| // Copyright (c) 2018 The Khronos Group Inc. |
| // Copyright (c) 2018 Valve Corporation |
| // Copyright (c) 2018 LunarG Inc. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "instrument_pass.h" |
| |
| #include "source/cfa.h" |
| #include "source/spirv_constant.h" |
| |
| namespace spvtools { |
| namespace opt { |
| namespace { |
| // Indices of operands in SPIR-V instructions |
| constexpr int kEntryPointFunctionIdInIdx = 1; |
| } // namespace |
| |
| void InstrumentPass::MovePreludeCode( |
| BasicBlock::iterator ref_inst_itr, |
| UptrVectorIterator<BasicBlock> ref_block_itr, |
| std::unique_ptr<BasicBlock>* new_blk_ptr) { |
| same_block_pre_.clear(); |
| same_block_post_.clear(); |
| // Initialize new block. Reuse label from original block. |
| new_blk_ptr->reset(new BasicBlock(std::move(ref_block_itr->GetLabel()))); |
| // Move contents of original ref block up to ref instruction. |
| for (auto cii = ref_block_itr->begin(); cii != ref_inst_itr; |
| cii = ref_block_itr->begin()) { |
| Instruction* inst = &*cii; |
| inst->RemoveFromList(); |
| std::unique_ptr<Instruction> mv_ptr(inst); |
| // Remember same-block ops for possible regeneration. |
| if (IsSameBlockOp(&*mv_ptr)) { |
| auto* sb_inst_ptr = mv_ptr.get(); |
| same_block_pre_[mv_ptr->result_id()] = sb_inst_ptr; |
| } |
| (*new_blk_ptr)->AddInstruction(std::move(mv_ptr)); |
| } |
| } |
| |
| void InstrumentPass::MovePostludeCode( |
| UptrVectorIterator<BasicBlock> ref_block_itr, BasicBlock* new_blk_ptr) { |
| // Move contents of original ref block. |
| for (auto cii = ref_block_itr->begin(); cii != ref_block_itr->end(); |
| cii = ref_block_itr->begin()) { |
| Instruction* inst = &*cii; |
| inst->RemoveFromList(); |
| std::unique_ptr<Instruction> mv_inst(inst); |
| // Regenerate any same-block instruction that has not been seen in the |
| // current block. |
| if (same_block_pre_.size() > 0) { |
| CloneSameBlockOps(&mv_inst, &same_block_post_, &same_block_pre_, |
| new_blk_ptr); |
| // Remember same-block ops in this block. |
| if (IsSameBlockOp(&*mv_inst)) { |
| const uint32_t rid = mv_inst->result_id(); |
| same_block_post_[rid] = rid; |
| } |
| } |
| new_blk_ptr->AddInstruction(std::move(mv_inst)); |
| } |
| } |
| |
| std::unique_ptr<Instruction> InstrumentPass::NewLabel(uint32_t label_id) { |
| auto new_label = |
| MakeUnique<Instruction>(context(), spv::Op::OpLabel, 0, label_id, |
| std::initializer_list<Operand>{}); |
| get_def_use_mgr()->AnalyzeInstDefUse(&*new_label); |
| return new_label; |
| } |
| |
| std::unique_ptr<Function> InstrumentPass::StartFunction( |
| uint32_t func_id, const analysis::Type* return_type, |
| const std::vector<const analysis::Type*>& param_types) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Function* func_type = GetFunction(return_type, param_types); |
| |
| const std::vector<Operand> operands{ |
| {spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER, |
| {uint32_t(spv::FunctionControlMask::MaskNone)}}, |
| {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_mgr->GetId(func_type)}}, |
| }; |
| auto func_inst = |
| MakeUnique<Instruction>(context(), spv::Op::OpFunction, |
| type_mgr->GetId(return_type), func_id, operands); |
| get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst); |
| return MakeUnique<Function>(std::move(func_inst)); |
| } |
| |
| std::unique_ptr<Instruction> InstrumentPass::EndFunction() { |
| auto end = MakeUnique<Instruction>(context(), spv::Op::OpFunctionEnd, 0, 0, |
| std::initializer_list<Operand>{}); |
| get_def_use_mgr()->AnalyzeInstDefUse(end.get()); |
| return end; |
| } |
| |
| std::vector<uint32_t> InstrumentPass::AddParameters( |
| Function& func, const std::vector<const analysis::Type*>& param_types) { |
| std::vector<uint32_t> param_ids; |
| param_ids.reserve(param_types.size()); |
| for (const analysis::Type* param : param_types) { |
| uint32_t pid = TakeNextId(); |
| param_ids.push_back(pid); |
| auto param_inst = |
| MakeUnique<Instruction>(context(), spv::Op::OpFunctionParameter, |
| context()->get_type_mgr()->GetId(param), pid, |
| std::initializer_list<Operand>{}); |
| get_def_use_mgr()->AnalyzeInstDefUse(param_inst.get()); |
| func.AddParameter(std::move(param_inst)); |
| } |
| return param_ids; |
| } |
| |
| std::unique_ptr<Instruction> InstrumentPass::NewName( |
| uint32_t id, const std::string& name_str) { |
| return MakeUnique<Instruction>( |
| context(), spv::Op::OpName, 0, 0, |
| std::initializer_list<Operand>{ |
| {SPV_OPERAND_TYPE_ID, {id}}, |
| {SPV_OPERAND_TYPE_LITERAL_STRING, utils::MakeVector(name_str)}}); |
| } |
| |
| uint32_t InstrumentPass::Gen32BitCvtCode(uint32_t val_id, |
| InstructionBuilder* builder) { |
| // Convert integer value to 32-bit if necessary |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| uint32_t val_ty_id = get_def_use_mgr()->GetDef(val_id)->type_id(); |
| analysis::Integer* val_ty = type_mgr->GetType(val_ty_id)->AsInteger(); |
| if (val_ty->width() == 32) return val_id; |
| bool is_signed = val_ty->IsSigned(); |
| analysis::Integer val_32b_ty(32, is_signed); |
| analysis::Type* val_32b_reg_ty = type_mgr->GetRegisteredType(&val_32b_ty); |
| uint32_t val_32b_reg_ty_id = type_mgr->GetId(val_32b_reg_ty); |
| if (is_signed) |
| return builder->AddUnaryOp(val_32b_reg_ty_id, spv::Op::OpSConvert, val_id) |
| ->result_id(); |
| else |
| return builder->AddUnaryOp(val_32b_reg_ty_id, spv::Op::OpUConvert, val_id) |
| ->result_id(); |
| } |
| |
| uint32_t InstrumentPass::GenUintCastCode(uint32_t val_id, |
| InstructionBuilder* builder) { |
| // Convert value to 32-bit if necessary |
| uint32_t val_32b_id = Gen32BitCvtCode(val_id, builder); |
| // Cast value to unsigned if necessary |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| uint32_t val_ty_id = get_def_use_mgr()->GetDef(val_32b_id)->type_id(); |
| analysis::Integer* val_ty = type_mgr->GetType(val_ty_id)->AsInteger(); |
| if (!val_ty->IsSigned()) return val_32b_id; |
| return builder->AddUnaryOp(GetUintId(), spv::Op::OpBitcast, val_32b_id) |
| ->result_id(); |
| } |
| |
| uint32_t InstrumentPass::GenVarLoad(uint32_t var_id, |
| InstructionBuilder* builder) { |
| Instruction* var_inst = get_def_use_mgr()->GetDef(var_id); |
| uint32_t type_id = GetPointeeTypeId(var_inst); |
| Instruction* load_inst = builder->AddLoad(type_id, var_id); |
| return load_inst->result_id(); |
| } |
| |
| uint32_t InstrumentPass::GenStageInfo(uint32_t stage_idx, |
| InstructionBuilder* builder) { |
| std::vector<uint32_t> ids(4, builder->GetUintConstantId(0)); |
| ids[0] = builder->GetUintConstantId(stage_idx); |
| // %289 = OpCompositeConstruct %v4uint %uint_0 %285 %288 %uint_0 |
| // TODO(greg-lunarg): Add support for all stages |
| switch (spv::ExecutionModel(stage_idx)) { |
| case spv::ExecutionModel::Vertex: { |
| // Load and store VertexId and InstanceId |
| uint32_t load_id = GenVarLoad( |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::VertexIndex)), |
| builder); |
| ids[1] = GenUintCastCode(load_id, builder); |
| |
| load_id = GenVarLoad(context()->GetBuiltinInputVarId( |
| uint32_t(spv::BuiltIn::InstanceIndex)), |
| builder); |
| ids[2] = GenUintCastCode(load_id, builder); |
| } break; |
| case spv::ExecutionModel::GLCompute: |
| case spv::ExecutionModel::TaskNV: |
| case spv::ExecutionModel::MeshNV: |
| case spv::ExecutionModel::TaskEXT: |
| case spv::ExecutionModel::MeshEXT: { |
| // Load and store GlobalInvocationId. |
| uint32_t load_id = GenVarLoad(context()->GetBuiltinInputVarId(uint32_t( |
| spv::BuiltIn::GlobalInvocationId)), |
| builder); |
| for (uint32_t u = 0; u < 3u; ++u) { |
| ids[u + 1] = builder->AddCompositeExtract(GetUintId(), load_id, {u}) |
| ->result_id(); |
| } |
| } break; |
| case spv::ExecutionModel::Geometry: { |
| // Load and store PrimitiveId and InvocationId. |
| uint32_t load_id = GenVarLoad( |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::PrimitiveId)), |
| builder); |
| ids[1] = load_id; |
| load_id = GenVarLoad( |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::InvocationId)), |
| builder); |
| ids[2] = GenUintCastCode(load_id, builder); |
| } break; |
| case spv::ExecutionModel::TessellationControl: { |
| // Load and store InvocationId and PrimitiveId |
| uint32_t load_id = GenVarLoad( |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::InvocationId)), |
| builder); |
| ids[1] = GenUintCastCode(load_id, builder); |
| load_id = GenVarLoad( |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::PrimitiveId)), |
| builder); |
| ids[2] = load_id; |
| } break; |
| case spv::ExecutionModel::TessellationEvaluation: { |
| // Load and store PrimitiveId and TessCoord.uv |
| uint32_t load_id = GenVarLoad( |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::PrimitiveId)), |
| builder); |
| ids[1] = load_id; |
| load_id = GenVarLoad( |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::TessCoord)), |
| builder); |
| Instruction* uvec3_cast_inst = |
| builder->AddUnaryOp(GetVec3UintId(), spv::Op::OpBitcast, load_id); |
| uint32_t uvec3_cast_id = uvec3_cast_inst->result_id(); |
| for (uint32_t u = 0; u < 2u; ++u) { |
| ids[u + 2] = |
| builder->AddCompositeExtract(GetUintId(), uvec3_cast_id, {u}) |
| ->result_id(); |
| } |
| } break; |
| case spv::ExecutionModel::Fragment: { |
| // Load FragCoord and convert to Uint |
| Instruction* frag_coord_inst = builder->AddLoad( |
| GetVec4FloatId(), |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::FragCoord))); |
| Instruction* uint_frag_coord_inst = builder->AddUnaryOp( |
| GetVec4UintId(), spv::Op::OpBitcast, frag_coord_inst->result_id()); |
| for (uint32_t u = 0; u < 2u; ++u) { |
| ids[u + 1] = |
| builder |
| ->AddCompositeExtract(GetUintId(), |
| uint_frag_coord_inst->result_id(), {u}) |
| ->result_id(); |
| } |
| } break; |
| case spv::ExecutionModel::RayGenerationNV: |
| case spv::ExecutionModel::IntersectionNV: |
| case spv::ExecutionModel::AnyHitNV: |
| case spv::ExecutionModel::ClosestHitNV: |
| case spv::ExecutionModel::MissNV: |
| case spv::ExecutionModel::CallableNV: { |
| // Load and store LaunchIdNV. |
| uint32_t launch_id = GenVarLoad( |
| context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::LaunchIdNV)), |
| builder); |
| for (uint32_t u = 0; u < 3u; ++u) { |
| ids[u + 1] = builder->AddCompositeExtract(GetUintId(), launch_id, {u}) |
| ->result_id(); |
| } |
| } break; |
| default: { assert(false && "unsupported stage"); } break; |
| } |
| return builder->AddCompositeConstruct(GetVec4UintId(), ids)->result_id(); |
| } |
| |
| bool InstrumentPass::AllConstant(const std::vector<uint32_t>& ids) { |
| for (auto& id : ids) { |
| Instruction* id_inst = context()->get_def_use_mgr()->GetDef(id); |
| if (!spvOpcodeIsConstant(id_inst->opcode())) return false; |
| } |
| return true; |
| } |
| |
| uint32_t InstrumentPass::GenReadFunctionCall( |
| uint32_t return_id, uint32_t func_id, |
| const std::vector<uint32_t>& func_call_args, |
| InstructionBuilder* ref_builder) { |
| // If optimizing direct reads and the call has already been generated, |
| // use its result |
| if (opt_direct_reads_) { |
| uint32_t res_id = call2id_[func_call_args]; |
| if (res_id != 0) return res_id; |
| } |
| // If the function arguments are all constants, the call can be moved to the |
| // first block of the function where its result can be reused. One example |
| // where this is profitable is for uniform buffer references, of which there |
| // are often many. |
| InstructionBuilder builder(ref_builder->GetContext(), |
| &*ref_builder->GetInsertPoint(), |
| ref_builder->GetPreservedAnalysis()); |
| bool insert_in_first_block = opt_direct_reads_ && AllConstant(func_call_args); |
| if (insert_in_first_block) { |
| Instruction* insert_before = &*curr_func_->begin()->tail(); |
| builder.SetInsertPoint(insert_before); |
| } |
| uint32_t res_id = |
| builder.AddFunctionCall(return_id, func_id, func_call_args)->result_id(); |
| if (insert_in_first_block) call2id_[func_call_args] = res_id; |
| return res_id; |
| } |
| |
| bool InstrumentPass::IsSameBlockOp(const Instruction* inst) const { |
| return inst->opcode() == spv::Op::OpSampledImage || |
| inst->opcode() == spv::Op::OpImage; |
| } |
| |
| void InstrumentPass::CloneSameBlockOps( |
| std::unique_ptr<Instruction>* inst, |
| std::unordered_map<uint32_t, uint32_t>* same_blk_post, |
| std::unordered_map<uint32_t, Instruction*>* same_blk_pre, |
| BasicBlock* block_ptr) { |
| bool changed = false; |
| (*inst)->ForEachInId([&same_blk_post, &same_blk_pre, &block_ptr, &changed, |
| this](uint32_t* iid) { |
| const auto map_itr = (*same_blk_post).find(*iid); |
| if (map_itr == (*same_blk_post).end()) { |
| const auto map_itr2 = (*same_blk_pre).find(*iid); |
| if (map_itr2 != (*same_blk_pre).end()) { |
| // Clone pre-call same-block ops, map result id. |
| const Instruction* in_inst = map_itr2->second; |
| std::unique_ptr<Instruction> sb_inst(in_inst->Clone(context())); |
| const uint32_t rid = sb_inst->result_id(); |
| const uint32_t nid = this->TakeNextId(); |
| get_decoration_mgr()->CloneDecorations(rid, nid); |
| sb_inst->SetResultId(nid); |
| get_def_use_mgr()->AnalyzeInstDefUse(&*sb_inst); |
| (*same_blk_post)[rid] = nid; |
| *iid = nid; |
| changed = true; |
| CloneSameBlockOps(&sb_inst, same_blk_post, same_blk_pre, block_ptr); |
| block_ptr->AddInstruction(std::move(sb_inst)); |
| } |
| } else { |
| // Reset same-block op operand if necessary |
| if (*iid != map_itr->second) { |
| *iid = map_itr->second; |
| changed = true; |
| } |
| } |
| }); |
| if (changed) get_def_use_mgr()->AnalyzeInstUse(&**inst); |
| } |
| |
| void InstrumentPass::UpdateSucceedingPhis( |
| std::vector<std::unique_ptr<BasicBlock>>& new_blocks) { |
| const auto first_blk = new_blocks.begin(); |
| const auto last_blk = new_blocks.end() - 1; |
| const uint32_t first_id = (*first_blk)->id(); |
| const uint32_t last_id = (*last_blk)->id(); |
| const BasicBlock& const_last_block = *last_blk->get(); |
| const_last_block.ForEachSuccessorLabel( |
| [&first_id, &last_id, this](const uint32_t succ) { |
| BasicBlock* sbp = this->id2block_[succ]; |
| sbp->ForEachPhiInst([&first_id, &last_id, this](Instruction* phi) { |
| bool changed = false; |
| phi->ForEachInId([&first_id, &last_id, &changed](uint32_t* id) { |
| if (*id == first_id) { |
| *id = last_id; |
| changed = true; |
| } |
| }); |
| if (changed) get_def_use_mgr()->AnalyzeInstUse(phi); |
| }); |
| }); |
| } |
| |
| analysis::Integer* InstrumentPass::GetInteger(uint32_t width, bool is_signed) { |
| analysis::Integer i(width, is_signed); |
| analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&i); |
| assert(type && type->AsInteger()); |
| return type->AsInteger(); |
| } |
| |
| analysis::Struct* InstrumentPass::GetStruct( |
| const std::vector<const analysis::Type*>& fields) { |
| analysis::Struct s(fields); |
| analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&s); |
| assert(type && type->AsStruct()); |
| return type->AsStruct(); |
| } |
| |
| analysis::RuntimeArray* InstrumentPass::GetRuntimeArray( |
| const analysis::Type* element) { |
| analysis::RuntimeArray r(element); |
| analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&r); |
| assert(type && type->AsRuntimeArray()); |
| return type->AsRuntimeArray(); |
| } |
| |
| analysis::Array* InstrumentPass::GetArray(const analysis::Type* element, |
| uint32_t length) { |
| uint32_t length_id = context()->get_constant_mgr()->GetUIntConstId(length); |
| analysis::Array::LengthInfo length_info{ |
| length_id, {analysis::Array::LengthInfo::Case::kConstant, length}}; |
| |
| analysis::Array r(element, length_info); |
| |
| analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&r); |
| assert(type && type->AsArray()); |
| return type->AsArray(); |
| } |
| |
| analysis::Function* InstrumentPass::GetFunction( |
| const analysis::Type* return_val, |
| const std::vector<const analysis::Type*>& args) { |
| analysis::Function func(return_val, args); |
| analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&func); |
| assert(type && type->AsFunction()); |
| return type->AsFunction(); |
| } |
| |
| analysis::RuntimeArray* InstrumentPass::GetUintXRuntimeArrayType( |
| uint32_t width, analysis::RuntimeArray** rarr_ty) { |
| if (*rarr_ty == nullptr) { |
| *rarr_ty = GetRuntimeArray(GetInteger(width, false)); |
| uint32_t uint_arr_ty_id = |
| context()->get_type_mgr()->GetTypeInstruction(*rarr_ty); |
| // By the Vulkan spec, a pre-existing RuntimeArray of uint must be part of |
| // a block, and will therefore be decorated with an ArrayStride. Therefore |
| // the undecorated type returned here will not be pre-existing and can |
| // safely be decorated. Since this type is now decorated, it is out of |
| // sync with the TypeManager and therefore the TypeManager must be |
| // invalidated after this pass. |
| assert(get_def_use_mgr()->NumUses(uint_arr_ty_id) == 0 && |
| "used RuntimeArray type returned"); |
| get_decoration_mgr()->AddDecorationVal( |
| uint_arr_ty_id, uint32_t(spv::Decoration::ArrayStride), width / 8u); |
| } |
| return *rarr_ty; |
| } |
| |
| analysis::RuntimeArray* InstrumentPass::GetUintRuntimeArrayType( |
| uint32_t width) { |
| analysis::RuntimeArray** rarr_ty = |
| (width == 64) ? &uint64_rarr_ty_ : &uint32_rarr_ty_; |
| return GetUintXRuntimeArrayType(width, rarr_ty); |
| } |
| |
| void InstrumentPass::AddStorageBufferExt() { |
| if (storage_buffer_ext_defined_) return; |
| if (!get_feature_mgr()->HasExtension(kSPV_KHR_storage_buffer_storage_class)) { |
| context()->AddExtension("SPV_KHR_storage_buffer_storage_class"); |
| } |
| storage_buffer_ext_defined_ = true; |
| } |
| |
| uint32_t InstrumentPass::GetFloatId() { |
| if (float_id_ == 0) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Float float_ty(32); |
| analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty); |
| float_id_ = type_mgr->GetTypeInstruction(reg_float_ty); |
| } |
| return float_id_; |
| } |
| |
| uint32_t InstrumentPass::GetVec4FloatId() { |
| if (v4float_id_ == 0) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Float float_ty(32); |
| analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty); |
| analysis::Vector v4float_ty(reg_float_ty, 4); |
| analysis::Type* reg_v4float_ty = type_mgr->GetRegisteredType(&v4float_ty); |
| v4float_id_ = type_mgr->GetTypeInstruction(reg_v4float_ty); |
| } |
| return v4float_id_; |
| } |
| |
| uint32_t InstrumentPass::GetUintId() { |
| if (uint_id_ == 0) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Integer uint_ty(32, false); |
| analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty); |
| uint_id_ = type_mgr->GetTypeInstruction(reg_uint_ty); |
| } |
| return uint_id_; |
| } |
| |
| uint32_t InstrumentPass::GetUint64Id() { |
| if (uint64_id_ == 0) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Integer uint64_ty(64, false); |
| analysis::Type* reg_uint64_ty = type_mgr->GetRegisteredType(&uint64_ty); |
| uint64_id_ = type_mgr->GetTypeInstruction(reg_uint64_ty); |
| } |
| return uint64_id_; |
| } |
| |
| uint32_t InstrumentPass::GetUint8Id() { |
| if (uint8_id_ == 0) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Integer uint8_ty(8, false); |
| analysis::Type* reg_uint8_ty = type_mgr->GetRegisteredType(&uint8_ty); |
| uint8_id_ = type_mgr->GetTypeInstruction(reg_uint8_ty); |
| } |
| return uint8_id_; |
| } |
| |
| uint32_t InstrumentPass::GetVecUintId(uint32_t len) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Integer uint_ty(32, false); |
| analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty); |
| analysis::Vector v_uint_ty(reg_uint_ty, len); |
| analysis::Type* reg_v_uint_ty = type_mgr->GetRegisteredType(&v_uint_ty); |
| uint32_t v_uint_id = type_mgr->GetTypeInstruction(reg_v_uint_ty); |
| return v_uint_id; |
| } |
| |
| uint32_t InstrumentPass::GetVec4UintId() { |
| if (v4uint_id_ == 0) v4uint_id_ = GetVecUintId(4u); |
| return v4uint_id_; |
| } |
| |
| uint32_t InstrumentPass::GetVec3UintId() { |
| if (v3uint_id_ == 0) v3uint_id_ = GetVecUintId(3u); |
| return v3uint_id_; |
| } |
| |
| uint32_t InstrumentPass::GetBoolId() { |
| if (bool_id_ == 0) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Bool bool_ty; |
| analysis::Type* reg_bool_ty = type_mgr->GetRegisteredType(&bool_ty); |
| bool_id_ = type_mgr->GetTypeInstruction(reg_bool_ty); |
| } |
| return bool_id_; |
| } |
| |
| uint32_t InstrumentPass::GetVoidId() { |
| if (void_id_ == 0) { |
| analysis::TypeManager* type_mgr = context()->get_type_mgr(); |
| analysis::Void void_ty; |
| analysis::Type* reg_void_ty = type_mgr->GetRegisteredType(&void_ty); |
| void_id_ = type_mgr->GetTypeInstruction(reg_void_ty); |
| } |
| return void_id_; |
| } |
| |
| void InstrumentPass::SplitBlock( |
| BasicBlock::iterator inst_itr, UptrVectorIterator<BasicBlock> block_itr, |
| std::vector<std::unique_ptr<BasicBlock>>* new_blocks) { |
| // Make sure def/use analysis is done before we start moving instructions |
| // out of function |
| (void)get_def_use_mgr(); |
| // Move original block's preceding instructions into first new block |
| std::unique_ptr<BasicBlock> first_blk_ptr; |
| MovePreludeCode(inst_itr, block_itr, &first_blk_ptr); |
| InstructionBuilder builder( |
| context(), &*first_blk_ptr, |
| IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); |
| uint32_t split_blk_id = TakeNextId(); |
| std::unique_ptr<Instruction> split_label(NewLabel(split_blk_id)); |
| (void)builder.AddBranch(split_blk_id); |
| new_blocks->push_back(std::move(first_blk_ptr)); |
| // Move remaining instructions into split block and add to new blocks |
| std::unique_ptr<BasicBlock> split_blk_ptr( |
| new BasicBlock(std::move(split_label))); |
| MovePostludeCode(block_itr, &*split_blk_ptr); |
| new_blocks->push_back(std::move(split_blk_ptr)); |
| } |
| |
| bool InstrumentPass::InstrumentFunction(Function* func, uint32_t stage_idx, |
| InstProcessFunction& pfn) { |
| curr_func_ = func; |
| call2id_.clear(); |
| bool first_block_split = false; |
| bool modified = false; |
| // Apply instrumentation function to each instruction. |
| // Using block iterators here because of block erasures and insertions. |
| std::vector<std::unique_ptr<BasicBlock>> new_blks; |
| for (auto bi = func->begin(); bi != func->end(); ++bi) { |
| for (auto ii = bi->begin(); ii != bi->end();) { |
| // Split all executable instructions out of first block into a following |
| // block. This will allow function calls to be inserted into the first |
| // block without interfering with the instrumentation algorithm. |
| if (opt_direct_reads_ && !first_block_split) { |
| if (ii->opcode() != spv::Op::OpVariable) { |
| SplitBlock(ii, bi, &new_blks); |
| first_block_split = true; |
| } |
| } else { |
| pfn(ii, bi, stage_idx, &new_blks); |
| } |
| // If no new code, continue |
| if (new_blks.size() == 0) { |
| ++ii; |
| continue; |
| } |
| // Add new blocks to label id map |
| for (auto& blk : new_blks) id2block_[blk->id()] = &*blk; |
| // If there are new blocks we know there will always be two or |
| // more, so update succeeding phis with label of new last block. |
| size_t newBlocksSize = new_blks.size(); |
| assert(newBlocksSize > 1); |
| UpdateSucceedingPhis(new_blks); |
| // Replace original block with new block(s) |
| bi = bi.Erase(); |
| for (auto& bb : new_blks) { |
| bb->SetParent(func); |
| } |
| bi = bi.InsertBefore(&new_blks); |
| // Reset block iterator to last new block |
| for (size_t i = 0; i < newBlocksSize - 1; i++) ++bi; |
| modified = true; |
| // Restart instrumenting at beginning of last new block, |
| // but skip over any new phi or copy instruction. |
| ii = bi->begin(); |
| if (ii->opcode() == spv::Op::OpPhi || |
| ii->opcode() == spv::Op::OpCopyObject) |
| ++ii; |
| new_blks.clear(); |
| } |
| } |
| return modified; |
| } |
| |
| bool InstrumentPass::InstProcessCallTreeFromRoots(InstProcessFunction& pfn, |
| std::queue<uint32_t>* roots, |
| uint32_t stage_idx) { |
| bool modified = false; |
| std::unordered_set<uint32_t> done; |
| // Don't process input and output functions |
| for (auto& ifn : param2input_func_id_) done.insert(ifn.second); |
| for (auto& ofn : param2output_func_id_) done.insert(ofn.second); |
| // Process all functions from roots |
| while (!roots->empty()) { |
| const uint32_t fi = roots->front(); |
| roots->pop(); |
| if (done.insert(fi).second) { |
| Function* fn = id2function_.at(fi); |
| // Add calls first so we don't add new output function |
| context()->AddCalls(fn, roots); |
| modified = InstrumentFunction(fn, stage_idx, pfn) || modified; |
| } |
| } |
| return modified; |
| } |
| |
| bool InstrumentPass::InstProcessEntryPointCallTree(InstProcessFunction& pfn) { |
| uint32_t stage_id; |
| if (use_stage_info_) { |
| // Make sure all entry points have the same execution model. Do not |
| // instrument if they do not. |
| // TODO(greg-lunarg): Handle mixed stages. Technically, a shader module |
| // can contain entry points with different execution models, although |
| // such modules will likely be rare as GLSL and HLSL are geared toward |
| // one model per module. In such cases we will need |
| // to clone any functions which are in the call trees of entrypoints |
| // with differing execution models. |
| spv::ExecutionModel stage = context()->GetStage(); |
| // Check for supported stages |
| if (stage != spv::ExecutionModel::Vertex && |
| stage != spv::ExecutionModel::Fragment && |
| stage != spv::ExecutionModel::Geometry && |
| stage != spv::ExecutionModel::GLCompute && |
| stage != spv::ExecutionModel::TessellationControl && |
| stage != spv::ExecutionModel::TessellationEvaluation && |
| stage != spv::ExecutionModel::TaskNV && |
| stage != spv::ExecutionModel::MeshNV && |
| stage != spv::ExecutionModel::RayGenerationNV && |
| stage != spv::ExecutionModel::IntersectionNV && |
| stage != spv::ExecutionModel::AnyHitNV && |
| stage != spv::ExecutionModel::ClosestHitNV && |
| stage != spv::ExecutionModel::MissNV && |
| stage != spv::ExecutionModel::CallableNV && |
| stage != spv::ExecutionModel::TaskEXT && |
| stage != spv::ExecutionModel::MeshEXT) { |
| if (consumer()) { |
| std::string message = "Stage not supported by instrumentation"; |
| consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str()); |
| } |
| return false; |
| } |
| stage_id = static_cast<uint32_t>(stage); |
| } else { |
| stage_id = 0; |
| } |
| // Add together the roots of all entry points |
| std::queue<uint32_t> roots; |
| for (auto& e : get_module()->entry_points()) { |
| roots.push(e.GetSingleWordInOperand(kEntryPointFunctionIdInIdx)); |
| } |
| bool modified = InstProcessCallTreeFromRoots(pfn, &roots, stage_id); |
| return modified; |
| } |
| |
| void InstrumentPass::InitializeInstrument() { |
| float_id_ = 0; |
| v4float_id_ = 0; |
| uint_id_ = 0; |
| uint64_id_ = 0; |
| uint8_id_ = 0; |
| v4uint_id_ = 0; |
| v3uint_id_ = 0; |
| bool_id_ = 0; |
| void_id_ = 0; |
| storage_buffer_ext_defined_ = false; |
| uint32_rarr_ty_ = nullptr; |
| uint64_rarr_ty_ = nullptr; |
| |
| // clear collections |
| id2function_.clear(); |
| id2block_.clear(); |
| |
| // clear maps |
| param2input_func_id_.clear(); |
| param2output_func_id_.clear(); |
| |
| // Initialize function and block maps. |
| for (auto& fn : *get_module()) { |
| id2function_[fn.result_id()] = &fn; |
| for (auto& blk : fn) { |
| id2block_[blk.id()] = &blk; |
| } |
| } |
| |
| // Remember original instruction offsets |
| uint32_t module_offset = 0; |
| Module* module = get_module(); |
| for (auto& i : context()->capabilities()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->extensions()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->ext_inst_imports()) { |
| (void)i; |
| ++module_offset; |
| } |
| ++module_offset; // memory_model |
| for (auto& i : module->entry_points()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->execution_modes()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->debugs1()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->debugs2()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->debugs3()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->ext_inst_debuginfo()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->annotations()) { |
| (void)i; |
| ++module_offset; |
| } |
| for (auto& i : module->types_values()) { |
| module_offset += 1; |
| module_offset += static_cast<uint32_t>(i.dbg_line_insts().size()); |
| } |
| |
| auto curr_fn = get_module()->begin(); |
| for (; curr_fn != get_module()->end(); ++curr_fn) { |
| // Count function instruction |
| module_offset += 1; |
| curr_fn->ForEachParam( |
| [&module_offset](const Instruction*) { module_offset += 1; }, true); |
| for (auto& blk : *curr_fn) { |
| // Count label |
| module_offset += 1; |
| for (auto& inst : blk) { |
| module_offset += static_cast<uint32_t>(inst.dbg_line_insts().size()); |
| uid2offset_[inst.unique_id()] = module_offset; |
| module_offset += 1; |
| } |
| } |
| // Count function end instruction |
| module_offset += 1; |
| } |
| } |
| |
| } // namespace opt |
| } // namespace spvtools |