i)));
+    break;
+  case Instruction::IndirectBr:
+    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i)));
+    break;
+      
+  case Instruction::Invoke: {
+    const InvokeInst *II = cast<InvokeInst>(&I);
+    const Value *Callee(II->getCalledValue());
+    const PointerType *PTy = cast<PointerType>(Callee->getType());
+    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+    Code = bitc::FUNC_CODE_INST_INVOKE;
+
+    Vals.push_back(VE.getAttributeID(II->getAttributes()));
+    Vals.push_back(II->getCallingConv());
+    Vals.push_back(VE.getValueID(II->getNormalDest()));
+    Vals.push_back(VE.getValueID(II->getUnwindDest()));
+    PushValueAndType(Callee, InstID, Vals, VE);
+
+    // Emit value #'s for the fixed parameters.
+    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
+
+    // Emit type/value pairs for varargs params.
+    if (FTy->isVarArg()) {
+      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
+           i != e; ++i)
+        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
+    }
+    break;
+  }
+  case Instruction::Unwind:
+    Code = bitc::FUNC_CODE_INST_UNWIND;
+    break;
+  case Instruction::Unreachable:
+    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
+    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
+    break;
+
+  case Instruction::PHI:
+    Code = bitc::FUNC_CODE_INST_PHI;
+    Vals.push_back(VE.getTypeID(I.getType()));
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+      Vals.push_back(VE.getValueID(I.getOperand(i)));
+    break;
+
+  case Instruction::Alloca:
+    Code = bitc::FUNC_CODE_INST_ALLOCA;
+    Vals.push_back(VE.getTypeID(I.getType()));
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
+    break;
+
+  case Instruction::Load:
+    Code = bitc::FUNC_CODE_INST_LOAD;
+    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
+      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
+
+    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
+    Vals.push_back(cast<LoadInst>(I).isVolatile());
+    break;
+  case Instruction::Store:
+    Code = bitc::FUNC_CODE_INST_STORE2;
+    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
+    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
+    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
+    Vals.push_back(cast<StoreInst>(I).isVolatile());
+    break;
+  case Instruction::Call: {
+    const CallInst &CI = cast<CallInst>(I);
+    const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
+    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+
+    Code = bitc::FUNC_CODE_INST_CALL;
+
+    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
+    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
+    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
+
+    // Emit value #'s for the fixed parameters.
+    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
+
+    // Emit type/value pairs for varargs params.
+    if (FTy->isVarArg()) {
+      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
+           i != e; ++i)
+        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
+    }
+    break;
+  }
+  case Instruction::VAArg:
+    Code = bitc::FUNC_CODE_INST_VAARG;
+    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
+    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
+    Vals.push_back(VE.getTypeID(I.getType())); // restype.
+    break;
+  }
+
+  Stream.EmitRecord(Code, Vals, AbbrevToUse);
+  Vals.clear();
+}
+
+// Emit names for globals/functions etc.
+static void WriteValueSymbolTable(const ValueSymbolTable &VST,
+                                  const ValueEnumerator &VE,
+                                  BitstreamWriter &Stream) {
+  if (VST.empty()) return;
+  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
+
+  // FIXME: Set up the abbrev, we know how many values there are!
+  // FIXME: We know if the type names can use 7-bit ascii.
+  SmallVector<unsigned, 64> NameVals;
+
+  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
+       SI != SE; ++SI) {
+
+    const ValueName &Name = *SI;
+
+    // Figure out the encoding to use for the name.
+    bool is7Bit = true;
+    bool isChar6 = true;
+    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
+         C != E; ++C) {
+      if (isChar6)
+        isChar6 = BitCodeAbbrevOp::isChar6(*C);
+      if ((unsigned char)*C & 128) {
+        is7Bit = false;
+        break;  // don't bother scanning the rest.
+      }
+    }
+
+    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
+
+    // VST_ENTRY:   [valueid, namechar x N]
+    // VST_BBENTRY: [bbid, namechar x N]
+    unsigned Code;
+    if (isa<BasicBlock>(SI->getValue())) {
+      Code = bitc::VST_CODE_BBENTRY;
+      if (isChar6)
+        AbbrevToUse = VST_BBENTRY_6_ABBREV;
+    } else {
+      Code = bitc::VST_CODE_ENTRY;
+      if (isChar6)
+        AbbrevToUse = VST_ENTRY_6_ABBREV;
+      else if (is7Bit)
+        AbbrevToUse = VST_ENTRY_7_ABBREV;
+    }
+
+    NameVals.push_back(VE.getValueID(SI->getValue()));
+    for (const char *P = Name.getKeyData(),
+         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
+      NameVals.push_back((unsigned char)*P);
+
+    // Emit the finished record.
+    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
+    NameVals.clear();
+  }
+  Stream.ExitBlock();
+}
+
+/// WriteFunction - Emit a function body to the module stream.
+static void WriteFunction(const Function &F, ValueEnumerator &VE,
+                          BitstreamWriter &Stream) {
+  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
+  VE.incorporateFunction(F);
+
+  SmallVector<unsigned, 64> Vals;
+
+  // Emit the number of basic blocks, so the reader can create them ahead of
+  // time.
+  Vals.push_back(VE.getBasicBlocks().size());
+  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
+  Vals.clear();
+
+  // If there are function-local constants, emit them now.
+  unsigned CstStart, CstEnd;
+  VE.getFunctionConstantRange(CstStart, CstEnd);
+  WriteConstants(CstStart, CstEnd, VE, Stream, false);
+
+  // If there is function-local metadata, emit it now.
+  WriteFunctionLocalMetadata(F, VE, Stream);
+
+  // Keep a running idea of what the instruction ID is.
+  unsigned InstID = CstEnd;
+
+  bool NeedsMetadataAttachment = false;
+  
+  DebugLoc LastDL;
+  
+  // Finally, emit all the instructions, in order.
+  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+         I != E; ++I) {
+      WriteInstruction(*I, InstID, VE, Stream, Vals);
+      
+      if (!I->getType()->isVoidTy())
+        ++InstID;
+      
+      // If the instruction has metadata, write a metadata attachment later.
+      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
+      
+      // If the instruction has a debug location, emit it.
+      DebugLoc DL = I->getDebugLoc();
+      if (DL.isUnknown()) {
+        // nothing todo.
+      } else if (DL == LastDL) {
+        // Just repeat the same debug loc as last time.
+        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
+      } else {
+        MDNode *Scope, *IA;
+        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
+        
+        Vals.push_back(DL.getLine());
+        Vals.push_back(DL.getCol());
+        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
+        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
+        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
+        Vals.clear();
+        
+        LastDL = DL;
+      }
+    }
+
+  // Emit names for all the instructions etc.
+  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
+
+  if (NeedsMetadataAttachment)
+    WriteMetadataAttachment(F, VE, Stream);
+  VE.purgeFunction();
+  Stream.ExitBlock();
+}
+
+/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
+static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
+                                 const ValueEnumerator &VE,
+                                 BitstreamWriter &Stream) {
+  if (TST.empty()) return;
+
+  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
+
+  // 7-bit fixed width VST_CODE_ENTRY strings.
+  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                            Log2_32_Ceil(VE.getTypes().size()+1)));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+  unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
+
+  SmallVector<unsigned, 64> NameVals;
+
+  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+       TI != TE; ++TI) {
+    // TST_ENTRY: [typeid, namechar x N]
+    NameVals.push_back(VE.getTypeID(TI->second));
+
+    const std::string &Str = TI->first;
+    bool is7Bit = true;
+    for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+      NameVals.push_back((unsigned char)Str[i]);
+      if (Str[i] & 128)
+        is7Bit = false;
+    }
+
+    // Emit the finished record.
+    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
+    NameVals.clear();
+  }
+
+  Stream.ExitBlock();
+}
+
+// Emit blockinfo, which defines the standard abbreviations etc.
+static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+  // We only want to emit block info records for blocks that have multiple
+  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
+  // blocks can defined their abbrevs inline.
+  Stream.EnterBlockInfoBlock(2);
+
+  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   Abbv) != VST_ENTRY_8_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+
+  { // 7-bit fixed width VST_ENTRY strings.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   Abbv) != VST_ENTRY_7_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // 6-bit char6 VST_ENTRY strings.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   Abbv) != VST_ENTRY_6_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // 6-bit char6 VST_BBENTRY strings.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+                                   Abbv) != VST_BBENTRY_6_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+
+
+
+  { // SETTYPE abbrev for CONSTANTS_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+                              Log2_32_Ceil(VE.getTypes().size()+1)));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+
+  { // INTEGER abbrev for CONSTANTS_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+
+  { // CE_CAST abbrev for CONSTANTS_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
+                              Log2_32_Ceil(VE.getTypes().size()+1)));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
+
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // NULL abbrev for CONSTANTS_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
+    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+                                   Abbv) != CONSTANTS_NULL_Abbrev)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+
+  // FIXME: This should only use space for first class types!
+
+  { // INST_LOAD abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // INST_BINOP abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // INST_CAST abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
+                              Log2_32_Ceil(VE.getTypes().size()+1)));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+
+  { // INST_RET abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // INST_RET abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
+    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
+    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
+      llvm_unreachable("Unexpected abbrev ordering!");
+  }
+
+  Stream.ExitBlock();
+}
+
+
+/// WriteModule - Emit the specified module to the bitstream.
+static void WriteModule(const Module *M, BitstreamWriter &Stream) {
+  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
+
+  // Emit the version number if it is non-zero.
+  if (CurVersion) {
+    SmallVector<unsigned, 1> Vals;
+    Vals.push_back(CurVersion);
+    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
+  }
+
+  // Analyze the module, enumerating globals, functions, etc.
+  ValueEnumerator VE(M);
+
+  // Emit blockinfo, which defines the standard abbreviations etc.
+  WriteBlockInfo(VE, Stream);
+
+  // Emit information about parameter attributes.
+  WriteAttributeTable(VE, Stream);
+
+  // Emit information describing all of the types in the module.
+  WriteTypeTable(VE, Stream);
+
+  // Emit top-level description of module, including target triple, inline asm,
+  // descriptors for global variables, and function prototype info.
+  WriteModuleInfo(M, VE, Stream);
+
+  // Emit constants.
+  WriteModuleConstants(VE, Stream);
+
+  // Emit metadata.
+  WriteModuleMetadata(M, VE, Stream);
+
+  // Emit function bodies.
+  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+    if (!I->isDeclaration())
+      WriteFunction(*I, VE, Stream);
+
+  // Emit metadata.
+  WriteModuleMetadataStore(M, Stream);
+
+  // Emit the type symbol table information.
+  WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
+
+  // Emit names for globals/functions etc.
+  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
+
+  Stream.ExitBlock();
+}
+
+/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
+/// header and trailer to make it compatible with the system archiver.  To do
+/// this we emit the following header, and then emit a trailer that pads the
+/// file out to be a multiple of 16 bytes.
+///
+/// struct bc_header {
+///   uint32_t Magic;         // 0x0B17C0DE
+///   uint32_t Version;       // Version, currently always 0.
+///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
+///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
+///   uint32_t CPUType;       // CPU specifier.
+///   ... potentially more later ...
+/// };
+enum {
+  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
+  DarwinBCHeaderSize = 5*4
+};
+
+/// isARMTriplet - Return true if the triplet looks like:
+/// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*.
+static bool isARMTriplet(const std::string &TT) {
+  size_t Pos = 0;
+  size_t Size = TT.size();
+  if (Size >= 6 &&
+      TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' &&
+      TT[3] == 'm' && TT[4] == 'b')
+    Pos = 5;
+  else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm')
+    Pos = 3;
+  else
+    return false;
+
+  if (TT[Pos] == '-')
+    return true;
+  else if (TT[Pos] == 'v') {
+    if (Size >= Pos+4 &&
+        TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2')
+      return true;
+    else if (Size >= Pos+4 &&
+             TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e')
+      return true;
+  } else
+    return false;
+  while (++Pos < Size && TT[Pos] != '-') {
+    if (!isdigit(TT[Pos]))
+      return false;
+  }
+  return true;
+}
+
+static void EmitDarwinBCHeader(BitstreamWriter &Stream,
+                               const std::string &TT) {
+  unsigned CPUType = ~0U;
+
+  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
+  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
+  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
+  // specific constants here because they are implicitly part of the Darwin ABI.
+  enum {
+    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
+    DARWIN_CPU_TYPE_X86        = 7,
+    DARWIN_CPU_TYPE_ARM        = 12,
+    DARWIN_CPU_TYPE_POWERPC    = 18
+  };
+
+  if (TT.find("x86_64-") == 0)
+    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
+  else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
+           TT[4] == '-' && TT[1] - '3' < 6)
+    CPUType = DARWIN_CPU_TYPE_X86;
+  else if (TT.find("powerpc-") == 0)
+    CPUType = DARWIN_CPU_TYPE_POWERPC;
+  else if (TT.find("powerpc64-") == 0)
+    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
+  else if (isARMTriplet(TT))
+    CPUType = DARWIN_CPU_TYPE_ARM;
+
+  // Traditional Bitcode starts after header.
+  unsigned BCOffset = DarwinBCHeaderSize;
+
+  Stream.Emit(0x0B17C0DE, 32);
+  Stream.Emit(0         , 32);  // Version.
+  Stream.Emit(BCOffset  , 32);
+  Stream.Emit(0         , 32);  // Filled in later.
+  Stream.Emit(CPUType   , 32);
+}
+
+/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
+/// finalize the header.
+static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
+  // Update the size field in the header.
+  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
+
+  // If the file is not a multiple of 16 bytes, insert dummy padding.
+  while (BufferSize & 15) {
+    Stream.Emit(0, 8);
+    ++BufferSize;
+  }
+}
+
+
+/// WriteBitcodeToFile - Write the specified module to the specified output
+/// stream.
+void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
+  std::vector<unsigned char> Buffer;
+  BitstreamWriter Stream(Buffer);
+
+  Buffer.reserve(256*1024);
+
+  WriteBitcodeToStream( M, Stream );
+
+  // Write the generated bitstream to "Out".
+  Out.write((char*)&Buffer.front(), Buffer.size());
+}
+
+/// WriteBitcodeToStream - Write the specified module to the specified output
+/// stream.
+void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
+  // If this is darwin, emit a file header and trailer if needed.
+  bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
+  if (isDarwin)
+    EmitDarwinBCHeader(Stream, M->getTargetTriple());
+
+  // Emit the file header.
+  Stream.Emit((unsigned)'B', 8);
+  Stream.Emit((unsigned)'C', 8);
+  Stream.Emit(0x0, 4);
+  Stream.Emit(0xC, 4);
+  Stream.Emit(0xE, 4);
+  Stream.Emit(0xD, 4);
+
+  // Emit the module.
+  WriteModule(M, Stream);
+
+  if (isDarwin)
+    EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
+}
diff --git a/src/LLVM/lib/Bitcode/Writer/BitcodeWriterPass.cpp b/src/LLVM/lib/Bitcode/Writer/BitcodeWriterPass.cpp
new file mode 100644
index 0000000..91e115c
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Writer/BitcodeWriterPass.cpp
@@ -0,0 +1,41 @@
+//===--- Bitcode/Writer/BitcodeWriterPass.cpp - Bitcode Writer ------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// BitcodeWriterPass implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Pass.h"
+using namespace llvm;
+
+namespace {
+  class WriteBitcodePass : public ModulePass {
+    raw_ostream &OS; // raw_ostream to print on
+  public:
+    static char ID; // Pass identification, replacement for typeid
+    explicit WriteBitcodePass(raw_ostream &o)
+      : ModulePass(ID), OS(o) {}
+    
+    const char *getPassName() const { return "Bitcode Writer"; }
+    
+    bool runOnModule(Module &M) {
+      WriteBitcodeToFile(&M, OS);
+      return false;
+    }
+  };
+}
+
+char WriteBitcodePass::ID = 0;
+
+/// createBitcodeWriterPass - Create and return a pass that writes the module
+/// to the specified ostream.
+ModulePass *llvm::createBitcodeWriterPass(raw_ostream &Str) {
+  return new WriteBitcodePass(Str);
+}
diff --git a/src/LLVM/lib/Bitcode/Writer/CMakeLists.txt b/src/LLVM/lib/Bitcode/Writer/CMakeLists.txt
new file mode 100644
index 0000000..f097b09
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Writer/CMakeLists.txt
@@ -0,0 +1,6 @@
+add_llvm_library(LLVMBitWriter
+  BitWriter.cpp
+  BitcodeWriter.cpp
+  BitcodeWriterPass.cpp
+  ValueEnumerator.cpp
+  )
diff --git a/src/LLVM/lib/Bitcode/Writer/Makefile b/src/LLVM/lib/Bitcode/Writer/Makefile
new file mode 100644
index 0000000..7b0bd72
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Writer/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Bitcode/Reader/Makefile -------------------------*- Makefile -*-===##
+#
+#                     The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMBitWriter
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
diff --git a/src/LLVM/lib/Bitcode/Writer/ValueEnumerator.cpp b/src/LLVM/lib/Bitcode/Writer/ValueEnumerator.cpp
new file mode 100644
index 0000000..930c521
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -0,0 +1,455 @@
+//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ValueEnumerator class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ValueEnumerator.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Instructions.h"
+#include <algorithm>
+using namespace llvm;
+
+static bool isSingleValueType(const std::pair<const llvm::Type*,
+                              unsigned int> &P) {
+  return P.first->isSingleValueType();
+}
+
+static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
+  return V.first->getType()->isIntegerTy();
+}
+
+static bool CompareByFrequency(const std::pair<const llvm::Type*,
+                               unsigned int> &P1,
+                               const std::pair<const llvm::Type*,
+                               unsigned int> &P2) {
+  return P1.second > P2.second;
+}
+
+/// ValueEnumerator - Enumerate module-level information.
+ValueEnumerator::ValueEnumerator(const Module *M) {
+  // Enumerate the global variables.
+  for (Module::const_global_iterator I = M->global_begin(),
+         E = M->global_end(); I != E; ++I)
+    EnumerateValue(I);
+
+  // Enumerate the functions.
+  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
+    EnumerateValue(I);
+    EnumerateAttributes(cast<Function>(I)->getAttributes());
+  }
+
+  // Enumerate the aliases.
+  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+       I != E; ++I)
+    EnumerateValue(I);
+
+  // Remember what is the cutoff between globalvalue's and other constants.
+  unsigned FirstConstant = Values.size();
+
+  // Enumerate the global variable initializers.
+  for (Module::const_global_iterator I = M->global_begin(),
+         E = M->global_end(); I != E; ++I)
+    if (I->hasInitializer())
+      EnumerateValue(I->getInitializer());
+
+  // Enumerate the aliasees.
+  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+       I != E; ++I)
+    EnumerateValue(I->getAliasee());
+
+  // Enumerate types used by the type symbol table.
+  EnumerateTypeSymbolTable(M->getTypeSymbolTable());
+
+  // Insert constants and metadata that are named at module level into the slot 
+  // pool so that the module symbol table can refer to them...
+  EnumerateValueSymbolTable(M->getValueSymbolTable());
+  EnumerateNamedMetadata(M);
+
+  SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
+
+  // Enumerate types used by function bodies and argument lists.
+  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+
+    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+         I != E; ++I)
+      EnumerateType(I->getType());
+
+    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
+        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+             OI != E; ++OI) {
+          if (MDNode *MD = dyn_cast<MDNode>(*OI))
+            if (MD->isFunctionLocal() && MD->getFunction())
+              // These will get enumerated during function-incorporation.
+              continue;
+          EnumerateOperandType(*OI);
+        }
+        EnumerateType(I->getType());
+        if (const CallInst *CI = dyn_cast<CallInst>(I))
+          EnumerateAttributes(CI->getAttributes());
+        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
+          EnumerateAttributes(II->getAttributes());
+
+        // Enumerate metadata attached with this instruction.
+        MDs.clear();
+        I->getAllMetadataOtherThanDebugLoc(MDs);
+        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
+          EnumerateMetadata(MDs[i].second);
+        
+        if (!I->getDebugLoc().isUnknown()) {
+          MDNode *Scope, *IA;
+          I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
+          if (Scope) EnumerateMetadata(Scope);
+          if (IA) EnumerateMetadata(IA);
+        }
+      }
+  }
+
+  // Optimize constant ordering.
+  OptimizeConstants(FirstConstant, Values.size());
+
+  // Sort the type table by frequency so that most commonly used types are early
+  // in the table (have low bit-width).
+  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
+
+  // Partition the Type ID's so that the single-value types occur before the
+  // aggregate types.  This allows the aggregate types to be dropped from the
+  // type table after parsing the global variable initializers.
+  std::partition(Types.begin(), Types.end(), isSingleValueType);
+
+  // Now that we rearranged the type table, rebuild TypeMap.
+  for (unsigned i = 0, e = Types.size(); i != e; ++i)
+    TypeMap[Types[i].first] = i+1;
+}
+
+unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
+  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
+  assert (I != InstructionMap.end() && "Instruction is not mapped!");
+    return I->second;
+}
+
+void ValueEnumerator::setInstructionID(const Instruction *I) {
+  InstructionMap[I] = InstructionCount++;
+}
+
+unsigned ValueEnumerator::getValueID(const Value *V) const {
+  if (isa<MDNode>(V) || isa<MDString>(V)) {
+    ValueMapType::const_iterator I = MDValueMap.find(V);
+    assert(I != MDValueMap.end() && "Value not in slotcalculator!");
+    return I->second-1;
+  }
+
+  ValueMapType::const_iterator I = ValueMap.find(V);
+  assert(I != ValueMap.end() && "Value not in slotcalculator!");
+  return I->second-1;
+}
+
+// Optimize constant ordering.
+namespace {
+  struct CstSortPredicate {
+    ValueEnumerator &VE;
+    explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
+    bool operator()(const std::pair<const Value*, unsigned> &LHS,
+                    const std::pair<const Value*, unsigned> &RHS) {
+      // Sort by plane.
+      if (LHS.first->getType() != RHS.first->getType())
+        return VE.getTypeID(LHS.first->getType()) <
+               VE.getTypeID(RHS.first->getType());
+      // Then by frequency.
+      return LHS.second > RHS.second;
+    }
+  };
+}
+
+/// OptimizeConstants - Reorder constant pool for denser encoding.
+void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
+  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
+
+  CstSortPredicate P(*this);
+  std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
+
+  // Ensure that integer constants are at the start of the constant pool.  This
+  // is important so that GEP structure indices come before gep constant exprs.
+  std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
+                 isIntegerValue);
+
+  // Rebuild the modified portion of ValueMap.
+  for (; CstStart != CstEnd; ++CstStart)
+    ValueMap[Values[CstStart].first] = CstStart+1;
+}
+
+
+/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
+/// table.
+void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
+  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+       TI != TE; ++TI)
+    EnumerateType(TI->second);
+}
+
+/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
+/// table into the values table.
+void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
+  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
+       VI != VE; ++VI)
+    EnumerateValue(VI->getValue());
+}
+
+/// EnumerateNamedMetadata - Insert all of the values referenced by
+/// named metadata in the specified module.
+void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
+  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
+       E = M->named_metadata_end(); I != E; ++I)
+    EnumerateNamedMDNode(I);
+}
+
+void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
+  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
+    if (MDNode *E = MD->getOperand(i))
+      EnumerateValue(E);
+}
+
+void ValueEnumerator::EnumerateMetadata(const Value *MD) {
+  assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
+  // Check to see if it's already in!
+  unsigned &MDValueID = MDValueMap[MD];
+  if (MDValueID) {
+    // Increment use count.
+    MDValues[MDValueID-1].second++;
+    return;
+  }
+
+  // Enumerate the type of this value.
+  EnumerateType(MD->getType());
+
+  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+    MDValues.push_back(std::make_pair(MD, 1U));
+    MDValueMap[MD] = MDValues.size();
+    MDValueID = MDValues.size();
+    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+      if (Value *V = N->getOperand(i))
+        EnumerateValue(V);
+      else
+        EnumerateType(Type::getVoidTy(MD->getContext()));
+    }
+    if (N->isFunctionLocal() && N->getFunction())
+      FunctionLocalMDs.push_back(N);
+    return;
+  }
+  
+  // Add the value.
+  assert(isa<MDString>(MD) && "Unknown metadata kind");
+  MDValues.push_back(std::make_pair(MD, 1U));
+  MDValueID = MDValues.size();
+}
+
+void ValueEnumerator::EnumerateValue(const Value *V) {
+  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
+  if (isa<MDNode>(V) || isa<MDString>(V))
+    return EnumerateMetadata(V);
+
+  // Check to see if it's already in!
+  unsigned &ValueID = ValueMap[V];
+  if (ValueID) {
+    // Increment use count.
+    Values[ValueID-1].second++;
+    return;
+  }
+
+  // Enumerate the type of this value.
+  EnumerateType(V->getType());
+
+  if (const Constant *C = dyn_cast<Constant>(V)) {
+    if (isa<GlobalValue>(C)) {
+      // Initializers for globals are handled explicitly elsewhere.
+    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+      // Do not enumerate the initializers for an array of simple characters.
+      // The initializers just polute the value table, and we emit the strings
+      // specially.
+    } else if (C->getNumOperands()) {
+      // If a constant has operands, enumerate them.  This makes sure that if a
+      // constant has uses (for example an array of const ints), that they are
+      // inserted also.
+
+      // We prefer to enumerate them with values before we enumerate the user
+      // itself.  This makes it more likely that we can avoid forward references
+      // in the reader.  We know that there can be no cycles in the constants
+      // graph that don't go through a global variable.
+      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
+           I != E; ++I)
+        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
+          EnumerateValue(*I);
+
+      // Finally, add the value.  Doing this could make the ValueID reference be
+      // dangling, don't reuse it.
+      Values.push_back(std::make_pair(V, 1U));
+      ValueMap[V] = Values.size();
+      return;
+    }
+  }
+
+  // Add the value.
+  Values.push_back(std::make_pair(V, 1U));
+  ValueID = Values.size();
+}
+
+
+void ValueEnumerator::EnumerateType(const Type *Ty) {
+  unsigned &TypeID = TypeMap[Ty];
+
+  if (TypeID) {
+    // If we've already seen this type, just increase its occurrence count.
+    Types[TypeID-1].second++;
+    return;
+  }
+
+  // First time we saw this type, add it.
+  Types.push_back(std::make_pair(Ty, 1U));
+  TypeID = Types.size();
+
+  // Enumerate subtypes.
+  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
+       I != E; ++I)
+    EnumerateType(*I);
+}
+
+// Enumerate the types for the specified value.  If the value is a constant,
+// walk through it, enumerating the types of the constant.
+void ValueEnumerator::EnumerateOperandType(const Value *V) {
+  EnumerateType(V->getType());
+  
+  if (const Constant *C = dyn_cast<Constant>(V)) {
+    // If this constant is already enumerated, ignore it, we know its type must
+    // be enumerated.
+    if (ValueMap.count(V)) return;
+
+    // This constant may have operands, make sure to enumerate the types in
+    // them.
+    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
+      const User *Op = C->getOperand(i);
+      
+      // Don't enumerate basic blocks here, this happens as operands to
+      // blockaddress.
+      if (isa<BasicBlock>(Op)) continue;
+      
+      EnumerateOperandType(cast<Constant>(Op));
+    }
+
+    if (const MDNode *N = dyn_cast<MDNode>(V)) {
+      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+        if (Value *Elem = N->getOperand(i))
+          EnumerateOperandType(Elem);
+    }
+  } else if (isa<MDString>(V) || isa<MDNode>(V))
+    EnumerateValue(V);
+}
+
+void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
+  if (PAL.isEmpty()) return;  // null is always 0.
+  // Do a lookup.
+  unsigned &Entry = AttributeMap[PAL.getRawPointer()];
+  if (Entry == 0) {
+    // Never saw this before, add it.
+    Attributes.push_back(PAL);
+    Entry = Attributes.size();
+  }
+}
+
+
+void ValueEnumerator::incorporateFunction(const Function &F) {
+  InstructionCount = 0;
+  NumModuleValues = Values.size();
+
+  // Adding function arguments to the value table.
+  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
+       I != E; ++I)
+    EnumerateValue(I);
+
+  FirstFuncConstantID = Values.size();
+
+  // Add all function-level constants to the value table.
+  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
+      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+           OI != E; ++OI) {
+        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
+            isa<InlineAsm>(*OI))
+          EnumerateValue(*OI);
+      }
+    BasicBlocks.push_back(BB);
+    ValueMap[BB] = BasicBlocks.size();
+  }
+
+  // Optimize the constant layout.
+  OptimizeConstants(FirstFuncConstantID, Values.size());
+
+  // Add the function's parameter attributes so they are available for use in
+  // the function's instruction.
+  EnumerateAttributes(F.getAttributes());
+
+  FirstInstID = Values.size();
+
+  FunctionLocalMDs.clear();
+  SmallVector<MDNode *, 8> FnLocalMDVector;
+  // Add all of the instructions.
+  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
+      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+           OI != E; ++OI) {
+        if (MDNode *MD = dyn_cast<MDNode>(*OI))
+          if (MD->isFunctionLocal() && MD->getFunction())
+            // Enumerate metadata after the instructions they might refer to.
+            FnLocalMDVector.push_back(MD);
+      }
+      if (!I->getType()->isVoidTy())
+        EnumerateValue(I);
+    }
+  }
+
+  // Add all of the function-local metadata.
+  for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
+    EnumerateOperandType(FnLocalMDVector[i]);
+}
+
+void ValueEnumerator::purgeFunction() {
+  /// Remove purged values from the ValueMap.
+  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
+    ValueMap.erase(Values[i].first);
+  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
+    ValueMap.erase(BasicBlocks[i]);
+
+  Values.resize(NumModuleValues);
+  BasicBlocks.clear();
+}
+
+static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
+                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
+  unsigned Counter = 0;
+  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+    IDMap[BB] = ++Counter;
+}
+
+/// getGlobalBasicBlockID - This returns the function-specific ID for the
+/// specified basic block.  This is relatively expensive information, so it
+/// should only be used by rare constructs such as address-of-label.
+unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
+  unsigned &Idx = GlobalBasicBlockIDs[BB];
+  if (Idx != 0)
+    return Idx-1;
+
+  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
+  return getGlobalBasicBlockID(BB);
+}
+
diff --git a/src/LLVM/lib/Bitcode/Writer/ValueEnumerator.h b/src/LLVM/lib/Bitcode/Writer/ValueEnumerator.h
new file mode 100644
index 0000000..2453b72
--- /dev/null
+++ b/src/LLVM/lib/Bitcode/Writer/ValueEnumerator.h
@@ -0,0 +1,149 @@
+//===-- Bitcode/Writer/ValueEnumerator.h - Number values --------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class gives values and types Unique ID's.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef VALUE_ENUMERATOR_H
+#define VALUE_ENUMERATOR_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Attributes.h"
+#include <vector>
+
+namespace llvm {
+
+class Type;
+class Value;
+class Instruction;
+class BasicBlock;
+class Function;
+class Module;
+class MDNode;
+class NamedMDNode;
+class AttrListPtr;
+class TypeSymbolTable;
+class ValueSymbolTable;
+class MDSymbolTable;
+
+class ValueEnumerator {
+public:
+  // For each type, we remember its Type* and occurrence frequency.
+  typedef std::vector<std::pair<const Type*, unsigned> > TypeList;
+
+  // For each value, we remember its Value* and occurrence frequency.
+  typedef std::vector<std::pair<const Value*, unsigned> > ValueList;
+private:
+  typedef DenseMap<const Type*, unsigned> TypeMapType;
+  TypeMapType TypeMap;
+  TypeList Types;
+
+  typedef DenseMap<const Value*, unsigned> ValueMapType;
+  ValueMapType ValueMap;
+  ValueList Values;
+  ValueList MDValues;
+  SmallVector<const MDNode *, 8> FunctionLocalMDs;
+  ValueMapType MDValueMap;
+  
+  typedef DenseMap<void*, unsigned> AttributeMapType;
+  AttributeMapType AttributeMap;
+  std::vector<AttrListPtr> Attributes;
+  
+  /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by
+  /// the "getGlobalBasicBlockID" method.
+  mutable DenseMap<const BasicBlock*, unsigned> GlobalBasicBlockIDs;
+  
+  typedef DenseMap<const Instruction*, unsigned> InstructionMapType;
+  InstructionMapType InstructionMap;
+  unsigned InstructionCount;
+
+  /// BasicBlocks - This contains all the basic blocks for the currently
+  /// incorporated function.  Their reverse mapping is stored in ValueMap.
+  std::vector<const BasicBlock*> BasicBlocks;
+  
+  /// When a function is incorporated, this is the size of the Values list
+  /// before incorporation.
+  unsigned NumModuleValues;
+  unsigned FirstFuncConstantID;
+  unsigned FirstInstID;
+  
+  ValueEnumerator(const ValueEnumerator &);  // DO NOT IMPLEMENT
+  void operator=(const ValueEnumerator &);   // DO NOT IMPLEMENT
+public:
+  ValueEnumerator(const Module *M);
+
+  unsigned getValueID(const Value *V) const;
+
+  unsigned getTypeID(const Type *T) const {
+    TypeMapType::const_iterator I = TypeMap.find(T);
+    assert(I != TypeMap.end() && "Type not in ValueEnumerator!");
+    return I->second-1;
+  }
+
+  unsigned getInstructionID(const Instruction *I) const;
+  void setInstructionID(const Instruction *I);
+
+  unsigned getAttributeID(const AttrListPtr &PAL) const {
+    if (PAL.isEmpty()) return 0;  // Null maps to zero.
+    AttributeMapType::const_iterator I = AttributeMap.find(PAL.getRawPointer());
+    assert(I != AttributeMap.end() && "Attribute not in ValueEnumerator!");
+    return I->second;
+  }
+
+  /// getFunctionConstantRange - Return the range of values that corresponds to
+  /// function-local constants.
+  void getFunctionConstantRange(unsigned &Start, unsigned &End) const {
+    Start = FirstFuncConstantID;
+    End = FirstInstID;
+  }
+  
+  const ValueList &getValues() const { return Values; }
+  const ValueList &getMDValues() const { return MDValues; }
+  const SmallVector<const MDNode *, 8> &getFunctionLocalMDValues() const { 
+    return FunctionLocalMDs;
+  }
+  const TypeList &getTypes() const { return Types; }
+  const std::vector<const BasicBlock*> &getBasicBlocks() const {
+    return BasicBlocks; 
+  }
+  const std::vector<AttrListPtr> &getAttributes() const {
+    return Attributes;
+  }
+  
+  /// getGlobalBasicBlockID - This returns the function-specific ID for the
+  /// specified basic block.  This is relatively expensive information, so it
+  /// should only be used by rare constructs such as address-of-label.
+  unsigned getGlobalBasicBlockID(const BasicBlock *BB) const;
+
+  /// incorporateFunction/purgeFunction - If you'd like to deal with a function,
+  /// use these two methods to get its data into the ValueEnumerator!
+  ///
+  void incorporateFunction(const Function &F);
+  void purgeFunction();
+
+private:
+  void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
+    
+  void EnumerateMetadata(const Value *MD);
+  void EnumerateNamedMDNode(const NamedMDNode *NMD);
+  void EnumerateValue(const Value *V);
+  void EnumerateType(const Type *T);
+  void EnumerateOperandType(const Value *V);
+  void EnumerateAttributes(const AttrListPtr &PAL);
+  
+  void EnumerateTypeSymbolTable(const TypeSymbolTable &ST);
+  void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
+  void EnumerateNamedMetadata(const Module *M);
+};
+
+} // End llvm namespace
+
+#endif