blob: 4ea326063710818f14021604641aef7f15757f92 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ShaderCore.hpp"
#include "Renderer/Renderer.hpp"
#include "Common/Debug.hpp"
#include <limits.h>
namespace sw
{
extern TranscendentalPrecision logPrecision;
extern TranscendentalPrecision expPrecision;
extern TranscendentalPrecision rcpPrecision;
extern TranscendentalPrecision rsqPrecision;
Vector4s::Vector4s()
{
}
Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w)
{
this->x = Short4(x);
this->y = Short4(y);
this->z = Short4(z);
this->w = Short4(w);
}
Vector4s::Vector4s(const Vector4s &rhs)
{
x = rhs.x;
y = rhs.y;
z = rhs.z;
w = rhs.w;
}
Vector4s &Vector4s::operator=(const Vector4s &rhs)
{
x = rhs.x;
y = rhs.y;
z = rhs.z;
w = rhs.w;
return *this;
}
Short4 &Vector4s::operator[](int i)
{
switch(i)
{
case 0: return x;
case 1: return y;
case 2: return z;
case 3: return w;
}
return x;
}
Vector4f::Vector4f()
{
}
Vector4f::Vector4f(float x, float y, float z, float w)
{
this->x = Float4(x);
this->y = Float4(y);
this->z = Float4(z);
this->w = Float4(w);
}
Vector4f::Vector4f(const Vector4f &rhs)
{
x = rhs.x;
y = rhs.y;
z = rhs.z;
w = rhs.w;
}
Vector4f &Vector4f::operator=(const Vector4f &rhs)
{
x = rhs.x;
y = rhs.y;
z = rhs.z;
w = rhs.w;
return *this;
}
Float4 &Vector4f::operator[](int i)
{
switch(i)
{
case 0: return x;
case 1: return y;
case 2: return z;
case 3: return w;
}
return x;
}
Float4 exponential2(RValue<Float4> x, bool pp)
{
// This implementation is based on 2^(i + f) = 2^i * 2^f,
// where i is the integer part of x and f is the fraction.
// For 2^i we can put the integer part directly in the exponent of
// the IEEE-754 floating-point number. Clamp to prevent overflow
// past the representation of infinity.
Float4 x0 = x;
x0 = Min(x0, As<Float4>(Int4(0x43010000))); // 129.00000e+0f
x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF))); // -126.99999e+0f
Int4 i = RoundInt(x0 - Float4(0.5f));
Float4 ii = As<Float4>((i + Int4(127)) << 23); // Add single-precision bias, and shift into exponent.
// For the fractional part use a polynomial
// which approximates 2^f in the 0 to 1 range.
Float4 f = x0 - Float4(i);
Float4 ff = As<Float4>(Int4(0x3AF61905)); // 1.8775767e-3f
ff = ff * f + As<Float4>(Int4(0x3C134806)); // 8.9893397e-3f
ff = ff * f + As<Float4>(Int4(0x3D64AA23)); // 5.5826318e-2f
ff = ff * f + As<Float4>(Int4(0x3E75EAD4)); // 2.4015361e-1f
ff = ff * f + As<Float4>(Int4(0x3F31727B)); // 6.9315308e-1f
ff = ff * f + Float4(1.0f);
return ii * ff;
}
Float4 logarithm2(RValue<Float4> x, bool absolute, bool pp)
{
Float4 x0;
Float4 x1;
Float4 x2;
Float4 x3;
x0 = x;
x1 = As<Float4>(As<Int4>(x0) & Int4(0x7F800000));
x1 = As<Float4>(As<UInt4>(x1) >> 8);
x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f)));
x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f); // FIXME: (x1 - 1.4960938f) * 256.0f;
x0 = As<Float4>((As<Int4>(x0) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f)));
x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f);
x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f);
x2 /= x3;
x1 += (x0 - Float4(1.0f)) * x2;
Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000));
return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1)));
}
Float4 exponential(RValue<Float4> x, bool pp)
{
// FIXME: Propagate the constant
return exponential2(Float4(1.44269504f) * x, pp); // 1/ln(2)
}
Float4 logarithm(RValue<Float4> x, bool absolute, bool pp)
{
// FIXME: Propagate the constant
return Float4(6.93147181e-1f) * logarithm2(x, absolute, pp); // ln(2)
}
Float4 power(RValue<Float4> x, RValue<Float4> y, bool pp)
{
Float4 log = logarithm2(x, true, pp);
log *= y;
return exponential2(log, pp);
}
Float4 reciprocal(RValue<Float4> x, bool pp, bool finite, bool exactAtPow2)
{
Float4 rcp;
if(!pp && rcpPrecision >= WHQL)
{
rcp = Float4(1.0f) / x;
}
else
{
rcp = Rcp_pp(x, exactAtPow2);
if(!pp)
{
rcp = (rcp + rcp) - (x * rcp * rcp);
}
}
if(finite)
{
int big = 0x7F7FFFFF;
rcp = Min(rcp, Float4((float&)big));
}
return rcp;
}
Float4 reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp)
{
Float4 abs = x;
if(absolute)
{
abs = Abs(abs);
}
Float4 rsq;
if(!pp)
{
rsq = Float4(1.0f) / Sqrt(abs);
}
else
{
rsq = RcpSqrt_pp(abs);
if(!pp)
{
rsq = rsq * (Float4(3.0f) - rsq * rsq * abs) * Float4(0.5f);
}
rsq = As<Float4>(CmpNEQ(As<Int4>(abs), Int4(0x7F800000)) & As<Int4>(rsq));
}
return rsq;
}
Float4 modulo(RValue<Float4> x, RValue<Float4> y)
{
return x - y * Floor(x / y);
}
Float4 sine_pi(RValue<Float4> x, bool pp)
{
const Float4 A = Float4(-4.05284734e-1f); // -4/pi^2
const Float4 B = Float4(1.27323954e+0f); // 4/pi
const Float4 C = Float4(7.75160950e-1f);
const Float4 D = Float4(2.24839049e-1f);
// Parabola approximating sine
Float4 sin = x * (Abs(x) * A + B);
// Improve precision from 0.06 to 0.001
if(true)
{
sin = sin * (Abs(sin) * D + C);
}
return sin;
}
Float4 cosine_pi(RValue<Float4> x, bool pp)
{
// cos(x) = sin(x + pi/2)
Float4 y = x + Float4(1.57079632e+0f);
// Wrap around
y -= As<Float4>(CmpNLT(y, Float4(3.14159265e+0f)) & As<Int4>(Float4(6.28318530e+0f)));
return sine_pi(y, pp);
}
Float4 sine(RValue<Float4> x, bool pp)
{
// Reduce to [-0.5, 0.5] range
Float4 y = x * Float4(1.59154943e-1f); // 1/2pi
y = y - Round(y);
if(!pp)
{
// From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs"
// This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations:
// !pp : 17 mul, 7 add, 1 sub, 1 reciprocal
// pp : 4 mul, 2 add, 2 abs
Float4 y2 = y * y;
Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f);
Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f));
Float4 c2 = (c1 * c1) - (s1 * s1);
Float4 s2 = Float4(2.0f) * s1 * c1;
return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true);
}
const Float4 A = Float4(-16.0f);
const Float4 B = Float4(8.0f);
const Float4 C = Float4(7.75160950e-1f);
const Float4 D = Float4(2.24839049e-1f);
// Parabola approximating sine
Float4 sin = y * (Abs(y) * A + B);
// Improve precision from 0.06 to 0.001
if(true)
{
sin = sin * (Abs(sin) * D + C);
}
return sin;
}
Float4 cosine(RValue<Float4> x, bool pp)
{
// cos(x) = sin(x + pi/2)
Float4 y = x + Float4(1.57079632e+0f);
return sine(y, pp);
}
Float4 tangent(RValue<Float4> x, bool pp)
{
return sine(x, pp) / cosine(x, pp);
}
Float4 arccos(RValue<Float4> x, bool pp)
{
// pi/2 - arcsin(x)
return Float4(1.57079632e+0f) - arcsin(x);
}
Float4 arcsin(RValue<Float4> x, bool pp)
{
if(false) // Simpler implementation fails even lowp precision tests
{
// x*(pi/2-sqrt(1-x*x)*pi/5)
return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x*x) * Float4(6.28318531e-1f));
}
else
{
// From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun
const Float4 half_pi(1.57079632f);
const Float4 a0(1.5707288f);
const Float4 a1(-0.2121144f);
const Float4 a2(0.0742610f);
const Float4 a3(-0.0187293f);
Float4 absx = Abs(x);
return As<Float4>(As<Int4>(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^
(As<Int4>(x) & Int4(0x80000000)));
}
}
// Approximation of atan in [0..1]
Float4 arctan_01(Float4 x, bool pp)
{
if(pp)
{
return x * (Float4(-0.27f) * x + Float4(1.05539816f));
}
else
{
// From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun
const Float4 a2(-0.3333314528f);
const Float4 a4(0.1999355085f);
const Float4 a6(-0.1420889944f);
const Float4 a8(0.1065626393f);
const Float4 a10(-0.0752896400f);
const Float4 a12(0.0429096138f);
const Float4 a14(-0.0161657367f);
const Float4 a16(0.0028662257f);
Float4 x2 = x * x;
return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16)))))))));
}
}
Float4 arctan(RValue<Float4> x, bool pp)
{
Float4 absx = Abs(x);
Int4 O = CmpNLT(absx, Float4(1.0f));
Float4 y = As<Float4>((O & As<Int4>(Float4(1.0f) / absx)) | (~O & As<Int4>(absx))); // FIXME: Vector select
const Float4 half_pi(1.57079632f);
Float4 theta = arctan_01(y, pp);
return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^ // FIXME: Vector select
(As<Int4>(x) & Int4(0x80000000)));
}
Float4 arctan(RValue<Float4> y, RValue<Float4> x, bool pp)
{
const Float4 pi(3.14159265f); // pi
const Float4 minus_pi(-3.14159265f); // -pi
const Float4 half_pi(1.57079632f); // pi/2
const Float4 quarter_pi(7.85398163e-1f); // pi/4
// Rotate to upper semicircle when in lower semicircle
Int4 S = CmpLT(y, Float4(0.0f));
Float4 theta = As<Float4>(S & As<Int4>(minus_pi));
Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x));
Float4 y0 = Abs(y);
// Rotate to right quadrant when in left quadrant
Int4 Q = CmpLT(x0, Float4(0.0f));
theta += As<Float4>(Q & As<Int4>(half_pi));
Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0))); // FIXME: Vector select
Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0))); // FIXME: Vector select
// Mirror to first octant when in second octant
Int4 O = CmpNLT(y1, x1);
Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1))); // FIXME: Vector select
Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1))); // FIXME: Vector select
// Approximation of atan in [0..1]
Int4 zero_x = CmpEQ(x2, Float4(0.0f));
Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4
Float4 atan2_theta = arctan_01(y2 / x2, pp);
theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) | // FIXME: Vector select
(inf_y & As<Int4>(quarter_pi)));
// Recover loss of precision for tiny theta angles
Int4 precision_loss = S & Q & O & ~inf_y; // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta
return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta))); // FIXME: Vector select
}
Float4 sineh(RValue<Float4> x, bool pp)
{
return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f);
}
Float4 cosineh(RValue<Float4> x, bool pp)
{
return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f);
}
Float4 tangenth(RValue<Float4> x, bool pp)
{
Float4 e_x = exponential(x, pp);
Float4 e_minus_x = exponential(-x, pp);
return (e_x - e_minus_x) / (e_x + e_minus_x);
}
Float4 arccosh(RValue<Float4> x, bool pp)
{
return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp);
}
Float4 arcsinh(RValue<Float4> x, bool pp)
{
return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp);
}
Float4 arctanh(RValue<Float4> x, bool pp)
{
return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f);
}
Float4 dot2(const Vector4f &v0, const Vector4f &v1)
{
return v0.x * v1.x + v0.y * v1.y;
}
Float4 dot3(const Vector4f &v0, const Vector4f &v1)
{
return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z;
}
Float4 dot4(const Vector4f &v0, const Vector4f &v1)
{
return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w;
}
void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3)
{
Int2 tmp0 = UnpackHigh(row0, row1);
Int2 tmp1 = UnpackHigh(row2, row3);
Int2 tmp2 = UnpackLow(row0, row1);
Int2 tmp3 = UnpackLow(row2, row3);
row0 = UnpackLow(tmp2, tmp3);
row1 = UnpackHigh(tmp2, tmp3);
row2 = UnpackLow(tmp0, tmp1);
row3 = UnpackHigh(tmp0, tmp1);
}
void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3)
{
Int2 tmp0 = UnpackHigh(row0, row1);
Int2 tmp1 = UnpackHigh(row2, row3);
Int2 tmp2 = UnpackLow(row0, row1);
Int2 tmp3 = UnpackLow(row2, row3);
row0 = UnpackLow(tmp2, tmp3);
row1 = UnpackHigh(tmp2, tmp3);
row2 = UnpackLow(tmp0, tmp1);
}
void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
{
Float4 tmp0 = UnpackLow(row0, row1);
Float4 tmp1 = UnpackLow(row2, row3);
Float4 tmp2 = UnpackHigh(row0, row1);
Float4 tmp3 = UnpackHigh(row2, row3);
row0 = Float4(tmp0.xy, tmp1.xy);
row1 = Float4(tmp0.zw, tmp1.zw);
row2 = Float4(tmp2.xy, tmp3.xy);
row3 = Float4(tmp2.zw, tmp3.zw);
}
void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
{
Float4 tmp0 = UnpackLow(row0, row1);
Float4 tmp1 = UnpackLow(row2, row3);
Float4 tmp2 = UnpackHigh(row0, row1);
Float4 tmp3 = UnpackHigh(row2, row3);
row0 = Float4(tmp0.xy, tmp1.xy);
row1 = Float4(tmp0.zw, tmp1.zw);
row2 = Float4(tmp2.xy, tmp3.xy);
}
void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
{
Float4 tmp0 = UnpackLow(row0, row1);
Float4 tmp1 = UnpackLow(row2, row3);
row0 = Float4(tmp0.xy, tmp1.xy);
row1 = Float4(tmp0.zw, tmp1.zw);
}
void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
{
Float4 tmp0 = UnpackLow(row0, row1);
Float4 tmp1 = UnpackLow(row2, row3);
row0 = Float4(tmp0.xy, tmp1.xy);
}
void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
{
Float4 tmp01 = UnpackLow(row0, row1);
Float4 tmp23 = UnpackHigh(row0, row1);
row0 = tmp01;
row1 = Float4(tmp01.zw, row1.zw);
row2 = tmp23;
row3 = Float4(tmp23.zw, row3.zw);
}
void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N)
{
switch(N)
{
case 1: transpose4x1(row0, row1, row2, row3); break;
case 2: transpose4x2(row0, row1, row2, row3); break;
case 3: transpose4x3(row0, row1, row2, row3); break;
case 4: transpose4x4(row0, row1, row2, row3); break;
}
}
const Vector4f RegisterFile::operator[](RValue<Int4> index)
{
ASSERT(indirectAddressable);
Int index0 = Extract(index, 0);
Int index1 = Extract(index, 1);
Int index2 = Extract(index, 2);
Int index3 = Extract(index, 3);
Vector4f r;
r.x.x = Extract(x[0][index0], 0);
r.x.y = Extract(x[0][index1], 1);
r.x.z = Extract(x[0][index2], 2);
r.x.w = Extract(x[0][index3], 3);
r.y.x = Extract(y[0][index0], 0);
r.y.y = Extract(y[0][index1], 1);
r.y.z = Extract(y[0][index2], 2);
r.y.w = Extract(y[0][index3], 3);
r.z.x = Extract(z[0][index0], 0);
r.z.y = Extract(z[0][index1], 1);
r.z.z = Extract(z[0][index2], 2);
r.z.w = Extract(z[0][index3], 3);
r.w.x = Extract(w[0][index0], 0);
r.w.y = Extract(w[0][index1], 1);
r.w.z = Extract(w[0][index2], 2);
r.w.w = Extract(w[0][index3], 3);
return r;
}
void RegisterFile::scatter_x(Int4 index, RValue<Float4> r)
{
ASSERT(indirectAddressable);
Int index0 = Extract(index, 0);
Int index1 = Extract(index, 1);
Int index2 = Extract(index, 2);
Int index3 = Extract(index, 3);
x[0][index0] = Insert(x[0][index0], Extract(r, 0), 0);
x[0][index1] = Insert(x[0][index1], Extract(r, 1), 1);
x[0][index2] = Insert(x[0][index2], Extract(r, 2), 2);
x[0][index3] = Insert(x[0][index3], Extract(r, 3), 3);
}
void RegisterFile::scatter_y(Int4 index, RValue<Float4> r)
{
ASSERT(indirectAddressable);
Int index0 = Extract(index, 0);
Int index1 = Extract(index, 1);
Int index2 = Extract(index, 2);
Int index3 = Extract(index, 3);
y[0][index0] = Insert(y[0][index0], Extract(r, 0), 0);
y[0][index1] = Insert(y[0][index1], Extract(r, 1), 1);
y[0][index2] = Insert(y[0][index2], Extract(r, 2), 2);
y[0][index3] = Insert(y[0][index3], Extract(r, 3), 3);
}
void RegisterFile::scatter_z(Int4 index, RValue<Float4> r)
{
ASSERT(indirectAddressable);
Int index0 = Extract(index, 0);
Int index1 = Extract(index, 1);
Int index2 = Extract(index, 2);
Int index3 = Extract(index, 3);
z[0][index0] = Insert(z[0][index0], Extract(r, 0), 0);
z[0][index1] = Insert(z[0][index1], Extract(r, 1), 1);
z[0][index2] = Insert(z[0][index2], Extract(r, 2), 2);
z[0][index3] = Insert(z[0][index3], Extract(r, 3), 3);
}
void RegisterFile::scatter_w(Int4 index, RValue<Float4> r)
{
ASSERT(indirectAddressable);
Int index0 = Extract(index, 0);
Int index1 = Extract(index, 1);
Int index2 = Extract(index, 2);
Int index3 = Extract(index, 3);
w[0][index0] = Insert(w[0][index0], Extract(r, 0), 0);
w[0][index1] = Insert(w[0][index1], Extract(r, 1), 1);
w[0][index2] = Insert(w[0][index2], Extract(r, 2), 2);
w[0][index3] = Insert(w[0][index3], Extract(r, 3), 3);
}
void ShaderCore::mov(Vector4f &dst, const Vector4f &src, bool integerDestination)
{
if(integerDestination)
{
dst.x = As<Float4>(RoundInt(src.x));
dst.y = As<Float4>(RoundInt(src.y));
dst.z = As<Float4>(RoundInt(src.z));
dst.w = As<Float4>(RoundInt(src.w));
}
else
{
dst = src;
}
}
void ShaderCore::neg(Vector4f &dst, const Vector4f &src)
{
dst.x = -src.x;
dst.y = -src.y;
dst.z = -src.z;
dst.w = -src.w;
}
void ShaderCore::ineg(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(-As<Int4>(src.x));
dst.y = As<Float4>(-As<Int4>(src.y));
dst.z = As<Float4>(-As<Int4>(src.z));
dst.w = As<Float4>(-As<Int4>(src.w));
}
void ShaderCore::f2b(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(CmpNEQ(src.x, Float4(0.0f)));
dst.y = As<Float4>(CmpNEQ(src.y, Float4(0.0f)));
dst.z = As<Float4>(CmpNEQ(src.z, Float4(0.0f)));
dst.w = As<Float4>(CmpNEQ(src.w, Float4(0.0f)));
}
void ShaderCore::b2f(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(As<Int4>(src.x) & As<Int4>(Float4(1.0f)));
dst.y = As<Float4>(As<Int4>(src.y) & As<Int4>(Float4(1.0f)));
dst.z = As<Float4>(As<Int4>(src.z) & As<Int4>(Float4(1.0f)));
dst.w = As<Float4>(As<Int4>(src.w) & As<Int4>(Float4(1.0f)));
}
void ShaderCore::f2i(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(Int4(src.x));
dst.y = As<Float4>(Int4(src.y));
dst.z = As<Float4>(Int4(src.z));
dst.w = As<Float4>(Int4(src.w));
}
void ShaderCore::i2f(Vector4f &dst, const Vector4f &src)
{
dst.x = Float4(As<Int4>(src.x));
dst.y = Float4(As<Int4>(src.y));
dst.z = Float4(As<Int4>(src.z));
dst.w = Float4(As<Int4>(src.w));
}
void ShaderCore::f2u(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(UInt4(src.x));
dst.y = As<Float4>(UInt4(src.y));
dst.z = As<Float4>(UInt4(src.z));
dst.w = As<Float4>(UInt4(src.w));
}
void ShaderCore::u2f(Vector4f &dst, const Vector4f &src)
{
dst.x = Float4(As<UInt4>(src.x));
dst.y = Float4(As<UInt4>(src.y));
dst.z = Float4(As<UInt4>(src.z));
dst.w = Float4(As<UInt4>(src.w));
}
void ShaderCore::i2b(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(CmpNEQ(As<Int4>(src.x), Int4(0)));
dst.y = As<Float4>(CmpNEQ(As<Int4>(src.y), Int4(0)));
dst.z = As<Float4>(CmpNEQ(As<Int4>(src.z), Int4(0)));
dst.w = As<Float4>(CmpNEQ(As<Int4>(src.w), Int4(0)));
}
void ShaderCore::b2i(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(As<Int4>(src.x) & Int4(1));
dst.y = As<Float4>(As<Int4>(src.y) & Int4(1));
dst.z = As<Float4>(As<Int4>(src.z) & Int4(1));
dst.w = As<Float4>(As<Int4>(src.w) & Int4(1));
}
void ShaderCore::add(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = src0.x + src1.x;
dst.y = src0.y + src1.y;
dst.z = src0.z + src1.z;
dst.w = src0.w + src1.w;
}
void ShaderCore::iadd(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(As<Int4>(src0.x) + As<Int4>(src1.x));
dst.y = As<Float4>(As<Int4>(src0.y) + As<Int4>(src1.y));
dst.z = As<Float4>(As<Int4>(src0.z) + As<Int4>(src1.z));
dst.w = As<Float4>(As<Int4>(src0.w) + As<Int4>(src1.w));
}
void ShaderCore::sub(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = src0.x - src1.x;
dst.y = src0.y - src1.y;
dst.z = src0.z - src1.z;
dst.w = src0.w - src1.w;
}
void ShaderCore::isub(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(As<Int4>(src0.x) - As<Int4>(src1.x));
dst.y = As<Float4>(As<Int4>(src0.y) - As<Int4>(src1.y));
dst.z = As<Float4>(As<Int4>(src0.z) - As<Int4>(src1.z));
dst.w = As<Float4>(As<Int4>(src0.w) - As<Int4>(src1.w));
}
void ShaderCore::mad(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2)
{
dst.x = src0.x * src1.x + src2.x;
dst.y = src0.y * src1.y + src2.y;
dst.z = src0.z * src1.z + src2.z;
dst.w = src0.w * src1.w + src2.w;
}
void ShaderCore::imad(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2)
{
dst.x = As<Float4>(As<Int4>(src0.x) * As<Int4>(src1.x) + As<Int4>(src2.x));
dst.y = As<Float4>(As<Int4>(src0.y) * As<Int4>(src1.y) + As<Int4>(src2.y));
dst.z = As<Float4>(As<Int4>(src0.z) * As<Int4>(src1.z) + As<Int4>(src2.z));
dst.w = As<Float4>(As<Int4>(src0.w) * As<Int4>(src1.w) + As<Int4>(src2.w));
}
void ShaderCore::mul(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = src0.x * src1.x;
dst.y = src0.y * src1.y;
dst.z = src0.z * src1.z;
dst.w = src0.w * src1.w;
}
void ShaderCore::imul(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(As<Int4>(src0.x) * As<Int4>(src1.x));
dst.y = As<Float4>(As<Int4>(src0.y) * As<Int4>(src1.y));
dst.z = As<Float4>(As<Int4>(src0.z) * As<Int4>(src1.z));
dst.w = As<Float4>(As<Int4>(src0.w) * As<Int4>(src1.w));
}
void ShaderCore::rcpx(Vector4f &dst, const Vector4f &src, bool pp)
{
Float4 rcp = reciprocal(src.x, pp, true, true);
dst.x = rcp;
dst.y = rcp;
dst.z = rcp;
dst.w = rcp;
}
void ShaderCore::div(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = src0.x / src1.x;
dst.y = src0.y / src1.y;
dst.z = src0.z / src1.z;
dst.w = src0.w / src1.w;
}
void ShaderCore::idiv(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
Float4 intMax(As<Float4>(Int4(INT_MAX)));
cmp0i(dst.x, src1.x, intMax, src1.x);
dst.x = As<Float4>(As<Int4>(src0.x) / As<Int4>(dst.x));
cmp0i(dst.y, src1.y, intMax, src1.y);
dst.y = As<Float4>(As<Int4>(src0.y) / As<Int4>(dst.y));
cmp0i(dst.z, src1.z, intMax, src1.z);
dst.z = As<Float4>(As<Int4>(src0.z) / As<Int4>(dst.z));
cmp0i(dst.w, src1.w, intMax, src1.w);
dst.w = As<Float4>(As<Int4>(src0.w) / As<Int4>(dst.w));
}
void ShaderCore::udiv(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
Float4 uintMax(As<Float4>(UInt4(UINT_MAX)));
cmp0i(dst.x, src1.x, uintMax, src1.x);
dst.x = As<Float4>(As<UInt4>(src0.x) / As<UInt4>(dst.x));
cmp0i(dst.y, src1.y, uintMax, src1.y);
dst.y = As<Float4>(As<UInt4>(src0.y) / As<UInt4>(dst.y));
cmp0i(dst.z, src1.z, uintMax, src1.z);
dst.z = As<Float4>(As<UInt4>(src0.z) / As<UInt4>(dst.z));
cmp0i(dst.w, src1.w, uintMax, src1.w);
dst.w = As<Float4>(As<UInt4>(src0.w) / As<UInt4>(dst.w));
}
void ShaderCore::mod(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = modulo(src0.x, src1.x);
dst.y = modulo(src0.y, src1.y);
dst.z = modulo(src0.z, src1.z);
dst.w = modulo(src0.w, src1.w);
}
void ShaderCore::imod(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
Float4 intMax(As<Float4>(Int4(INT_MAX)));
cmp0i(dst.x, src1.x, intMax, src1.x);
dst.x = As<Float4>(As<Int4>(src0.x) % As<Int4>(dst.x));
cmp0i(dst.y, src1.y, intMax, src1.y);
dst.y = As<Float4>(As<Int4>(src0.y) % As<Int4>(dst.y));
cmp0i(dst.z, src1.z, intMax, src1.z);
dst.z = As<Float4>(As<Int4>(src0.z) % As<Int4>(dst.z));
cmp0i(dst.w, src1.w, intMax, src1.w);
dst.w = As<Float4>(As<Int4>(src0.w) % As<Int4>(dst.w));
}
void ShaderCore::umod(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
Float4 uintMax(As<Float4>(UInt4(UINT_MAX)));
cmp0i(dst.x, src1.x, uintMax, src1.x);
dst.x = As<Float4>(As<UInt4>(src0.x) % As<UInt4>(dst.x));
cmp0i(dst.y, src1.y, uintMax, src1.y);
dst.y = As<Float4>(As<UInt4>(src0.y) % As<UInt4>(dst.y));
cmp0i(dst.z, src1.z, uintMax, src1.z);
dst.z = As<Float4>(As<UInt4>(src0.z) % As<UInt4>(dst.z));
cmp0i(dst.w, src1.w, uintMax, src1.w);
dst.w = As<Float4>(As<UInt4>(src0.w) % As<UInt4>(dst.w));
}
void ShaderCore::shl(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(As<Int4>(src0.x) << As<Int4>(src1.x));
dst.y = As<Float4>(As<Int4>(src0.y) << As<Int4>(src1.y));
dst.z = As<Float4>(As<Int4>(src0.z) << As<Int4>(src1.z));
dst.w = As<Float4>(As<Int4>(src0.w) << As<Int4>(src1.w));
}
void ShaderCore::ishr(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(As<Int4>(src0.x) >> As<Int4>(src1.x));
dst.y = As<Float4>(As<Int4>(src0.y) >> As<Int4>(src1.y));
dst.z = As<Float4>(As<Int4>(src0.z) >> As<Int4>(src1.z));
dst.w = As<Float4>(As<Int4>(src0.w) >> As<Int4>(src1.w));
}
void ShaderCore::ushr(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(As<UInt4>(src0.x) >> As<UInt4>(src1.x));
dst.y = As<Float4>(As<UInt4>(src0.y) >> As<UInt4>(src1.y));
dst.z = As<Float4>(As<UInt4>(src0.z) >> As<UInt4>(src1.z));
dst.w = As<Float4>(As<UInt4>(src0.w) >> As<UInt4>(src1.w));
}
void ShaderCore::rsqx(Vector4f &dst, const Vector4f &src, bool pp)
{
Float4 rsq = reciprocalSquareRoot(src.x, true, pp);
dst.x = rsq;
dst.y = rsq;
dst.z = rsq;
dst.w = rsq;
}
void ShaderCore::sqrt(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = Sqrt(src.x);
dst.y = Sqrt(src.y);
dst.z = Sqrt(src.z);
dst.w = Sqrt(src.w);
}
void ShaderCore::rsq(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = reciprocalSquareRoot(src.x, false, pp);
dst.y = reciprocalSquareRoot(src.y, false, pp);
dst.z = reciprocalSquareRoot(src.z, false, pp);
dst.w = reciprocalSquareRoot(src.w, false, pp);
}
void ShaderCore::len2(Float4 &dst, const Vector4f &src, bool pp)
{
dst = Sqrt(dot2(src, src));
}
void ShaderCore::len3(Float4 &dst, const Vector4f &src, bool pp)
{
dst = Sqrt(dot3(src, src));
}
void ShaderCore::len4(Float4 &dst, const Vector4f &src, bool pp)
{
dst = Sqrt(dot4(src, src));
}
void ShaderCore::dist1(Float4 &dst, const Vector4f &src0, const Vector4f &src1, bool pp)
{
dst = Abs(src0.x - src1.x);
}
void ShaderCore::dist2(Float4 &dst, const Vector4f &src0, const Vector4f &src1, bool pp)
{
Float4 dx = src0.x - src1.x;
Float4 dy = src0.y - src1.y;
Float4 dot2 = dx * dx + dy * dy;
dst = Sqrt(dot2);
}
void ShaderCore::dist3(Float4 &dst, const Vector4f &src0, const Vector4f &src1, bool pp)
{
Float4 dx = src0.x - src1.x;
Float4 dy = src0.y - src1.y;
Float4 dz = src0.z - src1.z;
Float4 dot3 = dx * dx + dy * dy + dz * dz;
dst = Sqrt(dot3);
}
void ShaderCore::dist4(Float4 &dst, const Vector4f &src0, const Vector4f &src1, bool pp)
{
Float4 dx = src0.x - src1.x;
Float4 dy = src0.y - src1.y;
Float4 dz = src0.z - src1.z;
Float4 dw = src0.w - src1.w;
Float4 dot4 = dx * dx + dy * dy + dz * dz + dw * dw;
dst = Sqrt(dot4);
}
void ShaderCore::dp1(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
Float4 t = src0.x * src1.x;
dst.x = t;
dst.y = t;
dst.z = t;
dst.w = t;
}
void ShaderCore::dp2(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
Float4 t = dot2(src0, src1);
dst.x = t;
dst.y = t;
dst.z = t;
dst.w = t;
}
void ShaderCore::dp2add(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2)
{
Float4 t = dot2(src0, src1) + src2.x;
dst.x = t;
dst.y = t;
dst.z = t;
dst.w = t;
}
void ShaderCore::dp3(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
Float4 dot = dot3(src0, src1);
dst.x = dot;
dst.y = dot;
dst.z = dot;
dst.w = dot;
}
void ShaderCore::dp4(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
Float4 dot = dot4(src0, src1);
dst.x = dot;
dst.y = dot;
dst.z = dot;
dst.w = dot;
}
void ShaderCore::min(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = Min(src0.x, src1.x);
dst.y = Min(src0.y, src1.y);
dst.z = Min(src0.z, src1.z);
dst.w = Min(src0.w, src1.w);
}
void ShaderCore::imin(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(Min(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(Min(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(Min(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(Min(As<Int4>(src0.w), As<Int4>(src1.w)));
}
void ShaderCore::umin(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(Min(As<UInt4>(src0.x), As<UInt4>(src1.x)));
dst.y = As<Float4>(Min(As<UInt4>(src0.y), As<UInt4>(src1.y)));
dst.z = As<Float4>(Min(As<UInt4>(src0.z), As<UInt4>(src1.z)));
dst.w = As<Float4>(Min(As<UInt4>(src0.w), As<UInt4>(src1.w)));
}
void ShaderCore::max(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = Max(src0.x, src1.x);
dst.y = Max(src0.y, src1.y);
dst.z = Max(src0.z, src1.z);
dst.w = Max(src0.w, src1.w);
}
void ShaderCore::imax(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(Max(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(Max(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(Max(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(Max(As<Int4>(src0.w), As<Int4>(src1.w)));
}
void ShaderCore::umax(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(Max(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(Max(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(Max(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(Max(As<Int4>(src0.w), As<Int4>(src1.w)));
}
void ShaderCore::slt(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = As<Float4>(As<Int4>(CmpLT(src0.x, src1.x)) & As<Int4>(Float4(1.0f)));
dst.y = As<Float4>(As<Int4>(CmpLT(src0.y, src1.y)) & As<Int4>(Float4(1.0f)));
dst.z = As<Float4>(As<Int4>(CmpLT(src0.z, src1.z)) & As<Int4>(Float4(1.0f)));
dst.w = As<Float4>(As<Int4>(CmpLT(src0.w, src1.w)) & As<Int4>(Float4(1.0f)));
}
void ShaderCore::step(Vector4f &dst, const Vector4f &edge, const Vector4f &x)
{
dst.x = As<Float4>(CmpNLT(x.x, edge.x) & As<Int4>(Float4(1.0f)));
dst.y = As<Float4>(CmpNLT(x.y, edge.y) & As<Int4>(Float4(1.0f)));
dst.z = As<Float4>(CmpNLT(x.z, edge.z) & As<Int4>(Float4(1.0f)));
dst.w = As<Float4>(CmpNLT(x.w, edge.w) & As<Int4>(Float4(1.0f)));
}
void ShaderCore::exp2x(Vector4f &dst, const Vector4f &src, bool pp)
{
Float4 exp = exponential2(src.x, pp);
dst.x = exp;
dst.y = exp;
dst.z = exp;
dst.w = exp;
}
void ShaderCore::exp2(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = exponential2(src.x, pp);
dst.y = exponential2(src.y, pp);
dst.z = exponential2(src.z, pp);
dst.w = exponential2(src.w, pp);
}
void ShaderCore::exp(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = exponential(src.x, pp);
dst.y = exponential(src.y, pp);
dst.z = exponential(src.z, pp);
dst.w = exponential(src.w, pp);
}
void ShaderCore::log2x(Vector4f &dst, const Vector4f &src, bool pp)
{
Float4 log = logarithm2(src.x, true, pp);
dst.x = log;
dst.y = log;
dst.z = log;
dst.w = log;
}
void ShaderCore::log2(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = logarithm2(src.x, false, pp);
dst.y = logarithm2(src.y, false, pp);
dst.z = logarithm2(src.z, false, pp);
dst.w = logarithm2(src.w, false, pp);
}
void ShaderCore::log(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = logarithm(src.x, false, pp);
dst.y = logarithm(src.y, false, pp);
dst.z = logarithm(src.z, false, pp);
dst.w = logarithm(src.w, false, pp);
}
void ShaderCore::lit(Vector4f &dst, const Vector4f &src)
{
dst.x = Float4(1.0f);
dst.y = Max(src.x, Float4(0.0f));
Float4 pow;
pow = src.w;
pow = Min(pow, Float4(127.9961f));
pow = Max(pow, Float4(-127.9961f));
dst.z = power(src.y, pow);
dst.z = As<Float4>(As<Int4>(dst.z) & CmpNLT(src.x, Float4(0.0f)));
dst.z = As<Float4>(As<Int4>(dst.z) & CmpNLT(src.y, Float4(0.0f)));
dst.w = Float4(1.0f);
}
void ShaderCore::att(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
// Computes attenuation factors (1, d, d^2, 1/d) assuming src0 = d^2, src1 = 1/d
dst.x = 1;
dst.y = src0.y * src1.y;
dst.z = src0.z;
dst.w = src1.w;
}
void ShaderCore::lrp(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2)
{
dst.x = src0.x * (src1.x - src2.x) + src2.x;
dst.y = src0.y * (src1.y - src2.y) + src2.y;
dst.z = src0.z * (src1.z - src2.z) + src2.z;
dst.w = src0.w * (src1.w - src2.w) + src2.w;
}
void ShaderCore::isinf(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(IsInf(src.x));
dst.y = As<Float4>(IsInf(src.y));
dst.z = As<Float4>(IsInf(src.z));
dst.w = As<Float4>(IsInf(src.w));
}
void ShaderCore::isnan(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(IsNan(src.x));
dst.y = As<Float4>(IsNan(src.y));
dst.z = As<Float4>(IsNan(src.z));
dst.w = As<Float4>(IsNan(src.w));
}
void ShaderCore::smooth(Vector4f &dst, const Vector4f &edge0, const Vector4f &edge1, const Vector4f &x)
{
Float4 tx = Min(Max((x.x - edge0.x) / (edge1.x - edge0.x), Float4(0.0f)), Float4(1.0f)); dst.x = tx * tx * (Float4(3.0f) - Float4(2.0f) * tx);
Float4 ty = Min(Max((x.y - edge0.y) / (edge1.y - edge0.y), Float4(0.0f)), Float4(1.0f)); dst.y = ty * ty * (Float4(3.0f) - Float4(2.0f) * ty);
Float4 tz = Min(Max((x.z - edge0.z) / (edge1.z - edge0.z), Float4(0.0f)), Float4(1.0f)); dst.z = tz * tz * (Float4(3.0f) - Float4(2.0f) * tz);
Float4 tw = Min(Max((x.w - edge0.w) / (edge1.w - edge0.w), Float4(0.0f)), Float4(1.0f)); dst.w = tw * tw * (Float4(3.0f) - Float4(2.0f) * tw);
}
void ShaderCore::floatToHalfBits(Float4& dst, const Float4& floatBits, bool storeInUpperBits)
{
static const uint32_t mask_sign = 0x80000000u;
static const uint32_t mask_round = ~0xfffu;
static const uint32_t c_f32infty = 255 << 23;
static const uint32_t c_magic = 15 << 23;
static const uint32_t c_nanbit = 0x200;
static const uint32_t c_infty_as_fp16 = 0x7c00;
static const uint32_t c_clamp = (31 << 23) - 0x1000;
UInt4 justsign = UInt4(mask_sign) & As<UInt4>(floatBits);
UInt4 absf = As<UInt4>(floatBits) ^ justsign;
UInt4 b_isnormal = CmpNLE(UInt4(c_f32infty), absf);
// Note: this version doesn't round to the nearest even in case of a tie as defined by IEEE 754-2008, it rounds to +inf
// instead of nearest even, since that's fine for GLSL ES 3.0's needs (see section 2.1.1 Floating-Point Computation)
UInt4 joined = ((((As<UInt4>(Min(As<Float4>(absf & UInt4(mask_round)) * As<Float4>(UInt4(c_magic)),
As<Float4>(UInt4(c_clamp))))) - UInt4(mask_round)) >> 13) & b_isnormal) |
((b_isnormal ^ UInt4(0xFFFFFFFF)) & ((CmpNLE(absf, UInt4(c_f32infty)) & UInt4(c_nanbit)) |
UInt4(c_infty_as_fp16)));
dst = As<Float4>(storeInUpperBits ? As<UInt4>(dst) | ((joined << 16) | justsign) : joined | (justsign >> 16));
}
void ShaderCore::halfToFloatBits(Float4& dst, const Float4& halfBits)
{
static const uint32_t mask_nosign = 0x7FFF;
static const uint32_t magic = (254 - 15) << 23;
static const uint32_t was_infnan = 0x7BFF;
static const uint32_t exp_infnan = 255 << 23;
UInt4 expmant = As<UInt4>(halfBits) & UInt4(mask_nosign);
dst = As<Float4>(As<UInt4>(As<Float4>(expmant << 13) * As<Float4>(UInt4(magic))) |
((As<UInt4>(halfBits) ^ UInt4(expmant)) << 16) |
(CmpNLE(As<UInt4>(expmant), UInt4(was_infnan)) & UInt4(exp_infnan)));
}
void ShaderCore::packHalf2x16(Vector4f &d, const Vector4f &s0)
{
// half2 | half1
floatToHalfBits(d.x, s0.x, false);
floatToHalfBits(d.x, s0.y, true);
}
void ShaderCore::unpackHalf2x16(Vector4f &dst, const Vector4f &s0)
{
// half2 | half1
halfToFloatBits(dst.x, As<Float4>(As<UInt4>(s0.x) & UInt4(0x0000FFFF)));
halfToFloatBits(dst.y, As<Float4>((As<UInt4>(s0.x) & UInt4(0xFFFF0000)) >> 16));
}
void ShaderCore::packSnorm2x16(Vector4f &d, const Vector4f &s0)
{
// round(clamp(c, -1.0, 1.0) * 32767.0)
d.x = As<Float4>((Int4(Round(Min(Max(s0.x, Float4(-1.0f)), Float4(1.0f)) * Float4(32767.0f))) & Int4(0xFFFF)) |
((Int4(Round(Min(Max(s0.y, Float4(-1.0f)), Float4(1.0f)) * Float4(32767.0f))) & Int4(0xFFFF)) << 16));
}
void ShaderCore::packUnorm2x16(Vector4f &d, const Vector4f &s0)
{
// round(clamp(c, 0.0, 1.0) * 65535.0)
d.x = As<Float4>((Int4(Round(Min(Max(s0.x, Float4(0.0f)), Float4(1.0f)) * Float4(65535.0f))) & Int4(0xFFFF)) |
((Int4(Round(Min(Max(s0.y, Float4(0.0f)), Float4(1.0f)) * Float4(65535.0f))) & Int4(0xFFFF)) << 16));
}
void ShaderCore::unpackSnorm2x16(Vector4f &dst, const Vector4f &s0)
{
// clamp(f / 32727.0, -1.0, 1.0)
dst.x = Min(Max(Float4(As<Int4>((As<UInt4>(s0.x) & UInt4(0x0000FFFF)) << 16)) * Float4(1.0f / float(0x7FFF0000)), Float4(-1.0f)), Float4(1.0f));
dst.y = Min(Max(Float4(As<Int4>(As<UInt4>(s0.x) & UInt4(0xFFFF0000))) * Float4(1.0f / float(0x7FFF0000)), Float4(-1.0f)), Float4(1.0f));
}
void ShaderCore::unpackUnorm2x16(Vector4f &dst, const Vector4f &s0)
{
// f / 65535.0
dst.x = Float4((As<UInt4>(s0.x) & UInt4(0x0000FFFF)) << 16) * Float4(1.0f / float(0xFFFF0000));
dst.y = Float4(As<UInt4>(s0.x) & UInt4(0xFFFF0000)) * Float4(1.0f / float(0xFFFF0000));
}
void ShaderCore::det2(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = src0.x * src1.y - src0.y * src1.x;
dst.y = dst.z = dst.w = dst.x;
}
void ShaderCore::det3(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2)
{
crs(dst, src1, src2);
dp3(dst, dst, src0);
}
void ShaderCore::det4(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2, const Vector4f &src3)
{
dst.x = src2.z * src3.w - src2.w * src3.z;
dst.y = src1.w * src3.z - src1.z * src3.w;
dst.z = src1.z * src2.w - src1.w * src2.z;
dst.x = src0.x * (src1.y * dst.x + src2.y * dst.y + src3.y * dst.z) -
src0.y * (src1.x * dst.x + src2.x * dst.y + src3.x * dst.z) +
src0.z * (src1.x * (src2.y * src3.w - src2.w * src3.y) +
src2.x * (src1.w * src3.y - src1.y * src3.w) +
src3.x * (src1.y * src2.w - src1.w * src2.y)) +
src0.w * (src1.x * (src2.z * src3.y - src2.y * src3.z) +
src2.x * (src1.y * src3.z - src1.z * src3.y) +
src3.x * (src1.z * src2.y - src1.y * src2.z));
dst.y = dst.z = dst.w = dst.x;
}
void ShaderCore::frc(Vector4f &dst, const Vector4f &src)
{
dst.x = Frac(src.x);
dst.y = Frac(src.y);
dst.z = Frac(src.z);
dst.w = Frac(src.w);
}
void ShaderCore::trunc(Vector4f &dst, const Vector4f &src)
{
dst.x = Trunc(src.x);
dst.y = Trunc(src.y);
dst.z = Trunc(src.z);
dst.w = Trunc(src.w);
}
void ShaderCore::floor(Vector4f &dst, const Vector4f &src)
{
dst.x = Floor(src.x);
dst.y = Floor(src.y);
dst.z = Floor(src.z);
dst.w = Floor(src.w);
}
void ShaderCore::round(Vector4f &dst, const Vector4f &src)
{
dst.x = Round(src.x);
dst.y = Round(src.y);
dst.z = Round(src.z);
dst.w = Round(src.w);
}
void ShaderCore::roundEven(Vector4f &dst, const Vector4f &src)
{
// dst = round(src) + ((round(src) < src) * 2 - 1) * (fract(src) == 0.5) * isOdd(round(src));
// ex.: 1.5: 2 + (0 * 2 - 1) * 1 * 0 = 2
// 2.5: 3 + (0 * 2 - 1) * 1 * 1 = 2
// -1.5: -2 + (1 * 2 - 1) * 1 * 0 = -2
// -2.5: -3 + (1 * 2 - 1) * 1 * 1 = -2
// Even if the round implementation rounds the other way:
// 1.5: 1 + (1 * 2 - 1) * 1 * 1 = 2
// 2.5: 2 + (1 * 2 - 1) * 1 * 0 = 2
// -1.5: -1 + (0 * 2 - 1) * 1 * 1 = -2
// -2.5: -2 + (0 * 2 - 1) * 1 * 0 = -2
round(dst, src);
dst.x += ((Float4(CmpLT(dst.x, src.x) & Int4(1)) * Float4(2.0f)) - Float4(1.0f)) * Float4(CmpEQ(Frac(src.x), Float4(0.5f)) & Int4(1)) * Float4(Int4(dst.x) & Int4(1));
dst.y += ((Float4(CmpLT(dst.y, src.y) & Int4(1)) * Float4(2.0f)) - Float4(1.0f)) * Float4(CmpEQ(Frac(src.y), Float4(0.5f)) & Int4(1)) * Float4(Int4(dst.y) & Int4(1));
dst.z += ((Float4(CmpLT(dst.z, src.z) & Int4(1)) * Float4(2.0f)) - Float4(1.0f)) * Float4(CmpEQ(Frac(src.z), Float4(0.5f)) & Int4(1)) * Float4(Int4(dst.z) & Int4(1));
dst.w += ((Float4(CmpLT(dst.w, src.w) & Int4(1)) * Float4(2.0f)) - Float4(1.0f)) * Float4(CmpEQ(Frac(src.w), Float4(0.5f)) & Int4(1)) * Float4(Int4(dst.w) & Int4(1));
}
void ShaderCore::ceil(Vector4f &dst, const Vector4f &src)
{
dst.x = Ceil(src.x);
dst.y = Ceil(src.y);
dst.z = Ceil(src.z);
dst.w = Ceil(src.w);
}
void ShaderCore::powx(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, bool pp)
{
Float4 pow = power(src0.x, src1.x, pp);
dst.x = pow;
dst.y = pow;
dst.z = pow;
dst.w = pow;
}
void ShaderCore::pow(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, bool pp)
{
dst.x = power(src0.x, src1.x, pp);
dst.y = power(src0.y, src1.y, pp);
dst.z = power(src0.z, src1.z, pp);
dst.w = power(src0.w, src1.w, pp);
}
void ShaderCore::crs(Vector4f &dst, const Vector4f &src0, const Vector4f &src1)
{
dst.x = src0.y * src1.z - src0.z * src1.y;
dst.y = src0.z * src1.x - src0.x * src1.z;
dst.z = src0.x * src1.y - src0.y * src1.x;
}
void ShaderCore::forward1(Vector4f &dst, const Vector4f &N, const Vector4f &I, const Vector4f &Nref)
{
Int4 flip = CmpNLT(Nref.x * I.x, Float4(0.0f)) & Int4(0x80000000);
dst.x = As<Float4>(flip ^ As<Int4>(N.x));
}
void ShaderCore::forward2(Vector4f &dst, const Vector4f &N, const Vector4f &I, const Vector4f &Nref)
{
Int4 flip = CmpNLT(dot2(Nref, I), Float4(0.0f)) & Int4(0x80000000);
dst.x = As<Float4>(flip ^ As<Int4>(N.x));
dst.y = As<Float4>(flip ^ As<Int4>(N.y));
}
void ShaderCore::forward3(Vector4f &dst, const Vector4f &N, const Vector4f &I, const Vector4f &Nref)
{
Int4 flip = CmpNLT(dot3(Nref, I), Float4(0.0f)) & Int4(0x80000000);
dst.x = As<Float4>(flip ^ As<Int4>(N.x));
dst.y = As<Float4>(flip ^ As<Int4>(N.y));
dst.z = As<Float4>(flip ^ As<Int4>(N.z));
}
void ShaderCore::forward4(Vector4f &dst, const Vector4f &N, const Vector4f &I, const Vector4f &Nref)
{
Int4 flip = CmpNLT(dot4(Nref, I), Float4(0.0f)) & Int4(0x80000000);
dst.x = As<Float4>(flip ^ As<Int4>(N.x));
dst.y = As<Float4>(flip ^ As<Int4>(N.y));
dst.z = As<Float4>(flip ^ As<Int4>(N.z));
dst.w = As<Float4>(flip ^ As<Int4>(N.w));
}
void ShaderCore::reflect1(Vector4f &dst, const Vector4f &I, const Vector4f &N)
{
Float4 d = N.x * I.x;
dst.x = I.x - Float4(2.0f) * d * N.x;
}
void ShaderCore::reflect2(Vector4f &dst, const Vector4f &I, const Vector4f &N)
{
Float4 d = dot2(N, I);
dst.x = I.x - Float4(2.0f) * d * N.x;
dst.y = I.y - Float4(2.0f) * d * N.y;
}
void ShaderCore::reflect3(Vector4f &dst, const Vector4f &I, const Vector4f &N)
{
Float4 d = dot3(N, I);
dst.x = I.x - Float4(2.0f) * d * N.x;
dst.y = I.y - Float4(2.0f) * d * N.y;
dst.z = I.z - Float4(2.0f) * d * N.z;
}
void ShaderCore::reflect4(Vector4f &dst, const Vector4f &I, const Vector4f &N)
{
Float4 d = dot4(N, I);
dst.x = I.x - Float4(2.0f) * d * N.x;
dst.y = I.y - Float4(2.0f) * d * N.y;
dst.z = I.z - Float4(2.0f) * d * N.z;
dst.w = I.w - Float4(2.0f) * d * N.w;
}
void ShaderCore::refract1(Vector4f &dst, const Vector4f &I, const Vector4f &N, const Float4 &eta)
{
Float4 d = N.x * I.x;
Float4 k = Float4(1.0f) - eta * eta * (Float4(1.0f) - d * d);
Int4 pos = CmpNLT(k, Float4(0.0f));
Float4 t = (eta * d + Sqrt(k));
dst.x = As<Float4>(pos & As<Int4>(eta * I.x - t * N.x));
}
void ShaderCore::refract2(Vector4f &dst, const Vector4f &I, const Vector4f &N, const Float4 &eta)
{
Float4 d = dot2(N, I);
Float4 k = Float4(1.0f) - eta * eta * (Float4(1.0f) - d * d);
Int4 pos = CmpNLT(k, Float4(0.0f));
Float4 t = (eta * d + Sqrt(k));
dst.x = As<Float4>(pos & As<Int4>(eta * I.x - t * N.x));
dst.y = As<Float4>(pos & As<Int4>(eta * I.y - t * N.y));
}
void ShaderCore::refract3(Vector4f &dst, const Vector4f &I, const Vector4f &N, const Float4 &eta)
{
Float4 d = dot3(N, I);
Float4 k = Float4(1.0f) - eta * eta * (Float4(1.0f) - d * d);
Int4 pos = CmpNLT(k, Float4(0.0f));
Float4 t = (eta * d + Sqrt(k));
dst.x = As<Float4>(pos & As<Int4>(eta * I.x - t * N.x));
dst.y = As<Float4>(pos & As<Int4>(eta * I.y - t * N.y));
dst.z = As<Float4>(pos & As<Int4>(eta * I.z - t * N.z));
}
void ShaderCore::refract4(Vector4f &dst, const Vector4f &I, const Vector4f &N, const Float4 &eta)
{
Float4 d = dot4(N, I);
Float4 k = Float4(1.0f) - eta * eta * (Float4(1.0f) - d * d);
Int4 pos = CmpNLT(k, Float4(0.0f));
Float4 t = (eta * d + Sqrt(k));
dst.x = As<Float4>(pos & As<Int4>(eta * I.x - t * N.x));
dst.y = As<Float4>(pos & As<Int4>(eta * I.y - t * N.y));
dst.z = As<Float4>(pos & As<Int4>(eta * I.z - t * N.z));
dst.w = As<Float4>(pos & As<Int4>(eta * I.w - t * N.w));
}
void ShaderCore::sgn(Vector4f &dst, const Vector4f &src)
{
sgn(dst.x, src.x);
sgn(dst.y, src.y);
sgn(dst.z, src.z);
sgn(dst.w, src.w);
}
void ShaderCore::isgn(Vector4f &dst, const Vector4f &src)
{
isgn(dst.x, src.x);
isgn(dst.y, src.y);
isgn(dst.z, src.z);
isgn(dst.w, src.w);
}
void ShaderCore::abs(Vector4f &dst, const Vector4f &src)
{
dst.x = Abs(src.x);
dst.y = Abs(src.y);
dst.z = Abs(src.z);
dst.w = Abs(src.w);
}
void ShaderCore::iabs(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(Abs(As<Int4>(src.x)));
dst.y = As<Float4>(Abs(As<Int4>(src.y)));
dst.z = As<Float4>(Abs(As<Int4>(src.z)));
dst.w = As<Float4>(Abs(As<Int4>(src.w)));
}
void ShaderCore::nrm2(Vector4f &dst, const Vector4f &src, bool pp)
{
Float4 dot = dot2(src, src);
Float4 rsq = reciprocalSquareRoot(dot, false, pp);
dst.x = src.x * rsq;
dst.y = src.y * rsq;
dst.z = src.z * rsq;
dst.w = src.w * rsq;
}
void ShaderCore::nrm3(Vector4f &dst, const Vector4f &src, bool pp)
{
Float4 dot = dot3(src, src);
Float4 rsq = reciprocalSquareRoot(dot, false, pp);
dst.x = src.x * rsq;
dst.y = src.y * rsq;
dst.z = src.z * rsq;
dst.w = src.w * rsq;
}
void ShaderCore::nrm4(Vector4f &dst, const Vector4f &src, bool pp)
{
Float4 dot = dot4(src, src);
Float4 rsq = reciprocalSquareRoot(dot, false, pp);
dst.x = src.x * rsq;
dst.y = src.y * rsq;
dst.z = src.z * rsq;
dst.w = src.w * rsq;
}
void ShaderCore::sincos(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = cosine_pi(src.x, pp);
dst.y = sine_pi(src.x, pp);
}
void ShaderCore::cos(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = cosine(src.x, pp);
dst.y = cosine(src.y, pp);
dst.z = cosine(src.z, pp);
dst.w = cosine(src.w, pp);
}
void ShaderCore::sin(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = sine(src.x, pp);
dst.y = sine(src.y, pp);
dst.z = sine(src.z, pp);
dst.w = sine(src.w, pp);
}
void ShaderCore::tan(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = tangent(src.x, pp);
dst.y = tangent(src.y, pp);
dst.z = tangent(src.z, pp);
dst.w = tangent(src.w, pp);
}
void ShaderCore::acos(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = arccos(src.x, pp);
dst.y = arccos(src.y, pp);
dst.z = arccos(src.z, pp);
dst.w = arccos(src.w, pp);
}
void ShaderCore::asin(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = arcsin(src.x, pp);
dst.y = arcsin(src.y, pp);
dst.z = arcsin(src.z, pp);
dst.w = arcsin(src.w, pp);
}
void ShaderCore::atan(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = arctan(src.x, pp);
dst.y = arctan(src.y, pp);
dst.z = arctan(src.z, pp);
dst.w = arctan(src.w, pp);
}
void ShaderCore::atan2(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, bool pp)
{
dst.x = arctan(src0.x, src1.x, pp);
dst.y = arctan(src0.y, src1.y, pp);
dst.z = arctan(src0.z, src1.z, pp);
dst.w = arctan(src0.w, src1.w, pp);
}
void ShaderCore::cosh(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = cosineh(src.x, pp);
dst.y = cosineh(src.y, pp);
dst.z = cosineh(src.z, pp);
dst.w = cosineh(src.w, pp);
}
void ShaderCore::sinh(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = sineh(src.x, pp);
dst.y = sineh(src.y, pp);
dst.z = sineh(src.z, pp);
dst.w = sineh(src.w, pp);
}
void ShaderCore::tanh(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = tangenth(src.x, pp);
dst.y = tangenth(src.y, pp);
dst.z = tangenth(src.z, pp);
dst.w = tangenth(src.w, pp);
}
void ShaderCore::acosh(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = arccosh(src.x, pp);
dst.y = arccosh(src.y, pp);
dst.z = arccosh(src.z, pp);
dst.w = arccosh(src.w, pp);
}
void ShaderCore::asinh(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = arcsinh(src.x, pp);
dst.y = arcsinh(src.y, pp);
dst.z = arcsinh(src.z, pp);
dst.w = arcsinh(src.w, pp);
}
void ShaderCore::atanh(Vector4f &dst, const Vector4f &src, bool pp)
{
dst.x = arctanh(src.x, pp);
dst.y = arctanh(src.y, pp);
dst.z = arctanh(src.z, pp);
dst.w = arctanh(src.w, pp);
}
void ShaderCore::expp(Vector4f &dst, const Vector4f &src, unsigned short shaderModel)
{
if(shaderModel < 0x0200)
{
Float4 frc = Frac(src.x);
Float4 floor = src.x - frc;
dst.x = exponential2(floor, true);
dst.y = frc;
dst.z = exponential2(src.x, true);
dst.w = Float4(1.0f);
}
else // Version >= 2.0
{
exp2x(dst, src, true); // FIXME: 10-bit precision suffices
}
}
void ShaderCore::logp(Vector4f &dst, const Vector4f &src, unsigned short shaderModel)
{
if(shaderModel < 0x0200)
{
Float4 tmp0;
Float4 tmp1;
Float4 t;
Int4 r;
tmp0 = Abs(src.x);
tmp1 = tmp0;
// X component
r = As<Int4>(As<UInt4>(tmp0) >> 23) - Int4(127);
dst.x = Float4(r);
// Y component
dst.y = As<Float4>((As<Int4>(tmp1) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f)));
// Z component
dst.z = logarithm2(src.x, true, true);
// W component
dst.w = 1.0f;
}
else
{
log2x(dst, src, true);
}
}
void ShaderCore::cmp0(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2)
{
cmp0(dst.x, src0.x, src1.x, src2.x);
cmp0(dst.y, src0.y, src1.y, src2.y);
cmp0(dst.z, src0.z, src1.z, src2.z);
cmp0(dst.w, src0.w, src1.w, src2.w);
}
void ShaderCore::select(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, const Vector4f &src2)
{
select(dst.x, As<Int4>(src0.x), src1.x, src2.x);
select(dst.y, As<Int4>(src0.y), src1.y, src2.y);
select(dst.z, As<Int4>(src0.z), src1.z, src2.z);
select(dst.w, As<Int4>(src0.w), src1.w, src2.w);
}
void ShaderCore::extract(Float4 &dst, const Vector4f &src0, const Float4 &src1)
{
select(dst, CmpEQ(As<Int4>(src1), Int4(1)), src0.y, src0.x);
select(dst, CmpEQ(As<Int4>(src1), Int4(2)), src0.z, dst);
select(dst, CmpEQ(As<Int4>(src1), Int4(3)), src0.w, dst);
}
void ShaderCore::insert(Vector4f &dst, const Vector4f &src, const Float4 &element, const Float4 &index)
{
select(dst.x, CmpEQ(As<Int4>(index), Int4(0)), element, src.x);
select(dst.y, CmpEQ(As<Int4>(index), Int4(1)), element, src.y);
select(dst.z, CmpEQ(As<Int4>(index), Int4(2)), element, src.z);
select(dst.w, CmpEQ(As<Int4>(index), Int4(3)), element, src.w);
}
void ShaderCore::sgn(Float4 &dst, const Float4 &src)
{
Int4 neg = As<Int4>(CmpLT(src, Float4(-0.0f))) & As<Int4>(Float4(-1.0f));
Int4 pos = As<Int4>(CmpNLE(src, Float4(+0.0f))) & As<Int4>(Float4(1.0f));
dst = As<Float4>(neg | pos);
}
void ShaderCore::isgn(Float4 &dst, const Float4 &src)
{
Int4 neg = CmpLT(As<Int4>(src), Int4(0)) & Int4(-1);
Int4 pos = CmpNLE(As<Int4>(src), Int4(0)) & Int4(1);
dst = As<Float4>(neg | pos);
}
void ShaderCore::cmp0(Float4 &dst, const Float4 &src0, const Float4 &src1, const Float4 &src2)
{
Int4 pos = CmpLE(Float4(0.0f), src0);
select(dst, pos, src1, src2);
}
void ShaderCore::cmp0i(Float4 &dst, const Float4 &src0, const Float4 &src1, const Float4 &src2)
{
Int4 pos = CmpEQ(Int4(0), As<Int4>(src0));
select(dst, pos, src1, src2);
}
void ShaderCore::select(Float4 &dst, RValue<Int4> src0, const Float4 &src1, const Float4 &src2)
{
// FIXME: LLVM vector select
dst = As<Float4>((src0 & As<Int4>(src1)) | (~src0 & As<Int4>(src2)));
}
void ShaderCore::cmp(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, Control control)
{
switch(control)
{
case Shader::CONTROL_GT:
dst.x = As<Float4>(CmpNLE(src0.x, src1.x));
dst.y = As<Float4>(CmpNLE(src0.y, src1.y));
dst.z = As<Float4>(CmpNLE(src0.z, src1.z));
dst.w = As<Float4>(CmpNLE(src0.w, src1.w));
break;
case Shader::CONTROL_EQ:
dst.x = As<Float4>(CmpEQ(src0.x, src1.x));
dst.y = As<Float4>(CmpEQ(src0.y, src1.y));
dst.z = As<Float4>(CmpEQ(src0.z, src1.z));
dst.w = As<Float4>(CmpEQ(src0.w, src1.w));
break;
case Shader::CONTROL_GE:
dst.x = As<Float4>(CmpNLT(src0.x, src1.x));
dst.y = As<Float4>(CmpNLT(src0.y, src1.y));
dst.z = As<Float4>(CmpNLT(src0.z, src1.z));
dst.w = As<Float4>(CmpNLT(src0.w, src1.w));
break;
case Shader::CONTROL_LT:
dst.x = As<Float4>(CmpLT(src0.x, src1.x));
dst.y = As<Float4>(CmpLT(src0.y, src1.y));
dst.z = As<Float4>(CmpLT(src0.z, src1.z));
dst.w = As<Float4>(CmpLT(src0.w, src1.w));
break;
case Shader::CONTROL_NE:
dst.x = As<Float4>(CmpNEQ(src0.x, src1.x));
dst.y = As<Float4>(CmpNEQ(src0.y, src1.y));
dst.z = As<Float4>(CmpNEQ(src0.z, src1.z));
dst.w = As<Float4>(CmpNEQ(src0.w, src1.w));
break;
case Shader::CONTROL_LE:
dst.x = As<Float4>(CmpLE(src0.x, src1.x));
dst.y = As<Float4>(CmpLE(src0.y, src1.y));
dst.z = As<Float4>(CmpLE(src0.z, src1.z));
dst.w = As<Float4>(CmpLE(src0.w, src1.w));
break;
default:
ASSERT(false);
}
}
void ShaderCore::icmp(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, Control control)
{
switch(control)
{
case Shader::CONTROL_GT:
dst.x = As<Float4>(CmpNLE(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(CmpNLE(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(CmpNLE(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(CmpNLE(As<Int4>(src0.w), As<Int4>(src1.w)));
break;
case Shader::CONTROL_EQ:
dst.x = As<Float4>(CmpEQ(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(CmpEQ(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(CmpEQ(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(CmpEQ(As<Int4>(src0.w), As<Int4>(src1.w)));
break;
case Shader::CONTROL_GE:
dst.x = As<Float4>(CmpNLT(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(CmpNLT(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(CmpNLT(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(CmpNLT(As<Int4>(src0.w), As<Int4>(src1.w)));
break;
case Shader::CONTROL_LT:
dst.x = As<Float4>(CmpLT(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(CmpLT(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(CmpLT(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(CmpLT(As<Int4>(src0.w), As<Int4>(src1.w)));
break;
case Shader::CONTROL_NE:
dst.x = As<Float4>(CmpNEQ(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(CmpNEQ(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(CmpNEQ(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(CmpNEQ(As<Int4>(src0.w), As<Int4>(src1.w)));
break;
case Shader::CONTROL_LE:
dst.x = As<Float4>(CmpLE(As<Int4>(src0.x), As<Int4>(src1.x)));
dst.y = As<Float4>(CmpLE(As<Int4>(src0.y), As<Int4>(src1.y)));
dst.z = As<Float4>(CmpLE(As<Int4>(src0.z), As<Int4>(src1.z)));
dst.w = As<Float4>(CmpLE(As<Int4>(src0.w), As<Int4>(src1.w)));
break;
default:
ASSERT(false);
}
}
void ShaderCore::ucmp(Vector4f &dst, const Vector4f &src0, const Vector4f &src1, Control control)
{
switch(control)
{
case Shader::CONTROL_GT:
dst.x = As<Float4>(CmpNLE(As<UInt4>(src0.x), As<UInt4>(src1.x)));
dst.y = As<Float4>(CmpNLE(As<UInt4>(src0.y), As<UInt4>(src1.y)));
dst.z = As<Float4>(CmpNLE(As<UInt4>(src0.z), As<UInt4>(src1.z)));
dst.w = As<Float4>(CmpNLE(As<UInt4>(src0.w), As<UInt4>(src1.w)));
break;
case Shader::CONTROL_EQ:
dst.x = As<Float4>(CmpEQ(As<UInt4>(src0.x), As<UInt4>(src1.x)));
dst.y = As<Float4>(CmpEQ(As<UInt4>(src0.y), As<UInt4>(src1.y)));
dst.z = As<Float4>(CmpEQ(As<UInt4>(src0.z), As<UInt4>(src1.z)));
dst.w = As<Float4>(CmpEQ(As<UInt4>(src0.w), As<UInt4>(src1.w)));
break;
case Shader::CONTROL_GE:
dst.x = As<Float4>(CmpNLT(As<UInt4>(src0.x), As<UInt4>(src1.x)));
dst.y = As<Float4>(CmpNLT(As<UInt4>(src0.y), As<UInt4>(src1.y)));
dst.z = As<Float4>(CmpNLT(As<UInt4>(src0.z), As<UInt4>(src1.z)));
dst.w = As<Float4>(CmpNLT(As<UInt4>(src0.w), As<UInt4>(src1.w)));
break;
case Shader::CONTROL_LT:
dst.x = As<Float4>(CmpLT(As<UInt4>(src0.x), As<UInt4>(src1.x)));
dst.y = As<Float4>(CmpLT(As<UInt4>(src0.y), As<UInt4>(src1.y)));
dst.z = As<Float4>(CmpLT(As<UInt4>(src0.z), As<UInt4>(src1.z)));
dst.w = As<Float4>(CmpLT(As<UInt4>(src0.w), As<UInt4>(src1.w)));
break;
case Shader::CONTROL_NE:
dst.x = As<Float4>(CmpNEQ(As<UInt4>(src0.x), As<UInt4>(src1.x)));
dst.y = As<Float4>(CmpNEQ(As<UInt4>(src0.y), As<UInt4>(src1.y)));
dst.z = As<Float4>(CmpNEQ(As<UInt4>(src0.z), As<UInt4>(src1.z)));
dst.w = As<Float4>(CmpNEQ(As<UInt4>(src0.w), As<UInt4>(src1.w)));
break;
case Shader::CONTROL_LE:
dst.x = As<Float4>(CmpLE(As<UInt4>(src0.x), As<UInt4>(src1.x)));
dst.y = As<Float4>(CmpLE(As<UInt4>(src0.y), As<UInt4>(src1.y)));
dst.z = As<Float4>(CmpLE(As<UInt4>(src0.z), As<UInt4>(src1.z)));
dst.w = As<Float4>(CmpLE(As<UInt4>(src0.w), As<UInt4>(src1.w)));
break;
default:
ASSERT(false);
}
}
void ShaderCore::all(Float4 &dst, const Vector4f &src)
{
dst = As<Float4>(As<Int4>(src.x) & As<Int4>(src.y) & As<Int4>(src.z) & As<Int4>(src.w));
}
void ShaderCore::any(Float4 &dst, const Vector4f &src)
{
dst = As<Float4>(As<Int4>(src.x) | As<Int4>(src.y) | As<Int4>(src.z) | As<Int4>(src.w));
}
void ShaderCore::bitwise_not(Vector4f &dst, const Vector4f &src)
{
dst.x = As<Float4>(As<Int4>(src.x) ^ Int4(0xFFFFFFFF));
dst.y = As<Float4