blob: dcfe9619b2657a845de229c544b2cf94381c8cce [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "Reactor.hpp"
#include "Coroutine.hpp"
#include "gtest/gtest.h"
#include <tuple>
using namespace rr;
int reference(int *p, int y)
{
int x = p[-1];
int z = 4;
for(int i = 0; i < 10; i++)
{
z += (2 << i) - (i / 3);
}
int sum = x + y + z;
return sum;
}
TEST(ReactorUnitTests, Sample)
{
{
FunctionT<int(int*, int)> function;
{
Pointer<Int> p = function.Arg<0>();
Int x = p[-1];
Int y = function.Arg<1>();
Int z = 4;
For(Int i = 0, i < 10, i++)
{
z += (2 << i) - (i / 3);
}
Float4 v;
v.z = As<Float>(z);
z = As<Int>(Float(Float4(v.xzxx).y));
Int sum = x + y + z;
Return(sum);
}
auto routine = function("one");
if(routine)
{
int one[2] = {1, 0};
int result = routine(&one[1], 2);
EXPECT_EQ(result, reference(&one[1], 2));
}
}
}
TEST(ReactorUnitTests, Uninitialized)
{
{
FunctionT<int()> function;
{
Int a;
Int z = 4;
Int q;
Int c;
Int p;
Bool b;
q += q;
If(b)
{
c = p;
}
Return(a + z + q + c);
}
auto routine = function("one");
if(routine)
{
int result = routine();
EXPECT_EQ(result, result); // Anything is fine, just don't crash
}
}
}
TEST(ReactorUnitTests, Unreachable)
{
{
FunctionT<int(int)> function;
{
Int a = function.Arg<0>();
Int z = 4;
Return(a + z);
// Code beyond this point is unreachable but should not cause any
// compilation issues.
z += a;
}
auto routine = function("one");
if(routine)
{
int result = routine(16);
EXPECT_EQ(result, 20);
}
}
}
TEST(ReactorUnitTests, VariableAddress)
{
{
FunctionT<int(int)> function;
{
Int a = function.Arg<0>();
Int z = 0;
Pointer<Int> p = &z;
*p = 4;
Return(a + z);
}
auto routine = function("one");
if(routine)
{
int result = routine(16);
EXPECT_EQ(result, 20);
}
}
}
TEST(ReactorUnitTests, SubVectorLoadStore)
{
{
FunctionT<int(void*, void*)> function;
{
Pointer<Byte> in = function.Arg<0>();
Pointer<Byte> out = function.Arg<1>();
*Pointer<Int4>(out + 16 * 0) = *Pointer<Int4>(in + 16 * 0);
*Pointer<Short4>(out + 16 * 1) = *Pointer<Short4>(in + 16 * 1);
*Pointer<Byte8>(out + 16 * 2) = *Pointer<Byte8>(in + 16 * 2);
*Pointer<Byte4>(out + 16 * 3) = *Pointer<Byte4>(in + 16 * 3);
*Pointer<Short2>(out + 16 * 4) = *Pointer<Short2>(in + 16 * 4);
Return(0);
}
auto routine = function("one");
if(routine)
{
int8_t in[16 * 5] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 0, 0, 0, 0, 0, 0, 0, 0,
25, 26, 27, 28, 29, 30, 31, 32, 0, 0, 0, 0, 0, 0, 0, 0,
33, 34, 35, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
37, 38, 39, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int8_t out[16 * 5] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1};
routine(in, out);
for(int row = 0; row < 5; row++)
{
for(int col = 0; col < 16; col++)
{
int i = row * 16 + col;
if(in[i] == 0)
{
EXPECT_EQ(out[i], -1) << "Row " << row << " column " << col << " not left untouched.";
}
else
{
EXPECT_EQ(out[i], in[i]) << "Row " << row << " column " << col << " not equal to input.";
}
}
}
}
}
}
TEST(ReactorUnitTests, VectorConstant)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<Int4>(out + 16 * 0) = Int4(0x04030201, 0x08070605, 0x0C0B0A09, 0x100F0E0D);
*Pointer<Short4>(out + 16 * 1) = Short4(0x1211, 0x1413, 0x1615, 0x1817);
*Pointer<Byte8>(out + 16 * 2) = Byte8(0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20);
*Pointer<Int2>(out + 16 * 3) = Int2(0x24232221, 0x28272625);
Return(0);
}
auto routine = function("one");
if(routine)
{
int8_t out[16 * 4] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1};
int8_t exp[16 * 4] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, -1, -1, -1, -1, -1, -1, -1, -1,
25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1, -1, -1, -1,
33, 34, 35, 36, 37, 38, 39, 40, -1, -1, -1, -1, -1, -1, -1, -1};
routine(out);
for(int row = 0; row < 4; row++)
{
for(int col = 0; col < 16; col++)
{
int i = row * 16 + col;
EXPECT_EQ(out[i], exp[i]);
}
}
}
}
}
TEST(ReactorUnitTests, Concatenate)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<Int4>(out + 16 * 0) = Int4(Int2(0x04030201, 0x08070605), Int2(0x0C0B0A09, 0x100F0E0D));
*Pointer<Short8>(out + 16 * 1) = Short8(Short4(0x0201, 0x0403, 0x0605, 0x0807), Short4(0x0A09, 0x0C0B, 0x0E0D, 0x100F));
Return(0);
}
auto routine = function("one");
if(routine)
{
int8_t ref[16 * 5] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
int8_t out[16 * 5] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1};
routine(out);
for(int row = 0; row < 2; row++)
{
for(int col = 0; col < 16; col++)
{
int i = row * 16 + col;
EXPECT_EQ(out[i], ref[i]) << "Row " << row << " column " << col << " not equal to reference.";
}
}
}
}
}
TEST(ReactorUnitTests, Swizzle)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
for(int i = 0; i < 256; i++)
{
*Pointer<Float4>(out + 16 * i) = Swizzle(Float4(1.0f, 2.0f, 3.0f, 4.0f), i);
}
for(int i = 0; i < 256; i++)
{
*Pointer<Float4>(out + 16 * (256 + i)) = ShuffleLowHigh(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f), i);
}
*Pointer<Float4>(out + 16 * (512 + 0)) = UnpackLow(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f));
*Pointer<Float4>(out + 16 * (512 + 1)) = UnpackHigh(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f));
*Pointer<Int2>(out + 16 * (512 + 2)) = UnpackLow(Short4(1, 2, 3, 4), Short4(5, 6, 7, 8));
*Pointer<Int2>(out + 16 * (512 + 3)) = UnpackHigh(Short4(1, 2, 3, 4), Short4(5, 6, 7, 8));
*Pointer<Short4>(out + 16 * (512 + 4)) = UnpackLow(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(9, 10, 11, 12, 13, 14, 15, 16));
*Pointer<Short4>(out + 16 * (512 + 5)) = UnpackHigh(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(9, 10, 11, 12, 13, 14, 15, 16));
for(int i = 0; i < 256; i++)
{
*Pointer<Short4>(out + 16 * (512 + 6) + (8 * i)) =
Swizzle(Short4(1, 2, 3, 4), i);
}
for(int i = 0; i < 256; i++)
{
*Pointer<Int4>(out + 16 * (512 + 6 + i) + (8 * 256)) =
Swizzle(Int4(1, 2, 3, 4), i);
}
Return(0);
}
auto routine = function("one");
if(routine)
{
struct
{
float f[256 + 256 + 2][4];
int i[388][4];
} out;
memset(&out, 0, sizeof(out));
routine(&out);
for(int i = 0; i < 256; i++)
{
EXPECT_EQ(out.f[i][0], float((i >> 0) & 0x03) + 1.0f);
EXPECT_EQ(out.f[i][1], float((i >> 2) & 0x03) + 1.0f);
EXPECT_EQ(out.f[i][2], float((i >> 4) & 0x03) + 1.0f);
EXPECT_EQ(out.f[i][3], float((i >> 6) & 0x03) + 1.0f);
}
for(int i = 0; i < 256; i++)
{
EXPECT_EQ(out.f[256 + i][0], float((i >> 0) & 0x03) + 1.0f);
EXPECT_EQ(out.f[256 + i][1], float((i >> 2) & 0x03) + 1.0f);
EXPECT_EQ(out.f[256 + i][2], float((i >> 4) & 0x03) + 5.0f);
EXPECT_EQ(out.f[256 + i][3], float((i >> 6) & 0x03) + 5.0f);
}
EXPECT_EQ(out.f[512 + 0][0], 1.0f);
EXPECT_EQ(out.f[512 + 0][1], 5.0f);
EXPECT_EQ(out.f[512 + 0][2], 2.0f);
EXPECT_EQ(out.f[512 + 0][3], 6.0f);
EXPECT_EQ(out.f[512 + 1][0], 3.0f);
EXPECT_EQ(out.f[512 + 1][1], 7.0f);
EXPECT_EQ(out.f[512 + 1][2], 4.0f);
EXPECT_EQ(out.f[512 + 1][3], 8.0f);
EXPECT_EQ(out.i[0][0], 0x00050001);
EXPECT_EQ(out.i[0][1], 0x00060002);
EXPECT_EQ(out.i[0][2], 0x00000000);
EXPECT_EQ(out.i[0][3], 0x00000000);
EXPECT_EQ(out.i[1][0], 0x00070003);
EXPECT_EQ(out.i[1][1], 0x00080004);
EXPECT_EQ(out.i[1][2], 0x00000000);
EXPECT_EQ(out.i[1][3], 0x00000000);
EXPECT_EQ(out.i[2][0], 0x0A020901);
EXPECT_EQ(out.i[2][1], 0x0C040B03);
EXPECT_EQ(out.i[2][2], 0x00000000);
EXPECT_EQ(out.i[2][3], 0x00000000);
EXPECT_EQ(out.i[3][0], 0x0E060D05);
EXPECT_EQ(out.i[3][1], 0x10080F07);
EXPECT_EQ(out.i[3][2], 0x00000000);
EXPECT_EQ(out.i[3][3], 0x00000000);
for(int i = 0; i < 256; i++)
{
EXPECT_EQ(out.i[4 + i/2][0 + (i%2) * 2] & 0xFFFF,
((i >> 0) & 0x03) + 1);
EXPECT_EQ(out.i[4 + i/2][0 + (i%2) * 2] >> 16,
((i >> 2) & 0x03) + 1);
EXPECT_EQ(out.i[4 + i/2][1 + (i%2) * 2] & 0xFFFF,
((i >> 4) & 0x03) + 1);
EXPECT_EQ(out.i[4 + i/2][1 + (i%2) * 2] >> 16,
((i >> 6) & 0x03) + 1);
}
for(int i = 0; i < 256; i++)
{
EXPECT_EQ(out.i[132 + i][0], ((i >> 0) & 0x03) + 1);
EXPECT_EQ(out.i[132 + i][1], ((i >> 2) & 0x03) + 1);
EXPECT_EQ(out.i[132 + i][2], ((i >> 4) & 0x03) + 1);
EXPECT_EQ(out.i[132 + i][3], ((i >> 6) & 0x03) + 1);
}
}
}
}
TEST(ReactorUnitTests, Branching)
{
{
FunctionT<int()> function;
{
Int x = 0;
For(Int i = 0, i < 8, i++)
{
If(i < 2)
{
x += 1;
}
Else If(i < 4)
{
x += 10;
}
Else If(i < 6)
{
x += 100;
}
Else
{
x += 1000;
}
For(Int i = 0, i < 5, i++)
x += 10000;
}
For(Int i = 0, i < 10, i++)
for(int i = 0; i < 10; i++)
For(Int i = 0, i < 10, i++)
{
x += 1000000;
}
For(Int i = 0, i < 2, i++)
If(x == 1000402222)
{
If(x != 1000402222)
x += 1000000000;
}
Else
x = -5;
Return(x);
}
auto routine = function("one");
if(routine)
{
int result = routine();
EXPECT_EQ(result, 1000402222);
}
}
}
TEST(ReactorUnitTests, MinMax)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<Float4>(out + 16 * 0) = Min(Float4(1.0f, 0.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f));
*Pointer<Float4>(out + 16 * 1) = Max(Float4(1.0f, 0.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f));
*Pointer<Int4>(out + 16 * 2) = Min(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0));
*Pointer<Int4>(out + 16 * 3) = Max(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0));
*Pointer<UInt4>(out + 16 * 4) = Min(UInt4(1, 0, -1, -0), UInt4(0, 1, 0, +0));
*Pointer<UInt4>(out + 16 * 5) = Max(UInt4(1, 0, -1, -0), UInt4(0, 1, 0, +0));
*Pointer<Short4>(out + 16 * 6) = Min(Short4(1, 0, -1, -0), Short4(0, 1, 0, +0));
*Pointer<Short4>(out + 16 * 7) = Max(Short4(1, 0, -1, -0), Short4(0, 1, 0, +0));
*Pointer<UShort4>(out + 16 * 8) = Min(UShort4(1, 0, -1, -0), UShort4(0, 1, 0, +0));
*Pointer<UShort4>(out + 16 * 9) = Max(UShort4(1, 0, -1, -0), UShort4(0, 1, 0, +0));
Return(0);
}
auto routine = function("one");
if(routine)
{
unsigned int out[10][4];
memset(&out, 0, sizeof(out));
routine(&out);
EXPECT_EQ(out[0][0], 0x00000000u);
EXPECT_EQ(out[0][1], 0x00000000u);
EXPECT_EQ(out[0][2], 0x00000000u);
EXPECT_EQ(out[0][3], 0x80000000u);
EXPECT_EQ(out[1][0], 0x3F800000u);
EXPECT_EQ(out[1][1], 0x3F800000u);
EXPECT_EQ(out[1][2], 0x00000000u);
EXPECT_EQ(out[1][3], 0x80000000u);
EXPECT_EQ(out[2][0], 0x00000000u);
EXPECT_EQ(out[2][1], 0x00000000u);
EXPECT_EQ(out[2][2], 0xFFFFFFFFu);
EXPECT_EQ(out[2][3], 0x00000000u);
EXPECT_EQ(out[3][0], 0x00000001u);
EXPECT_EQ(out[3][1], 0x00000001u);
EXPECT_EQ(out[3][2], 0x00000000u);
EXPECT_EQ(out[3][3], 0x00000000u);
EXPECT_EQ(out[4][0], 0x00000000u);
EXPECT_EQ(out[4][1], 0x00000000u);
EXPECT_EQ(out[4][2], 0x00000000u);
EXPECT_EQ(out[4][3], 0x00000000u);
EXPECT_EQ(out[5][0], 0x00000001u);
EXPECT_EQ(out[5][1], 0x00000001u);
EXPECT_EQ(out[5][2], 0xFFFFFFFFu);
EXPECT_EQ(out[5][3], 0x00000000u);
EXPECT_EQ(out[6][0], 0x00000000u);
EXPECT_EQ(out[6][1], 0x0000FFFFu);
EXPECT_EQ(out[6][2], 0x00000000u);
EXPECT_EQ(out[6][3], 0x00000000u);
EXPECT_EQ(out[7][0], 0x00010001u);
EXPECT_EQ(out[7][1], 0x00000000u);
EXPECT_EQ(out[7][2], 0x00000000u);
EXPECT_EQ(out[7][3], 0x00000000u);
EXPECT_EQ(out[8][0], 0x00000000u);
EXPECT_EQ(out[8][1], 0x00000000u);
EXPECT_EQ(out[8][2], 0x00000000u);
EXPECT_EQ(out[8][3], 0x00000000u);
EXPECT_EQ(out[9][0], 0x00010001u);
EXPECT_EQ(out[9][1], 0x0000FFFFu);
EXPECT_EQ(out[9][2], 0x00000000u);
EXPECT_EQ(out[9][3], 0x00000000u);
}
}
}
TEST(ReactorUnitTests, NotNeg)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<Int>(out + 16 * 0) = ~Int(0x55555555);
*Pointer<Short>(out + 16 * 1) = ~Short(0x5555);
*Pointer<Int4>(out + 16 * 2) = ~Int4(0x55555555, 0xAAAAAAAA, 0x00000000, 0xFFFFFFFF);
*Pointer<Short4>(out + 16 * 3) = ~Short4(0x5555, 0xAAAA, 0x0000, 0xFFFF);
*Pointer<Int>(out + 16 * 4) = -Int(0x55555555);
*Pointer<Short>(out + 16 * 5) = -Short(0x5555);
*Pointer<Int4>(out + 16 * 6) = -Int4(0x55555555, 0xAAAAAAAA, 0x00000000, 0xFFFFFFFF);
*Pointer<Short4>(out + 16 * 7) = -Short4(0x5555, 0xAAAA, 0x0000, 0xFFFF);
*Pointer<Float4>(out + 16 * 8) = -Float4(1.0f, -1.0f, 0.0f, -0.0f);
Return(0);
}
auto routine = function("one");
if(routine)
{
unsigned int out[10][4];
memset(&out, 0, sizeof(out));
routine(&out);
EXPECT_EQ(out[0][0], 0xAAAAAAAAu);
EXPECT_EQ(out[0][1], 0x00000000u);
EXPECT_EQ(out[0][2], 0x00000000u);
EXPECT_EQ(out[0][3], 0x00000000u);
EXPECT_EQ(out[1][0], 0x0000AAAAu);
EXPECT_EQ(out[1][1], 0x00000000u);
EXPECT_EQ(out[1][2], 0x00000000u);
EXPECT_EQ(out[1][3], 0x00000000u);
EXPECT_EQ(out[2][0], 0xAAAAAAAAu);
EXPECT_EQ(out[2][1], 0x55555555u);
EXPECT_EQ(out[2][2], 0xFFFFFFFFu);
EXPECT_EQ(out[2][3], 0x00000000u);
EXPECT_EQ(out[3][0], 0x5555AAAAu);
EXPECT_EQ(out[3][1], 0x0000FFFFu);
EXPECT_EQ(out[3][2], 0x00000000u);
EXPECT_EQ(out[3][3], 0x00000000u);
EXPECT_EQ(out[4][0], 0xAAAAAAABu);
EXPECT_EQ(out[4][1], 0x00000000u);
EXPECT_EQ(out[4][2], 0x00000000u);
EXPECT_EQ(out[4][3], 0x00000000u);
EXPECT_EQ(out[5][0], 0x0000AAABu);
EXPECT_EQ(out[5][1], 0x00000000u);
EXPECT_EQ(out[5][2], 0x00000000u);
EXPECT_EQ(out[5][3], 0x00000000u);
EXPECT_EQ(out[6][0], 0xAAAAAAABu);
EXPECT_EQ(out[6][1], 0x55555556u);
EXPECT_EQ(out[6][2], 0x00000000u);
EXPECT_EQ(out[6][3], 0x00000001u);
EXPECT_EQ(out[7][0], 0x5556AAABu);
EXPECT_EQ(out[7][1], 0x00010000u);
EXPECT_EQ(out[7][2], 0x00000000u);
EXPECT_EQ(out[7][3], 0x00000000u);
EXPECT_EQ(out[8][0], 0xBF800000u);
EXPECT_EQ(out[8][1], 0x3F800000u);
EXPECT_EQ(out[8][2], 0x80000000u);
EXPECT_EQ(out[8][3], 0x00000000u);
}
}
}
TEST(ReactorUnitTests, VectorCompare)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<Int4>(out + 16 * 0) = CmpEQ(Float4(1.0f, 1.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f));
*Pointer<Int4>(out + 16 * 1) = CmpEQ(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0));
*Pointer<Byte8>(out + 16 * 2) = CmpEQ(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0));
*Pointer<Int4>(out + 16 * 3) = CmpNLT(Float4(1.0f, 1.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f));
*Pointer<Int4>(out + 16 * 4) = CmpNLT(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0));
*Pointer<Byte8>(out + 16 * 5) = CmpGT(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0));
Return(0);
}
auto routine = function("one");
if(routine)
{
unsigned int out[6][4];
memset(&out, 0, sizeof(out));
routine(&out);
EXPECT_EQ(out[0][0], 0x00000000u);
EXPECT_EQ(out[0][1], 0xFFFFFFFFu);
EXPECT_EQ(out[0][2], 0xFFFFFFFFu);
EXPECT_EQ(out[0][3], 0xFFFFFFFFu);
EXPECT_EQ(out[1][0], 0x00000000u);
EXPECT_EQ(out[1][1], 0x00000000u);
EXPECT_EQ(out[1][2], 0x00000000u);
EXPECT_EQ(out[1][3], 0xFFFFFFFFu);
EXPECT_EQ(out[2][0], 0xFF000000u);
EXPECT_EQ(out[2][1], 0x00000000u);
EXPECT_EQ(out[3][0], 0xFFFFFFFFu);
EXPECT_EQ(out[3][1], 0xFFFFFFFFu);
EXPECT_EQ(out[3][2], 0xFFFFFFFFu);
EXPECT_EQ(out[3][3], 0xFFFFFFFFu);
EXPECT_EQ(out[4][0], 0xFFFFFFFFu);
EXPECT_EQ(out[4][1], 0x00000000u);
EXPECT_EQ(out[4][2], 0x00000000u);
EXPECT_EQ(out[4][3], 0xFFFFFFFFu);
EXPECT_EQ(out[5][0], 0x00000000u);
EXPECT_EQ(out[5][1], 0xFFFFFFFFu);
}
}
}
TEST(ReactorUnitTests, SaturatedAddAndSubtract)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<Byte8>(out + 8 * 0) =
AddSat(Byte8(1, 2, 3, 4, 5, 6, 7, 8),
Byte8(7, 6, 5, 4, 3, 2, 1, 0));
*Pointer<Byte8>(out + 8 * 1) =
AddSat(Byte8(0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE),
Byte8(7, 6, 5, 4, 3, 2, 1, 0));
*Pointer<Byte8>(out + 8 * 2) =
SubSat(Byte8(1, 2, 3, 4, 5, 6, 7, 8),
Byte8(7, 6, 5, 4, 3, 2, 1, 0));
*Pointer<SByte8>(out + 8 * 3) =
AddSat(SByte8(1, 2, 3, 4, 5, 6, 7, 8),
SByte8(7, 6, 5, 4, 3, 2, 1, 0));
*Pointer<SByte8>(out + 8 * 4) =
AddSat(SByte8(0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E),
SByte8(7, 6, 5, 4, 3, 2, 1, 0));
*Pointer<SByte8>(out + 8 * 5) =
AddSat(SByte8(0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88),
SByte8(-7, -6, -5, -4, -3, -2, -1, -0));
*Pointer<SByte8>(out + 8 * 6) =
SubSat(SByte8(0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88),
SByte8(7, 6, 5, 4, 3, 2, 1, 0));
*Pointer<Short4>(out + 8 * 7) =
AddSat(Short4(1, 2, 3, 4), Short4(3, 2, 1, 0));
*Pointer<Short4>(out + 8 * 8) =
AddSat(Short4(0x7FFE, 0x7FFE, 0x7FFE, 0x7FFE),
Short4(3, 2, 1, 0));
*Pointer<Short4>(out + 8 * 9) =
AddSat(Short4(0x8001, 0x8002, 0x8003, 0x8004),
Short4(-3, -2, -1, -0));
*Pointer<Short4>(out + 8 * 10) =
SubSat(Short4(0x8001, 0x8002, 0x8003, 0x8004),
Short4(3, 2, 1, 0));
*Pointer<UShort4>(out + 8 * 11) =
AddSat(UShort4(1, 2, 3, 4), UShort4(3, 2, 1, 0));
*Pointer<UShort4>(out + 8 * 12) =
AddSat(UShort4(0xFFFE, 0xFFFE, 0xFFFE, 0xFFFE),
UShort4(3, 2, 1, 0));
*Pointer<UShort4>(out + 8 * 13) =
SubSat(UShort4(1, 2, 3, 4), UShort4(3, 2, 1, 0));
Return(0);
}
auto routine = function("one");
if(routine)
{
unsigned int out[14][2];
memset(&out, 0, sizeof(out));
routine(&out);
EXPECT_EQ(out[0][0], 0x08080808u);
EXPECT_EQ(out[0][1], 0x08080808u);
EXPECT_EQ(out[1][0], 0xFFFFFFFFu);
EXPECT_EQ(out[1][1], 0xFEFFFFFFu);
EXPECT_EQ(out[2][0], 0x00000000u);
EXPECT_EQ(out[2][1], 0x08060402u);
EXPECT_EQ(out[3][0], 0x08080808u);
EXPECT_EQ(out[3][1], 0x08080808u);
EXPECT_EQ(out[4][0], 0x7F7F7F7Fu);
EXPECT_EQ(out[4][1], 0x7E7F7F7Fu);
EXPECT_EQ(out[5][0], 0x80808080u);
EXPECT_EQ(out[5][1], 0x88868482u);
EXPECT_EQ(out[6][0], 0x80808080u);
EXPECT_EQ(out[6][1], 0x88868482u);
EXPECT_EQ(out[7][0], 0x00040004u);
EXPECT_EQ(out[7][1], 0x00040004u);
EXPECT_EQ(out[8][0], 0x7FFF7FFFu);
EXPECT_EQ(out[8][1], 0x7FFE7FFFu);
EXPECT_EQ(out[9][0], 0x80008000u);
EXPECT_EQ(out[9][1], 0x80048002u);
EXPECT_EQ(out[10][0], 0x80008000u);
EXPECT_EQ(out[10][1], 0x80048002u);
EXPECT_EQ(out[11][0], 0x00040004u);
EXPECT_EQ(out[11][1], 0x00040004u);
EXPECT_EQ(out[12][0], 0xFFFFFFFFu);
EXPECT_EQ(out[12][1], 0xFFFEFFFFu);
EXPECT_EQ(out[13][0], 0x00000000u);
EXPECT_EQ(out[13][1], 0x00040002u);
}
}
}
TEST(ReactorUnitTests, Unpack)
{
{
FunctionT<int(void*, void*)> function;
{
Pointer<Byte> in = function.Arg<0>();
Pointer<Byte> out = function.Arg<1>();
Byte4 test_byte_a = *Pointer<Byte4>(in + 4 * 0);
Byte4 test_byte_b = *Pointer<Byte4>(in + 4 * 1);
*Pointer<Short4>(out + 8 * 0) =
Unpack(test_byte_a, test_byte_b);
*Pointer<Short4>(out + 8 * 1) = Unpack(test_byte_a);
Return(0);
}
auto routine = function("one");
if(routine)
{
unsigned int in[1][2];
unsigned int out[2][2];
memset(&out, 0, sizeof(out));
in[0][0] = 0xABCDEF12u;
in[0][1] = 0x34567890u;
routine(&in, &out);
EXPECT_EQ(out[0][0], 0x78EF9012u);
EXPECT_EQ(out[0][1], 0x34AB56CDu);
EXPECT_EQ(out[1][0], 0xEFEF1212u);
EXPECT_EQ(out[1][1], 0xABABCDCDu);
}
}
}
TEST(ReactorUnitTests, Pack)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<SByte8>(out + 8 * 0) =
PackSigned(Short4(-1, -2, 1, 2),
Short4(3, 4, -3, -4));
*Pointer<Byte8>(out + 8 * 1) =
PackUnsigned(Short4(-1, -2, 1, 2),
Short4(3, 4, -3, -4));
*Pointer<Short8>(out + 8 * 2) =
PackSigned(Int4(-1, -2, 1, 2),
Int4(3, 4, -3, -4));
*Pointer<UShort8>(out + 8 * 4) =
PackUnsigned(Int4(-1, -2, 1, 2),
Int4(3, 4, -3, -4));
Return(0);
}
auto routine = function("one");
if(routine)
{
unsigned int out[6][2];
memset(&out, 0, sizeof(out));
routine(&out);
EXPECT_EQ(out[0][0], 0x0201FEFFu);
EXPECT_EQ(out[0][1], 0xFCFD0403u);
EXPECT_EQ(out[1][0], 0x02010000u);
EXPECT_EQ(out[1][1], 0x00000403u);
EXPECT_EQ(out[2][0], 0xFFFEFFFFu);
EXPECT_EQ(out[2][1], 0x00020001u);
EXPECT_EQ(out[3][0], 0x00040003u);
EXPECT_EQ(out[3][1], 0xFFFCFFFDu);
EXPECT_EQ(out[4][0], 0x00000000u);
EXPECT_EQ(out[4][1], 0x00020001u);
EXPECT_EQ(out[5][0], 0x00040003u);
EXPECT_EQ(out[5][1], 0x00000000u);
}
}
}
TEST(ReactorUnitTests, MulHigh)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<Short4>(out + 16 * 0) =
MulHigh(Short4(0x01AA, 0x02DD, 0x03EE, 0xF422),
Short4(0x01BB, 0x02CC, 0x03FF, 0xF411));
*Pointer<UShort4>(out + 16 * 1) =
MulHigh(UShort4(0x01AA, 0x02DD, 0x03EE, 0xF422),
UShort4(0x01BB, 0x02CC, 0x03FF, 0xF411));
*Pointer<Int4>(out + 16 * 2) =
MulHigh(Int4(0x000001AA, 0x000002DD, 0xC8000000, 0xF8000000),
Int4(0x000001BB, 0x84000000, 0x000003EE, 0xD7000000));
*Pointer<UInt4>(out + 16 * 3) =
MulHigh(UInt4(0x000001AAu, 0x000002DDu, 0xC8000000u, 0xD8000000u),
UInt4(0x000001BBu, 0x84000000u, 0x000003EEu, 0xD7000000u));
*Pointer<Int4>(out + 16 * 4) =
MulHigh(Int4(0x7FFFFFFF, 0x7FFFFFFF, 0x80008000, 0xFFFFFFFF),
Int4(0x7FFFFFFF, 0x80000000, 0x80008000, 0xFFFFFFFF));
*Pointer<UInt4>(out + 16 * 5) =
MulHigh(UInt4(0x7FFFFFFFu, 0x7FFFFFFFu, 0x80008000u, 0xFFFFFFFFu),
UInt4(0x7FFFFFFFu, 0x80000000u, 0x80008000u, 0xFFFFFFFFu));
// (U)Short8 variants currently unimplemented.
Return(0);
}
auto routine = function("one");
if(routine)
{
unsigned int out[6][4];
memset(&out, 0, sizeof(out));
routine(&out);
EXPECT_EQ(out[0][0], 0x00080002u);
EXPECT_EQ(out[0][1], 0x008D000Fu);
EXPECT_EQ(out[1][0], 0x00080002u);
EXPECT_EQ(out[1][1], 0xE8C0000Fu);
EXPECT_EQ(out[2][0], 0x00000000u);
EXPECT_EQ(out[2][1], 0xFFFFFE9Cu);
EXPECT_EQ(out[2][2], 0xFFFFFF23u);
EXPECT_EQ(out[2][3], 0x01480000u);
EXPECT_EQ(out[3][0], 0x00000000u);
EXPECT_EQ(out[3][1], 0x00000179u);
EXPECT_EQ(out[3][2], 0x00000311u);
EXPECT_EQ(out[3][3], 0xB5680000u);
EXPECT_EQ(out[4][0], 0x3FFFFFFFu);
EXPECT_EQ(out[4][1], 0xC0000000u);
EXPECT_EQ(out[4][2], 0x3FFF8000u);
EXPECT_EQ(out[4][3], 0x00000000u);
EXPECT_EQ(out[5][0], 0x3FFFFFFFu);
EXPECT_EQ(out[5][1], 0x3FFFFFFFu);
EXPECT_EQ(out[5][2], 0x40008000u);
EXPECT_EQ(out[5][3], 0xFFFFFFFEu);
}
}
}
TEST(ReactorUnitTests, MulAdd)
{
{
FunctionT<int(void*)> function;
{
Pointer<Byte> out = function.Arg<0>();
*Pointer<Int2>(out + 8 * 0) =
MulAdd(Short4(0x1aa, 0x2dd, 0x3ee, 0xF422),
Short4(0x1bb, 0x2cc, 0x3ff, 0xF411));
// (U)Short8 variant is mentioned but unimplemented
Return(0);
}
auto routine = function("one");
if(routine)
{
unsigned int out[1][2];
memset(&out, 0, sizeof(out));
routine(&out);
EXPECT_EQ(out[0][0], 0x000AE34Au);
EXPECT_EQ(out[0][1], 0x009D5254u);
}
}
}
TEST(ReactorUnitTests, PointersEqual)
{
FunctionT<int(void*, void*)> function;
{
Pointer<Byte> ptrA = function.Arg<0>();
Pointer<Byte> ptrB = function.Arg<1>();
If (ptrA == ptrB)
{
Return(1);
}
Else
{
Return(0);
}
}
auto routine = function("one");
int* a = reinterpret_cast<int*>(uintptr_t(0x0000000000000000));
int* b = reinterpret_cast<int*>(uintptr_t(0x00000000F0000000));
int* c = reinterpret_cast<int*>(uintptr_t(0xF000000000000000));
EXPECT_EQ(routine(&a, &a), 1);
EXPECT_EQ(routine(&b, &b), 1);
EXPECT_EQ(routine(&c, &c), 1);
EXPECT_EQ(routine(&a, &b), 0);
EXPECT_EQ(routine(&b, &a), 0);
EXPECT_EQ(routine(&b, &c), 0);
EXPECT_EQ(routine(&c, &b), 0);
EXPECT_EQ(routine(&c, &a), 0);
EXPECT_EQ(routine(&a, &c), 0);
}
TEST(ReactorUnitTests, Args_2Mixed)
{
// 2 mixed type args
FunctionT<float(int, float)> function;
{
Int a = function.Arg<0>();
Float b = function.Arg<1>();
Return(Float(a) + b);
}
if (auto routine = function("one"))
{
float result = routine(1, 2.f);
EXPECT_EQ(result, 3.f);
}
}
TEST(ReactorUnitTests, Args_4Mixed)
{
// 4 mixed type args (max register allocation on Windows)
FunctionT<float(int, float, int, float)> function;
{
Int a = function.Arg<0>();
Float b = function.Arg<1>();
Int c = function.Arg<2>();
Float d = function.Arg<3>();
Return(Float(a) + b + Float(c) + d);
}
if (auto routine = function("one"))
{
float result = routine(1, 2.f, 3, 4.f);
EXPECT_EQ(result, 10.f);
}
}
TEST(ReactorUnitTests, Args_5Mixed)
{
// 5 mixed type args (5th spills over to stack on Windows)
FunctionT<float(int, float, int, float, int)> function;
{
Int a = function.Arg<0>();
Float b = function.Arg<1>();
Int c = function.Arg<2>();
Float d = function.Arg<3>();
Int e = function.Arg<4>();
Return(Float(a) + b + Float(c) + d + Float(e));
}
if (auto routine = function("one"))
{
float result = routine(1, 2.f, 3, 4.f, 5);
EXPECT_EQ(result, 15.f);
}
}
TEST(ReactorUnitTests, Args_GreaterThan5Mixed)
{
// >5 mixed type args
FunctionT<float(int, float, int, float, int, float, int, float, int, float)> function;
{
Int a = function.Arg<0>();
Float b = function.Arg<1>();
Int c = function.Arg<2>();
Float d = function.Arg<3>();
Int e = function.Arg<4>();
Float f = function.Arg<5>();
Int g = function.Arg<6>();
Float h = function.Arg<7>();
Int i = function.Arg<8>();
Float j = function.Arg<9>();
Return(Float(a) + b + Float(c) + d + Float(e) + f + Float(g) + h + Float(i) + j);
}
if (auto routine = function("one"))
{
float result = routine(1, 2.f, 3, 4.f, 5, 6.f, 7, 8.f, 9, 10.f);
EXPECT_EQ(result, 55.f);
}
}
TEST(ReactorUnitTests, Call)
{
struct Class
{
static int Callback(Class *p, int i, float f)
{
p->i = i;
p->f = f;
return i + int(f);
}
int i = 0;
float f = 0.0f;
};
FunctionT<int(void*)> function;
{
Pointer<Byte> c = function.Arg<0>();
auto res = Call(Class::Callback, c, 10, 20.0f);
Return(res);
}
auto routine = function("one");
Class c;
int res = routine(&c);
EXPECT_EQ(res, 30);
EXPECT_EQ(c.i, 10);
EXPECT_EQ(c.f, 20.0f);
}
TEST(ReactorUnitTests, CallMemberFunction)
{
struct Class
{
int Callback(int argI, float argF)
{
i = argI;
f = argF;
return i + int(f);
}
int i = 0;
float f = 0.0f;
};
Class c;
FunctionT<int()> function;
{
auto res = Call(&Class::Callback, &c, 10, 20.0f);
Return(res);
}
auto routine = function("one");
int res = routine();
EXPECT_EQ(res, 30);
EXPECT_EQ(c.i, 10);
EXPECT_EQ(c.f, 20.0f);
}
TEST(ReactorUnitTests, CallMemberFunctionIndirect)
{
struct Class
{
int Callback(int argI, float argF)
{
i = argI;
f = argF;
return i + int(f);
}
int i = 0;
float f = 0.0f;
};
FunctionT<int(void*)> function;
{
Pointer<Byte> c = function.Arg<0>();
auto res = Call(&Class::Callback, c, 10, 20.0f);
Return(res);
}
auto routine = function("one");
Class c;
int res = routine(&c);
EXPECT_EQ(res, 30);
EXPECT_EQ(c.i, 10);
EXPECT_EQ(c.f, 20.0f);
}
TEST(ReactorUnitTests, CallImplicitCast)
{
struct Class
{
static void Callback(Class *c, const char* s)
{
c->str = s;
}
std::string str;
};
FunctionT<void(Class *c, const char *s)> function;
{
Pointer<Byte> c = function.Arg<0>();
Pointer<Byte> s = function.Arg<1>();
Call(Class::Callback, c, s);
}
auto routine = function("one");
Class c;
routine(&c, "hello world");
EXPECT_EQ(c.str, "hello world");
}
TEST(ReactorUnitTests, Call_Args4)
{
struct Class
{
static int Func(int a, int b, int c, int d)
{
return a + b + c + d;
}
};
{
FunctionT<int()> function;
{
auto res = Call(Class::Func, 1, 2, 3, 4);
Return(res);
}
auto routine = function("one");
if(routine)
{
int res = routine();
EXPECT_EQ(res, 1 + 2 + 3 + 4);
}
}
}
TEST(ReactorUnitTests, Call_Args5)
{
struct Class
{
static int Func(int a, int b, int c, int d, int e)
{
return a + b + c + d + e;
}
};
{
FunctionT<int()> function;
{
auto res = Call(Class::Func, 1, 2, 3, 4, 5);
Return(res);
}
auto routine = function("one");
if(routine)
{
int res = routine();
EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5);
}
}
}
TEST(ReactorUnitTests, Call_ArgsMany)
{
struct Class
{
static int Func(int a, int b, int c, int d, int e, int f, int g, int h)
{
return a + b + c + d + e + f + g + h;
}
};
{
FunctionT<int()> function;
{
auto res = Call(Class::Func, 1, 2, 3, 4, 5, 6, 7, 8);
Return(res);
}
auto routine = function("one");
if(routine)
{
int res = routine();
EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8);
}
}
}
TEST(ReactorUnitTests, Call_ArgsMixed)
{
struct Class
{
static int Func(int a, float b, int* c, float* d, int e, float f, int* g, float* h)
{
return a + b + *c + *d + e + f + *g + *h;
}
};
{
FunctionT<int()> function;
{
Int c(3);
Float d(4);
Int g(7);
Float h(8);
auto res = Call(Class::Func, 1, 2.f, &c, &d, 5, 6.f, &g, &h);
Return(res);
}
auto routine = function("one");
if(routine)
{
int res = routine();
EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8);
}
}
}
TEST(ReactorUnitTests, Call_ArgsPointer)
{
struct Class
{
static int Func(int *a)
{
return *a;
}
};
{
FunctionT<int()> function;
{
Int a(12345);
auto res = Call(Class::Func, &a);
Return(res);
}
auto routine = function("one");
if(routine)
{
int res = routine();
EXPECT_EQ(res, 12345);
}
}
}
TEST(ReactorUnitTests, CallExternalCallRoutine)
{
// routine1 calls Class::Func, passing it a pointer to routine2, and Class::Func calls routine2
auto routine2 = [] {
FunctionT<float(float, int)> function;
{
Float a = function.Arg<0>();
Int b = function.Arg<1>();
Return(a + Float(b));
}
return function("two");
}();
struct Class
{
static float Func(void* p, float a, int b)
{
auto funcToCall = reinterpret_cast<float(*)(float, int)>(p);
return funcToCall(a, b);
}
};
auto routine1 = [] {
FunctionT<float(void*, float, int)> function;
{
Pointer<Byte> funcToCall = function.Arg<0>();
Float a = function.Arg<1>();
Int b = function.Arg<2>();
Float result = Call(Class::Func, funcToCall, a, b);
Return(result);
}
return function("one");
}();
float result = routine1((void*)routine2.getEntry(), 12.f, 13);
EXPECT_EQ(result, 25.f);
}
// Check that a complex generated function which utilizes all 8 or 16 XMM
// registers computes the correct result.
// (Note that due to MSC's lack of support for inline assembly in x64,
// this test does not actually check that the register contents are
// preserved, just that the generated function computes the correct value.
// It's necessary to inspect the registers in a debugger to actually verify.)
TEST(ReactorUnitTests, PreserveXMMRegisters)
{
{
FunctionT<void(void*, void*)> function;
{
Pointer<Byte> in = function.Arg<0>();
Pointer<Byte> out = function.Arg<1>();
Float4 a = *Pointer<Float4>(in + 16 * 0);
Float4 b = *Pointer<Float4>(in + 16 * 1);
Float4 c = *Pointer<Float4>(in + 16 * 2);
Float4 d = *Pointer<Float4>(in + 16 * 3);
Float4 e = *Pointer<Float4>(in + 16 * 4);
Float4 f = *Pointer<Float4>(in + 16 * 5);
Float4 g = *Pointer<Float4>(in + 16 * 6);
Float4 h = *Pointer<Float4>(in + 16 * 7);
Float4 i = *Pointer<Float4>(in + 16 * 8);
Float4 j = *Pointer<Float4>(in + 16 * 9);
Float4 k = *Pointer<Float4>(in + 16 * 10);
Float4 l = *Pointer<Float4>(in + 16 * 11);
Float4 m = *Pointer<Float4>(in + 16 * 12);
Float4 n = *Pointer<Float4>(in + 16 * 13);
Float4 o = *Pointer<Float4>(in + 16 * 14);
Float4 p = *Pointer<Float4>(in + 16 * 15);
Float4 ab = a + b;
Float4 cd = c + d;
Float4 ef = e + f;
Float4 gh = g + h;
Float4 ij = i + j;
Float4 kl = k + l;
Float4 mn = m + n;
Float4 op = o + p;
Float4 abcd = ab + cd;
Float4 efgh = ef + gh;
Float4 ijkl = ij + kl;
Float4 mnop = mn + op;
Float4 abcdefgh = abcd + efgh;
Float4 ijklmnop = ijkl + mnop;
Float4 sum = abcdefgh + ijklmnop;
*Pointer<Float4>(out) = sum;
Return();
}
auto routine = function("one");
assert(routine);
float input[64] = { 1.0f, 0.0f, 0.0f, 0.0f,
-1.0f, 1.0f, -1.0f, 0.0f,
1.0f, 2.0f, -2.0f, 0.0f,
-1.0f, 3.0f, -3.0f, 0.0f,
1.0f, 4.0f, -4.0f, 0.0f,
-1.0f, 5.0f, -5.0f, 0.0f,
1.0f, 6.0f, -6.0f, 0.0f,
-1.0f, 7.0f, -7.0f, 0.0f,
1.0f, 8.0f, -8.0f, 0.0f,
-1.0f, 9.0f, -9.0f, 0.0f,
1.0f, 10.0f, -10.0f, 0.0f,
-1.0f, 11.0f, -11.0f, 0.0f,
1.0f, 12.0f, -12.0f, 0.0f,
-1.0f, 13.0f, -13.0f, 0.0f,
1.0f, 14.0f, -14.0f, 0.0f,
-1.0f, 15.0f, -15.0f, 0.0f };
float result[4];
routine(input, result);
EXPECT_EQ(result[0], 0.0f);
EXPECT_EQ(result[1], 120.0f);
EXPECT_EQ(result[2], -120.0f);
EXPECT_EQ(result[3], 0.0f);
}
}
template <typename T>
class CToReactorTCastTest : public ::testing::Test
{
public:
using CType = typename std::tuple_element<0, T>::type;
using ReactorType = typename std::tuple_element<1, T>::type;
};
using CToReactorTCastTestTypes = ::testing::Types
< // Subset of types that can be used as arguments.
// std::pair<bool, Bool>, FIXME(capn): Not supported as argument type by Subzero.
// std::pair<uint8_t, Byte>, FIXME(capn): Not supported as argument type by Subzero.
// std::pair<int8_t, SByte>, FIXME(capn): Not supported as argument type by Subzero.
// std::pair<int16_t, Short>, FIXME(capn): Not supported as argument type by Subzero.
// std::pair<uint16_t, UShort>, FIXME(capn): Not supported as argument type by Subzero.
std::pair<int, Int>,
std::pair<unsigned int, UInt>,
std::pair<float, Float>
>;
TYPED_TEST_SUITE(CToReactorTCastTest, CToReactorTCastTestTypes);
TYPED_TEST(CToReactorTCastTest, Casts)
{
using CType = typename TestFixture::CType;
using ReactorType = typename TestFixture::ReactorType;
std::shared_ptr<Routine> routine;
{
Function< Int(ReactorType) > function;
{
ReactorType a = function.template Arg<0>();
ReactorType b = CType{};
RValue<ReactorType> c = RValue<ReactorType>(CType{});
Bool same = (a == b) && (a == c);
Return(IfThenElse(same, Int(1), Int(0))); // TODO: Ability to use Bools as return values.
}
routine = function("one");
if(routine)
{
auto callable = (int(*)(CType))routine->getEntry();
CType in = {};
EXPECT_EQ(callable(in), 1);
}
}
}
template <typename T>
class GEPTest : public ::testing::Test
{
public:
using CType = typename std::tuple_element<0, T>::type;
using ReactorType = typename std::tuple_element<1, T>::type;
};
using GEPTestTypes = ::testing::Types
<
std::pair<bool, Bool>,
std::pair<int8_t, Byte>,
std::pair<int8_t, SByte>,
std::pair<int8_t[4], Byte4>,
std::pair<int8_t[4], SByte4>,
std::pair<int8_t[8], Byte8>,
std::pair<int8_t[8], SByte8>,
std::pair<int8_t[16], Byte16>,
std::pair<int8_t[16], SByte16>,
std::pair<int16_t, Short>,
std::pair<int16_t, UShort>,
std::pair<int16_t[2], Short2>,
std::pair<int16_t[2], UShort2>,
std::pair<int16_t[4], Short4>,
std::pair<int16_t[4], UShort4>,
std::pair<int16_t[8], Short8>,
std::pair<int16_t[8], UShort8>,
std::pair<int, Int>,
std::pair<int, UInt>,
std::pair<int[2], Int2>,
std::pair<int[2], UInt2>,
std::pair<int[4], Int4>,
std::pair<int[4], UInt4>,
std::pair<int64_t, Long>,
std::pair<int16_t, Half>,
std::pair<float, Float>,
std::pair<float[2], Float2>,
std::pair<float[4], Float4>
>;
TYPED_TEST_SUITE(GEPTest, GEPTestTypes);
TYPED_TEST(GEPTest, PtrOffsets)
{
using CType = typename TestFixture::CType;
using ReactorType = typename TestFixture::ReactorType;
std::shared_ptr<Routine> routine;
{
Function< Pointer<ReactorType>(Pointer<ReactorType>, Int) > function;
{
Pointer<ReactorType> pointer = function.template Arg<0>();
Int index = function.template Arg<1>();
Return(&pointer[index]);
}
routine = function("one");
if(routine)
{
auto callable = (CType*(*)(CType*, unsigned int))routine->getEntry();
union PtrInt {
CType* p;
size_t i;
};
PtrInt base;
base.i = 0x10000;
for (int i = 0; i < 5; i++)
{
PtrInt reference;
reference.p = &base.p[i];
PtrInt result;
result.p = callable(base.p, i);
auto expect = reference.i - base.i;
auto got = result.i - base.i;
EXPECT_EQ(got, expect) << "i:" << i;
}
}
}
}
TEST(ReactorUnitTests, Coroutines_Fibonacci)
{
if (!rr::Caps.CoroutinesSupported)
{
SUCCEED() << "Coroutines not supported";
return;
}
Coroutine<int()> function;
{
Yield(Int(0));
Yield(Int(1));
Int current = 1;
Int next = 1;
While (true) {
Yield(next);
auto tmp = current + next;
current = next;
next = tmp;
}
}
auto coroutine = function();
int32_t expected[] =
{
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811,
};
auto count = sizeof(expected) / sizeof(expected[0]);
for (size_t i = 0; i < count; i++)
{
int out = 0;
EXPECT_EQ(coroutine->await(out), true);
EXPECT_EQ(out, expected[i]);
}
}
TEST(ReactorUnitTests, Coroutines_Parameters)
{
if (!rr::Caps.CoroutinesSupported)
{
SUCCEED() << "Coroutines not supported";
return;
}
Coroutine<uint8_t(uint8_t* data, int count)> function;
{
Pointer<Byte> data = function.Arg<0>();
Int count = function.Arg<1>();
For(Int i = 0, i < count, i++)
{
Yield(data[i]);
}
}
uint8_t data[] = {10, 20, 30};
auto coroutine = function(&data[0], 3);
uint8_t out = 0;
EXPECT_EQ(coroutine->await(out), true);
EXPECT_EQ(out, 10); out = 0;
EXPECT_EQ(coroutine->await(out), true);
EXPECT_EQ(out, 20); out = 0;
EXPECT_EQ(coroutine->await(out), true);
EXPECT_EQ(out, 30); out = 99;
EXPECT_EQ(coroutine->await(out), false);
EXPECT_EQ(out, 99);
EXPECT_EQ(coroutine->await(out), false);
EXPECT_EQ(out, 99);
}
TEST(ReactorUnitTests, ExtractFromRValue)
{
Function<Void(Pointer<Int4> values, Pointer<Int4> result)> function;
{
Pointer<Int4> vIn = function.Arg<0>();
Pointer<Int4> resultIn = function.Arg<1>();
RValue<Int4> v = *vIn;
Int4 result(678);
If(Extract(v, 0) == 42)
{
result = Insert(result, 1, 0);
}
If(Extract(v, 1) == 42)
{
result = Insert(result, 1, 1);
}
*resultIn = result;
Return();
}
auto routine = function("one");
auto entry = (void(*)(int*, int*))routine->getEntry();
int v[4] = { 42, 42, 42, 42 };
int result[4] = { 99, 99, 99, 99 };
entry(v, result);
EXPECT_EQ(result[0], 1);
EXPECT_EQ(result[1], 1);
EXPECT_EQ(result[2], 678);
EXPECT_EQ(result[3], 678);
}
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
////////////////////////////////
// Trait compile time checks. //
////////////////////////////////
// Assert CToReactorT resolves to expected types.
static_assert(std::is_same<CToReactorT<void>, Void>::value, "");
static_assert(std::is_same<CToReactorT<bool>, Bool>::value, "");
static_assert(std::is_same<CToReactorT<uint8_t>, Byte>::value, "");
static_assert(std::is_same<CToReactorT<int8_t>, SByte>::value, "");
static_assert(std::is_same<CToReactorT<int16_t>, Short>::value, "");
static_assert(std::is_same<CToReactorT<uint16_t>, UShort>::value, "");
static_assert(std::is_same<CToReactorT<int32_t>, Int>::value, "");
static_assert(std::is_same<CToReactorT<uint64_t>, Long>::value, "");
static_assert(std::is_same<CToReactorT<uint32_t>, UInt>::value, "");
static_assert(std::is_same<CToReactorT<float>, Float>::value, "");
// Assert CToReactorT for known pointer types resolves to expected types.
static_assert(std::is_same<CToReactorT<void*>, Pointer<Byte>>::value, "");
static_assert(std::is_same<CToReactorT<bool*>, Pointer<Bool>>::value, "");
static_assert(std::is_same<CToReactorT<uint8_t*>, Pointer<Byte>>::value, "");
static_assert(std::is_same<CToReactorT<int8_t*>, Pointer<SByte>>::value, "");
static_assert(std::is_same<CToReactorT<int16_t*>, Pointer<Short>>::value, "");
static_assert(std::is_same<CToReactorT<uint16_t*>, Pointer<UShort>>::value, "");
static_assert(std::is_same<CToReactorT<int32_t*>, Pointer<Int>>::value, "");
static_assert(std::is_same<CToReactorT<uint64_t*>, Pointer<Long>>::value, "");
static_assert(std::is_same<CToReactorT<uint32_t*>, Pointer<UInt>>::value, "");
static_assert(std::is_same<CToReactorT<float*>, Pointer<Float>>::value, "");
static_assert(std::is_same<CToReactorT<uint16_t**>, Pointer<Pointer<UShort>>>::value, "");
static_assert(std::is_same<CToReactorT<uint16_t***>, Pointer<Pointer<Pointer<UShort>>>>::value, "");
// Assert CToReactorT for unknown pointer types resolves to Pointer<Byte>.
struct S{};
static_assert(std::is_same<CToReactorT<S*>, Pointer<Byte>>::value, "");
static_assert(std::is_same<CToReactorT<S**>, Pointer<Pointer<Byte>>>::value, "");
static_assert(std::is_same<CToReactorT<S***>, Pointer<Pointer<Pointer<Byte>>>>::value, "");
// Assert IsRValue<> resolves true for RValue<> types.
static_assert(IsRValue<RValue<Void>>::value, "");
static_assert(IsRValue<RValue<Bool>>::value, "");
static_assert(IsRValue<RValue<Byte>>::value, "");
static_assert(IsRValue<RValue<SByte>>::value, "");
static_assert(IsRValue<RValue<Short>>::value, "");
static_assert(IsRValue<RValue<UShort>>::value, "");
static_assert(IsRValue<RValue<Int>>::value, "");
static_assert(IsRValue<RValue<Long>>::value, "");
static_assert(IsRValue<RValue<UInt>>::value, "");
static_assert(IsRValue<RValue<Float>>::value, "");
// Assert IsLValue<> resolves true for LValue types.
static_assert(IsLValue<Bool>::value, "");
static_assert(IsLValue<Byte>::value, "");
static_assert(IsLValue<SByte>::value, "");
static_assert(IsLValue<Short>::value, "");
static_assert(IsLValue<UShort>::value, "");
static_assert(IsLValue<Int>::value, "");
static_assert(IsLValue<Long>::value, "");
static_assert(IsLValue<UInt>::value, "");
static_assert(IsLValue<Float>::value, "");
// Assert IsReference<> resolves true for Reference types.
static_assert(IsReference<Reference<Bool>>::value, "");
static_assert(IsReference<Reference<Byte>>::value, "");
static_assert(IsReference<Reference<SByte>>::value, "");
static_assert(IsReference<Reference<Short>>::value, "");
static_assert(IsReference<Reference<UShort>>::value, "");
static_assert(IsReference<Reference<Int>>::value, "");
static_assert(IsReference<Reference<Long>>::value, "");
static_assert(IsReference<Reference<UInt>>::value, "");
static_assert(IsReference<Reference<Float>>::value, "");
// Assert IsRValue<> resolves false for LValue types.
static_assert(!IsRValue<Void>::value, "");
static_assert(!IsRValue<Bool>::value, "");
static_assert(!IsRValue<Byte>::value, "");
static_assert(!IsRValue<SByte>::value, "");
static_assert(!IsRValue<Short>::value, "");
static_assert(!IsRValue<UShort>::value, "");
static_assert(!IsRValue<Int>::value, "");
static_assert(!IsRValue<Long>::value, "");
static_assert(!IsRValue<UInt>::value, "");
static_assert(!IsRValue<Float>::value, "");
// Assert IsRValue<> resolves false for Reference types.
static_assert(!IsRValue<Reference<Void>>::value, "");
static_assert(!IsRValue<Reference<Bool>>::value, "");
static_assert(!IsRValue<Reference<Byte>>::value, "");
static_assert(!IsRValue<Reference<SByte>>::value, "");
static_assert(!IsRValue<Reference<Short>>::value, "");
static_assert(!IsRValue<Reference<UShort>>::value, "");
static_assert(!IsRValue<Reference<Int>>::value, "");
static_assert(!IsRValue<Reference<Long>>::value, "");
static_assert(!IsRValue<Reference<UInt>>::value, "");
static_assert(!IsRValue<Reference<Float>>::value, "");
// Assert IsRValue<> resolves false for C types.
static_assert(!IsRValue<void>::value, "");
static_assert(!IsRValue<bool>::value, "");
static_assert(!IsRValue<uint8_t>::value, "");
static_assert(!IsRValue<int8_t>::value, "");
static_assert(!IsRValue<int16_t>::value, "");
static_assert(!IsRValue<uint16_t>::value, "");
static_assert(!IsRValue<int32_t>::value, "");
static_assert(!IsRValue<uint64_t>::value, "");
static_assert(!IsRValue<uint32_t>::value, "");
static_assert(!IsRValue<float>::value, "");
// Assert IsLValue<> resolves false for RValue<> types.
static_assert(!IsLValue<RValue<Void>>::value, "");
static_assert(!IsLValue<RValue<Bool>>::value, "");
static_assert(!IsLValue<RValue<Byte>>::value, "");
static_assert(!IsLValue<RValue<SByte>>::value, "");
static_assert(!IsLValue<RValue<Short>>::value, "");
static_assert(!IsLValue<RValue<UShort>>::value, "");
static_assert(!IsLValue<RValue<Int>>::value, "");
static_assert(!IsLValue<RValue<Long>>::value, "");
static_assert(!IsLValue<RValue<UInt>>::value, "");
static_assert(!IsLValue<RValue<Float>>::value, "");
// Assert IsLValue<> resolves false for Void type.
static_assert(!IsLValue<Void>::value, "");
// Assert IsLValue<> resolves false for Reference<> types.
static_assert(!IsLValue<Reference<Void>>::value, "");
static_assert(!IsLValue<Reference<Bool>>::value, "");
static_assert(!IsLValue<Reference<Byte>>::value, "");
static_assert(!IsLValue<Reference<SByte>>::value, "");
static_assert(!IsLValue<Reference<Short>>::value, "");
static_assert(!IsLValue<Reference<UShort>>::value, "");
static_assert(!IsLValue<Reference<Int>>::value, "");
static_assert(!IsLValue<Reference<Long>>::value, "");
static_assert(!IsLValue<Reference<UInt>>::value, "");
static_assert(!IsLValue<Reference<Float>>::value, "");
// Assert IsLValue<> resolves false for C types.
static_assert(!IsLValue<void>::value, "");
static_assert(!IsLValue<bool>::value, "");
static_assert(!IsLValue<uint8_t>::value, "");
static_assert(!IsLValue<int8_t>::value, "");
static_assert(!IsLValue<int16_t>::value, "");
static_assert(!IsLValue<uint16_t>::value, "");
static_assert(!IsLValue<int32_t>::value, "");
static_assert(!IsLValue<uint64_t>::value, "");
static_assert(!IsLValue<uint32_t>::value, "");
static_assert(!IsLValue<float>::value, "");
// Assert IsDefined<> resolves true for RValue<> types.
static_assert(IsDefined<RValue<Void>>::value, "");
static_assert(IsDefined<RValue<Bool>>::value, "");
static_assert(IsDefined<RValue<Byte>>::value, "");
static_assert(IsDefined<RValue<SByte>>::value, "");
static_assert(IsDefined<RValue<Short>>::value, "");
static_assert(IsDefined<RValue<UShort>>::value, "");
static_assert(IsDefined<RValue<Int>>::value, "");
static_assert(IsDefined<RValue<Long>>::value, "");
static_assert(IsDefined<RValue<UInt>>::value, "");
static_assert(IsDefined<RValue<Float>>::value, "");
// Assert IsDefined<> resolves true for LValue types.
static_assert(IsDefined<Void>::value, "");
static_assert(IsDefined<Bool>::value, "");
static_assert(IsDefined<Byte>::value, "");
static_assert(IsDefined<SByte>::value, "");
static_assert(IsDefined<Short>::value, "");
static_assert(IsDefined<UShort>::value, "");
static_assert(IsDefined<Int>::value, "");
static_assert(IsDefined<Long>::value, "");
static_assert(IsDefined<UInt>::value, "");
static_assert(IsDefined<Float>::value, "");
// Assert IsDefined<> resolves true for Reference<> types.
static_assert(IsDefined<Reference<Bool>>::value, "");
static_assert(IsDefined<Reference<Byte>>::value, "");
static_assert(IsDefined<Reference<SByte>>::value, "");
static_assert(IsDefined<Reference<Short>>::value, "");
static_assert(IsDefined<Reference<UShort>>::value, "");
static_assert(IsDefined<Reference<Int>>::value, "");
static_assert(IsDefined<Reference<Long>>::value, "");
static_assert(IsDefined<Reference<UInt>>::value, "");
static_assert(IsDefined<Reference<Float>>::value, "");
// Assert IsDefined<> resolves true for C types.
static_assert(IsDefined<void>::value, "");
static_assert(IsDefined<bool>::value, "");
static_assert(IsDefined<uint8_t>::value, "");
static_assert(IsDefined<int8_t>::value, "");
static_assert(IsDefined<int16_t>::value, "");
static_assert(IsDefined<uint16_t>::value, "");
static_assert(IsDefined<int32_t>::value, "");
static_assert(IsDefined<uint64_t>::value, "");
static_assert(IsDefined<uint32_t>::value, "");
static_assert(IsDefined<float>::value, "");