blob: 27acdcc2f2e7e9f5acf424902aea1cf1e08940de [file] [log] [blame]
// Copyright (c) 2015-2016 The Khronos Group Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <map>
#include <set>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "source/assembly_grammar.h"
#include "source/diagnostic.h"
#include "source/disassemble.h"
#include "source/enum_set.h"
#include "source/latest_version_spirv_header.h"
#include "source/name_mapper.h"
#include "source/spirv_definition.h"
#include "source/spirv_validator_options.h"
#include "source/val/decoration.h"
#include "source/val/function.h"
#include "source/val/instruction.h"
#include "spirv-tools/libspirv.h"
namespace spvtools {
namespace val {
/// This enum represents the sections of a SPIRV module. See section 2.4
/// of the SPIRV spec for additional details of the order. The enumerant values
/// are in the same order as the vector returned by GetModuleOrder
enum ModuleLayoutSection {
kLayoutCapabilities, /// < Section 2.4 #1
kLayoutExtensions, /// < Section 2.4 #2
kLayoutExtInstImport, /// < Section 2.4 #3
kLayoutMemoryModel, /// < Section 2.4 #4
kLayoutSamplerImageAddressMode, /// < Section 2.4 #5
kLayoutEntryPoint, /// < Section 2.4 #6
kLayoutExecutionMode, /// < Section 2.4 #7
kLayoutDebug1, /// < Section 2.4 #8 > 1
kLayoutDebug2, /// < Section 2.4 #8 > 2
kLayoutDebug3, /// < Section 2.4 #8 > 3
kLayoutAnnotations, /// < Section 2.4 #9
kLayoutTypes, /// < Section 2.4 #10
kLayoutFunctionDeclarations, /// < Section 2.4 #11
kLayoutFunctionDefinitions /// < Section 2.4 #12
/// This class manages the state of the SPIR-V validation as it is being parsed.
class ValidationState_t {
// Features that can optionally be turned on by a capability or environment.
struct Feature {
bool declare_int16_type = false; // Allow OpTypeInt with 16 bit width?
bool declare_float16_type = false; // Allow OpTypeFloat with 16 bit width?
bool free_fp_rounding_mode = false; // Allow the FPRoundingMode decoration
// and its values to be used without
// requiring any capability
// Allow functionalities enabled by VariablePointers or
// VariablePointersStorageBuffer capability.
bool variable_pointers = false;
// Permit group oerations Reduce, InclusiveScan, ExclusiveScan
bool group_ops_reduce_and_scans = false;
// Allow OpTypeInt with 8 bit width?
bool declare_int8_type = false;
// Target environment uses relaxed block layout.
// This is true for Vulkan 1.1 or later.
bool env_relaxed_block_layout = false;
// Allow an OpTypeInt with 8 bit width to be used in more than just int
// conversion opcodes
bool use_int8_type = false;
// SPIR-V 1.4 allows us to select between any two composite values
// of the same type.
bool select_between_composites = false;
// SPIR-V 1.4 allows two memory access operands for OpCopyMemory and
// OpCopyMemorySized.
bool copy_memory_permits_two_memory_accesses = false;
// SPIR-V 1.4 allows UConvert as a spec constant op in any environment.
// The Kernel capability already enables it, separately from this flag.
bool uconvert_spec_constant_op = false;
// SPIR-V 1.4 allows Function and Private variables to be NonWritable
bool nonwritable_var_in_function_or_private = false;
// Whether LocalSizeId execution mode is allowed by the environment.
bool env_allow_localsizeid = false;
ValidationState_t(const spv_const_context context,
const spv_const_validator_options opt,
const uint32_t* words, const size_t num_words,
const uint32_t max_warnings);
/// Returns the context
spv_const_context context() const { return context_; }
/// Returns the command line options
spv_const_validator_options options() const { return options_; }
/// Sets the ID of the generator for this module.
void setGenerator(uint32_t gen) { generator_ = gen; }
/// Returns the ID of the generator for this module.
uint32_t generator() const { return generator_; }
/// Sets the SPIR-V version of this module.
void setVersion(uint32_t ver) { version_ = ver; }
/// Gets the SPIR-V version of this module.
uint32_t version() const { return version_; }
/// Forward declares the id in the module
spv_result_t ForwardDeclareId(uint32_t id);
/// Removes a forward declared ID if it has been defined
spv_result_t RemoveIfForwardDeclared(uint32_t id);
/// Registers an ID as a forward pointer
spv_result_t RegisterForwardPointer(uint32_t id);
/// Returns whether or not an ID is a forward pointer
bool IsForwardPointer(uint32_t id) const;
/// Assigns a name to an ID
void AssignNameToId(uint32_t id, std::string name);
/// Returns a string representation of the ID in the format <id>[Name] where
/// the <id> is the numeric valid of the id and the Name is a name assigned by
/// the OpName instruction
std::string getIdName(uint32_t id) const;
/// Accessor function for ID bound.
uint32_t getIdBound() const;
/// Mutator function for ID bound.
void setIdBound(uint32_t bound);
/// Returns the number of ID which have been forward referenced but not
/// defined
size_t unresolved_forward_id_count() const;
/// Returns a vector of unresolved forward ids.
std::vector<uint32_t> UnresolvedForwardIds() const;
/// Returns true if the id has been defined
bool IsDefinedId(uint32_t id) const;
/// Increments the total number of instructions in the file.
void increment_total_instructions() { total_instructions_++; }
/// Increments the total number of functions in the file.
void increment_total_functions() { total_functions_++; }
/// Allocates internal storage. Note, calling this will invalidate any
/// pointers to |ordered_instructions_| or |module_functions_| and, hence,
/// should only be called at the beginning of validation.
void preallocateStorage();
/// Returns the current layout section which is being processed
ModuleLayoutSection current_layout_section() const;
/// Increments the module_layout_order_section_
void ProgressToNextLayoutSectionOrder();
/// Determines if the op instruction is in a previous layout section
bool IsOpcodeInPreviousLayoutSection(spv::Op op);
/// Determines if the op instruction is part of the current section
bool IsOpcodeInCurrentLayoutSection(spv::Op op);
DiagnosticStream diag(spv_result_t error_code, const Instruction* inst);
/// Returns the function states
std::vector<Function>& functions();
/// Returns the function states
Function& current_function();
const Function& current_function() const;
/// Returns function state with the given id, or nullptr if no such function.
const Function* function(uint32_t id) const;
Function* function(uint32_t id);
/// Returns true if the called after a function instruction but before the
/// function end instruction
bool in_function_body() const;
/// Returns true if called after a label instruction but before a branch
/// instruction
bool in_block() const;
struct EntryPointDescription {
std::string name;
std::vector<uint32_t> interfaces;
/// Registers |id| as an entry point with |execution_model| and |interfaces|.
void RegisterEntryPoint(const uint32_t id,
spv::ExecutionModel execution_model,
EntryPointDescription&& desc) {
/// Returns a list of entry point function ids
const std::vector<uint32_t>& entry_points() const { return entry_points_; }
/// Returns the set of entry points that root call graphs that contain
/// recursion.
const std::set<uint32_t>& recursive_entry_points() const {
return recursive_entry_points_;
/// Registers execution mode for the given entry point.
void RegisterExecutionModeForEntryPoint(uint32_t entry_point,
spv::ExecutionMode execution_mode) {
/// Returns the interface descriptions of a given entry point.
const std::vector<EntryPointDescription>& entry_point_descriptions(
uint32_t entry_point) {
/// Returns Execution Models for the given Entry Point.
/// Returns nullptr if none found (would trigger assertion).
const std::set<spv::ExecutionModel>* GetExecutionModels(
uint32_t entry_point) const {
const auto it = entry_point_to_execution_models_.find(entry_point);
if (it == entry_point_to_execution_models_.end()) {
return nullptr;
return &it->second;
/// Returns Execution Modes for the given Entry Point.
/// Returns nullptr if none found.
const std::set<spv::ExecutionMode>* GetExecutionModes(
uint32_t entry_point) const {
const auto it = entry_point_to_execution_modes_.find(entry_point);
if (it == entry_point_to_execution_modes_.end()) {
return nullptr;
return &it->second;
/// Traverses call tree and computes function_to_entry_points_.
/// Note: called after fully parsing the binary.
void ComputeFunctionToEntryPointMapping();
/// Traverse call tree and computes recursive_entry_points_.
/// Note: called after fully parsing the binary and calling
/// ComputeFunctionToEntryPointMapping.
void ComputeRecursiveEntryPoints();
/// Returns all the entry points that can call |func|.
const std::vector<uint32_t>& FunctionEntryPoints(uint32_t func) const;
/// Returns all the entry points that statically use |id|.
/// Note: requires ComputeFunctionToEntryPointMapping to have been called.
std::set<uint32_t> EntryPointReferences(uint32_t id) const;
/// Inserts an <id> to the set of functions that are target of OpFunctionCall.
void AddFunctionCallTarget(const uint32_t id) {
/// Returns whether or not a function<id> is the target of OpFunctionCall.
bool IsFunctionCallTarget(const uint32_t id) {
return (function_call_targets_.find(id) != function_call_targets_.end());
bool IsFunctionCallDefined(const uint32_t id) {
return (id_to_function_.find(id) != id_to_function_.end());
/// Registers the capability and its dependent capabilities
void RegisterCapability(spv::Capability cap);
/// Registers the extension.
void RegisterExtension(Extension ext);
/// Registers the function in the module. Subsequent instructions will be
/// called against this function
spv_result_t RegisterFunction(uint32_t id, uint32_t ret_type_id,
spv::FunctionControlMask function_control,
uint32_t function_type_id);
/// Register a function end instruction
spv_result_t RegisterFunctionEnd();
/// Returns true if the capability is enabled in the module.
bool HasCapability(spv::Capability cap) const {
return module_capabilities_.contains(cap);
/// Returns a reference to the set of capabilities in the module.
/// This is provided for debuggability.
const CapabilitySet& module_capabilities() const {
return module_capabilities_;
/// Returns true if the extension is enabled in the module.
bool HasExtension(Extension ext) const {
return module_extensions_.contains(ext);
/// Returns true if any of the capabilities is enabled, or if |capabilities|
/// is an empty set.
bool HasAnyOfCapabilities(const CapabilitySet& capabilities) const;
/// Returns true if any of the extensions is enabled, or if |extensions|
/// is an empty set.
bool HasAnyOfExtensions(const ExtensionSet& extensions) const;
/// Sets the addressing model of this module (logical/physical).
void set_addressing_model(spv::AddressingModel am);
/// Returns true if the OpMemoryModel was found.
bool has_memory_model_specified() const {
return addressing_model_ != spv::AddressingModel::Max &&
memory_model_ != spv::MemoryModel::Max;
/// Returns the addressing model of this module, or Logical if uninitialized.
spv::AddressingModel addressing_model() const;
/// Returns the addressing model of this module, or Logical if uninitialized.
uint32_t pointer_size_and_alignment() const {
return pointer_size_and_alignment_;
/// Sets the memory model of this module.
void set_memory_model(spv::MemoryModel mm);
/// Returns the memory model of this module, or Simple if uninitialized.
spv::MemoryModel memory_model() const;
/// Sets the bit width for sampler/image type variables. If not set, they are
/// considered opaque
void set_samplerimage_variable_address_mode(uint32_t bit_width);
/// Get the addressing mode currently set. If 0, it means addressing mode is
/// invalid Sampler/Image type variables must be considered opaque This mode
/// is only valid after the instruction has been read
uint32_t samplerimage_variable_address_mode() const;
/// Returns true if the OpSamplerImageAddressingModeNV was found.
bool has_samplerimage_variable_address_mode_specified() const {
return sampler_image_addressing_mode_ != 0;
const AssemblyGrammar& grammar() const { return grammar_; }
/// Inserts the instruction into the list of ordered instructions in the file.
Instruction* AddOrderedInstruction(const spv_parsed_instruction_t* inst);
/// Registers the instruction. This will add the instruction to the list of
/// definitions and register sampled image consumers.
void RegisterInstruction(Instruction* inst);
/// Registers the debug instruction information.
void RegisterDebugInstruction(const Instruction* inst);
/// Registers the decoration for the given <id>
void RegisterDecorationForId(uint32_t id, const Decoration& dec) {
auto& dec_list = id_decorations_[id];
/// Registers the list of decorations for the given <id>
template <class InputIt>
void RegisterDecorationsForId(uint32_t id, InputIt begin, InputIt end) {
std::set<Decoration>& cur_decs = id_decorations_[id];
cur_decs.insert(begin, end);
/// Registers the list of decorations for the given member of the given
/// structure.
template <class InputIt>
void RegisterDecorationsForStructMember(uint32_t struct_id,
uint32_t member_index, InputIt begin,
InputIt end) {
std::set<Decoration>& cur_decs = id_decorations_[struct_id];
for (InputIt iter = begin; iter != end; ++iter) {
Decoration dec = *iter;
/// Returns all the decorations for the given <id>. If no decorations exist
/// for the <id>, it registers an empty set for it in the map and
/// returns the empty set.
std::set<Decoration>& id_decorations(uint32_t id) {
return id_decorations_[id];
/// Returns the range of decorations for the given field of the given <id>.
struct FieldDecorationsIter {
std::set<Decoration>::const_iterator begin;
std::set<Decoration>::const_iterator end;
FieldDecorationsIter id_member_decorations(uint32_t id,
uint32_t member_index) {
const auto& decorations = id_decorations_[id];
// The decorations are sorted by member_index, so this look up will give the
// exact range of decorations for this member index.
Decoration min_decoration((spv::Decoration)0, {}, member_index);
Decoration max_decoration(spv::Decoration::Max, {}, member_index);
FieldDecorationsIter result;
result.begin = decorations.lower_bound(min_decoration);
result.end = decorations.upper_bound(max_decoration);
return result;
// Returns const pointer to the internal decoration container.
const std::map<uint32_t, std::set<Decoration>>& id_decorations() const {
return id_decorations_;
/// Returns true if the given id <id> has the given decoration <dec>,
/// otherwise returns false.
bool HasDecoration(uint32_t id, spv::Decoration dec) {
const auto& decorations = id_decorations_.find(id);
if (decorations == id_decorations_.end()) return false;
return std::any_of(
decorations->second.begin(), decorations->second.end(),
[dec](const Decoration& d) { return dec == d.dec_type(); });
/// Finds id's def, if it exists. If found, returns the definition otherwise
/// nullptr
const Instruction* FindDef(uint32_t id) const;
/// Finds id's def, if it exists. If found, returns the definition otherwise
/// nullptr
Instruction* FindDef(uint32_t id);
/// Returns the instructions in the order they appear in the binary
const std::vector<Instruction>& ordered_instructions() const {
return ordered_instructions_;
/// Returns a map of instructions mapped by their result id
const std::unordered_map<uint32_t, Instruction*>& all_definitions() const {
return all_definitions_;
/// Returns a vector containing the instructions that consume the given
/// SampledImage id.
std::vector<Instruction*> getSampledImageConsumers(uint32_t id) const;
/// Records cons_id as a consumer of sampled_image_id.
void RegisterSampledImageConsumer(uint32_t sampled_image_id,
Instruction* consumer);
// Record a cons_id as a consumer of texture_id
// if texture 'texture_id' has a QCOM image processing decoration
// and consumer is a load or a sampled image instruction
void RegisterQCOMImageProcessingTextureConsumer(uint32_t texture_id,
const Instruction* consumer0,
const Instruction* consumer1);
// Record a function's storage class consumer instruction
void RegisterStorageClassConsumer(spv::StorageClass storage_class,
Instruction* consumer);
/// Returns the set of Global Variables.
std::unordered_set<uint32_t>& global_vars() { return global_vars_; }
/// Returns the set of Local Variables.
std::unordered_set<uint32_t>& local_vars() { return local_vars_; }
/// Returns the number of Global Variables.
size_t num_global_vars() { return global_vars_.size(); }
/// Returns the number of Local Variables.
size_t num_local_vars() { return local_vars_.size(); }
/// Inserts a new <id> to the set of Global Variables.
void registerGlobalVariable(const uint32_t id) { global_vars_.insert(id); }
/// Inserts a new <id> to the set of Local Variables.
void registerLocalVariable(const uint32_t id) { local_vars_.insert(id); }
// Returns true if using relaxed block layout, equivalent to
// VK_KHR_relaxed_block_layout.
bool IsRelaxedBlockLayout() const {
return features_.env_relaxed_block_layout || options()->relax_block_layout;
// Returns true if allowing localsizeid, either because the environment always
// allows it, or because it is enabled from the command-line.
bool IsLocalSizeIdAllowed() const {
return features_.env_allow_localsizeid || options()->allow_localsizeid;
/// Sets the struct nesting depth for a given struct ID
void set_struct_nesting_depth(uint32_t id, uint32_t depth) {
struct_nesting_depth_[id] = depth;
/// Returns the nesting depth of a given structure ID
uint32_t struct_nesting_depth(uint32_t id) {
return struct_nesting_depth_[id];
/// Records the has a nested block/bufferblock decorated struct for a given
/// struct ID
void SetHasNestedBlockOrBufferBlockStruct(uint32_t id, bool has) {
struct_has_nested_blockorbufferblock_struct_[id] = has;
/// For a given struct ID returns true if it has a nested block/bufferblock
/// decorated struct
bool GetHasNestedBlockOrBufferBlockStruct(uint32_t id) {
return struct_has_nested_blockorbufferblock_struct_[id];
/// Records that the structure type has a member decorated with a built-in.
void RegisterStructTypeWithBuiltInMember(uint32_t id) {
/// Returns true if the struct type with the given Id has a BuiltIn member.
bool IsStructTypeWithBuiltInMember(uint32_t id) const {
return (builtin_structs_.find(id) != builtin_structs_.end());
// Returns the state of optional features.
const Feature& features() const { return features_; }
/// Adds the instruction data to unique_type_declarations_.
/// Returns false if an identical type declaration already exists.
bool RegisterUniqueTypeDeclaration(const Instruction* inst);
// Returns type_id of the scalar component of |id|.
// |id| can be either
// - scalar, vector or matrix type
// - object of either scalar, vector or matrix type
uint32_t GetComponentType(uint32_t id) const;
// Returns
// - 1 for scalar types or objects
// - vector size for vector types or objects
// - num columns for matrix types or objects
// Should not be called with any other arguments (will return zero and invoke
// assertion).
uint32_t GetDimension(uint32_t id) const;
// Returns bit width of scalar or component.
// |id| can be
// - scalar, vector or matrix type
// - object of either scalar, vector or matrix type
// Will invoke assertion and return 0 if |id| is none of the above.
uint32_t GetBitWidth(uint32_t id) const;
// Provides detailed information on matrix type.
// Returns false iff |id| is not matrix type.
bool GetMatrixTypeInfo(uint32_t id, uint32_t* num_rows, uint32_t* num_cols,
uint32_t* column_type, uint32_t* component_type) const;
// Collects struct member types into |member_types|.
// Returns false iff not struct type or has no members.
// Deletes prior contents of |member_types|.
bool GetStructMemberTypes(uint32_t struct_type_id,
std::vector<uint32_t>* member_types) const;
// Returns true iff |id| is a type corresponding to the name of the function.
// Only works for types not for objects.
bool IsVoidType(uint32_t id) const;
bool IsFloatScalarType(uint32_t id) const;
bool IsFloatVectorType(uint32_t id) const;
bool IsFloat16Vector2Or4Type(uint32_t id) const;
bool IsFloatScalarOrVectorType(uint32_t id) const;
bool IsFloatMatrixType(uint32_t id) const;
bool IsIntScalarType(uint32_t id) const;
bool IsIntVectorType(uint32_t id) const;
bool IsIntScalarOrVectorType(uint32_t id) const;
bool IsUnsignedIntScalarType(uint32_t id) const;
bool IsUnsignedIntVectorType(uint32_t id) const;
bool IsUnsignedIntScalarOrVectorType(uint32_t id) const;
bool IsSignedIntScalarType(uint32_t id) const;
bool IsSignedIntVectorType(uint32_t id) const;
bool IsBoolScalarType(uint32_t id) const;
bool IsBoolVectorType(uint32_t id) const;
bool IsBoolScalarOrVectorType(uint32_t id) const;
bool IsPointerType(uint32_t id) const;
bool IsAccelerationStructureType(uint32_t id) const;
bool IsCooperativeMatrixType(uint32_t id) const;
bool IsCooperativeMatrixNVType(uint32_t id) const;
bool IsCooperativeMatrixKHRType(uint32_t id) const;
bool IsCooperativeMatrixAType(uint32_t id) const;
bool IsCooperativeMatrixBType(uint32_t id) const;
bool IsCooperativeMatrixAccType(uint32_t id) const;
bool IsFloatCooperativeMatrixType(uint32_t id) const;
bool IsIntCooperativeMatrixType(uint32_t id) const;
bool IsUnsignedIntCooperativeMatrixType(uint32_t id) const;
bool IsUnsigned64BitHandle(uint32_t id) const;
// Returns true if |id| is a type id that contains |type| (or integer or
// floating point type) of |width| bits.
bool ContainsSizedIntOrFloatType(uint32_t id, spv::Op type,
uint32_t width) const;
// Returns true if |id| is a type id that contains a 8- or 16-bit int or
// 16-bit float that is not generally enabled for use.
bool ContainsLimitedUseIntOrFloatType(uint32_t id) const;
// Returns true if |id| is a type that contains a runtime-sized array.
// Does not consider a pointers as contains the array.
bool ContainsRuntimeArray(uint32_t id) const;
// Generic type traversal.
// Only traverse pointers and functions if |traverse_all_types| is true.
// Recursively tests |f| against the type hierarchy headed by |id|.
bool ContainsType(uint32_t id,
const std::function<bool(const Instruction*)>& f,
bool traverse_all_types = true) const;
// Returns type_id if id has type or zero otherwise.
uint32_t GetTypeId(uint32_t id) const;
// Returns opcode of the instruction which issued the id or OpNop if the
// instruction is not registered.
spv::Op GetIdOpcode(uint32_t id) const;
// Returns type_id for given id operand if it has a type or zero otherwise.
// |operand_index| is expected to be pointing towards an operand which is an
// id.
uint32_t GetOperandTypeId(const Instruction* inst,
size_t operand_index) const;
// Provides information on pointer type. Returns false iff not pointer type.
bool GetPointerTypeInfo(uint32_t id, uint32_t* data_type,
spv::StorageClass* storage_class) const;
// Is the ID the type of a pointer to a uniform block: Block-decorated struct
// in uniform storage class? The result is only valid after internal method
// CheckDecorationsOfBuffers has been called.
bool IsPointerToUniformBlock(uint32_t type_id) const {
return pointer_to_uniform_block_.find(type_id) !=
// Save the ID of a pointer to uniform block.
void RegisterPointerToUniformBlock(uint32_t type_id) {
// Is the ID the type of a struct used as a uniform block?
// The result is only valid after internal method CheckDecorationsOfBuffers
// has been called.
bool IsStructForUniformBlock(uint32_t type_id) const {
return struct_for_uniform_block_.find(type_id) !=
// Save the ID of a struct of a uniform block.
void RegisterStructForUniformBlock(uint32_t type_id) {
// Is the ID the type of a pointer to a storage buffer: BufferBlock-decorated
// struct in uniform storage class, or Block-decorated struct in StorageBuffer
// storage class? The result is only valid after internal method
// CheckDecorationsOfBuffers has been called.
bool IsPointerToStorageBuffer(uint32_t type_id) const {
return pointer_to_storage_buffer_.find(type_id) !=
// Save the ID of a pointer to a storage buffer.
void RegisterPointerToStorageBuffer(uint32_t type_id) {
// Is the ID the type of a struct for storage buffer?
// The result is only valid after internal method CheckDecorationsOfBuffers
// has been called.
bool IsStructForStorageBuffer(uint32_t type_id) const {
return struct_for_storage_buffer_.find(type_id) !=
// Save the ID of a struct of a storage buffer.
void RegisterStructForStorageBuffer(uint32_t type_id) {
// Is the ID the type of a pointer to a storage image? That is, the pointee
// type is an image type which is known to not use a sampler.
bool IsPointerToStorageImage(uint32_t type_id) const {
return pointer_to_storage_image_.find(type_id) !=
// Save the ID of a pointer to a storage image.
void RegisterPointerToStorageImage(uint32_t type_id) {
// Tries to evaluate a any scalar integer OpConstant as uint64.
// OpConstantNull is defined as zero for scalar int (will return true)
// OpSpecConstant* return false since their values cannot be relied upon
// during validation.
bool EvalConstantValUint64(uint32_t id, uint64_t* val) const;
// Same as EvalConstantValUint64 but returns a signed int
bool EvalConstantValInt64(uint32_t id, int64_t* val) const;
// Tries to evaluate a 32-bit signed or unsigned scalar integer constant.
// Returns tuple <is_int32, is_const_int32, value>.
// OpSpecConstant* return |is_const_int32| as false since their values cannot
// be relied upon during validation.
std::tuple<bool, bool, uint32_t> EvalInt32IfConst(uint32_t id) const;
// Returns the disassembly string for the given instruction.
std::string Disassemble(const Instruction& inst) const;
// Returns the disassembly string for the given instruction.
std::string Disassemble(const uint32_t* words, uint16_t num_words) const;
// Returns the string name for |decoration|.
std::string SpvDecorationString(uint32_t decoration) {
spv_operand_desc desc = nullptr;
if (grammar_.lookupOperand(SPV_OPERAND_TYPE_DECORATION, decoration,
&desc) != SPV_SUCCESS) {
return std::string("Unknown");
return std::string(desc->name);
std::string SpvDecorationString(spv::Decoration decoration) {
return SpvDecorationString(uint32_t(decoration));
// Returns whether type m1 and type m2 are cooperative matrices with
// the same "shape" (matching scope, rows, cols). If any are specialization
// constants, we assume they can match because we can't prove they don't.
spv_result_t CooperativeMatrixShapesMatch(const Instruction* inst,
uint32_t m1, uint32_t m2);
// Returns true if |lhs| and |rhs| logically match and, if the decorations of
// |rhs| are a subset of |lhs|.
// 1. Must both be either OpTypeArray or OpTypeStruct
// 2. If OpTypeArray, then
// * Length must be the same
// * Element type must match or logically match
// 3. If OpTypeStruct, then
// * Both have same number of elements
// * Element N for both structs must match or logically match
// If |check_decorations| is false, then the decorations are not checked.
bool LogicallyMatch(const Instruction* lhs, const Instruction* rhs,
bool check_decorations);
// Traces |inst| to find a single base pointer. Returns the base pointer.
// Will trace through the following instructions:
// * OpAccessChain
// * OpInBoundsAccessChain
// * OpPtrAccessChain
// * OpInBoundsPtrAccessChain
// * OpCopyObject
const Instruction* TracePointer(const Instruction* inst) const;
// Validates the storage class for the target environment.
bool IsValidStorageClass(spv::StorageClass storage_class) const;
// Takes a Vulkan Valid Usage ID (VUID) as |id| and optional |reference| and
// will return a non-empty string only if ID is known and targeting Vulkan.
// VUIDs are found in the Vulkan-Docs repo in the form "[[VUID-ref-ref-id]]"
// where "id" is always an 5 char long number (with zeros padding) and matches
// to |id|. |reference| is used if there is a "common validity" and the VUID
// shares the same |id| value.
// More details about Vulkan validation can be found in Vulkan Guide:
std::string VkErrorID(uint32_t id, const char* reference = nullptr) const;
// Testing method to allow setting the current layout section.
void SetCurrentLayoutSectionForTesting(ModuleLayoutSection section) {
current_layout_section_ = section;
// Check if instruction 'id' is a consumer of a texture decorated
// with a QCOM image processing decoration
bool IsQCOMImageProcessingTextureConsumer(uint32_t id) {
return qcom_image_processing_consumers_.find(id) !=
ValidationState_t(const ValidationState_t&);
const spv_const_context context_;
/// Stores the Validator command line options. Must be a valid options object.
const spv_const_validator_options options_;
/// The SPIR-V binary module we're validating.
const uint32_t* words_;
const size_t num_words_;
/// The generator of the SPIR-V.
uint32_t generator_ = 0;
/// The version of the SPIR-V.
uint32_t version_ = 0;
/// The total number of instructions in the binary.
size_t total_instructions_ = 0;
/// The total number of functions in the binary.
size_t total_functions_ = 0;
/// IDs which have been forward declared but have not been defined
std::unordered_set<uint32_t> unresolved_forward_ids_;
/// IDs that have been declared as forward pointers.
std::unordered_set<uint32_t> forward_pointer_ids_;
/// Stores a vector of instructions that use the result of a given
/// OpSampledImage instruction.
std::unordered_map<uint32_t, std::vector<Instruction*>>
/// Stores load instructions that load textures used
// in QCOM image processing functions
std::unordered_set<uint32_t> qcom_image_processing_consumers_;
/// A map of operand IDs and their names defined by the OpName instruction
std::unordered_map<uint32_t, std::string> operand_names_;
/// The section of the code being processed
ModuleLayoutSection current_layout_section_;
/// A list of functions in the module.
/// Pointers to objects in this container are guaranteed to be stable and
/// valid until the end of lifetime of the validation state.
std::vector<Function> module_functions_;
/// Capabilities declared in the module
CapabilitySet module_capabilities_;
/// Extensions declared in the module
ExtensionSet module_extensions_;
/// List of all instructions in the order they appear in the binary
std::vector<Instruction> ordered_instructions_;
/// Instructions that can be referenced by Ids
std::unordered_map<uint32_t, Instruction*> all_definitions_;
/// IDs that are entry points, ie, arguments to OpEntryPoint.
std::vector<uint32_t> entry_points_;
/// Maps an entry point id to its descriptions.
std::unordered_map<uint32_t, std::vector<EntryPointDescription>>
/// IDs that are entry points, ie, arguments to OpEntryPoint, and root a call
/// graph that recurses.
std::set<uint32_t> recursive_entry_points_;
/// Functions IDs that are target of OpFunctionCall.
std::unordered_set<uint32_t> function_call_targets_;
/// ID Bound from the Header
uint32_t id_bound_;
/// Set of Global Variable IDs (Storage Class other than 'Function')
std::unordered_set<uint32_t> global_vars_;
/// Set of Local Variable IDs ('Function' Storage Class)
std::unordered_set<uint32_t> local_vars_;
/// Set of struct types that have members with a BuiltIn decoration.
std::unordered_set<uint32_t> builtin_structs_;
/// Structure Nesting Depth
std::unordered_map<uint32_t, uint32_t> struct_nesting_depth_;
/// Structure has nested blockorbufferblock struct
std::unordered_map<uint32_t, bool>
/// Stores the list of decorations for a given <id>
std::map<uint32_t, std::set<Decoration>> id_decorations_;
/// Stores type declarations which need to be unique (i.e. non-aggregates),
/// in the form [opcode, operand words], result_id is not stored.
/// Using ordered set to avoid the need for a vector hash function.
/// The size of this container is expected not to exceed double-digits.
std::set<std::vector<uint32_t>> unique_type_declarations_;
AssemblyGrammar grammar_;
spv::AddressingModel addressing_model_;
spv::MemoryModel memory_model_;
// pointer size derived from addressing model. Assumes all storage classes
// have the same pointer size (for physical pointer types).
uint32_t pointer_size_and_alignment_;
/// bit width of sampler/image type variables. Valid values are 32 and 64
uint32_t sampler_image_addressing_mode_;
/// NOTE: See correspoding getter functions
bool in_function_;
/// The state of optional features. These are determined by capabilities
/// declared by the module and the environment.
Feature features_;
/// Maps function ids to function stat objects.
std::unordered_map<uint32_t, Function*> id_to_function_;
/// Mapping entry point -> execution models. It is presumed that the same
/// function could theoretically be used as 'main' by multiple OpEntryPoint
/// instructions.
std::unordered_map<uint32_t, std::set<spv::ExecutionModel>>
/// Mapping entry point -> execution modes.
std::unordered_map<uint32_t, std::set<spv::ExecutionMode>>
/// Mapping function -> array of entry points inside this
/// module which can (indirectly) call the function.
std::unordered_map<uint32_t, std::vector<uint32_t>> function_to_entry_points_;
const std::vector<uint32_t> empty_ids_;
// The IDs of types of pointers to Block-decorated structs in Uniform storage
// class. This is populated at the start of ValidateDecorations.
std::unordered_set<uint32_t> pointer_to_uniform_block_;
// The IDs of struct types for uniform blocks.
// This is populated at the start of ValidateDecorations.
std::unordered_set<uint32_t> struct_for_uniform_block_;
// The IDs of types of pointers to BufferBlock-decorated structs in Uniform
// storage class, or Block-decorated structs in StorageBuffer storage class.
// This is populated at the start of ValidateDecorations.
std::unordered_set<uint32_t> pointer_to_storage_buffer_;
// The IDs of struct types for storage buffers.
// This is populated at the start of ValidateDecorations.
std::unordered_set<uint32_t> struct_for_storage_buffer_;
// The IDs of types of pointers to storage images. This is populated in the
// TypePass.
std::unordered_set<uint32_t> pointer_to_storage_image_;
/// Maps ids to friendly names.
std::unique_ptr<spvtools::FriendlyNameMapper> friendly_mapper_;
spvtools::NameMapper name_mapper_;
/// Variables used to reduce the number of diagnostic messages.
uint32_t num_of_warnings_;
uint32_t max_num_of_warnings_;
} // namespace val
} // namespace spvtools