blob: 37f9703f00a0ab71c81b02e7a37a9c16fb798fa6 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Context.cpp: Implements the gl::Context class, managing all GL state and performing
// rendering operations.
#include "Context.h"
#include "main.h"
#include "mathutil.h"
#include "utilities.h"
#include "ResourceManager.h"
#include "Buffer.h"
#include "Fence.h"
#include "Framebuffer.h"
#include "Program.h"
#include "Query.h"
#include "Renderbuffer.h"
#include "Shader.h"
#include "Texture.h"
#include "VertexDataManager.h"
#include "IndexDataManager.h"
#include "Display.h"
#include "Surface.h"
#include "Common/Half.hpp"
#define _GDI32_
#include <windows.h>
#include <GL/GL.h>
#include <GL/glext.h>
namespace gl
{
Context::Context(const Context *shareContext)
: modelView(32),
projection(2)
{
sw::Context *context = new sw::Context();
device = new gl::Device(context);
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mState.depthClearValue = 1.0f;
mState.stencilClearValue = 0;
mState.cullFaceEnabled = false;
mState.cullMode = GL_BACK;
mState.frontFace = GL_CCW;
mState.depthTestEnabled = false;
mState.depthFunc = GL_LESS;
mState.blendEnabled = false;
mState.sourceBlendRGB = GL_ONE;
mState.sourceBlendAlpha = GL_ONE;
mState.destBlendRGB = GL_ZERO;
mState.destBlendAlpha = GL_ZERO;
mState.blendEquationRGB = GL_FUNC_ADD;
mState.blendEquationAlpha = GL_FUNC_ADD;
mState.blendColor.red = 0;
mState.blendColor.green = 0;
mState.blendColor.blue = 0;
mState.blendColor.alpha = 0;
mState.stencilTestEnabled = false;
mState.stencilFunc = GL_ALWAYS;
mState.stencilRef = 0;
mState.stencilMask = -1;
mState.stencilWritemask = -1;
mState.stencilBackFunc = GL_ALWAYS;
mState.stencilBackRef = 0;
mState.stencilBackMask = - 1;
mState.stencilBackWritemask = -1;
mState.stencilFail = GL_KEEP;
mState.stencilPassDepthFail = GL_KEEP;
mState.stencilPassDepthPass = GL_KEEP;
mState.stencilBackFail = GL_KEEP;
mState.stencilBackPassDepthFail = GL_KEEP;
mState.stencilBackPassDepthPass = GL_KEEP;
mState.polygonOffsetFillEnabled = false;
mState.polygonOffsetFactor = 0.0f;
mState.polygonOffsetUnits = 0.0f;
mState.sampleAlphaToCoverageEnabled = false;
mState.sampleCoverageEnabled = false;
mState.sampleCoverageValue = 1.0f;
mState.sampleCoverageInvert = false;
mState.scissorTestEnabled = false;
mState.ditherEnabled = true;
mState.generateMipmapHint = GL_DONT_CARE;
mState.fragmentShaderDerivativeHint = GL_DONT_CARE;
mState.colorLogicOpEnabled = false;
mState.logicalOperation = GL_COPY;
mState.lineWidth = 1.0f;
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = 0;
mState.viewportHeight = 0;
mState.zNear = 0.0f;
mState.zFar = 1.0f;
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = 0;
mState.scissorHeight = 0;
mState.colorMaskRed = true;
mState.colorMaskGreen = true;
mState.colorMaskBlue = true;
mState.colorMaskAlpha = true;
mState.depthMask = true;
if(shareContext)
{
mResourceManager = shareContext->mResourceManager;
mResourceManager->addRef();
}
else
{
mResourceManager = new ResourceManager();
}
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
mTexture2DZero = new Texture2D(0);
mProxyTexture2DZero = new Texture2D(0);
mTextureCubeMapZero = new TextureCubeMap(0);
mState.activeSampler = 0;
bindArrayBuffer(0);
bindElementArrayBuffer(0);
bindTextureCubeMap(0);
bindTexture2D(0);
bindReadFramebuffer(0);
bindDrawFramebuffer(0);
bindRenderbuffer(0);
mState.currentProgram = 0;
mState.packAlignment = 4;
mState.unpackAlignment = 4;
mVertexDataManager = nullptr;
mIndexDataManager = nullptr;
mInvalidEnum = false;
mInvalidValue = false;
mInvalidOperation = false;
mOutOfMemory = false;
mInvalidFramebufferOperation = false;
mHasBeenCurrent = false;
markAllStateDirty();
matrixMode = GL_MODELVIEW;
listMode = 0;
//memset(displayList, 0, sizeof(displayList));
listIndex = 0;
list = 0;
firstFreeIndex = 1;
clientTexture = GL_TEXTURE0;
drawing = false;
drawMode = 0; // FIXME
mState.vertexAttribute[sw::Color0].mCurrentValue[0] = 1.0f;
mState.vertexAttribute[sw::Color0].mCurrentValue[1] = 1.0f;
mState.vertexAttribute[sw::Color0].mCurrentValue[2] = 1.0f;
mState.vertexAttribute[sw::Color0].mCurrentValue[3] = 1.0f;
mState.vertexAttribute[sw::Normal].mCurrentValue[0] = 0.0f;
mState.vertexAttribute[sw::Normal].mCurrentValue[1] = 0.0f;
mState.vertexAttribute[sw::Normal].mCurrentValue[2] = 1.0f;
mState.vertexAttribute[sw::Normal].mCurrentValue[3] = 0.0f;
mState.vertexAttribute[sw::TexCoord0].mCurrentValue[0] = 0.0f;
mState.vertexAttribute[sw::TexCoord0].mCurrentValue[1] = 0.0f;
mState.vertexAttribute[sw::TexCoord0].mCurrentValue[2] = 0.0f;
mState.vertexAttribute[sw::TexCoord0].mCurrentValue[3] = 1.0f;
mState.vertexAttribute[sw::TexCoord1].mCurrentValue[0] = 0.0f;
mState.vertexAttribute[sw::TexCoord1].mCurrentValue[1] = 0.0f;
mState.vertexAttribute[sw::TexCoord1].mCurrentValue[2] = 0.0f;
mState.vertexAttribute[sw::TexCoord1].mCurrentValue[3] = 1.0f;
for(int i = 0; i < 8; i++)
{
envEnable[i] = true;
}
}
Context::~Context()
{
if(mState.currentProgram != 0)
{
Program *programObject = mResourceManager->getProgram(mState.currentProgram);
if(programObject)
{
programObject->release();
}
mState.currentProgram = 0;
}
while(!mFramebufferNameSpace.empty())
{
deleteFramebuffer(mFramebufferNameSpace.firstName());
}
while(!mFenceNameSpace.empty())
{
deleteFence(mFenceNameSpace.firstName());
}
while(!mQueryNameSpace.empty())
{
deleteQuery(mQueryNameSpace.firstName());
}
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++)
{
mState.samplerTexture[type][sampler] = nullptr;
}
}
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mState.vertexAttribute[i].mBoundBuffer = nullptr;
}
for(int i = 0; i < QUERY_TYPE_COUNT; i++)
{
mState.activeQuery[i] = nullptr;
}
mState.arrayBuffer = nullptr;
mState.elementArrayBuffer = nullptr;
mState.renderbuffer = nullptr;
mTexture2DZero = nullptr;
mProxyTexture2DZero = nullptr;
mTextureCubeMapZero = nullptr;
delete mVertexDataManager;
delete mIndexDataManager;
mResourceManager->release();
delete device;
}
void Context::makeCurrent(Surface *surface)
{
if(!mHasBeenCurrent)
{
mVertexDataManager = new VertexDataManager(this);
mIndexDataManager = new IndexDataManager();
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = surface->getWidth();
mState.viewportHeight = surface->getHeight();
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = surface->getWidth();
mState.scissorHeight = surface->getHeight();
mHasBeenCurrent = true;
}
// Wrap the existing resources into GL objects and assign them to the '0' names
Image *defaultRenderTarget = surface->getRenderTarget();
Image *depthStencil = surface->getDepthStencil();
Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil);
Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero);
setFramebufferZero(framebufferZero);
if(defaultRenderTarget)
{
defaultRenderTarget->release();
}
if(depthStencil)
{
depthStencil->release();
}
markAllStateDirty();
}
// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
void Context::markAllStateDirty()
{
mAppliedProgramSerial = 0;
mDepthStateDirty = true;
mMaskStateDirty = true;
mBlendStateDirty = true;
mStencilStateDirty = true;
mPolygonOffsetStateDirty = true;
mSampleStateDirty = true;
mDitherStateDirty = true;
mFrontFaceDirty = true;
mColorLogicOperatorDirty = true;
}
void Context::setClearColor(float red, float green, float blue, float alpha)
{
mState.colorClearValue.red = red;
mState.colorClearValue.green = green;
mState.colorClearValue.blue = blue;
mState.colorClearValue.alpha = alpha;
}
void Context::setClearDepth(float depth)
{
mState.depthClearValue = depth;
}
void Context::setClearStencil(int stencil)
{
mState.stencilClearValue = stencil;
}
void Context::setCullFaceEnabled(bool enabled)
{
mState.cullFaceEnabled = enabled;
}
bool Context::isCullFaceEnabled() const
{
return mState.cullFaceEnabled;
}
void Context::setCullMode(GLenum mode)
{
mState.cullMode = mode;
}
void Context::setFrontFace(GLenum front)
{
if(mState.frontFace != front)
{
mState.frontFace = front;
mFrontFaceDirty = true;
}
}
void Context::setDepthTestEnabled(bool enabled)
{
if(mState.depthTestEnabled != enabled)
{
mState.depthTestEnabled = enabled;
mDepthStateDirty = true;
}
}
bool Context::isDepthTestEnabled() const
{
return mState.depthTestEnabled;
}
void Context::setDepthFunc(GLenum depthFunc)
{
if(mState.depthFunc != depthFunc)
{
mState.depthFunc = depthFunc;
mDepthStateDirty = true;
}
}
void Context::setDepthRange(float zNear, float zFar)
{
mState.zNear = zNear;
mState.zFar = zFar;
}
void Context::setBlendEnabled(bool enabled)
{
if(mState.blendEnabled != enabled)
{
mState.blendEnabled = enabled;
mBlendStateDirty = true;
}
}
bool Context::isBlendEnabled() const
{
return mState.blendEnabled;
}
void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
if(mState.sourceBlendRGB != sourceRGB ||
mState.sourceBlendAlpha != sourceAlpha ||
mState.destBlendRGB != destRGB ||
mState.destBlendAlpha != destAlpha)
{
mState.sourceBlendRGB = sourceRGB;
mState.destBlendRGB = destRGB;
mState.sourceBlendAlpha = sourceAlpha;
mState.destBlendAlpha = destAlpha;
mBlendStateDirty = true;
}
}
void Context::setBlendColor(float red, float green, float blue, float alpha)
{
if(mState.blendColor.red != red ||
mState.blendColor.green != green ||
mState.blendColor.blue != blue ||
mState.blendColor.alpha != alpha)
{
mState.blendColor.red = red;
mState.blendColor.green = green;
mState.blendColor.blue = blue;
mState.blendColor.alpha = alpha;
mBlendStateDirty = true;
}
}
void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
if(mState.blendEquationRGB != rgbEquation ||
mState.blendEquationAlpha != alphaEquation)
{
mState.blendEquationRGB = rgbEquation;
mState.blendEquationAlpha = alphaEquation;
mBlendStateDirty = true;
}
}
void Context::setStencilTestEnabled(bool enabled)
{
if(mState.stencilTestEnabled != enabled)
{
mState.stencilTestEnabled = enabled;
mStencilStateDirty = true;
}
}
bool Context::isStencilTestEnabled() const
{
return mState.stencilTestEnabled;
}
void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
if(mState.stencilFunc != stencilFunc ||
mState.stencilRef != stencilRef ||
mState.stencilMask != stencilMask)
{
mState.stencilFunc = stencilFunc;
mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
mState.stencilMask = stencilMask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask)
{
if(mState.stencilBackFunc != stencilBackFunc ||
mState.stencilBackRef != stencilBackRef ||
mState.stencilBackMask != stencilBackMask)
{
mState.stencilBackFunc = stencilBackFunc;
mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
mState.stencilBackMask = stencilBackMask;
mStencilStateDirty = true;
}
}
void Context::setStencilWritemask(GLuint stencilWritemask)
{
if(mState.stencilWritemask != stencilWritemask)
{
mState.stencilWritemask = stencilWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackWritemask(GLuint stencilBackWritemask)
{
if(mState.stencilBackWritemask != stencilBackWritemask)
{
mState.stencilBackWritemask = stencilBackWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
if(mState.stencilFail != stencilFail ||
mState.stencilPassDepthFail != stencilPassDepthFail ||
mState.stencilPassDepthPass != stencilPassDepthPass)
{
mState.stencilFail = stencilFail;
mState.stencilPassDepthFail = stencilPassDepthFail;
mState.stencilPassDepthPass = stencilPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass)
{
if(mState.stencilBackFail != stencilBackFail ||
mState.stencilBackPassDepthFail != stencilBackPassDepthFail ||
mState.stencilBackPassDepthPass != stencilBackPassDepthPass)
{
mState.stencilBackFail = stencilBackFail;
mState.stencilBackPassDepthFail = stencilBackPassDepthFail;
mState.stencilBackPassDepthPass = stencilBackPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setPolygonOffsetFillEnabled(bool enabled)
{
if(mState.polygonOffsetFillEnabled != enabled)
{
mState.polygonOffsetFillEnabled = enabled;
mPolygonOffsetStateDirty = true;
}
}
bool Context::isPolygonOffsetFillEnabled() const
{
return mState.polygonOffsetFillEnabled;
}
void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
if(mState.polygonOffsetFactor != factor ||
mState.polygonOffsetUnits != units)
{
mState.polygonOffsetFactor = factor;
mState.polygonOffsetUnits = units;
mPolygonOffsetStateDirty = true;
}
}
void Context::setSampleAlphaToCoverageEnabled(bool enabled)
{
if(mState.sampleAlphaToCoverageEnabled != enabled)
{
mState.sampleAlphaToCoverageEnabled = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleAlphaToCoverageEnabled() const
{
return mState.sampleAlphaToCoverageEnabled;
}
void Context::setSampleCoverageEnabled(bool enabled)
{
if(mState.sampleCoverageEnabled != enabled)
{
mState.sampleCoverageEnabled = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleCoverageEnabled() const
{
return mState.sampleCoverageEnabled;
}
void Context::setSampleCoverageParams(GLclampf value, bool invert)
{
if(mState.sampleCoverageValue != value ||
mState.sampleCoverageInvert != invert)
{
mState.sampleCoverageValue = value;
mState.sampleCoverageInvert = invert;
mSampleStateDirty = true;
}
}
void Context::setScissorTestEnabled(bool enabled)
{
mState.scissorTestEnabled = enabled;
}
bool Context::isScissorTestEnabled() const
{
return mState.scissorTestEnabled;
}
void Context::setDitherEnabled(bool enabled)
{
if(mState.ditherEnabled != enabled)
{
mState.ditherEnabled = enabled;
mDitherStateDirty = true;
}
}
bool Context::isDitherEnabled() const
{
return mState.ditherEnabled;
}
void Context::setLineWidth(GLfloat width)
{
mState.lineWidth = width;
device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX));
}
void Context::setGenerateMipmapHint(GLenum hint)
{
mState.generateMipmapHint = hint;
}
void Context::setFragmentShaderDerivativeHint(GLenum hint)
{
mState.fragmentShaderDerivativeHint = hint;
// TODO: Propagate the hint to shader translator so we can write
// ddx, ddx_coarse, or ddx_fine depending on the hint.
// Ignore for now. It is valid for implementations to ignore hint.
}
void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.viewportX = x;
mState.viewportY = y;
mState.viewportWidth = width;
mState.viewportHeight = height;
}
void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.scissorX = x;
mState.scissorY = y;
mState.scissorWidth = width;
mState.scissorHeight = height;
}
void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
{
if(mState.colorMaskRed != red || mState.colorMaskGreen != green ||
mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
{
mState.colorMaskRed = red;
mState.colorMaskGreen = green;
mState.colorMaskBlue = blue;
mState.colorMaskAlpha = alpha;
mMaskStateDirty = true;
}
}
void Context::setDepthMask(bool mask)
{
if(mState.depthMask != mask)
{
mState.depthMask = mask;
mMaskStateDirty = true;
}
}
void Context::setActiveSampler(unsigned int active)
{
mState.activeSampler = active;
}
GLuint Context::getReadFramebufferName() const
{
return mState.readFramebuffer;
}
GLuint Context::getDrawFramebufferName() const
{
return mState.drawFramebuffer;
}
GLuint Context::getRenderbufferName() const
{
return mState.renderbuffer.name();
}
GLuint Context::getArrayBufferName() const
{
return mState.arrayBuffer.name();
}
GLuint Context::getActiveQuery(GLenum target) const
{
Query *queryObject = nullptr;
switch(target)
{
case GL_ANY_SAMPLES_PASSED:
queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED];
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE];
break;
default:
ASSERT(false);
}
if(queryObject)
{
return queryObject->name;
}
return 0;
}
void Context::setVertexAttribArrayEnabled(unsigned int attribNum, bool enabled)
{
mState.vertexAttribute[attribNum].mArrayEnabled = enabled;
}
const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum)
{
return mState.vertexAttribute[attribNum];
}
void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
GLsizei stride, const void *pointer)
{
mState.vertexAttribute[attribNum].mBoundBuffer = boundBuffer;
mState.vertexAttribute[attribNum].mSize = size;
mState.vertexAttribute[attribNum].mType = type;
mState.vertexAttribute[attribNum].mNormalized = normalized;
mState.vertexAttribute[attribNum].mStride = stride;
mState.vertexAttribute[attribNum].mPointer = pointer;
}
const void *Context::getVertexAttribPointer(unsigned int attribNum) const
{
return mState.vertexAttribute[attribNum].mPointer;
}
const VertexAttributeArray &Context::getVertexAttributes()
{
return mState.vertexAttribute;
}
void Context::setPackAlignment(GLint alignment)
{
mState.packAlignment = alignment;
}
GLint Context::getPackAlignment() const
{
return mState.packAlignment;
}
void Context::setUnpackAlignment(GLint alignment)
{
mState.unpackAlignment = alignment;
}
GLint Context::getUnpackAlignment() const
{
return mState.unpackAlignment;
}
GLuint Context::createBuffer()
{
return mResourceManager->createBuffer();
}
GLuint Context::createProgram()
{
return mResourceManager->createProgram();
}
GLuint Context::createShader(GLenum type)
{
return mResourceManager->createShader(type);
}
GLuint Context::createTexture()
{
return mResourceManager->createTexture();
}
GLuint Context::createRenderbuffer()
{
return mResourceManager->createRenderbuffer();
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
return mFramebufferNameSpace.allocate();
}
GLuint Context::createFence()
{
return mFenceNameSpace.allocate(new Fence());
}
// Returns an unused query name
GLuint Context::createQuery()
{
return mQueryNameSpace.allocate();
}
void Context::deleteBuffer(GLuint buffer)
{
if(mResourceManager->getBuffer(buffer))
{
detachBuffer(buffer);
}
mResourceManager->deleteBuffer(buffer);
}
void Context::deleteShader(GLuint shader)
{
mResourceManager->deleteShader(shader);
}
void Context::deleteProgram(GLuint program)
{
mResourceManager->deleteProgram(program);
}
void Context::deleteTexture(GLuint texture)
{
if(mResourceManager->getTexture(texture))
{
detachTexture(texture);
}
mResourceManager->deleteTexture(texture);
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
if(mResourceManager->getRenderbuffer(renderbuffer))
{
detachRenderbuffer(renderbuffer);
}
mResourceManager->deleteRenderbuffer(renderbuffer);
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
Framebuffer *framebufferObject = mFramebufferNameSpace.remove(framebuffer);
if(framebufferObject)
{
detachFramebuffer(framebuffer);
delete framebufferObject;
}
}
void Context::deleteFence(GLuint fence)
{
Fence *fenceObject = mFenceNameSpace.remove(fence);
if(fenceObject)
{
delete fenceObject;
}
}
void Context::deleteQuery(GLuint query)
{
Query *queryObject = mQueryNameSpace.remove(query);
if(queryObject)
{
queryObject->release();
}
}
Buffer *Context::getBuffer(GLuint handle)
{
return mResourceManager->getBuffer(handle);
}
Shader *Context::getShader(GLuint handle)
{
return mResourceManager->getShader(handle);
}
Program *Context::getProgram(GLuint handle)
{
return mResourceManager->getProgram(handle);
}
Texture *Context::getTexture(GLuint handle)
{
return mResourceManager->getTexture(handle);
}
Renderbuffer *Context::getRenderbuffer(GLuint handle)
{
return mResourceManager->getRenderbuffer(handle);
}
Framebuffer *Context::getReadFramebuffer()
{
return getFramebuffer(mState.readFramebuffer);
}
Framebuffer *Context::getDrawFramebuffer()
{
return getFramebuffer(mState.drawFramebuffer);
}
void Context::bindArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.arrayBuffer = getBuffer(buffer);
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.elementArrayBuffer = getBuffer(buffer);
}
void Context::bindTexture2D(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_2D);
mState.samplerTexture[TEXTURE_2D][mState.activeSampler] = getTexture(texture);
}
void Context::bindTextureCubeMap(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE);
mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler] = getTexture(texture);
}
void Context::bindReadFramebuffer(GLuint framebuffer)
{
if(!getFramebuffer(framebuffer))
{
mFramebufferNameSpace.insert(framebuffer, new Framebuffer());
}
mState.readFramebuffer = framebuffer;
}
void Context::bindDrawFramebuffer(GLuint framebuffer)
{
if(!getFramebuffer(framebuffer))
{
mFramebufferNameSpace.insert(framebuffer, new Framebuffer());
}
mState.drawFramebuffer = framebuffer;
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
mResourceManager->checkRenderbufferAllocation(renderbuffer);
mState.renderbuffer = getRenderbuffer(renderbuffer);
}
void Context::useProgram(GLuint program)
{
GLuint priorProgram = mState.currentProgram;
mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged.
if(priorProgram != program)
{
Program *newProgram = mResourceManager->getProgram(program);
Program *oldProgram = mResourceManager->getProgram(priorProgram);
if(newProgram)
{
newProgram->addRef();
}
if(oldProgram)
{
oldProgram->release();
}
}
}
void Context::beginQuery(GLenum target, GLuint query)
{
// From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an <id>
// of zero, if the active query object name for <target> is non-zero (for the
// targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if
// the active query for either target is non-zero), if <id> is the name of an
// existing query object whose type does not match <target>, or if <id> is the
// active query object name for any query type, the error INVALID_OPERATION is
// generated.
// Ensure no other queries are active
// NOTE: If other queries than occlusion are supported, we will need to check
// separately that:
// a) The query ID passed is not the current active query for any target/type
// b) There are no active queries for the requested target (and in the case
// of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT,
// no query may be active for either if glBeginQuery targets either.
for(int i = 0; i < QUERY_TYPE_COUNT; i++)
{
if(mState.activeQuery[i])
{
return error(GL_INVALID_OPERATION);
}
}
QueryType qType;
switch(target)
{
case GL_ANY_SAMPLES_PASSED:
qType = QUERY_ANY_SAMPLES_PASSED;
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE;
break;
default:
ASSERT(false);
}
Query *queryObject = getQuery(query, true, target);
// Check that name was obtained with glGenQueries
if(!queryObject)
{
return error(GL_INVALID_OPERATION);
}
// Check for type mismatch
if(queryObject->getType() != target)
{
return error(GL_INVALID_OPERATION);
}
// Set query as active for specified target
mState.activeQuery[qType] = queryObject;
// Begin query
queryObject->begin();
}
void Context::endQuery(GLenum target)
{
QueryType qType;
switch(target)
{
case GL_ANY_SAMPLES_PASSED:
qType = QUERY_ANY_SAMPLES_PASSED;
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE;
break;
default:
ASSERT(false);
}
Query *queryObject = mState.activeQuery[qType];
if(!queryObject)
{
return error(GL_INVALID_OPERATION);
}
queryObject->end();
mState.activeQuery[qType] = nullptr;
}
void Context::setFramebufferZero(Framebuffer *buffer)
{
delete mFramebufferNameSpace.remove(0);
mFramebufferNameSpace.insert(0, buffer);
}
void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer)
{
Renderbuffer *renderbufferObject = mState.renderbuffer;
renderbufferObject->setStorage(renderbuffer);
}
Framebuffer *Context::getFramebuffer(unsigned int handle)
{
return mFramebufferNameSpace.find(handle);
}
Fence *Context::getFence(unsigned int handle)
{
return mFenceNameSpace.find(handle);
}
Query *Context::getQuery(unsigned int handle, bool create, GLenum type)
{
if(!mQueryNameSpace.isReserved(handle))
{
return nullptr;
}
else
{
Query *query = mQueryNameSpace.find(handle);
if(!query && create)
{
query = new Query(handle, type);
query->addRef();
mQueryNameSpace.insert(handle, query);
}
return query;
}
}
Buffer *Context::getArrayBuffer()
{
return mState.arrayBuffer;
}
Buffer *Context::getElementArrayBuffer()
{
return mState.elementArrayBuffer;
}
Program *Context::getCurrentProgram()
{
return mResourceManager->getProgram(mState.currentProgram);
}
Texture2D *Context::getTexture2D(GLenum target)
{
if(target == GL_TEXTURE_2D)
{
return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D));
}
else if(target == GL_PROXY_TEXTURE_2D)
{
return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, PROXY_TEXTURE_2D));
}
else UNREACHABLE(target);
return nullptr;
}
TextureCubeMap *Context::getTextureCubeMap()
{
return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE));
}
Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type)
{
GLuint texid = mState.samplerTexture[type][sampler].name();
if(texid == 0) // Special case: 0 refers to different initial textures based on the target
{
switch(type)
{
case TEXTURE_2D: return mTexture2DZero;
case PROXY_TEXTURE_2D: return mProxyTexture2DZero;
case TEXTURE_CUBE: return mTextureCubeMapZero;
default: UNREACHABLE(type);
}
}
return mState.samplerTexture[type][sampler];
}
bool Context::getBooleanv(GLenum pname, GLboolean *params)
{
switch(pname)
{
case GL_SHADER_COMPILER: *params = GL_TRUE; break;
case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break;
case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break;
case GL_COLOR_WRITEMASK:
params[0] = mState.colorMaskRed;
params[1] = mState.colorMaskGreen;
params[2] = mState.colorMaskBlue;
params[3] = mState.colorMaskAlpha;
break;
case GL_CULL_FACE: *params = mState.cullFaceEnabled; break;
case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFillEnabled; break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverageEnabled; break;
case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverageEnabled; break;
case GL_SCISSOR_TEST: *params = mState.scissorTestEnabled; break;
case GL_STENCIL_TEST: *params = mState.stencilTestEnabled; break;
case GL_DEPTH_TEST: *params = mState.depthTestEnabled; break;
case GL_BLEND: *params = mState.blendEnabled; break;
case GL_DITHER: *params = mState.ditherEnabled; break;
default:
return false;
}
return true;
}
bool Context::getFloatv(GLenum pname, GLfloat *params)
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch(pname)
{
case GL_LINE_WIDTH: *params = mState.lineWidth; break;
case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break;
case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break;
case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break;
case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break;
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = ALIASED_LINE_WIDTH_RANGE_MIN;
params[1] = ALIASED_LINE_WIDTH_RANGE_MAX;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = ALIASED_POINT_SIZE_RANGE_MIN;
params[1] = ALIASED_POINT_SIZE_RANGE_MAX;
break;
case GL_DEPTH_RANGE:
params[0] = mState.zNear;
params[1] = mState.zFar;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = mState.colorClearValue.red;
params[1] = mState.colorClearValue.green;
params[2] = mState.colorClearValue.blue;
params[3] = mState.colorClearValue.alpha;
break;
case GL_BLEND_COLOR:
params[0] = mState.blendColor.red;
params[1] = mState.blendColor.green;
params[2] = mState.blendColor.blue;
params[3] = mState.blendColor.alpha;
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
*params = MAX_TEXTURE_MAX_ANISOTROPY;
break;
case GL_MODELVIEW_MATRIX:
for(int i = 0; i < 16; i++)
{
params[i] = modelView.current()[i % 4][i / 4];
}
break;
case GL_PROJECTION_MATRIX:
for(int i = 0; i < 16; i++)
{
params[i] = projection.current()[i % 4][i / 4];
}
break;
default:
return false;
}
return true;
}
bool Context::getIntegerv(GLenum pname, GLint *params)
{
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// Context::getFloatv.
switch(pname)
{
case GL_MAX_VERTEX_ATTRIBS: *params = MAX_VERTEX_ATTRIBS; break;
case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = MAX_VERTEX_UNIFORM_VECTORS; break;
case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = MAX_VERTEX_UNIFORM_VECTORS * 4; break; // FIXME: Verify
case GL_MAX_VARYING_VECTORS: *params = MAX_VARYING_VECTORS; break;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = MAX_COMBINED_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = MAX_VERTEX_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_TEXTURE_IMAGE_UNITS: *params = MAX_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = MAX_FRAGMENT_UNIFORM_VECTORS; break;
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = MAX_VERTEX_UNIFORM_VECTORS * 4; break; // FIXME: Verify
case GL_MAX_RENDERBUFFER_SIZE: *params = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; break;
case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break;
case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break;
case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.name(); break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.name(); break;
// case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING: *params = mState.drawFramebuffer; break;
case GL_READ_FRAMEBUFFER_BINDING: *params = mState.readFramebuffer; break;
case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.name(); break;
case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break;
case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break;
case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break;
case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT: *params = mState.fragmentShaderDerivativeHint; break;
case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break;
case GL_STENCIL_FUNC: *params = mState.stencilFunc; break;
case GL_STENCIL_REF: *params = mState.stencilRef; break;
case GL_STENCIL_VALUE_MASK: *params = mState.stencilMask; break;
case GL_STENCIL_BACK_FUNC: *params = mState.stencilBackFunc; break;
case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break;
case GL_STENCIL_BACK_VALUE_MASK: *params = mState.stencilBackMask; break;
case GL_STENCIL_FAIL: *params = mState.stencilFail; break;
case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; break;
case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; break;
case GL_STENCIL_BACK_FAIL: *params = mState.stencilBackFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.stencilBackPassDepthFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.stencilBackPassDepthPass; break;
case GL_DEPTH_FUNC: *params = mState.depthFunc; break;
case GL_BLEND_SRC_RGB: *params = mState.sourceBlendRGB; break;
case GL_BLEND_SRC_ALPHA: *params = mState.sourceBlendAlpha; break;
case GL_BLEND_DST_RGB: *params = mState.destBlendRGB; break;
case GL_BLEND_DST_ALPHA: *params = mState.destBlendAlpha; break;
case GL_BLEND_EQUATION_RGB: *params = mState.blendEquationRGB; break;
case GL_BLEND_EQUATION_ALPHA: *params = mState.blendEquationAlpha; break;
case GL_STENCIL_WRITEMASK: *params = mState.stencilWritemask; break;
case GL_STENCIL_BACK_WRITEMASK: *params = mState.stencilBackWritemask; break;
case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break;
case GL_SUBPIXEL_BITS: *params = 4; break;
case GL_MAX_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; break;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE; break;
case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = 0; break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = NUM_COMPRESSED_TEXTURE_FORMATS; break;
case GL_MAX_SAMPLES: *params = IMPLEMENTATION_MAX_SAMPLES; break;
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
{
Framebuffer *framebuffer = getDrawFramebuffer();
int width, height, samples;
if(framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE)
{
switch(pname)
{
case GL_SAMPLE_BUFFERS:
if(samples > 1)
{
*params = 1;
}
else
{
*params = 0;
}
break;
case GL_SAMPLES:
*params = samples;
break;
}
}
else
{
*params = 0;
}
}
break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE: *params = IMPLEMENTATION_COLOR_READ_TYPE; break;
case GL_IMPLEMENTATION_COLOR_READ_FORMAT: *params = IMPLEMENTATION_COLOR_READ_FORMAT; break;
case GL_MAX_VIEWPORT_DIMS:
{
int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE;
params[0] = maxDimension;
params[1] = maxDimension;
}
break;
case GL_COMPRESSED_TEXTURE_FORMATS:
{
for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++)
{
params[i] = compressedTextureFormats[i];
}
}
break;
case GL_VIEWPORT:
params[0] = mState.viewportX;
params[1] = mState.viewportY;
params[2] = mState.viewportWidth;
params[3] = mState.viewportHeight;
break;
case GL_SCISSOR_BOX:
params[0] = mState.scissorX;
params[1] = mState.scissorY;
params[2] = mState.scissorWidth;
params[3] = mState.scissorHeight;
break;
case GL_CULL_FACE_MODE: *params = mState.cullMode; break;
case GL_FRONT_FACE: *params = mState.frontFace; break;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
Framebuffer *framebuffer = getDrawFramebuffer();
Renderbuffer *colorbuffer = framebuffer->getColorbuffer();
if(colorbuffer)
{
switch(pname)
{
case GL_RED_BITS: *params = colorbuffer->getRedSize(); break;
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break;
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break;
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break;
}
}
else
{
*params = 0;
}
}
break;
case GL_DEPTH_BITS:
{
Framebuffer *framebuffer = getDrawFramebuffer();
Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
if(depthbuffer)
{
*params = depthbuffer->getDepthSize();
}
else
{
*params = 0;
}
}
break;
case GL_STENCIL_BITS:
{
Framebuffer *framebuffer = getDrawFramebuffer();
Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
if(stencilbuffer)
{
*params = stencilbuffer->getStencilSize();
}
else
{
*params = 0;
}
}
break;
case GL_TEXTURE_BINDING_2D:
{
if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name();
}
break;
case GL_TEXTURE_BINDING_CUBE_MAP:
{
if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name();
}
break;
default:
return false;
}
return true;
}
bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams)
{
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch(pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS:
{
*type = GL_INT;
*numParams = NUM_COMPRESSED_TEXTURE_FORMATS;
}
break;
case GL_SHADER_BINARY_FORMATS:
{
*type = GL_INT;
*numParams = 0;
}
break;
case GL_MAX_VERTEX_ATTRIBS:
case GL_MAX_VERTEX_UNIFORM_VECTORS:
case GL_MAX_VARYING_VECTORS:
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
case GL_MAX_RENDERBUFFER_SIZE:
case GL_NUM_SHADER_BINARY_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
case GL_FRAMEBUFFER_BINDING:
case GL_RENDERBUFFER_BINDING:
case GL_CURRENT_PROGRAM:
case GL_PACK_ALIGNMENT:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_STENCIL_BACK_FUNC:
case GL_STENCIL_BACK_VALUE_MASK:
case GL_STENCIL_BACK_REF:
case GL_STENCIL_BACK_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB:
case GL_BLEND_SRC_ALPHA:
case GL_BLEND_DST_RGB:
case GL_BLEND_DST_ALPHA:
case GL_BLEND_EQUATION_RGB:
case GL_BLEND_EQUATION_ALPHA:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_BACK_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
case GL_MAX_VERTEX_UNIFORM_COMPONENTS:
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS:
case GL_MAX_ARRAY_TEXTURE_LAYERS:
{
*type = GL_INT;
*numParams = 1;
}
break;
case GL_MAX_SAMPLES:
{
*type = GL_INT;
*numParams = 1;
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
*type = GL_INT;
*numParams = 2;
}
break;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
{
*type = GL_INT;
*numParams = 4;
}
break;
case GL_SHADER_COMPILER:
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
{
*type = GL_BOOL;
*numParams = 1;
}
break;
case GL_COLOR_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 4;
}
break;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
{
*type = GL_FLOAT;
*numParams = 1;
}
break;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
{
*type = GL_FLOAT;
*numParams = 2;
}
break;
case GL_COLOR_CLEAR_VALUE:
case GL_BLEND_COLOR:
{
*type = GL_FLOAT;
*numParams = 4;
}
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
*type = GL_FLOAT;
*numParams = 1;
break;
default:
return false;
}
return true;
}
// Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle
bool Context::applyRenderTarget()
{
Framebuffer *framebuffer = getDrawFramebuffer();
int width, height, samples;
if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION, false);
}
Image *renderTarget = framebuffer->getRenderTarget();
device->setRenderTarget(0, renderTarget);
if(renderTarget) renderTarget->release();
Image *depthStencil = framebuffer->getDepthStencil();
device->setDepthStencilSurface(depthStencil);
if(depthStencil) depthStencil->release();
Viewport viewport;
float zNear = clamp01(mState.zNear);
float zFar = clamp01(mState.zFar);
viewport.x0 = mState.viewportX;
viewport.y0 = mState.viewportY;
viewport.width = mState.viewportWidth;
viewport.height = mState.viewportHeight;
viewport.minZ = zNear;
viewport.maxZ = zFar;
device->setViewport(viewport);
if(mState.scissorTestEnabled)
{
sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight};
scissor.clip(0, 0, width, height);
device->setScissorRect(scissor);
device->setScissorEnable(true);
}
else
{
device->setScissorEnable(false);
}
Program *program = getCurrentProgram();
if(program)
{
GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear};
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.near"), 1, &nearFarDiff[0]);
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.far"), 1, &nearFarDiff[1]);
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.diff"), 1, &nearFarDiff[2]);
}
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc)
void Context::applyState(GLenum drawMode)
{
Framebuffer *framebuffer = getDrawFramebuffer();
bool frontFaceCCW = (mState.frontFace == GL_CCW);
if(mState.cullFaceEnabled)
{
device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace), frontFaceCCW);
}
else
{
device->setCullMode(sw::CULL_NONE, frontFaceCCW);
}
if(mDepthStateDirty)
{
if(mState.depthTestEnabled)
{
device->setDepthBufferEnable(true);
device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc));
}
else
{
device->setDepthBufferEnable(false);
}
mDepthStateDirty = false;
}
if(mBlendStateDirty)
{
if(mState.blendEnabled)
{
device->setAlphaBlendEnable(true);
device->setSeparateAlphaBlendEnable(true);
device->setBlendConstant(es2sw::ConvertColor(mState.blendColor));
device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB));
device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB));
device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB));
device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha));
device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha));
device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha));
}
else
{
device->setAlphaBlendEnable(false);
}
mBlendStateDirty = false;
}
if(mColorLogicOperatorDirty)
{
if(mState.colorLogicOpEnabled)
{
device->setColorLogicOpEnabled(true);
device->setLogicalOperation(es2sw::ConvertLogicalOperation(mState.logicalOperation));
}
else
{
device->setColorLogicOpEnabled(false);
}
mColorLogicOperatorDirty = false;
}
if(mStencilStateDirty || mFrontFaceDirty)
{
if(mState.stencilTestEnabled && framebuffer->hasStencil())
{
device->setStencilEnable(true);
device->setTwoSidedStencil(true);
if(mState.stencilWritemask != mState.stencilBackWritemask ||
mState.stencilRef != mState.stencilBackRef ||
mState.stencilMask != mState.stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are invalid under WebGL.");
return error(GL_INVALID_OPERATION);
}
// get the maximum size of the stencil ref
Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1;
if(mState.frontFace == GL_CCW)
{
device->setStencilWriteMask(mState.stencilWritemask);
device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc));
device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->setStencilMask(mState.stencilMask);
device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail));
device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
device->setStencilWriteMaskCCW(mState.stencilBackWritemask);
device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilBackFunc));
device->setStencilReferenceCCW((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
device->setStencilMaskCCW(mState.stencilBackMask);
device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackFail));
device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail));
device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass));
}
else
{
device->setStencilWriteMaskCCW(mState.stencilWritemask);
device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc));
device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->setStencilMaskCCW(mState.stencilMask);
device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail));
device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
device->setStencilWriteMask(mState.stencilBackWritemask);
device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilBackFunc));
device->setStencilReference((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
device->setStencilMask(mState.stencilBackMask);
device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilBackFail));
device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail));
device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass));
}
}
else
{
device->setStencilEnable(false);
}
mStencilStateDirty = false;
mFrontFaceDirty = false;
}
if(mMaskStateDirty)
{
device->setColorWriteMask(0, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha));
device->setDepthWriteEnable(mState.depthMask);
mMaskStateDirty = false;
}
if(mPolygonOffsetStateDirty)
{
if(mState.polygonOffsetFillEnabled)
{
Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
if(depthbuffer)
{
device->setSlopeDepthBias(mState.polygonOffsetFactor);
float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize()));
device->setDepthBias(depthBias);
}
}
else
{
device->setSlopeDepthBias(0);
device->setDepthBias(0);
}
mPolygonOffsetStateDirty = false;
}
if(mSampleStateDirty)
{
if(mState.sampleAlphaToCoverageEnabled)
{
device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE);
}
else
{
device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE);
}
if(mState.sampleCoverageEnabled)
{
unsigned int mask = 0;
if(mState.sampleCoverageValue != 0)
{
int width, height, samples;
framebuffer->completeness(width, height, samples);
float threshold = 0.5f;
for(int i = 0; i < samples; i++)
{
mask <<= 1;
if((i + 1) * mState.sampleCoverageValue >= threshold)
{
threshold += 1.0f;
mask |= 1;
}
}
}
if(mState.sampleCoverageInvert)
{
mask = ~mask;
}
device->setMultiSampleMask(mask);
}
else
{
device->setMultiSampleMask(0xFFFFFFFF);
}
mSampleStateDirty = false;
}
if(mDitherStateDirty)
{
// UNIMPLEMENTED(); // FIXME
mDitherStateDirty = false;
}
}
GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count)
{
TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS];
GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes);
if(err != GL_NO_ERROR)
{
return err;
}
Program *program = getCurrentProgram();
device->resetInputStreams(false);
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if(program && program->getAttributeStream(i) == -1)
{
continue;
}
sw::Resource *resource = attributes[i].vertexBuffer;
const void *buffer = (char*)resource->data() + attributes[i].offset;
int stride = attributes[i].stride;
buffer = (char*)buffer + stride * base;
sw::Stream attribute(resource, buffer, stride);
attribute.type = attributes[i].type;
attribute.count = attributes[i].count;
attribute.normalized = attributes[i].normalized;
int stream = program ? program->getAttributeStream(i) : i;
device->setInputStream(stream, attribute);
}
return GL_NO_ERROR;
}
// Applies the indices and element array bindings
GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer, indices, indexInfo);
if(err == GL_NO_ERROR)
{
device->setIndexBuffer(indexInfo->indexBuffer);
}
return err;
}
// Applies the shaders and shader constants
void Context::applyShaders()
{
Program *programObject = getCurrentProgram();
if(!programObject)
{
device->setVertexShader(0);
device->setPixelShader(0);
return;
}
sw::VertexShader *vertexShader = programObject->getVertexShader();
sw::PixelShader *pixelShader = programObject->getPixelShader();
device->setVertexShader(vertexShader);
device->setPixelShader(pixelShader);
if(programObject->getSerial() != mAppliedProgramSerial)
{
programObject->dirtyAllUniforms();
mAppliedProgramSerial = programObject->getSerial();
}
programObject->applyUniforms();
}
void Context::applyTextures()
{
applyTextures(sw::SAMPLER_PIXEL);
//applyTextures(sw::SAMPLER_VERTEX);
}
void Context::applyTextures(sw::SamplerType samplerType)
{
Program *programObject = getCurrentProgram();
int samplerCount = (samplerType == sw::SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : MAX_VERTEX_TEXTURE_IMAGE_UNITS; // Range of samplers of given sampler type
for(int samplerIndex = 0; samplerIndex < samplerCount; samplerIndex++)
{
int textureUnit = programObject ? programObject->getSamplerMapping(samplerType, samplerIndex) : samplerIndex; // OpenGL texture image unit index
if(textureUnit != -1)
{
TextureType textureType = programObject ? programObject->getSamplerTextureType(samplerType, samplerIndex) : TEXTURE_2D;
Texture *texture = getSamplerTexture(textureUnit, textureType);
if(envEnable[samplerIndex] && texture->isSamplerComplete())
{
GLenum wrapS = texture->getWrapS();
GLenum wrapT = texture->getWrapT();
GLenum minFilter = texture->getMinFilter();
GLenum magFilter = texture->getMagFilter();
GLfloat maxAnisotropy = texture->getMaxAnisotropy();
device->setAddressingModeU(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapS));
device->setAddressingModeV(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapT));
device->setTextureFilter(samplerType, samplerIndex, es2sw::ConvertTextureFilter(minFilter, magFilter, maxAnisotropy));
device->setMipmapFilter(samplerType, samplerIndex, es2sw::ConvertMipMapFilter(minFilter));
device->setMaxAnisotropy(samplerType, samplerIndex, maxAnisotropy);
applyTexture(samplerType, samplerIndex, texture);
device->setStageOperation(samplerIndex, sw::TextureStage::STAGE_MODULATE);
device->setFirstArgument(samplerIndex, sw::TextureStage::SOURCE_TEXTURE);
device->setSecondArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT);
//device->setThirdArgument(samplerIndex, sw::TextureStage::SOURCE_CONSTANT);
device->setStageOperationAlpha(samplerIndex, sw::TextureStage::STAGE_MODULATE);
device->setFirstArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_TEXTURE);
device->setSecondArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT);
//device->setThirdArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CONSTANT);
//device->setConstantColor(0, sw::Color<float>(0.0f, 0.0f, 0.0f, 0.0f));
}
else
{
applyTexture(samplerType, samplerIndex, nullptr);
device->setStageOperation(samplerIndex, sw::TextureStage::STAGE_SELECTARG1);
device->setFirstArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT);
device->setSecondArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT);
//device->setThirdArgument(samplerIndex, sw::TextureStage::SOURCE_CONSTANT);
device->setStageOperationAlpha(samplerIndex, sw::TextureStage::STAGE_SELECTARG1);
device->setFirstArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT);
device->setSecondArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT);
//device->setThirdArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CONSTANT);
}
}
else
{
applyTexture(samplerType, samplerIndex, nullptr);
}
}
}
void Context::applyTexture(sw::SamplerType type, int index, Texture *baseTexture)
{
Program *program = getCurrentProgram();
int sampler = (type == sw::SAMPLER_PIXEL) ? index : 16 + index;
bool textureUsed = false;
if(type == sw::SAMPLER_PIXEL)
{
textureUsed = program ? program->getPixelShader()->usesSampler(index) : true;
}
else if(type == sw::SAMPLER_VERTEX)
{
textureUsed = program ? program->getVertexShader()->usesSampler(index) : false;
}
else UNREACHABLE(type);
sw::Resource *resource = nullptr;
if(baseTexture && textureUsed)
{
resource = baseTexture->getResource();
}
device->setTextureResource(sampler, resource);
if(baseTexture && textureUsed)
{
int topLevel = baseTexture->getTopLevel();
if(baseTexture->getTarget() == GL_TEXTURE_2D)
{
Texture2D *texture = static_cast<Texture2D*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
int surfaceLevel = mipmapLevel;
if(surfaceLevel < 0)
{
surfaceLevel = 0;
}
else if(surfaceLevel > topLevel)
{
surfaceLevel = topLevel;
}
Image *surface = texture->getImage(surfaceLevel);
device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_2D);
}
}
else if(baseTexture->getTarget() == GL_TEXTURE_CUBE_MAP)
{
for(int face = 0; face < 6; face++)
{
TextureCubeMap *cubeTexture = static_cast<TextureCubeMap*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
int surfaceLevel = mipmapLevel;
if(surfaceLevel < 0)
{
surfaceLevel = 0;
}
else if(surfaceLevel > topLevel)
{
surfaceLevel = topLevel;
}
Image *surface = cubeTexture->getImage(face, surfaceLevel);
device->setTextureLevel(sampler, face, mipmapLevel, surface, sw::TEXTURE_CUBE);
}
}
}
else UNIMPLEMENTED();
}
else
{
device->setTextureLevel(sampler, 0, 0, 0, sw::TEXTURE_NULL);
}
}
void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
{
Framebuffer *framebuffer = getReadFramebuffer();
int framebufferWidth, framebufferHeight, framebufferSamples;
if(framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if(getReadFramebufferName() != 0 && framebufferSamples != 0)
{
return error(GL_INVALID_OPERATION);
}
GLsizei outputPitch = ComputePitch(width, format, type, mState.packAlignment);
// Sized query sanity check
if(bufSize)
{
int requiredSize = outputPitch * height;
if(requiredSize > *bufSize)
{
return error(GL_INVALID_OPERATION);
}
}
Image *renderTarget = framebuffer->getRenderTarget();
if(!renderTarget)
{
return error(GL_OUT_OF_MEMORY);
}
sw::Rect rect = {x, y, x + width, y + height};
rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
unsigned char *source = (unsigned char*)renderTarget->lock(rect.x0, rect.y0, sw::LOCK_READONLY);
unsigned char *dest = (unsigned char*)pixels;
unsigned short *dest16 = (unsigned short*)pixels;
int inputPitch = (int)renderTarget->getPitch();
for(int j = 0; j < rect.y1 - rect.y0; j++)
{
if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 &&
format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE)
{
// Fast path for EXT_read_format_bgra, given an RGBA source buffer
// Note that buffers with no alpha go through the slow path below
memcpy(dest + j * outputPitch, source + j * inputPitch, (rect.x1 - rect.x0) * 4);
}
else
{
for(int i = 0; i < rect.x1 - rect.x0; i++)
{
float r;
float g;
float b;
float a;
switch(renderTarget->getInternalFormat())
{
case sw::FORMAT_R5G6B5:
{
unsigned short rgb = *(unsigned short*)(source + 2 * i + j * inputPitch);
a = 1.0f;
b = (rgb & 0x001F) * (1.0f / 0x001F);
g = (rgb & 0x07E0) * (1.0f / 0x07E0);
r = (rgb & 0xF800) * (1.0f / 0xF800);
}
break;
case sw::FORMAT_A1R5G5B5:
{
unsigned short argb = *(unsigned short*)(source + 2 * i + j * inputPitch);
a = (argb & 0x8000) ? 1.0f : 0.0f;
b = (argb & 0x001F) * (1.0f / 0x001F);
g = (argb & 0x03E0) * (1.0f / 0x03E0);
r = (argb & 0x7C00) * (1.0f / 0x7C00);
}
break;
case sw::FORMAT_A8R8G8B8:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = (argb & 0xFF000000) * (1.0f / 0xFF000000);
b = (argb & 0x000000FF) * (1.0f / 0x000000FF);
g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case sw::FORMAT_X8R8G8B8:
{
unsigned int xrgb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = 1.0f;
b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF);
g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case sw::FORMAT_A2R10G10B10:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = (argb & 0xC0000000) * (1.0f / 0xC0000000);
b = (argb & 0x000003FF) * (1.0f / 0x000003FF);
g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00);
r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000);
}
break;
case sw::FORMAT_A32B32G32R32F:
{
r = *((float*)(source + 16 * i + j * inputPitch) + 0);
g = *((float*)(source + 16 * i + j * inputPitch) + 1);
b = *((float*)(source + 16 * i + j * inputPitch) + 2);
a = *((float*)(source + 16 * i + j * inputPitch) + 3);
}
break;
case sw::FORMAT_A16B16G16R16F:
{
r = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 0);
g = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 1);
b = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 2);
a = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 3);
}
break;
default:
UNIMPLEMENTED(); // FIXME
UNREACHABLE(renderTarget->getInternalFormat());
}
switch(format)
{
case GL_RGBA:
switch(type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f);
break;
default: UNREACHABLE(type);
}
break;
case GL_BGRA_EXT:
switch(type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(15 * a + 0.5f) << 12)|
((unsigned short)(15 * r + 0.5f) << 8) |
((unsigned short)(15 * g + 0.5f) << 4) |
((unsigned short)(15 * b + 0.5f) << 0);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)( a + 0.5f) << 15) |
((unsigned short)(31 * r + 0.5f) << 10) |
((unsigned short)(31 * g + 0.5f) << 5) |
((unsigned short)(31 * b + 0.5f) << 0);
break;
default: UNREACHABLE(type);
}
break;
case GL_RGB: // IMPLEMENTATION_COLOR_READ_FORMAT
switch(type)
{
case GL_UNSIGNED_SHORT_5_6_5: // IMPLEMENTATION_COLOR_READ_TYPE
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(31 * b + 0.5f) << 0) |
((unsigned short)(63 * g + 0.5f) << 5) |
((unsigned short)(31 * r + 0.5f) << 11);
break;
default: UNREACHABLE(type);
}
break;
default: UNREACHABLE(format);
}
}
}
}
renderTarget->unlock();
renderTarget->release();
}
void Context::clear(GLbitfield mask)
{
Framebuffer *framebuffer = getDrawFramebuffer();
if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if(!applyRenderTarget())
{
return;
}
float depth = clamp01(mState.depthClearValue);
int stencil = mState.stencilClearValue & 0x000000FF;
if(mask & GL_COLOR_BUFFER_BIT)
{
unsigned int rgbaMask = (mState.colorMaskRed ? 0x1 : 0) |
(mState.colorMaskGreen ? 0x2 : 0) |
(mState.colorMaskBlue ? 0x4 : 0) |
(mState.colorMaskAlpha ? 0x8 : 0);
if(rgbaMask != 0)
{
device->clearColor(mState.colorClearValue.red, mState.colorClearValue.green, mState.colorClearValue.blue, mState.colorClearValue.alpha, rgbaMask);
}
}
if(mask & GL_DEPTH_BUFFER_BIT)
{
if(mState.depthMask != 0)
{
device->clearDepth(depth);
}
}
if(mask & GL_STENCIL_BUFFER_BIT)
{
if(mState.stencilWritemask != 0)
{
device->clearStencil(stencil, mState.stencilWritemask);
}
}
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count)
{
if(!mState.currentProgram)
{
device->setProjectionMatrix(projection.current());
device->setViewMatrix(modelView.current());
device->setTextureMatrix(0, texture[0].current());
device->setTextureMatrix(1, texture[1].current());
device->setTextureTransform(0, texture[0].isIdentity() ? 0 : 4, false);
device->setTextureTransform(1, texture[1].isIdentity() ? 0 : 4, false);
device->setTexGen(0, sw::TEXGEN_NONE);
device->setTexGen(1, sw::TEXGEN_NONE);
}
PrimitiveType primitiveType;
int primitiveCount;
if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount))
return error(GL_INVALID_ENUM);
if(primitiveCount <= 0)
{
return;
}
if(!applyRenderTarget())
{
return;
}
applyState(mode);
GLenum err = applyVertexBuffer(0, first, count);
if(err != GL_NO_ERROR)
{
return error(err);
}
applyShaders();
applyTextures();
if(getCurrentProgram() && !getCurrentProgram()->validateSamplers(false))
{
return error(GL_INVALID_OPERATION);
}
if(!cullSkipsDraw(mode))
{
device->drawPrimitive(primitiveType, primitiveCount);
}
}
void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices)
{
if(!mState.currentProgram)
{
return;
}
if(!indices && !mState.elementArrayBuffer)
{
return error(GL_INVALID_OPERATION);
}
PrimitiveType primitiveType;
int primitiveCount;
if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount))
return error(GL_INVALID_ENUM);
if(primitiveCount <= 0)
{
return;
}
if(!applyRenderTarget())
{
return;
}
applyState(mode);
TranslatedIndexData indexInfo;
GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo);
if(err != GL_NO_ERROR)
{
return error(err);
}
GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount);
if(err != GL_NO_ERROR)
{
return error(err);
}
applyShaders();
applyTextures();
if(!getCurrentProgram()->validateSamplers(false))
{
return error(GL_INVALID_OPERATION);
}
if(!cullSkipsDraw(mode))
{
device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount, IndexDataManager::typeSize(type));
}
}
void Context::finish()
{
device->finish();
}
void Context::flush()
{
// We don't queue anything without processing it as fast as possible
}
void Context::recordInvalidEnum()
{
mInvalidEnum = true;
}
void Context::recordInvalidValue()
{
mInvalidValue = true;
}
void Context::recordInvalidOperation()
{
mInvalidOperation = true;
}
void Context::recordOutOfMemory()
{
mOutOfMemory = true;
}
void Context::recordInvalidFramebufferOperation()
{
mInvalidFramebufferOperation = true;
}
// Get one of the recorded errors and clear its flag, if any.
GLenum Context::getError()
{
if(mInvalidEnum)
{
mInvalidEnum = false;
return GL_INVALID_ENUM;
}
if(mInvalidValue)
{
mInvalidValue = false;
return GL_INVALID_VALUE;
}
if(mInvalidOperation)
{
mInvalidOperation = false;
return GL_INVALID_OPERATION;
}
if(mOutOfMemory)
{
mOutOfMemory = false;
return GL_OUT_OF_MEMORY;
}
if(mInvalidFramebufferOperation)
{
mInvalidFramebufferOperation = false;
return GL_INVALID_FRAMEBUFFER_OPERATION;
}
return GL_NO_ERROR;
}
int Context::getSupportedMultisampleCount(int requested)
{
int supported = 0;
for(int i = NUM_MULTISAMPLE_COUNTS - 1; i >= 0; i--)
{
if(supported >= requested)
{
return supported;
}
supported = multisampleCount[i];
}
return supported;
}
void Context::detachBuffer(GLuint buffer)
{
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
if(mState.arrayBuffer.name() == buffer)
{
mState.arrayBuffer = nullptr;
}
if(mState.elementArrayBuffer.name() == buffer)
{
mState.elementArrayBuffer = nullptr;
}
for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer)
{
mState.vertexAttribute[attribute].mBoundBuffer = nullptr;
}
}
}
void Context::detachTexture(GLuint texture)
{
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
// rebound to texture object zero
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++)
{
if(mState.samplerTexture[type][sampler].name() == texture)
{
mState.samplerTexture[type][sampler] = nullptr;
}
}
}
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
// image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if(readFramebuffer)
{
readFramebuffer->detachTexture(texture);
}
if(drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachTexture(texture);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if(mState.readFramebuffer == framebuffer)
{
bindReadFramebuffer(0);
}
if(mState.drawFramebuffer == framebuffer)
{
bindDrawFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
// had been executed with the target RENDERBUFFER and name of zero.
if(mState.renderbuffer.name() == renderbuffer)
{
bindRenderbuffer(0);
}
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
// point to which this image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if(readFramebuffer)
{
readFramebuffer->detachRenderbuffer(renderbuffer);
}
if(drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachRenderbuffer(renderbuffer);
}
}
bool Context::cullSkipsDraw(GLenum drawMode)
{
return mState.cullFaceEnabled && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode);
}
bool Context::isTriangleMode(GLenum drawMode)
{
switch(drawMode)
{
case GL_TRIANGLES:
case GL_TRIANGLE_FAN:
case GL_TRIANGLE_STRIP:
return true;
case GL_POINTS:
case GL_LINES:
case GL_LINE_LOOP:
case GL_LINE_STRIP:
return false;
default: UNREACHABLE(drawMode);
}
return false;
}
void Context::setVertexAttrib(GLuint index, float x, float y, float z, float w)
{
ASSERT(index < MAX_VERTEX_ATTRIBS);
mState.vertexAttribute[index].mCurrentValue[0] = x;
mState.vertexAttribute[index].mCurrentValue[1] = y;
mState.vertexAttribute[index].mCurrentValue[2] = z;
mState.vertexAttribute[index].mCurrentValue[3] = w;
mVertexDataManager->dirtyCurrentValue(index);
}
void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask)
{
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
int readBufferWidth, readBufferHeight, readBufferSamples;
int drawBufferWidth, drawBufferHeight, drawBufferSamples;
if(!readFramebuffer || readFramebuffer->completeness(readBufferWidth, readBufferHeight, readBufferSamples) != GL_FRAMEBUFFER_COMPLETE ||
!drawFramebuffer || drawFramebuffer->completeness(drawBufferWidth, drawBufferHeight, drawBufferSamples) != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if(drawBufferSamples > 1)
{
return error(GL_INVALID_OPERATION);
}
sw::SliceRect sourceRect;
sw::SliceRect destRect;
if(srcX0 < srcX1)
{
sourceRect.x0 = srcX0;
sourceRect.x1 = srcX1;
destRect.x0 = dstX0;
destRect.x1 = dstX1;
}
else
{
sourceRect.x0 = srcX1;
destRect.x0 = dstX1;
sourceRect.x1 = srcX0;
destRect.x1 = dstX0;
}
if(srcY0 < srcY1)
{
sourceRect.y0 = srcY0;
destRect.y0 = dstY0;
sourceRect.y1 = srcY1;
destRect.y1 = dstY1;
}
else
{
sourceRect.y0 = srcY1;
destRect.y0 = dstY1;
sourceRect.y1 = srcY0;
destRect.y1 = dstY0;
}
sw::Rect sourceScissoredRect = sourceRect;
sw::Rect destScissoredRect = destRect;
if(mState.scissorTestEnabled) // Only write to parts of the destination framebuffer which pass the scissor test
{
if(destRect.x0 < mState.scissorX)
{
int xDiff = mState.scissorX - destRect.x0;
destScissoredRect.x0 = mState.scissorX;
sourceScissoredRect.x0 += xDiff;
}
if(destRect.x1 > mState.scissorX + mState.scissorWidth)
{
int xDiff = destRect.x1 - (mState.scissorX + mState.scissorWidth);
destScissoredRect.x1 = mState.scissorX + mState.scissorWidth;
sourceScissoredRect.x1 -= xDiff;
}
if(destRect.y0 < mState.scissorY)
{
int yDiff = mState.scissorY - destRect.y0;
destScissoredRect.y0 = mState.scissorY;
sourceScissoredRect.y0 += yDiff;
}
if(destRect.y1 > mState.scissorY + mState.scissorHeight)
{
int yDiff = destRect.y1 - (mState.scissorY + mState.scissorHeight);
destScissoredRect.y1 = mState.scissorY + mState.scissorHeight;
sourceScissoredRect.y1 -= yDiff;
}
}
sw::Rect sourceTrimmedRect = sourceScissoredRect;
sw::Rect destTrimmedRect = destScissoredRect;
// The source & destination rectangles also may need to be trimmed if they fall out of the bounds of
// the actual draw and read surfaces.
if(sourceTrimmedRect.x0 < 0)
{
int xDiff = 0 - sourceTrimmedRect.x0;
sourceTrimmedRect.x0 = 0;
destTrimmedRect.x0 += xDiff;
}
if(sourceTrimmedRect.x1 > readBufferWidth)
{
int xDiff = sourceTrimmedRect.x1 - readBufferWidth;
sourceTrimmedRect.x1 = readBufferWidth;
destTrimmedRect.x1 -= xDiff;
}
if(sourceTrimmedRect.y0 < 0)
{
int yDiff = 0 - sourceTrimmedRect.y0;
sourceTrimmedRect.y0 = 0;
destTrimmedRect.y0 += yDiff;
}
if(sourceTrimmedRect.y1 > readBufferHeight)
{
int yDiff = sourceTrimmedRect.y1 - readBufferHeight;
sourceTrimmedRect.y1 = readBufferHeight;
destTrimmedRect.y1 -= yDiff;
}
if(destTrimmedRect.x0 < 0)
{
int xDiff = 0 - destTrimmedRect.x0;
destTrimmedRect.x0 = 0;
sourceTrimmedRect.x0 += xDiff;
}
if(destTrimmedRect.x1 > drawBufferWidth)
{
int xDiff = destTrimmedRect.x1 - drawBufferWidth;
destTrimmedRect.x1 = drawBufferWidth;
sourceTrimmedRect.x1 -= xDiff;
}
if(destTrimmedRect.y0 < 0)
{
int yDiff = 0 - destTrimmedRect.y0;
destTrimmedRect.y0 = 0;
sourceTrimmedRect.y0 += yDiff;
}
if(destTrimmedRect.y1 > drawBufferHeight)
{
int yDiff = destTrimmedRect.y1 - drawBufferHeight;
destTrimmedRect.y1 = drawBufferHeight;
sourceTrimmedRect.y1 -= yDiff;
}
bool partialBufferCopy = false;
if(sourceTrimmedRect.y1 - sourceTrimmedRect.y0 < readBufferHeight ||
sourceTrimmedRect.x1 - sourceTrimmedRect.x0 < readBufferWidth ||
destTrimmedRect.y1 - destTrimmedRect.y0 < drawBufferHeight ||
destTrimmedRect.x1 - destTrimmedRect.x0 < drawBufferWidth ||
sourceTrimmedRect.y0 != 0 || destTrimmedRect.y0 != 0 || sourceTrimmedRect.x0 != 0 || destTrimmedRect.x0 != 0)
{
partialBufferCopy = true;
}
bool blitRenderTarget = false;
bool blitDepthStencil = false;
if(mask & GL_COLOR_BUFFER_BIT)
{
const bool validReadType = readFramebuffer->getColorbufferType() == GL_TEXTURE_2D ||
readFramebuffer->getColorbufferType() == GL_RENDERBUFFER;
const bool validDrawType = drawFramebuffer->getColorbufferType() == GL_TEXTURE_2D ||
drawFramebuffer->getColorbufferType() == GL_RENDERBUFFER;
if(!validReadType || !validDrawType ||
readFramebuffer->getColorbuffer()->getInternalFormat() != drawFramebuffer->getColorbuffer()->getInternalFormat())
{
ERR("Color buffer format conversion in BlitFramebufferANGLE not supported by this implementation");
return error(GL_INVALID_OPERATION);
}
if(partialBufferCopy && readBufferSamples > 1)
{
return error(GL_INVALID_OPERATION);
}
blitRenderTarget = true;
}
if(mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT))
{
Renderbuffer *readDSBuffer = nullptr;
Renderbuffer *drawDSBuffer = nullptr;
// We support OES_packed_depth_stencil, and do not support a separately attached depth and stencil buffer, so if we have
// both a depth and stencil buffer, it will be the same buffer.
if(mask & GL_DEPTH_BUFFER_BIT)
{
if(readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer())
{
if(readFramebuffer->getDepthbufferType() != drawFramebuffer->getDepthbufferType() ||
readFramebuffer->getDepthbuffer()->getInternalFormat() != drawFramebuffer->getDepthbuffer()->getInternalFormat())
{
return error(GL_INVALID_OPERATION);
}
blitDepthStencil = true;
readDSBuffer = readFramebuffer->getDepthbuffer();
drawDSBuffer = drawFramebuffer->getDepthbuffer();
}
}
if(mask & GL_STENCIL_BUFFER_BIT)
{
if(readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer())
{
if(readFramebuffer->getStencilbufferType() != drawFramebuffer->getStencilbufferType() ||
readFramebuffer->getStencilbuffer()->getInternalFormat() != drawFramebuffer->getStencilbuffer()->getInternalFormat())
{
return error(GL_INVALID_OPERATION);
}
blitDepthStencil = true;
readDSBuffer = readFramebuffer->getStencilbuffer();
drawDSBuffer = drawFramebuffer->getStencilbuffer();
}
}
if(partialBufferCopy)
{
ERR("Only whole-buffer depth and stencil blits are supported by this implementation.");
return error(GL_INVALID_OPERATION); // Only whole-buffer copies are permitted
}
if((drawDSBuffer && drawDSBuffer->getSamples() > 1) ||
(readDSBuffer && readDSBuffer->getSamples() > 1))
{
return error(GL_INVALID_OPERATION);
}
}
if(blitRenderTarget || blitDepthStencil)
{
if(blitRenderTarget)
{
Image *readRenderTarget = readFramebuffer->getRenderTarget();
Image *drawRenderTarget = drawFramebuffer->getRenderTarget();
bool success = device->stretchRect(readRenderTarget, &sourceRect, drawRenderTarget, &destRect, false);
readRenderTarget->release();
drawRenderTarget->release();
if(!success)
{
ERR("BlitFramebufferANGLE failed.");
return;
}
}
if(blitDepthStencil)
{
bool success = device->stretchRect(readFramebuffer->getDepthStencil(), nullptr, drawFramebuffer->getDepthStencil(), nullptr, false);
if(!success)
{
ERR("BlitFramebufferANGLE failed.");
return;
}
}
}
}
void Context::setMatrixMode(GLenum mode)
{
matrixMode = mode;
}
sw::MatrixStack &Context::currentMatrixStack()
{
switch(matrixMode)
{
case GL_MODELVIEW: return modelView; break;
case GL_PROJECTION: return projection; break;
case GL_TEXTURE: return texture[mState.activeSampler]; break;
default: UNREACHABLE(matrixMode); return modelView; break;
}
}
void Context::loadIdentity()
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
currentMatrixStack().identity();
}
void Context::pushMatrix()
{
//if(drawing)
//{
// return error(GL_INVALID_OPERATION);
//}
if(!currentMatrixStack().push())
{
return error(GL_STACK_OVERFLOW);
}
}
void Context::popMatrix()
{
//if(drawing)
//{
// return error(GL_INVALID_OPERATION);
//}
if(!currentMatrixStack().pop())
{
return error(GL_STACK_OVERFLOW);
}
}
void Context::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
currentMatrixStack().rotate(angle, x, y, z);
}
void Context::translate(GLfloat x, GLfloat y, GLfloat z)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
currentMatrixStack().translate(x, y, z);
}
void Context::scale(GLfloat x, GLfloat y, GLfloat z)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
currentMatrixStack().scale(x, y, z);
}
void Context::multiply(const GLdouble *m)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
currentMatrixStack().multiply(m);
}
void Context::multiply(const GLfloat *m)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
currentMatrixStack().multiply(m);
}
void Context::frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
currentMatrixStack().frustum(left, right, bottom, top, zNear, zFar);
}
void Context::ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
currentMatrixStack().ortho(left, right, bottom, top, zNear, zFar);
}
void Context::setLightingEnabled(bool enable)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
device->setLightingEnable(enable);
}
void Context::setFogEnabled(bool enable)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
device->setFogEnable(enable);
}
void Context::setAlphaTestEnabled(bool enable)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
device->setAlphaTestEnable(enable);
}
void Context::alphaFunc(GLenum func, GLclampf ref)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
switch(func)
{
case GL_NEVER: device->setAlphaCompare(sw::ALPHA_NEVER); break;
case GL_LESS: device->setAlphaCompare(sw::ALPHA_LESS); break;
case GL_EQUAL: device->setAlphaCompare(sw::ALPHA_EQUAL); break;
case GL_LEQUAL: device->setAlphaCompare(sw::ALPHA_LESSEQUAL); break;
case GL_GREATER: device->setAlphaCompare(sw::ALPHA_GREATER); break;
case GL_NOTEQUAL: device->setAlphaCompare(sw::ALPHA_NOTEQUAL); break;
case GL_GEQUAL: device->setAlphaCompare(sw::ALPHA_GREATEREQUAL); break;
case GL_ALWAYS: device->setAlphaCompare(sw::ALPHA_ALWAYS); break;
default: UNREACHABLE(func);
}
device->setAlphaReference(gl::clamp01(ref));
}
void Context::setTexture2DEnabled(bool enable)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
envEnable[mState.activeSampler] = enable;
}
void Context::setShadeModel(GLenum mode)
{
//if(drawing)
//{
// return error(GL_INVALID_OPERATION);
//}
switch(mode)
{
case GL_FLAT: device->setShadingMode(sw::SHADING_FLAT); break;
case GL_SMOOTH: device->setShadingMode(sw::SHADING_GOURAUD); break;
default: return error(GL_INVALID_ENUM);
}
}
void Context::setLightEnabled(int index, bool enable)
{
device->setLightEnable(index, enable);
}
void Context::setNormalizeNormalsEnabled(bool enable)
{
device->setNormalizeNormals(enable);
}
GLuint Context::genLists(GLsizei range)
{
if(drawing)
{
return error(GL_INVALID_OPERATION, 0);
}
int firstIndex = std::max(1u, firstFreeIndex);
for(; true; firstIndex++)
{
int empty = 0;
for(; empty < range; empty++)
{
if(displayList[firstIndex + empty] != 0)
{
break;
}
}
if(empty == range)
{
for(int i = firstIndex; i < firstIndex + range; i++)
{
displayList[i] = new DisplayList();
}
if(firstIndex == firstFreeIndex)
{
firstFreeIndex = firstIndex + range;
}
return firstIndex;
}
}
return 0;
}
void Context::newList(GLuint list, GLenum mode)
{
if(drawing || listIndex != 0)
{
return error(GL_INVALID_OPERATION);
}
ASSERT(!this->list);
this->list = new DisplayList();
listIndex = list;
listMode = mode;
}
void Context::endList()
{
if(drawing || listIndex == 0)
{
return error(GL_INVALID_OPERATION);
}
ASSERT(list);
delete displayList[listIndex];
displayList[listIndex] = list;
list = 0;
listIndex = 0;
listMode = 0;
}
void Context::callList(GLuint list)
{
// As per GL specifications, if the list does not exist, it is ignored
if(displayList[list])
{
displayList[list]->call();
}
}
void Context::deleteList(GLuint list)
{
delete displayList[list];
displayList[list] = 0;
displayList.erase(list);
firstFreeIndex = std::min(firstFreeIndex , list);
}
void Context::listCommand(Command *command)
{
ASSERT(list);
list->list.push_back(command);
if(listMode == GL_COMPILE_AND_EXECUTE)
{
listMode = 0;
command->call();
listMode = GL_COMPILE_AND_EXECUTE;
}
}
void APIENTRY glVertexAttribArray(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid* ptr)
{
TRACE("(GLuint index = %d, GLint size = %d, GLenum type = 0x%X, "
"GLboolean normalized = %d, GLsizei stride = %d, const GLvoid* ptr = %p)",
index, size, type, normalized, stride, ptr);
gl::Context *context = gl::getContext();
if(context)
{
context->setVertexAttribState(index, context->getArrayBuffer(), size, type, (normalized == GL_TRUE), stride, ptr);
context->setVertexAttribArrayEnabled(index, ptr != 0);
}
}
void Context::captureAttribs()
{
memcpy(clientAttribute, mState.vertexAttribute, sizeof(mState.vertexAttribute));
}
void Context::captureDrawArrays(GLenum mode, GLint first, GLsizei count)
{
ASSERT(first == 0); // FIXME: UNIMPLEMENTED!
for(GLuint i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
GLint size = mState.vertexAttribute[i].mSize;
GLenum type = mState.vertexAttribute[i].mType;
GLboolean normalized = mState.vertexAttribute[i].mNormalized;
GLsizei stride = mState.vertexAttribute[i].mStride;
const GLvoid *pointer = mState.vertexAttribute[i].mPointer;
size_t length = count * mState.vertexAttribute[i].stride();
if(mState.vertexAttribute[i].mArrayEnabled)
{
ASSERT(pointer); // FIXME: Add to condition?
const int padding = 1024; // For SIMD processing of vertices // FIXME: Still necessary?
void *buffer = new unsigned char[length + padding];
memcpy(buffer, pointer, length);
listCommand(gl::newCommand(glVertexAttribArray, i, size, type, normalized, stride, (const void*)buffer));
}
else
{
listCommand(gl::newCommand(glVertexAttribArray, i, size, type, normalized, stride, (const void*)0));
}
}
}
void Context::restoreAttribs()
{
memcpy(mState.vertexAttribute, clientAttribute, sizeof(mState.vertexAttribute));
}
void Context::clientActiveTexture(GLenum texture)
{
clientTexture = texture;
}
GLenum Context::getClientActiveTexture() const
{
return clientTexture;
}
unsigned int Context::getActiveTexture() const
{
return mState.activeSampler;
}
void Context::begin(GLenum mode)
{
if(drawing)
{
return error(GL_INVALID_OPERATION);
}
drawing = true;
drawMode = mode;
vertex.clear();
}
void Context::position(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
InVertex v;
v.P.x = x;
v.P.y = y;
v.P.z = z;
v.P.w = w;
v.C.x = mState.vertexAttribute[sw::Color0].mCurrentValue[0];
v.C.y = mState.vertexAttribute[sw::Color0].mCurrentValue[1];
v.C.z = mState.vertexAttribute[sw::Color0].mCurrentValue[2];
v.C.w = mState.vertexAttribute[sw::Color0].mCurrentValue[3];
v.N.x = mState.vertexAttribute[sw::Normal].mCurrentValue[0];
v.N.y = mState.vertexAttribute[sw::Normal].mCurrentValue[1];
v.N.z = mState.vertexAttribute[sw::Normal].mCurrentValue[2];
v.N.w = mState.vertexAttribute[sw::Normal].mCurrentValue[3];
v.T0.x = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[0];
v.T0.y = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[1];
v.T0.z = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[2];
v.T0.w = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[3];
v.T1.x = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[0];
v.T1.y = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[1];
v.T1.z = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[2];
v.T1.w = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[3];
vertex.push_back(v);
}
void Context::end()
{
if(!drawing)
{
return error(GL_INVALID_OPERATION);
}
device->setProjectionMatrix(projection.current());
device->setViewMatrix(modelView.current());
device->setTextureMatrix(0, texture[0].current());
device->setTextureMatrix(1, texture[1].current());
device->setTextureTransform(0, texture[0].isIdentity() ? 0 : 4, false);
device->setTextureTransform(1, texture[1].isIdentity() ? 0 : 4, false);
captureAttribs();
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mState.vertexAttribute[i].mArrayEnabled = false;
}
setVertexAttribState(sw::Position, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].P);
setVertexAttribState(sw::Normal, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].N);
setVertexAttribState(sw::Color0, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].C);
setVertexAttribState(sw::TexCoord0, 0, 2, GL_FLOAT, false, sizeof(InVertex), &vertex[0].T0);
setVertexAttribState(sw::TexCoord1, 0, 2, GL_FLOAT, false, sizeof(InVertex), &vertex[0].T1);
mState.vertexAttribute[sw::Position].mArrayEnabled = true;
mState.vertexAttribute[sw::Normal].mArrayEnabled = true;
mState.vertexAttribute[sw::Color0].mArrayEnabled = true;
mState.vertexAttribute[sw::TexCoord0].mArrayEnabled = true;
mState.vertexAttribute[sw::TexCoord1].mArrayEnabled = true;
applyState(drawMode);
GLenum err = applyVertexBuffer(0, 0, vertex.size());
if(err != GL_NO_ERROR)
{
return error(err);
}
applyTextures();
switch(drawMode)
{
case GL_POINTS:
UNIMPLEMENTED();
break;
case GL_LINES:
UNIMPLEMENTED();
break;
case GL_LINE_STRIP:
UNIMPLEMENTED();
break;
case GL_LINE_LOOP:
UNIMPLEMENTED();
break;
case GL_TRIANGLES:
UNIMPLEMENTED();
break;
case GL_TRIANGLE_STRIP:
device->drawPrimitive(DRAW_TRIANGLESTRIP, vertex.size() - 2);
break;
case GL_TRIANGLE_FAN:
UNIMPLEMENTED();
break;
case GL_QUADS:
UNIMPLEMENTED();
break;
case GL_QUAD_STRIP:
UNIMPLEMENTED();
break;
case GL_POLYGON:
UNIMPLEMENTED();
break;
default:
UNREACHABLE(drawMode);
}
restoreAttribs();
drawing = false;
}
void Context::setColorLogicOpEnabled(bool colorLogicOpEnabled)
{
if(mState.colorLogicOpEnabled != colorLogicOpEnabled)
{
mState.colorLogicOpEnabled = colorLogicOpEnabled;
mColorLogicOperatorDirty = true;
}
}
bool Context::isColorLogicOpEnabled()
{
return mState.colorLogicOpEnabled;
}
void Context::setLogicalOperation(GLenum logicalOperation)
{
if(mState.logicalOperation != logicalOperation)
{
mState.logicalOperation = logicalOperation;
mColorLogicOperatorDirty = true;
}
}
void Context::setColorMaterialEnabled(bool enable)
{
device->setColorVertexEnable(enable);
}
void Context::setColorMaterialMode(GLenum mode)
{
switch(mode)
{
case GL_EMISSION:
device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL);
device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL);
device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL);
device->setEmissiveMaterialSource(sw::MATERIAL_COLOR1);
break;
case GL_AMBIENT:
device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL);
device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL);
device->setAmbientMaterialSource(sw::MATERIAL_COLOR1);
device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL);
break;
case GL_DIFFUSE:
device->setDiffuseMaterialSource(sw::MATERIAL_COLOR1);
device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL);
device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL);
device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL);
break;
case GL_SPECULAR:
device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL);
device->setSpecularMaterialSource(sw::MATERIAL_COLOR1);
device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL);
device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL);
break;
case GL_AMBIENT_AND_DIFFUSE:
device->setDiffuseMaterialSource(sw::MATERIAL_COLOR1);
device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL);
device->setAmbientMaterialSource(sw::MATERIAL_COLOR1);
device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL);
break;
default:
UNREACHABLE(mode);
}
}
Device *Context::getDevice()
{
return device;
}
}